TWI576886B - Ionimplantation system,analyzer beamline operational train,and method for removing unwanted species form ion beam - Google Patents

Ionimplantation system,analyzer beamline operational train,and method for removing unwanted species form ion beam Download PDF

Info

Publication number
TWI576886B
TWI576886B TW101122956A TW101122956A TWI576886B TW I576886 B TWI576886 B TW I576886B TW 101122956 A TW101122956 A TW 101122956A TW 101122956 A TW101122956 A TW 101122956A TW I576886 B TWI576886 B TW I576886B
Authority
TW
Taiwan
Prior art keywords
ion beam
isotope
ion
mass
isotopes
Prior art date
Application number
TW101122956A
Other languages
Chinese (zh)
Other versions
TW201401325A (en
Inventor
威廉 漢比
約瑟夫 凡林斯基
Original Assignee
艾克塞利斯科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾克塞利斯科技公司 filed Critical 艾克塞利斯科技公司
Priority to TW101122956A priority Critical patent/TWI576886B/en
Publication of TW201401325A publication Critical patent/TW201401325A/en
Application granted granted Critical
Publication of TWI576886B publication Critical patent/TWI576886B/en

Links

Description

離子佈植系統、分析器的束線操作列、從離子束移除不要之物種的方法 Ion implantation system, beam line operation column of the analyzer, method of removing unwanted species from the ion beam

本發明一般關於離子佈植系統,特定而言乃關於形成可變之質量分析出口孔的方法和設備,其建構成阻擋不要的佈植同位素以免傳遞到工件。 The present invention relates generally to ion implantation systems, and more particularly to methods and apparatus for forming variable mass analysis exit orifices that are constructed to block unwanted implanted isotopes from being transferred to the workpiece.

離子佈植是應用於半導體設備製造的物理過程,其選擇性的把摻雜物植入半導體基板(例如工件、晶圓……等)。離子佈植可以採多樣的方式來進行,以便在基板上或基板裡獲得特殊的性質。舉例而言,在基板上之介電層的擴散性可以藉由將特定種類的離子植入基板而受到限制。 Ion implantation is a physical process applied to the fabrication of semiconductor devices that selectively implants dopants into semiconductor substrates (eg, workpieces, wafers, etc.). Ion implantation can be performed in a variety of ways to achieve specific properties on or in the substrate. For example, the diffusivity of a dielectric layer on a substrate can be limited by implanting a particular type of ion into the substrate.

於佈植期間,由離子源所產生的一或更多種離子物種乃提供至質量分析器。質量分析器乃建構成接收一或更多種離子物以及產生偶極磁場,該偶極磁場作用於離子物種上而基於離子的電荷對質量比例來選擇特定的離子物種。特定的離子物種則傳遞到下游的工件。於典型的序列佈植過程,產生的離子束可以掃描跨越在正交方向移動之工件的單一軸,或者可以選擇改為讓工件沿著相對於靜止離子束的一對正交軸而移動。 One or more ion species produced by the ion source are provided to the mass analyzer during implantation. The mass analyzer is constructed to receive one or more ions and to generate a dipole magnetic field that acts on the ion species to select a particular ion species based on the ion-to-mass ratio. Specific ionic species are passed to downstream workpieces. In a typical sequence implantation process, the resulting ion beam can be scanned across a single axis of the workpiece moving in orthogonal directions, or alternatively the workpiece can be moved along a pair of orthogonal axes relative to the stationary ion beam.

提供一種離子佈植系統。該離子佈植系統包括:離子源,其建構成產生包括多種同位素的離子束而沿著束線傳 遞;質量分析器,其建構成產生磁場,該磁場基於同位素的電荷對質量比例而將離子束裡的個別同位素軌跡加以彎曲;質量分析可變出口孔,其建構成將可變的阻擋結構插入離子束,而避免離子束截面積裡的同位素沿著束線向下傳遞;以及解析孔,其包括位在質量分析器下游之固定尺寸的開口,其中該開口乃相對於離子束而定位,如此以排拒電荷對質量比例不適當的離子。 An ion implantation system is provided. The ion implantation system includes: an ion source configured to generate an ion beam including a plurality of isotopes and transmitted along the beam line The mass analyzer is constructed to generate a magnetic field that bends the individual isotope trajectories in the ion beam based on the charge-to-mass ratio of the isotope; the mass analysis variable exit aperture is constructed to insert a variable blocking structure An ion beam that avoids the isotope in the cross-sectional area of the ion beam passing down the beam line; and an analytical hole that includes a fixed-sized opening downstream of the mass analyzer, wherein the opening is positioned relative to the ion beam, such An ion that rejects a charge-to-mass ratio is not appropriate.

提供一種分析器的束線操作列。該分析器的束線操作列包括:離子源,其建構成產生包括多種同位素的離子束而沿著束線傳遞;質量分析器,其建構成產生磁場,該磁場基於同位素的電荷對質量比例而將離子束裡的個別同位素軌跡加以彎曲,以提供沿著內徑的較重同位素和沿著外徑的較輕同位素;質量分析可變出口孔,其建構成將阻擋結構穿入離子束而使同位素偏折離開束線,其中阻擋結構允許一種同位素物種沿著束線向下傳遞,並且避免其他質量靠近的同位素物種沿著束線向下傳遞;以及解析孔,其包括位在質量分析器下游之固定尺寸的開口,其中該開口乃相對於離子束而定位,如此以排拒電荷對質量比例不適當的離子。 A beamline operation column of the analyzer is provided. The beam line operation column of the analyzer comprises: an ion source constructed to generate an ion beam comprising a plurality of isotopes and transmitted along the beam line; and a mass analyzer configured to generate a magnetic field based on the charge-to-mass ratio of the isotope Individual isotope traces in the ion beam are curved to provide heavier isotopes along the inner diameter and lighter isotopes along the outer diameter; mass analysis variable exit apertures constructed to penetrate the barrier structure into the ion beam The isotope is deflected away from the beamline, wherein the barrier structure allows one isotope species to pass down the beamline and avoids other isotope species of close mass passing down the beamline; and the analytical pores, which are located downstream of the mass analyzer A fixed size opening wherein the opening is positioned relative to the ion beam such that ions of a charge-to-mass ratio are rejected.

提供一種從離子束移除不要之離子佈植物種同位素的方法。該方法包括:產生包括多種同位素的離子束,其中離子束沿著束線傳遞;施加磁場至離子束,以提供沿著內徑的較重同位素和沿著外徑的較輕同位素;以及將阻擋結構移入離子束的截面積以減少質量分析器的出口孔尺寸, 而允許具有第一質量的同位素沿著束線向下傳遞,並且阻擋其他質量靠近的同位素沿著束線向下傳遞。 A method of removing unwanted ion cloth plant species isotopes from an ion beam is provided. The method includes: generating an ion beam comprising a plurality of isotopes, wherein the ion beam is transmitted along a beam line; applying a magnetic field to the ion beam to provide a heavier isotope along the inner diameter and a lighter isotope along the outer diameter; and The structure is moved into the cross-sectional area of the ion beam to reduce the size of the exit aperture of the mass analyzer. The isotope having the first mass is allowed to pass down the beam line, and other isotopes of close mass are allowed to pass down the beam line.

現在將要參考圖式來敘述本發明,其中全篇使用相同的參考數字來指稱相同的元件。 The invention will now be described with reference to the drawings, in which the same reference numerals are used to refer to the same elements.

由於半導體裝置尺寸降低變得更困難,故持續不斷發展新的整合晶片製造技術。一種這類新的製造技術更大大的依賴於佈植所用的特定物種,例如鍺。鍺的氣體來源為四氟化鍺(GeF4),其在小範圍質量中包含許多同位素物種。發明人已體會到由於不同鍺同位素所跨越的小範圍質量,以致既有的質量分析器可能無法有效濾掉不要的同位素(亦即質量分析器的標準出口孔無法發揮作用以避免不要的質量靠近物種同位素離開解析孔)。如果未有效濾掉此種不要的同位素,則它們可能侵蝕束線構件並且可能導致工件污染。 As integrated semiconductor devices become more difficult to size, new integrated wafer fabrication techniques continue to evolve. One such new manufacturing technique relies more on the particular species used for planting, such as cockroaches. The source of gas for helium is germanium tetrafluoride (GeF 4 ), which contains many isotopic species in a small range of masses. The inventors have experienced a small range of masses spanned by different helium isotopes, so that existing mass analyzers may not be able to effectively filter out unwanted isotopes (ie, the standard exit pores of the mass analyzer cannot function to avoid unwanted mass proximity). The species isotope leaves the analytical well). If such unwanted isotopes are not effectively filtered out, they may corrode the beamline members and may cause contamination of the workpiece.

據此,揭示的是可以選擇性的調整質量分析器出口尺寸的質量分析可變出口孔(mass analysis variable exit aperture,MAVEA)。藉由選擇性的調整質量分析器出口孔的尺寸,MAVEA在離子束裡跨越小範圍質量的同位素之間提供高解析選擇。於某些實施例,MAVEA位在建構成產生磁場的質量分析器裡,該磁場根據同位素的電荷對質量比例來彎曲離子束裡的同位素軌跡。MAVEA乃建構成把阻擋結構選擇性的插入束線中以阻擋一部分的離子束。阻擋一 部分的離子束則有效限制了出口孔的尺寸,其方式為允許所選的佈植同位素通過而同時阻擋質量靠近之不要的同位素的通過。 Accordingly, a mass analysis variable exit aperture (MAVEA) that selectively adjusts the exit size of the mass analyzer is disclosed. By selectively adjusting the size of the exit orifice of the mass analyzer, MAVEA provides a high resolution choice across the small range of mass isotopes in the ion beam. In some embodiments, the MAVEA bit is constructed in a mass analyzer that creates a magnetic field that bends the isotope trajectory in the ion beam based on the charge-to-mass ratio of the isotope. MAVEA is constructed to selectively insert a blocking structure into the beam line to block a portion of the ion beam. Block one Part of the ion beam effectively limits the size of the exit orifice by allowing the selected implant isotope to pass while blocking the passage of unwanted isotopes of close mass.

圖1示範依據本發明某態樣之離子佈植系統100的範例。為了示範而提出離子佈植系統100,並且要體會本發明諸態樣並不受限於所述的離子佈植系統,而也可以採用其他適合的離子佈植系統。 Figure 1 illustrates an example of an ion implantation system 100 in accordance with an aspect of the present invention. The ion implantation system 100 is presented for demonstration purposes, and it will be appreciated that aspects of the invention are not limited to the ion implantation system described, but other suitable ion implantation systems may be employed.

離子佈植系統100具有終端102、束線組件104、末端站106。終端102包括由高壓電源供應器110供以電力的離子源108。離子源108乃建構成產生佈植同位素(亦即離子),其被抽取並形成離子束112,然後沿著束線組件104中的束線而導向於末端站106。 The ion implantation system 100 has a terminal 102, a wire harness assembly 104, and an end station 106. Terminal 102 includes an ion source 108 that is powered by high voltage power supply 110. The ion source 108 is constructed to produce an implanted isotope (i.e., ion) that is extracted and formed into an ion beam 112 and then directed to the end station 106 along a beamline in the beamline assembly 104.

束線組件104具有束導引器114和質量分析器116。質量分析器116於本範例乃形成約九十度,並且包括用來在當中建立(偶極)磁場的一或更多個磁鐵(未顯示)。當離子束112進入質量分析器116,離子束裡的佈植同位素便由磁場所彎曲。具有不同電荷對質量比例的同位素乃彎曲成具有曲率半徑,其反比於它們的質量,致使離子束分散的方式為讓相同質量的同位素於空間上在一起(例如比較重的同位素位在離子束的外徑,而比較輕的同位素位在離子束的內徑)。電荷對質量比例太大或太小的同位素則偏折到束導引器114的側壁118裡。以此方式,質量分析器116允許離子束112中具有想要之電荷對質量比例的那些同位素通過而經由解析孔120離開,該解析孔120包括位在質量分析 器116末端的開口。 The beamline assembly 104 has a beam guide 114 and a mass analyzer 116. The mass analyzer 116 forms about ninety degrees in this example and includes one or more magnets (not shown) for establishing a (dipole) magnetic field therein. When the ion beam 112 enters the mass analyzer 116, the implanted isotope in the ion beam is bent by the magnetic field. Isotopes with different charge-to-mass ratios are bent to have a radius of curvature that is inversely proportional to their mass, such that the ion beam is dispersed in such a way that the same mass of isotopes are spatially together (eg, a relatively heavy isotope position in the ion beam) The outer diameter, while the lighter isotope is at the inner diameter of the ion beam). The isotope having a charge to mass ratio that is too large or too small is deflected into the sidewall 118 of the beam guide 114. In this manner, the mass analyzer 116 allows those ions of the ion beam 112 having a desired charge to mass ratio to pass through the analytical well 120, which includes the bit in mass analysis. The opening at the end of the device 116.

質量分析可變出口孔(MAVEA)122所在的位置是沿著束線而在束線組件104裡。MAVEA 122乃建構成將阻擋結構穿入束線裡,如此以阻擋一部分的離子束112。藉由阻擋一部分的離子束112,可以從束線有效移除不要的同位素。於某些實施例,MAVEA 122位在解析孔120的上游。於某些實施例,MAVEA 122位在質量分析器116裡,如此則在不要的同位素由磁場散開之後被MAVEA 122從束線移除。舉例而言,於某些實施例,MAVEA 122安裝於束導引器114中,其轉而安裝在質量分析器的原子質量單位(atomic mass unit,AMU)磁鐵的磁極之間。於另外可選擇的實施例,MAVEA 122可以位在AMU磁鐵下游之束線裡的任何其他位置。 The mass analysis variable exit aperture (MAVEA) 122 is located along the beam line in the beamline assembly 104. The MAVEA 122 is constructed to penetrate the barrier structure into the beam line such that a portion of the ion beam 112 is blocked. By blocking a portion of the ion beam 112, unwanted isotope can be effectively removed from the beam line. In some embodiments, the MAVEA 122 position is upstream of the analytical aperture 120. In some embodiments, the MAVEA 122 is located in the mass analyzer 116 such that it is removed from the beam line by the MAVEA 122 after the unwanted isotope is dissipated by the magnetic field. For example, in some embodiments, the MAVEA 122 is mounted in the beam guide 114, which in turn is mounted between the magnetic poles of an atomic mass unit (AMU) magnet of the mass analyzer. In an alternative embodiment, the MAVEA 122 can be located at any other location in the beamline downstream of the AMU magnet.

於某些實施例,MAVEA 122包括阻擋結構,其係建構成從質量分析器116的外徑穿入離子束112。藉由從外徑穿入離子束112,MAVEA 122可以允許較輕的同位素通過質量分析孔而同時阻擋較重的同位素,此乃由於質量分析器116的磁場使較輕的同位素彎曲得多於較重的同位素(亦即原子質量較大的同位素)的緣故。舉例而言,質量分析器116將使原子質量單位為72的鍺同位素彎曲得多於質量為73或74的同位素,如此則原子質量單位為72的同位素便沿著離子束的內曲率半徑。因此,藉由從外徑穿入離子束112,MAVEA 122可以操作成允許原子質量單位為72的鍺同位素離開質量分析器孔,而同時從束線濾掉原子質量單 位為73、74……等的鍺同位素。 In certain embodiments, the MAVEA 122 includes a blocking structure that is configured to penetrate the ion beam 112 from the outer diameter of the mass analyzer 116. By penetrating the ion beam 112 from the outer diameter, the MAVEA 122 can allow the lighter isotope to pass through the mass analysis aperture while blocking the heavier isotope, since the magnetic field of the mass analyzer 116 bends the lighter isotope much more than Heavy isotope (ie, an isotope with a large atomic mass). For example, mass analyzer 116 will bend a strontium isotope with an atomic mass unit of 72 more than an isotope of mass 73 or 74, such that an isotope with an atomic mass unit of 72 follows the inner radius of curvature of the ion beam. Thus, by penetrating the ion beam 112 from the outer diameter, the MAVEA 122 can be operated to allow the helium isotope of atomic mass unit 72 to exit the mass analyzer pore while simultaneously filtering out the atomic mass from the beam line. The cesium isotope at positions 73, 74, etc.

如在此所提供,MAVEA 122是與下游解析孔120分開的個別結構。舉例來說,MAVEA 122包括可以移入和移出束線的可變阻擋結構;而解析孔120包括位置相對於束線而言是固定的結構以排拒電荷對質量比例不適當的同位素。MAVEA 122和/或解析孔120與MAVEA 122的組合有效形成了質量分析器的出口孔,其允許具有所要電荷對質量比例的同位素離開質量分析器116。於一實施例,解析孔120可以建構成具有比較大的尺寸以允許寬範圍的佈植物種,例如用於傳統佈植的物種(譬如B、P……等)以及用於Ge、C……等);而MAVEA 122則建構成減少解析孔120之比較大的尺寸。這允許離子佈植系統100用於具有不同過濾解析需求的寬範圍佈植物種(例如具有用於B的寬孔和用於Ge的窄孔)。 As provided herein, the MAVEA 122 is an individual structure that is separate from the downstream analysis aperture 120. For example, MAVEA 122 includes a variable blocking structure that can be moved in and out of the beamline; and parsing aperture 120 includes an isotopic structure that is fixed relative to the beamline to reject charge-to-mass ratios. The combination of MAVEA 122 and/or analytical aperture 120 and MAVEA 122 effectively forms an exit aperture of the mass analyzer that allows the isotope with the desired charge to mass ratio to exit mass analyzer 116. In one embodiment, the analytical wells 120 can be constructed to have a relatively large size to allow for a wide range of plant species, such as species used for traditional planting (eg, B, P, etc.) and for Ge, C... The MAVEA 122 is constructed to reduce the relatively large size of the analysis aperture 120. This allows the ion implantation system 100 to be used for a wide range of plant species (eg, having wide pores for B and narrow pores for Ge) with different filtration resolution requirements.

於多樣的實施例,離子佈植系統100可以包括額外的構件。舉例而言,如圖1所示,位在質量分析器116下游的磁性掃描系統124包括磁性掃描元件以及磁性或靜電聚焦元件126。掃描束130然後通過平行器132,其包括二個偶極磁鐵以改變掃描束130的路徑,致使掃描束130無論掃描角度為何都平行於束軸而行進。末端站106然後接收掃描束130,其被導向於工件136。末端站106可以包括靠近工件位置的劑量系統138,以便在佈植操作之前或期間進行校正測量。 In various embodiments, ion implantation system 100 can include additional components. For example, as shown in FIG. 1, magnetic scanning system 124 located downstream of mass analyzer 116 includes a magnetic scanning element and a magnetic or electrostatic focusing element 126. Scan beam 130 then passes through a parallelizer 132 that includes two dipole magnets to change the path of scan beam 130 such that scan beam 130 travels parallel to the beam axis regardless of the scan angle. The end station 106 then receives a scanned beam 130 that is directed to the workpiece 136. The end station 106 can include a dose system 138 near the position of the workpiece to perform a calibration measurement before or during the implantation operation.

圖2示範離子佈植系統200的方塊圖,其顯示操作所 揭示的MAVEA來阻擋離子束範例裡所不要的同位素。離子佈植系統200包括範例性的離子束202,其通過位在工件212上游的質量分析器204。質量分析器204包括一或更多個原子質量單位(AMU)磁鐵204a、204b,其建構成產生磁場,而當離子束202通過質量分析器204時磁場便操作於離子束202上。磁場是以力來操作於離子束202裡的帶電粒子(例如佈植的同位素)上,亦即F=v×B(其中F是力,v是帶電粒子的速度,B是磁場),而使離子束的粒子移動路徑彎曲。 2 is a block diagram of an exemplary ion implantation system 200 showing an operation The MAVEA is revealed to block unwanted isotopes in the ion beam paradigm. The ion implantation system 200 includes an exemplary ion beam 202 that passes through a mass analyzer 204 that is positioned upstream of the workpiece 212. The mass analyzer 204 includes one or more atomic mass unit (AMU) magnets 204a, 204b that are configured to generate a magnetic field that is operated on the ion beam 202 as it passes through the mass analyzer 204. The magnetic field is operated by force on charged particles (eg, implanted isotopes) in the ion beam 202, ie, F=v×B (where F is the force, v is the velocity of the charged particles, and B is the magnetic field), The particle moving path of the ion beam is curved.

由於不同的佈植同位素具有不同的質量,對相等的加速度就有不同的動量,所以此種彎曲使離子束202的不同佈植同位素散開於角度θ,其中不同角度的離子束202將主要包含不同的佈植同位素。一般而言,較重的佈植同位素被質量分析器的磁場彎曲得比較輕的佈植同位素還少(亦即原子質量較大的同位素將會彎曲得比原子質量較小的同位素還少)。因此,較重的佈植同位素的位置將是沿著離子束202的外徑,而較輕的佈植同位素的位置將是沿著離子束202的內徑。舉例來說,角度θ1的離子束202將包含離子束202之最重的同位素,角度θ2所包含的同位素將輕於角度θ1,而角度θ3所包含的同位素將輕於角度θ1和θ2Since different implanted isotopes have different masses and different momentums for equal accelerations, such bending causes the different implanted isotopes of the ion beam 202 to be spread at an angle θ, wherein the different angles of the ion beam 202 will mainly contain different Planting isotope. In general, heavier implanted isotopes are less lightly implanted by the mass analyzer's magnetic field (ie, the atomic mass of the isotope will bend less than the atomic mass of the isotope). Thus, the location of the heavier implanted isotope will be along the outer diameter of the ion beam 202, while the position of the lighter implanted isotope will be along the inner diameter of the ion beam 202. For example, ion beam 202 at angle θ 1 will contain the heaviest isotope of ion beam 202, the angle θ 2 will contain an isotope that is lighter than the angle θ 1 , and the angle θ 3 will contain an isotope that will be lighter than the angle θ 1 And θ 2 .

因為質量分析器204根據質量來把同位素分開於角度θ,所以質量分析可變出口孔206可以把阻擋結構插入束線以減少出口孔的尺寸,藉此阻擋不要的佈植同位素而同時允許佔優勢的所選佈植同位素沿著束線往下傳遞。如圖2 所示範,質量分析可變出口孔206乃建構於位在質量分析器204出口之解析孔208的上游。質量分析可變出口孔206乃建構成阻擋離子束202路徑的截面積,以使不要的佈植同位素停止沿著束線往下傳遞,同時允許所選的佈植同位素沿著束線往下傳遞。 Because the mass analyzer 204 separates the isotope from the angle θ based on mass, the mass analysis variable exit aperture 206 can insert the barrier structure into the beamline to reduce the size of the exit aperture, thereby blocking unwanted implant isotopes while allowing for superiority. The selected implanted isotopes are passed down the beam line. Figure 2 As an example, the mass analysis variable exit orifice 206 is constructed upstream of the analytical orifice 208 at the outlet of the mass analyzer 204. The mass analysis variable exit aperture 206 is constructed to block the cross-sectional area of the path of the ion beam 202 such that unwanted implanted isotopes cease to pass down the beam line while allowing the selected implanted isotopes to pass down the beam line. .

質量分析可變出口孔206允許出口孔減少成低於位在質量分析器204出口之下游解析孔208的尺寸。因此,質量分析可變出口孔206要比固定尺寸的解析孔208對不要的同位素提供更大的過濾解析度。舉例而言,質量分析可變出口孔206乃建構成執行離子束路徑阻擋,其把出口孔的尺寸減少成尺寸S2(亦即形成削減的離子束)。相對而言,固定尺寸的解析孔208具有尺寸S1,其可以大於質量分析可變出口孔206所提供之出口孔的尺寸S2The mass analysis variable exit orifice 206 allows the outlet orifice to be reduced to a size below the resolution orifice 208 downstream of the outlet of the mass analyzer 204. Thus, the mass analysis variable exit orifice 206 provides a greater filtration resolution for the unwanted isotopes than the fixed size analytical orifice 208. For example, the mass analysis variable exit aperture 206 Naijian perform ion beam path constituting a barrier, which reduces the size of the outlet aperture into a size S 2 (i.e., formation of an ion beam to cut). In contrast, the fixed size analysis aperture 208 has a dimension S 1 that may be greater than the dimension S 2 of the exit aperture provided by the mass analysis variable exit aperture 206.

MAVEA 206可以建構成從一或更多側穿入離子束202。舉例來說,於一實施例,MAVEA 206可以建構成阻擋離子束202的外徑(亦即離子束的「長」行進路徑)。此種實施例允許MAVEA 206大致移除佈植物種中的較重同位素。另外可選擇的是將MAVEA 206建構成阻擋離子束202的內徑(亦即離子束的「短」行進路徑)。此種實施例允許MAVEA 206大致移除佈植物種中的較輕同位素。於另一實施例,MAVEA 206可以建構成阻擋離子束202的內徑和外徑,因此移除佈植物種中的較輕和較重同位素。 MAVEA 206 can be constructed to penetrate ion beam 202 from one or more sides. For example, in one embodiment, MAVEA 206 can be constructed to block the outer diameter of ion beam 202 (ie, the "long" path of travel of the ion beam). Such an embodiment allows MAVEA 206 to substantially remove heavier isotopes in the plant species. Alternatively, the MAVEA 206 can be constructed to block the inner diameter of the ion beam 202 (i.e., the "short" path of travel of the ion beam). Such an embodiment allows MAVEA 206 to substantially remove lighter isotopes in the plant species. In another embodiment, the MAVEA 206 can be constructed to block the inner and outer diameters of the ion beam 202, thereby removing lighter and heavier isotopes in the plant species.

所以,藉由控制上游質量分析可變出口孔206相對於解析孔208的尺寸,質量分析可變出口孔206可以建構成 減少離子束所見的質量分析器之出口孔尺寸。這允許解析孔208有比較大的尺寸來允許寬範圍的佈植物種(例如用於傳統的佈植物種,譬如B、P);同時上游的質量分析可變出口孔206可以建構成減少離子束所見的出口孔尺寸以提供縮減的孔尺寸,其可以從小範圍原子質量的佈植物種移除不要的同位素。 Therefore, by controlling the upstream mass analysis variable exit aperture 206 relative to the size of the analysis aperture 208, the mass analysis variable exit aperture 206 can be constructed Reduce the size of the exit orifice of the mass analyzer seen by the ion beam. This allows the analytical well 208 to be of a relatively large size to allow for a wide range of plant species (e.g., for conventional plant species, such as B, P); while the upstream mass analysis variable exit orifice 206 can be constructed to reduce the ion beam. The exit pore size is seen to provide a reduced pore size that can remove unwanted isotopes from a small range of atomic masses of cloth plants.

圖3示範的質量分析可變出口孔包括阻擋結構306(亦即阻擋盾),其可以藉由機械驅動機制304而移入沿著不要之離子路徑的離子束302(例如阻擋主要包含不要佈植物種之離子束302的截面積)。機械驅動機制304乃建構成以漸進方式來動態調整阻擋結構306在離子束302中的位置。舉例而言,機械驅動機制304可以建構成將阻擋結構306移入和移出離子束302。於一實施例,機械驅動機制304舉例來說可以包含線性致動器,例如螺旋齒輪驅動機制。 The mass analysis variable exit aperture illustrated in FIG. 3 includes a blocking structure 306 (ie, a blocking shield) that can be moved into the ion beam 302 along an unwanted ion path by a mechanical drive mechanism 304 (eg, blocking primarily containing unwanted plant species) The cross-sectional area of the ion beam 302). Mechanical drive mechanism 304 is constructed to dynamically adjust the position of barrier structure 306 in ion beam 302 in a progressive manner. For example, the mechanical drive mechanism 304 can be configured to move the blocking structure 306 into and out of the ion beam 302. In one embodiment, the mechanical drive mechanism 304 can include, for example, a linear actuator, such as a helical gear drive mechanism.

質量分析器的出口孔可以由阻擋結構306和解析孔308的組合所產生,如此則阻擋結構306有效減少解析孔308的尺寸到低於其名義上的固定尺寸。舉例來說,機械驅動機制304乃建構成穿入離子束302的外徑而從離子束302移除不要的物種。所得的離子束則提供至解析孔308,其進一步阻擋部分的離子束302,而從離子束302進一步移除不要的物種。因此,離開解析孔308的離子束302已經由阻擋結構306和解析孔308二者所過濾。 The exit aperture of the mass analyzer can be created by a combination of the blocking structure 306 and the analytical aperture 308 such that the blocking structure 306 effectively reduces the size of the analytical aperture 308 to below its nominally fixed size. For example, the mechanical drive mechanism 304 is constructed to penetrate the outer diameter of the ion beam 302 to remove unwanted species from the ion beam 302. The resulting ion beam is then provided to an analytical well 308 that further blocks a portion of the ion beam 302 while further removing unwanted species from the ion beam 302. Thus, the ion beam 302 exiting the analytical aperture 308 has been filtered by both the blocking structure 306 and the analytical aperture 308.

阻擋結構可以包括寬範圍的形狀、尺寸、材料。於一實施例,阻擋結構可以包括基於石墨的材料。 The barrier structure can include a wide range of shapes, sizes, materials. In an embodiment, the barrier structure may comprise a graphite based material.

圖4A、4B示範阻擋盾形狀範例的二個非限制性實施例,其可以用於如在此提供的質量分析可變出口孔。 4A, 4B illustrate two non-limiting embodiments of an example of a barrier shield shape that can be used for mass analysis variable exit apertures as provided herein.

於圖4A所示範的實施例,阻擋結構402可以包括楔形結構,其具有傾斜離開離子束408的傾斜表面404。傾斜表面404乃建構成把不要的同位素406偏折離開離子束408。舉例而言,如圖4A所示範,楔形阻擋結構402從離子束路徑的外徑進入離子束408,使得傾斜表面404把不要的同位素406偏折離開離子束408。 In the embodiment illustrated in FIG. 4A, the blocking structure 402 can include a wedge-shaped structure having an inclined surface 404 that slopes away from the ion beam 408. The inclined surface 404 is configured to deflect the unwanted isotope 406 away from the ion beam 408. For example, as illustrated in FIG. 4A, the wedge-shaped blocking structure 402 enters the ion beam 408 from the outer diameter of the ion beam path such that the inclined surface 404 deflects the unwanted isotope 406 away from the ion beam 408.

於圖4B所示範的某些額外實施例,阻擋結構402可以具有鋸齒狀表面412,其建構成把任何不要的同位素406偏折離開離子束408,如此則不要的同位素406便不會沿著束線往下行進。舉例而言,如圖4B所示範,鋸齒狀表面412可以位在阻擋結構402的「頂部」上(亦即在阻擋結構402首先進入離子束408的部分上)。 In some additional embodiments exemplified in FIG. 4B, the blocking structure 402 can have a serrated surface 412 that is configured to deflect any unwanted isotopes 406 away from the ion beam 408 such that the unwanted isotopes 406 do not follow the beam. The line goes down. For example, as illustrated in FIG. 4B, the serrated surface 412 can be positioned on the "top" of the barrier structure 402 (ie, on the portion of the barrier structure 402 that first enters the ion beam 408).

於圖5所示範的實施例,質量分析器502可以包括束傾卸器504,其建構成收集被阻擋結構506偏折離開離子束508之不要的同位素。束傾卸器504可以包括位在接收阻擋結構506所反射的同位素之位置的空腔。舉例而言,如圖5所示範,束傾卸器504所在的位置收集同位素,其係從建構成偏折不要之同位素的阻擋結構506之楔形表面反射而來。藉由收集不要的同位素,束傾卸器504確保偏折、收集的同位素不會再次進入束線。 In the embodiment illustrated in FIG. 5, mass analyzer 502 can include a beam dumper 504 that is configured to collect unwanted isotopes that are deflected away from ion beam 508 by barrier structure 506. Beam dumper 504 can include a cavity positioned to receive the isotope reflected by blocking structure 506. For example, as exemplified in FIG. 5, the position of the beam dumper 504 collects isotopes that are reflected from the wedge-shaped surface of the barrier structure 506 that forms the isotope that forms the offset. By collecting the unwanted isotopes, the beam dumper 504 ensures that the deflected, collected isotopes do not enter the beam line again.

於某些實施例,可以監視質量分析可變出口孔下游的一或更多種離子束特徵(例如離子束電流或形狀)。監視的 特徵(例如束電流或形狀)然後可以用於決定阻擋結構的最佳位置。圖6示範離子佈植系統600,其包括具有質量分析可變出口孔的質量分析器602,該質量分析可變出口孔包括由控制單元606所控制的阻擋結構610,該控制單元606則耦合於位在阻擋結構610下游的離子束測量元件604。 In certain embodiments, one or more ion beam characteristics (eg, ion beam current or shape) downstream of the mass analysis variable exit aperture may be monitored. Monitored Features such as beam current or shape can then be used to determine the optimal location of the barrier structure. 6 illustrates an exemplary ion implantation system 600 that includes a mass analyzer 602 having a mass analysis variable exit aperture that includes a blocking structure 610 controlled by a control unit 606, the control unit 606 being coupled to An ion beam measuring element 604 is located downstream of the blocking structure 610.

於某些實施例,離子束測量元件604乃建構成藉由測量在質量分析器602下游位置的一或更多個離子束特徵(例如束電流、束輪廓分布、束形狀……等)而描述離子束612的狀態。於一實施例,離子束測量元件604可以包括束電流測量元件,例如法拉第杯。於另外可選擇的實施例,離子束測量元件604可以包括一或更多個輪廓器,其可以持續橫越輪廓路徑,藉此測量掃描束的輪廓分布。 In some embodiments, the ion beam measuring component 604 is constructed to be described by measuring one or more ion beam characteristics (eg, beam current, beam profile, beam shape, etc.) at a location downstream of the mass analyzer 602. The state of the ion beam 612. In an embodiment, the ion beam measuring component 604 can include a beam current measuring component, such as a Faraday cup. In an alternative embodiment, the ion beam measuring component 604 can include one or more contourers that can continue to traverse the contour path, thereby measuring the contour profile of the scanned beam.

離子束612的測量特徵則提供至控制單元606。控制單元606乃建構成執行測量之束特徵的分析以及選擇性的產生控制訊號SCTRL,其調整阻擋結構610在離子束612裡的位置。於一實施例,控制單元606可以建構成回應於測量的離子束特徵而反覆的改變阻擋結構610在離子束612裡的位置。於某些實施例,控制單元606乃建構成比較測量的束特徵與預定的門檻值。如果測量的束特徵大於預定的門檻值,則控制訊號SCTRL將移動阻擋結構610以增加被阻擋的離子束截面積。如果測量的束特徵小於預定的門檻值,則控制訊號SCTRL將移動阻擋結構610以減少被阻擋的離子束截面積。 The measured characteristics of ion beam 612 are then provided to control unit 606. Control unit 606 is constructed to form an analysis of the beam characteristics that perform the measurement and a selective generation control signal S CTRL that adjusts the position of barrier structure 610 within ion beam 612. In one embodiment, control unit 606 can be configured to change the position of barrier structure 610 in ion beam 612 in response to the measured ion beam characteristics. In some embodiments, control unit 606 is constructed to compare the measured beam characteristics to a predetermined threshold. If the measured beam characteristic is greater than a predetermined threshold value, the control signal S CTRL will move the blocking structure 610 to increase the blocked ion beam cross-sectional area. If the measured beam characteristic is less than a predetermined threshold value, the control signal S CTRL will move the blocking structure 610 to reduce the blocked ion beam cross-sectional area.

於某些實施例,控制訊號SCTRL乃提供至機械驅動機制 608。機械驅動機制608則建構成藉由漸進的方式來把阻擋結構610移入和移出離子束612而控制阻擋結構610的位置,以逐漸增加(例如藉由阻擋較少的離子路徑)或逐漸減少(例如藉由阻擋較多的離子路徑)束電流以達到所要的束電流(例如基於預定的門檻值)。可以藉由觀察之前穩定的束電流,同時把阻擋結構610緩慢移入離子束路徑,直到看見束電流有不能接受的降低為止(例如直到離子束電流違背預定的門檻值為止),而決定阻擋結構610的最終位置。阻擋結構610然後可以稍微抽出,直到再次獲得可接受的最小束電流為止。 In some embodiments, control signal S CTRL is provided to mechanical drive mechanism 608. The mechanical drive mechanism 608 is constructed to progressively increase the position of the blocking structure 610 by moving the blocking structure 610 into and out of the ion beam 612 in a progressive manner to gradually increase (eg, by blocking fewer ion paths) or to gradually decrease (eg, The beam current is blocked by blocking more ion paths to achieve the desired beam current (eg, based on a predetermined threshold). The blocking structure 610 can be determined by observing the previously stabilized beam current while slowly moving the blocking structure 610 into the ion beam path until an unacceptable decrease in beam current is seen (eg, until the ion beam current violates a predetermined threshold). The final location. The blocking structure 610 can then be pulled slightly until an acceptable minimum beam current is again obtained.

圖7A~7D示範質量分析可變出口孔的更特殊之實施例,其係由耦合於下游之束電流測量裝置的控制系統所可變的控制。圖7A~7C示範在質量分析器束路徑裡之不同位置的質量分析出口孔阻擋結構。圖7D示範的圖形顯示束電流(y軸)為時間(x軸)的函數以及離子束的阻擋百分比(y軸)為時間(x軸)的函數。 Figures 7A-7D illustrate a more specific embodiment of a mass analysis variable exit orifice that is variably controlled by a control system coupled to a downstream beam current measuring device. Figures 7A-7C illustrate mass analysis exit hole blocking structures at different locations in the mass analyzer beam path. The graph exemplified in Figure 7D shows the beam current (y-axis) as a function of time (x-axis) and the percent blocking of the ion beam (y-axis) as a function of time (x-axis).

參見圖7A,在第一時間t=t1,阻擋結構700是在離子束702外面。參見圖7D,在時間t1,離子束的阻擋百分比為零(圖形704),並且離子束電流是在固定不變的束電流C1(圖形706)。 Referring to Figure 7A, at a first time t = t 1, the barrier structure 700 is out of the ion beam 702. Referring to Figure 7D, at time t 1, the percentage blocking of the ion beam to zero (graph 704), and the ion beam current in the beam current constant C 1 (706 pattern).

參見圖7B,在第二時間t=t2,阻擋結構700所在的位置阻擋了一部分的離子束702。參見圖7D,在時間t2,離子束的阻擋百分比已從t1起增加(圖形704),並且離子束電流已從固定不變的束電流C1起減少(圖形706)。 Referring to Figure 7B, at a second time t = t 2, the position of the blocking structure 700 blocks a portion where the ion beam 702. Referring to Figure 7D, at time t 2, the percentage blocking of the ion beam increases starting from t 1 (pattern 704), and the ion beam current from the beam current constant decrease from C 1 (706 pattern).

參見圖7C,在第三時間t=t3,阻擋結構700所在的位置阻擋了一部分的離子束702。參見圖7D,在時間t3,離子束的阻擋百分比已從t2起增加(圖形704),並且離子束電流已從固定不變的束電流C1起進一步減少(圖形706)。 Referring to Figure 7C, at a third time t = t 3, the position of the blocking structure 700 blocks a portion where the ion beam 702. Referring to Figure 7D, at time t 3, the percentage blocking of the ion beam increases starting from t 2 (704 pattern), and the ion beam current from a constant beam current is further reduced from C 1 (706 pattern).

可以減少離子束的阻擋百分比,直到測量的離子束電流違背預定的門檻值VTH為止。舉例而言,如圖7D所示,在時間t4,離子束電流(圖形706)掉到預定的門檻值VTH之下。當離子束電流違背預定的門檻值VTH時,則增加離子束的阻擋百分比以允許有不違背預定門檻值VTH的較大束電流。 The percentage of blocking of the ion beam can be reduced until the measured ion beam current violates a predetermined threshold value VTH . For example, as shown in FIG. 7D, at time t 4, the ion beam current (graph 706) fall below a predetermined threshold V TH. When the ion beam current violates a predetermined threshold value VTH , the blocking percentage of the ion beam is increased to allow for a larger beam current that does not violate the predetermined threshold value VTH .

圖8示範從離子束線減少不要的離子佈植物種同位素之範例性方法800的一實施例。方法800逐漸改變出口孔的尺寸以阻擋一部分的離子束,而避免所選之不要的同位素物種離開質量分析器。 FIG. 8 illustrates an embodiment of an exemplary method 800 for reducing unwanted ion cloth plant species isotopes from ion beam lines. The method 800 gradually changes the size of the exit aperture to block a portion of the ion beam while avoiding the selection of unwanted isotopic species from the mass analyzer.

雖然在此提供的方法(例如方法800和900)於底下示範和描述成一系列的動作或事件,不過將體會此種示範的動作或事件之順序不是要以限制的意味來解讀。舉例而言,某些動作可以採取異於在此示範和/或敘述的次序來發生以及/或者與其他的動作或事件同時發生。此外,可能不需要所有示範的動作來實施本揭示的一或更多個態樣或實施例。同時,在此顯示的一或更多個動作可以採取一或更多個分開的動作和/或階段來進行。 Although the methods provided herein (eg, methods 800 and 900) are exemplified and described as a series of acts or events, the order of such exemplary acts or events is not to be construed in a limiting sense. For example, some acts may occur in an order different than that illustrated and/or described herein and/or concurrent with other acts or events. In addition, all of the exemplary acts may be performed to implement one or more aspects or embodiments of the present disclosure. Also, one or more of the acts shown herein can be performed in one or more separate acts and/or stages.

在802,產生離子束。離子束包括具有一原子質量範圍的多種同位素。舉例來說,離子束可以包括質量範圍在 72~74原子質量單位的鍺同位素。離子束乃建構成沿著束線傳遞。 At 802, an ion beam is generated. The ion beam includes a plurality of isotopes having a range of atomic masses. For example, the ion beam can include a mass range at Strontium isotope of 72-74 atomic mass units. The ion beam is constructed to pass along the beam line.

在804,將磁場施加至離子束。磁場彎曲離子束裡之帶電同位素的軌跡,其彎曲的方式乃反比於同位素的質量。於某些實施例,磁場可以包括由質量分析器所產生的偶極磁場,其係建構成以不同的角度來彎曲具有不同質量的不同之同位素。這導致離子束分散於一角度,其中離子束的不同截面積主要包含不同的佈植同位素。 At 804, a magnetic field is applied to the ion beam. The magnetic field bends the trajectory of the charged isotope in the ion beam, and the way it is bent is inversely proportional to the mass of the isotope. In some embodiments, the magnetic field can include a dipole magnetic field generated by a mass analyzer that is configured to bend different isotopes of different masses at different angles. This causes the ion beam to be dispersed at an angle where the different cross-sectional areas of the ion beam primarily comprise different implanted isotopes.

在806,調整質量分析可變出口孔的尺寸。質量分析可變出口孔的尺寸調整方式可以是阻擋一部分的離子束,以避免所選的同位素物種離開質量分析器單元。於一實施例,質量分析可變出口孔可以配合解析孔來工作,以動態調整質量分析器的出口孔尺寸。於一實施例,可以反覆調整質量分析可變出口孔。 At 806, the mass analysis variable outlet aperture is adjusted in size. The mass analysis variable exit orifice can be sized to block a portion of the ion beam to prevent the selected isotopic species from leaving the mass analyzer unit. In one embodiment, the mass analysis variable exit aperture can be operated in conjunction with the analytical aperture to dynamically adjust the exit aperture size of the mass analyzer. In one embodiment, the mass analysis variable exit aperture can be adjusted over and over again.

圖9示範從離子束減少不要的離子佈植物種同位素之範例性方法900的更仔細之實施例。 Figure 9 illustrates a more detailed embodiment of an exemplary method 900 of reducing unwanted ion plant species isotopes from an ion beam.

在902,產生包括多種同位素的離子束。於一實施例,為了產生帶電的同位素,可以激發要離子化之摻雜材料氣體裡的自由電子。將體會可以使用任何數量的適當機制來激發自由電子,舉例而言像是RF或微波激發來源、電子束射出來源、電磁來源和/或在腔室裡產生電弧放電的陰極。激發的電子撞擊摻雜氣體分子並且產生帶電的同位素。典型而言,產生的是帶正電的同位素,雖然本揭示也可應用於產生帶負電之同位素的系統。 At 902, an ion beam comprising a plurality of isotopes is generated. In one embodiment, to generate a charged isotope, free electrons in the dopant material gas to be ionized may be excited. It will be appreciated that any number of suitable mechanisms can be used to excite free electrons, such as, for example, RF or microwave excitation sources, electron beam emission sources, electromagnetic sources, and/or cathodes that generate arcing in the chamber. The excited electrons strike the dopant gas molecules and produce charged isotopes. Typically, positively charged isotopes are produced, although the disclosure is also applicable to systems that produce negatively charged isotopes.

在904,施加磁場至離子束。磁場藉由將磁力施加於離子束裡的帶電粒子而彎曲離子束裡的同位素。磁力將以同位素的質量為函數而彎曲同位素的軌跡,其中較小質量的同位素彎曲得比較大質量的同位素還多。 At 904, a magnetic field is applied to the ion beam. The magnetic field bends the isotope in the ion beam by applying a magnetic force to the charged particles in the ion beam. The magnetic force bends the trajectory of the isotope as a function of the mass of the isotope, with smaller isotopes bent more than the larger mass of isotopes.

在906,將阻擋結構移入離子束的截面積。因為不同質量的同位素一般被磁力分散於束路徑角度,所以阻擋一部分的離子束將大大減少不要的同位素,同時對所要的同位素物種影響最小。舉例而言,把阻擋結構延伸到離子束外緣裡則大大減少重同位素(亦即比所要之同位素還重的同位素物種)的數量,同時極少減少所要的同位素。 At 906, the blocking structure is moved into the cross-sectional area of the ion beam. Because isotopes of different masses are generally dispersed by magnetic force at the beam path angle, blocking a portion of the ion beam will greatly reduce unwanted isotopes while minimizing the effects on the desired isotopic species. For example, extending the barrier structure to the outer edge of the ion beam greatly reduces the number of heavy isotopes (i.e., isotopic species that are heavier than the desired isotope) while minimizing the desired isotope.

在908,測量離子束的一或更多個特徵。於某些實施例,一或更多個特徵可以包括離子束的束電流。於一實施例,離子束電流可以由法拉第杯所測量。於某些實施例,離子束的一或更多個特徵是在阻擋結構的下游來測量。 At 908, one or more features of the ion beam are measured. In some embodiments, one or more features can include a beam current of the ion beam. In one embodiment, the ion beam current can be measured by a Faraday cup. In certain embodiments, one or more features of the ion beam are measured downstream of the barrier structure.

在910,比較測量的束特徵與預定的門檻值。如果測量的束特徵並未違背(例如等於)預定的門檻值,則不移動阻擋結構,並且本方法便結束。 At 910, the measured beam characteristics are compared to a predetermined threshold value. If the measured beam characteristics do not violate (eg, equal) a predetermined threshold value, then the blocking structure is not moved and the method ends.

然而,如果測量的束特徵違背(例如不等於)預定的門檻值,則移動阻擋結構。尤其如果測量的束特徵小於預定的門檻值,則將阻擋結構移入阻擋較大截面積的位置(912)。如果測量的束特徵大於預定的門檻值,則將阻擋結構移入阻擋較小截面積(例如小於之前的截面積)的位置(914)。 However, if the measured beam characteristic violates (eg, does not equal) a predetermined threshold value, the blocking structure is moved. In particular, if the measured beam characteristic is less than a predetermined threshold value, the blocking structure is moved into a position that blocks a larger cross-sectional area (912). If the measured beam characteristic is greater than a predetermined threshold value, the blocking structure is moved into a position that blocks a smaller cross-sectional area (eg, less than the previous cross-sectional area) (914).

然後再次在908測量一或更多個束特徵(例如電流密度、輪廓分布),並且可以重複步驟910~914直到達成阻擋 結構的最佳位置為止(亦即直到測量的束特徵等於預定的門檻值為止)。 One or more beam features (eg, current density, profile distribution) are then measured again at 908, and steps 910-914 can be repeated until a barrier is reached The optimal position of the structure (i.e., until the measured beam characteristic is equal to the predetermined threshold value).

雖然本發明已經關於特定的態樣和實施來顯示和敘述,但是熟於此技藝的其他人士將體會在閱讀和理解本說明書和所附圖式時將會想到等效的變更和修改。尤其關於上述構件(組件、裝置、電路、系統……等)所進行的多樣功能,除非另有所述,否則用於描述此等構件的語詞(包括參考的「機構」)是要對應於執行所述構件之特定功能的任何構件(亦即其係功能上相等的)而執行本發明在此所示範之範例性實施中的功能,即使結構上並不等於揭示的結構。關於此點,也將體認本發明包括電腦可讀取的媒體,其具有電腦可執行的指令以執行本發明之多樣方法的步驟。此外,雖然本發明的某一特殊特色可能已經關於幾個實施當中的僅有一個而揭示,不過此種特色可以對於任何給定的或特殊的用途而如所想要或有利的組合以其他實施的一或更多個其他特色。再者,就「包括」、「包含」、「具有」及其變化等語詞用於【實施方式】或申請專利範圍的程度來說,這些語詞是要以類似於「涵括」的方式而為涵括性的。 While the invention has been shown and described with reference to the specific embodiments of the embodiments In particular, with regard to the various functions performed by the above-described components (components, devices, circuits, systems, etc.), the terms used to describe such components (including the "institution" of the reference) are corresponding to execution unless otherwise stated. Any of the components of the particular function of the component (i.e., functionally equivalent) perform the functions of the exemplary embodiments of the invention herein, even if not structurally equivalent to the disclosed structure. In this regard, it will also be appreciated that the present invention includes computer readable media having computer executable instructions for performing the steps of the various methods of the present invention. Moreover, although a particular feature of the invention may have been disclosed with respect to only one of several implementations, such features may be implemented in any other combination as desired or advantageous for any given or particular use. One or more other features. Furthermore, to the extent that the words "including", "including", "having" and variations thereof are used in the "embodiment" or the scope of the patent application, these words are intended to be in a manner similar to "contains". Covered.

100‧‧‧離子佈植系統 100‧‧‧Ion implantation system

102‧‧‧終端 102‧‧‧ Terminal

104‧‧‧束線組件 104‧‧‧Bundle assembly

106‧‧‧末端站 106‧‧‧End station

108‧‧‧離子源 108‧‧‧Ion source

110‧‧‧高壓電源供應器 110‧‧‧High voltage power supply

112‧‧‧離子束 112‧‧‧Ion beam

114‧‧‧束導引器 114‧‧‧beam guide

116‧‧‧質量分析器 116‧‧‧Quality Analyzer

118‧‧‧側壁 118‧‧‧ side wall

120‧‧‧解析孔 120‧‧‧analysis hole

122‧‧‧質量分析可變出口孔(MAVEA) 122‧‧‧Quality Analysis Variable Exit Hole (MAVEA)

124‧‧‧磁性掃描系統 124‧‧‧Magnetic scanning system

126‧‧‧磁性或靜電聚焦元件 126‧‧‧Magnetic or electrostatic focusing elements

128‧‧‧磁性掃描元件 128‧‧‧Magnetic scanning elements

130‧‧‧掃描束 130‧‧‧Scanning beam

134‧‧‧平行器 134‧‧ ‧ parallelizer

136‧‧‧工件 136‧‧‧Workpiece

138‧‧‧劑量系統 138‧‧‧Dose system

200‧‧‧離子佈植系統 200‧‧‧Ion implantation system

202‧‧‧離子束 202‧‧‧Ion Beam

204‧‧‧質量分析器 204‧‧‧Quality Analyzer

204a、204b‧‧‧原子質量單位(AMU)磁鐵 204a, 204b‧‧‧Atomic mass unit (AMU) magnet

206‧‧‧質量分析可變出口孔 206‧‧‧Quality analysis variable exit hole

208‧‧‧解析孔 208‧‧‧analysis hole

210‧‧‧離子束 210‧‧‧Ion beam

212‧‧‧工件 212‧‧‧Workpiece

300‧‧‧離子佈植系統 300‧‧‧Ion implantation system

302‧‧‧離子束 302‧‧‧Ion Beam

304‧‧‧機械驅動機制 304‧‧‧Mechanical drive mechanism

306‧‧‧阻擋結構 306‧‧‧Block structure

308‧‧‧解析孔 308‧‧‧analysis hole

310‧‧‧質量分析器 310‧‧‧Quality Analyzer

400‧‧‧質量分析可變出口孔 400‧‧‧Quality Analysis Variable Exit Hole

402‧‧‧阻擋結構 402‧‧‧Block structure

404‧‧‧傾斜表面 404‧‧‧Sloping surface

406‧‧‧不要的同位素 406‧‧‧Don't isotope

408‧‧‧離子束 408‧‧‧Ion Beam

410‧‧‧質量分析可變出口孔 410‧‧‧Quality Analysis Variable Exit Hole

412‧‧‧鋸齒狀表面 412‧‧‧Sawtooth surface

500‧‧‧質量分析可變出口孔 500‧‧‧Quality Analysis Variable Exit Hole

502‧‧‧質量分析器 502‧‧‧Quality Analyzer

504‧‧‧束傾卸器 504‧‧‧beam dumper

506‧‧‧阻擋結構 506‧‧‧Block structure

600‧‧‧離子佈植系統 600‧‧‧Ion implantation system

602‧‧‧質量分析器 602‧‧‧Quality Analyzer

604‧‧‧離子束測量元件 604‧‧‧Ion beam measuring element

606‧‧‧控制單元 606‧‧‧Control unit

608‧‧‧機械驅動機制 608‧‧‧Mechanical drive mechanism

610‧‧‧阻擋結構 610‧‧‧Block structure

612‧‧‧離子束 612‧‧‧Ion Beam

700‧‧‧阻擋結構 700‧‧‧Block structure

702‧‧‧離子束 702‧‧‧Ion Beam

704‧‧‧圖形 704‧‧‧ graphics

706‧‧‧圖形 706‧‧‧ graphics

800‧‧‧方法 800‧‧‧ method

900‧‧‧方法 900‧‧‧ method

圖1是示範離子佈植系統範例的方塊圖;圖2示範離子束範例,其行經具有質量分析可變出口孔的質量分析器;圖3示範離子束範例,其行經具有質量分析可變出口 孔的質量分析器,而該出口孔包括阻擋結構;圖4A、4B示範阻擋結構範例的二個非限制性實施例,其可以用於質量分析可變出口孔;圖5示範質量分析出口孔之特定實施例的方塊圖,其建構成將不要的同位素重新導向於束傾卸器;圖6示範離子佈植系統,其包括具有質量分析可變出口孔的質量分析器,而由耦合於下游離子束監視系統的控制系統所控制;圖7A~7C示範在離子束裡之不同位置的質量分析出口孔阻擋結構;圖7D示範的圖形顯示離子束路徑的束電流和阻擋百分比為時間的函數;圖8示範從離子束線減少不要的離子佈植物種同位素之方法的某些實施例;以及圖9示範從離子束線減少不要的佈植物種之方法的某些更仔細的實施例。 1 is a block diagram of an exemplary ion implantation system; FIG. 2 illustrates an ion beam paradigm that passes through a mass analyzer having a mass analysis variable exit aperture; FIG. 3 illustrates an exemplary ion beam paradigm with a mass analysis variable exit a mass analyzer of the aperture, the exit aperture comprising a barrier structure; Figures 4A, 4B illustrate two non-limiting embodiments of an example of a barrier structure that can be used for mass analysis variable exit apertures; Figure 5 illustrates an exemplary mass analysis exit aperture A block diagram of a particular embodiment constructed to redirect unwanted isotope to a beam dumper; FIG. 6 illustrates an ion implantation system including a mass analyzer having a mass analysis variable exit orifice coupled to a downstream ion The control system of the beam monitoring system is controlled; Figures 7A-7C demonstrate the mass analysis exit hole blocking structure at different locations in the ion beam; the graph of Figure 7D shows the beam current and blocking percentage of the ion beam path as a function of time; 8 Demonstrates certain embodiments of a method of reducing unwanted ion plant species isotopes from ion beam lines; and Figure 9 illustrates some more detailed embodiments of methods for reducing unwanted plant species from ion beam lines.

200‧‧‧離子佈植系統 200‧‧‧Ion implantation system

202‧‧‧離子束 202‧‧‧Ion Beam

204‧‧‧質量分析器 204‧‧‧Quality Analyzer

204a‧‧‧原子質量單位磁鐵 204a‧‧‧Atomic mass unit magnet

204b‧‧‧原子質量單位磁鐵 204b‧‧‧Atomic mass unit magnet

206‧‧‧質量分析可變出口孔 206‧‧‧Quality analysis variable exit hole

208‧‧‧解析孔 208‧‧‧analysis hole

210‧‧‧離子束 210‧‧‧Ion beam

212‧‧‧工件 212‧‧‧Workpiece

Claims (19)

一種離子佈植系統,其包括:離子源,其建構成產生包括多種同位素的離子束而沿著束線傳遞;質量分析器,其建構成產生磁場,該磁場基於同位素的電荷對質量比例而將離子束裡的個別同位素軌跡加以彎曲;質量分析可變出口孔,其建構成將可變的阻擋結構插入離子束,用於改變可變出口孔的尺寸,藉以避免離子束截面積裡的同位素沿著束線向下傳遞;以及解析孔,其係與質量分析可變出口孔分開的個別結構,且包括位在質量分析器下游之固定尺寸的開口,其中質量分析可變出口孔位在解析孔的上游,且其中該開口乃相對於離子束而定位,如此以排拒電荷對質量比例不適當的離子。 An ion implantation system comprising: an ion source constructed to generate an ion beam comprising a plurality of isotopes and transmitted along a beam line; a mass analyzer configured to generate a magnetic field based on a charge-to-mass ratio of the isotope The individual isotope trajectories in the ion beam are curved; the mass analysis variable exit aperture is constructed to insert a variable blocking structure into the ion beam for varying the size of the variable exit aperture to avoid isotope along the ion beam cross-sectional area The beam line is passed down; and the analytical hole is an individual structure separate from the mass analysis variable exit hole and includes a fixed size opening downstream of the mass analyzer, wherein the mass analysis variable exit hole is in the analytical hole Upstream, and wherein the opening is positioned relative to the ion beam, such that the ions of the charge-to-mass ratio are rejected. 如申請專利範圍第1項的離子佈植系統,其中質量分析可變出口孔位在質量分析器裡。 For example, in the ion implantation system of claim 1, wherein the mass analysis variable outlet hole is located in the mass analyzer. 如申請專利範圍第1項的離子佈植系統,其中可變的阻擋結構包括楔形結構,其建構成將具有所選之電荷對質量比例的同位素偏折離開束線。 The ion implantation system of claim 1, wherein the variable barrier structure comprises a wedge-shaped structure configured to deflect an isotope having a selected charge-to-mass ratio away from the beam line. 如申請專利範圍第3項的離子佈植系統,其進一步包括:束傾卸器,其建構成收集被可變阻擋結構偏折離開束線的同位素,藉此避免收集的同位素再次進入束線。 The ion implantation system of claim 3, further comprising: a beam dumper configured to collect the isotope that is deflected away from the beam line by the variable barrier structure, thereby preventing the collected isotope from entering the beam line again. 如申請專利範圍第1項的離子佈植系統,其中可變的阻擋結構包括鋸齒狀表面,其建構成將具有所選之電荷對質量比例的同位素偏折離開束線。 The ion implantation system of claim 1, wherein the variable barrier structure comprises a serrated surface configured to deflect an isotope having a selected charge to mass ratio away from the beam line. 如申請專利範圍第1項的離子佈植系統,其中磁場彎曲個別同位素的軌跡,如此則較重的同位素位置沿著離子束的內徑,而較輕的同位素位置沿著離子束的外徑;其中可變的阻擋結構乃建構成從外徑進入離子束以阻擋較重的同位素,或者從內徑進入離子束以阻擋較輕的同位素,而不阻擋要提供至工件之所選的佈植同位素。 An ion implantation system according to claim 1, wherein the magnetic field bends the trajectory of the individual isotope such that the heavier isotope position is along the inner diameter of the ion beam and the lighter isotopic position is along the outer diameter of the ion beam; The variable barrier structure is constructed to enter the ion beam from the outer diameter to block heavier isotopes, or to enter the ion beam from the inner diameter to block the lighter isotope without blocking the selected implant isotope to be supplied to the workpiece. . 如申請專利範圍第1項的離子佈植系統,其進一步包括:機械驅動機制,其建構成動態調整可變阻擋結構在離子束裡的位置。 The ion implantation system of claim 1, further comprising: a mechanical drive mechanism configured to dynamically adjust the position of the variable barrier structure in the ion beam. 如申請專利範圍第7項的離子佈植系統,其中機械驅動機制包括線性致動器。 An ion implantation system according to claim 7 wherein the mechanical drive mechanism comprises a linear actuator. 如申請專利範圍第1項的離子佈植系統,其進一步包括:離子束監視系統,其位在質量分析可變出口孔的下游,並且建構成測量離子束的一或更多個特徵;以及控制單元,其建構成接收離子束的一或更多個測量特徵,並且基於此而產生控制訊號,其中控制訊號操作可變阻擋結構在離子束截面積裡的位置調整。 The ion implantation system of claim 1, further comprising: an ion beam monitoring system located downstream of the mass analysis variable exit aperture and configured to measure one or more characteristics of the ion beam; and control A unit constructed to receive one or more measurement features of the ion beam and based thereon to generate a control signal, wherein the control signal operates a positional adjustment of the variable blocking structure in the ion beam cross-sectional area. 如申請專利範圍第9項的離子佈植系統,其中離子 束監視系統包括:離子束測量元件,其建構成描述離子束的狀態。 Such as the ion implantation system of claim 9 of the patent scope, wherein the ion The beam monitoring system includes an ion beam measuring element constructed to describe the state of the ion beam. 一種分析器的束線操作列,其包括:離子源,其建構成產生包括多種同位素的離子束而沿著束線傳遞;質量分析器,其建構成產生磁場,該磁場基於同位素的電荷對質量比例而將離子束裡的個別同位素軌跡加以彎曲,以提供沿著內徑的較重同位素和沿著外徑的較輕同位素;質量分析可變出口孔,其建構成將阻擋結構可變性地穿入離子束,用於改變可變出口孔的尺寸,其中阻擋結構允許一種同位素物種沿著束線向下傳遞,並且避免其他質量靠近的同位素物種沿著束線向下傳遞;以及解析孔,其係與質量分析可變出口孔分開的個別結構,且包括位在質量分析器下游之固定尺寸的開口,其中質量分析可變出口孔位在解析孔的上游,且其中該開口乃相對於離子束而定位,如此以排拒電荷對質量比例不適當的離子。 A beamline operation train of an analyzer, comprising: an ion source configured to generate an ion beam comprising a plurality of isotopes and transmitted along a beam line; and a mass analyzer configured to generate a magnetic field based on the charge-pair mass of the isotope The individual isotope trajectories in the ion beam are curved to provide a heavier isotope along the inner diameter and a lighter isotope along the outer diameter; the mass analysis variable exit aperture is constructed to variably penetrate the blocking structure An ion beam for varying the size of the variable exit aperture, wherein the barrier structure allows an isotope species to pass down the beam line and avoids other isotope species of close mass passing down the beam line; and an analytical hole, An individual structure separate from the mass analysis variable exit aperture and including a fixed size opening downstream of the mass analyzer, wherein the mass analysis variable exit aperture is upstream of the analytical aperture, and wherein the opening is relative to the ion beam The positioning, in this way, rejects ions whose charge is not appropriate for the mass ratio. 如申請專利範圍第11項的束線操作列,其進一步包括:束傾卸器,其建構成收集被阻擋結構偏折離開束線的同位素,藉此避免收集的同位素再次進入束線。 The beamline operation column of claim 11, further comprising: a beam dumper configured to collect the isotope that is deflected away from the beamline by the barrier structure, thereby preventing the collected isotope from entering the beamline again. 如申請專利範圍第11項的束線操作列,其中阻擋結構包括楔形結構,其建構成將具有所選之電荷對質量比例 的同位素偏折離開束線。 The beam line operation column of claim 11, wherein the barrier structure comprises a wedge structure, the structure of which will have a selected charge-to-mass ratio The isotope is deflected away from the beam line. 如申請專利範圍第11項的束線操作列,其進一步包括:離子束監視系統,其位在質量分析可變出口孔的下游,並且建構成測量離子束的一或更多個特徵;以及控制單元,其建構成接收離子束的一或更多個測量特徵,並且基於此而產生控制訊號,其中控制訊號操作阻擋結構在離子束裡的位置調整。 The beamline operation column of claim 11, further comprising: an ion beam monitoring system located downstream of the mass analysis variable exit aperture and configured to measure one or more characteristics of the ion beam; and control A unit constructed to receive one or more measurement features of the ion beam and based thereon to generate a control signal, wherein the control signal operates to positionally adjust the position of the blocking structure in the ion beam. 一種從離子束移除不要之離子佈植物種同位素的方法,其包括:產生包括多種同位素的離子束,其中離子束沿著束線傳遞;施加磁場至離子束,以提供沿著內徑的較重同位素和沿著外徑的較輕同位素;以及將阻擋結構移入離子束的截面積以減少質量分析器的出口孔尺寸,而允許具有第一質量的同位素沿著束線向下傳遞,並且阻擋其他質量靠近的同位素沿著束線向下傳遞。 A method of removing unwanted ion cloth plant species isotopes from an ion beam, comprising: generating an ion beam comprising a plurality of isotopes, wherein the ion beam is transmitted along a beam line; applying a magnetic field to the ion beam to provide a comparison along the inner diameter Heavy isotope and lighter isotope along the outer diameter; and moving the barrier structure into the cross-sectional area of the ion beam to reduce the exit pore size of the mass analyzer, while allowing the isotope with the first mass to pass down the beam line and block Other isotopes of similar mass are passed down the beam line. 如申請專利範圍第15項的方法,其中阻擋結構乃建構成從外徑進入離子束,如此以阻擋比所選之佈植同位素還重或還輕的同位素。 The method of claim 15 wherein the barrier structure is constructed to enter the ion beam from the outer diameter such that it blocks an isotope that is heavier or less light than the selected implanted isotope. 如申請專利範圍第15項的方法,其中阻擋結構包括楔形結構,其建構成將具有所選之電荷對質量比例的同位素偏折離開束線。 The method of claim 15, wherein the barrier structure comprises a wedge-shaped structure configured to deflect the isotope having the selected charge-to-mass ratio away from the beamline. 如申請專利範圍第17項的方法,其進一步包括: 收集被阻擋結構偏折離開束線的同位素,以避免離子再次進入束線。 For example, the method of claim 17 further includes: Collect the isotope that is deflected away from the beamline by the barrier structure to prevent ions from entering the beamline again. 如申請專利範圍第15項的方法,其進一步包括:在阻擋結構的下游位置測量離子束的離子束電流;以及比較測量的離子束電流與預定的門檻值,其中阻擋結構可以進一步移入離子束,直到測量的離子束電流違背預定的門檻值為止。 The method of claim 15, further comprising: measuring an ion beam current of the ion beam at a downstream location of the barrier structure; and comparing the measured ion beam current to a predetermined threshold value, wherein the blocking structure can be further moved into the ion beam, Until the measured ion beam current violates a predetermined threshold.
TW101122956A 2012-06-27 2012-06-27 Ionimplantation system,analyzer beamline operational train,and method for removing unwanted species form ion beam TWI576886B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101122956A TWI576886B (en) 2012-06-27 2012-06-27 Ionimplantation system,analyzer beamline operational train,and method for removing unwanted species form ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101122956A TWI576886B (en) 2012-06-27 2012-06-27 Ionimplantation system,analyzer beamline operational train,and method for removing unwanted species form ion beam

Publications (2)

Publication Number Publication Date
TW201401325A TW201401325A (en) 2014-01-01
TWI576886B true TWI576886B (en) 2017-04-01

Family

ID=50345124

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101122956A TWI576886B (en) 2012-06-27 2012-06-27 Ionimplantation system,analyzer beamline operational train,and method for removing unwanted species form ion beam

Country Status (1)

Country Link
TW (1) TWI576886B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201009877A (en) * 2008-06-25 2010-03-01 Axcelis Tech Inc Post-decel magnetic energy filter for ion implantation systems
TW201025405A (en) * 2008-10-08 2010-07-01 Varian Semiconductor Equipment Techniques for ion implantation of molecular ions
TW201110185A (en) * 2009-09-03 2011-03-16 Advanced Ion Beam Tech Inc Ion implanter and ion implant method thereof
TW201222619A (en) * 2010-05-05 2012-06-01 Axcelis Tech Inc Throughput enhancement for scanned beam ion implanters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201009877A (en) * 2008-06-25 2010-03-01 Axcelis Tech Inc Post-decel magnetic energy filter for ion implantation systems
TW201025405A (en) * 2008-10-08 2010-07-01 Varian Semiconductor Equipment Techniques for ion implantation of molecular ions
TW201110185A (en) * 2009-09-03 2011-03-16 Advanced Ion Beam Tech Inc Ion implanter and ion implant method thereof
TW201222619A (en) * 2010-05-05 2012-06-01 Axcelis Tech Inc Throughput enhancement for scanned beam ion implanters

Also Published As

Publication number Publication date
TW201401325A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
US8669517B2 (en) Mass analysis variable exit aperture
KR101306541B1 (en) Beam stop and beam tuning methods
TWI759329B (en) Ion implantation systems and methods for controlling ion beam uniformity
TWI417947B (en) Methods and systems for trapping ion beam particles and focusing an ion beam
JP5689415B2 (en) Magnetic energy filter after decel in ion implantation system
JP5341070B2 (en) Method and system for extracting ion beam consisting of molecular ions (cluster ion beam extraction system)
US7579605B2 (en) Multi-purpose electrostatic lens for an ion implanter system
KR101828633B1 (en) System for changing energy of ribbon ion beam and ion implantation system
US7675050B2 (en) Apparatus and method for ion beam implantation using ribbon and spot beams
US20130112890A1 (en) Charged particle energy filter
WO2010033199A1 (en) Adjustable deflection optics for ion implantation
TWI699815B (en) Ion implanter
JPS60107246A (en) Ion source device
TWI386967B (en) Ion implanter, ion implanter electrodes, and method for implanting ions into substrates
TWI433193B (en) Ion implantation with a collimator magnet and a neutral filter magnet and method of ion implantation
JP2009176717A (en) Broad ribbon beam ion implanter architecture with high mass-energy capability
US20150329957A1 (en) Deposition and patterning using emitted electrons
TWI576886B (en) Ionimplantation system,analyzer beamline operational train,and method for removing unwanted species form ion beam
TWI705471B (en) Beam line ion implantation system and method of tuning a ribbon ion beam
US20220068588A1 (en) Ion implanter and ion selection method
JPH10308191A (en) Ion implantation device
TW201628042A (en) Ion implantation system and method with variable energy control