TWI574424B - Light guiding and power generating window set and light guiding and power generating module thereof - Google Patents
Light guiding and power generating window set and light guiding and power generating module thereof Download PDFInfo
- Publication number
- TWI574424B TWI574424B TW101150790A TW101150790A TWI574424B TW I574424 B TWI574424 B TW I574424B TW 101150790 A TW101150790 A TW 101150790A TW 101150790 A TW101150790 A TW 101150790A TW I574424 B TWI574424 B TW I574424B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- microstructures
- power generation
- light guiding
- generation module
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明係關於一種導光發電模組及包含該模組之窗組,特別是一種具有微結構之導光發電模組及包含該模組之窗組。 The invention relates to a light guiding power generation module and a window group comprising the same, in particular to a light guiding power generation module with microstructure and a window group comprising the same.
習知發電玻璃係將複數個太陽能晶片貼附在一玻璃之入光表面或出光表面,以收集太陽光而進行發電。然而,由於太陽能晶片之透光率低,而連帶降低整個發電玻璃的透光率,實際應用於窗戶時會造成視覺阻礙,以及室內採光不佳的缺點。因此,其光穿透性和發電量只能擇一,而無法兼顧。 Conventional power generation glass is a method in which a plurality of solar wafers are attached to a light incident surface or a light exit surface of a glass to collect sunlight for power generation. However, since the light transmittance of the solar wafer is low, and the light transmittance of the entire power generation glass is reduced, the practical application to the window causes visual obstruction and the disadvantage of poor indoor lighting. Therefore, its light penetration and power generation can only be chosen one and cannot be balanced.
因此,有必要提供一創新且富進步性的導光發電模組及窗組,以解決上述問題。 Therefore, it is necessary to provide an innovative and progressive light-conducting power generation module and window group to solve the above problems.
本發明提供一種導光發電模組,其包括一導光基板及至少一光電轉換元件。該導光基板具有一基材本體部、一第一表面及複數個微結構,且該等微結構投射於該第一表面之面積總和係為該第一表面之表面積之15%至50%。該光電轉換元件鄰近設置於該導光基板或設置於該導光基板上,其中該等微結構導引一入射光線之全部或一部分至該光電轉換元件。較佳地,該入射光線之另一部份係直接穿透該導光基板。藉此,可以兼顧光穿透性和發電量。 The invention provides a light guiding power generation module, which comprises a light guiding substrate and at least one photoelectric conversion element. The light guiding substrate has a substrate body portion, a first surface and a plurality of microstructures, and the sum of the areas of the microstructures projected on the first surface is 15% to 50% of the surface area of the first surface. The photoelectric conversion element is disposed adjacent to or disposed on the light guiding substrate, wherein the microstructures guide all or part of an incident light to the photoelectric conversion element. Preferably, another part of the incident light directly penetrates the light guiding substrate. Thereby, it is possible to achieve both light penetration and power generation.
本發明另提供一種導光發電窗組,其包括至少一透光 板、至少一導光基板及至少一光電轉換元件。該導光基板鄰接至該透光板,該導光基板具有一基材本體部、一第一表面及複數個微結構,且該等微結構投射於該第一表面之面積總和係為該第一表面之表面積之15%至50%。該光電轉換元件鄰近設置於該導光基板或設置於該導光基板上,其中該等微結構導引一入射光線之全部或一部分至該光電轉換元件。 The invention further provides a light guiding power generating window set, which comprises at least one light transmission a plate, at least one light guiding substrate and at least one photoelectric conversion element. The light guiding substrate is adjacent to the light transmissive plate, the light guiding substrate has a substrate body portion, a first surface and a plurality of microstructures, and the sum of the areas of the microstructures projected on the first surface is the first 15% to 50% of the surface area of a surface. The photoelectric conversion element is disposed adjacent to or disposed on the light guiding substrate, wherein the microstructures guide all or part of an incident light to the photoelectric conversion element.
參考圖1及圖2,分別顯示本發明之導光發電模組之一實施例之立體及前視示意圖。該導光發電模組1包括一導光基板10及至少一光電轉換元件14。該導光基板10具有一基材本體部11、一第一表面111、一第二表面112、一第一端114、一第二端113、一第三端115、一第四端116及複數個微結構12。較佳地,該基材本體部11係為可透光材質,例如玻璃或可透光之塑膠膜/塑膠板。 Referring to FIG. 1 and FIG. 2, a perspective view and a front view of an embodiment of a light guiding power generation module of the present invention are respectively shown. The light guiding power generation module 1 includes a light guiding substrate 10 and at least one photoelectric conversion element 14 . The light guide substrate 10 has a substrate body portion 11, a first surface 111, a second surface 112, a first end 114, a second end 113, a third end 115, a fourth end 116, and a plurality Microstructures 12. Preferably, the substrate body portion 11 is made of a light transmissive material such as glass or a light transmissive plastic film/plastic plate.
該第一表面111係相應該第二表面112,且該第一表面111相鄰於該第一端114、該第二端113、該第三端115及該第四端116。該第一端114係相對該第二端113。該等微結構12係自該第一表面111凹陷於該基材本體部11。 The first surface 111 corresponds to the second surface 112 , and the first surface 111 is adjacent to the first end 114 , the second end 113 , the third end 115 , and the fourth end 116 . The first end 114 is opposite the second end 113. The microstructures 12 are recessed from the first surface 111 to the substrate body portion 11.
在本實施例中,該等微結構12位於該第一表面111,且從該第一表面111向該第二表面112延伸。該等微結構12之俯視面係為橢圓形,且係利用例如雷射加工而成,而該等微結構12的開口形狀並不侷限橢圓形,亦可以其他製程方式而形成各種形狀,例如:圓形、方形、多角形。該等微 結構12係彼此不連接,也就是該等微結構12於第一表面111之開口邊緣係彼此不連接,且該等微結構12係可為不連續分佈。該等微結構12彼此間之距離係不全為相等,亦即,該等微結構12於第一表面111之開口邊緣之間距係不相等。該等微結構12之分佈密度亦可非全為均一。此外,各該等微結構12具一開口寬度,該些開口寬度係可全為均一或非全為均一。 In the present embodiment, the microstructures 12 are located on the first surface 111 and extend from the first surface 111 toward the second surface 112. The top surface of the microstructures 12 is elliptical and is processed by, for example, laser processing. The shape of the openings of the microstructures 12 is not limited to an elliptical shape, and various shapes can be formed by other processes, for example: Round, square, polygonal. The micro The structures 12 are not connected to each other, that is, the microstructures 12 are not connected to each other at the opening edges of the first surface 111, and the microstructures 12 may be discontinuously distributed. The distances between the microstructures 12 are not all equal, that is, the distances between the microstructures 12 at the edge of the opening of the first surface 111 are not equal. The distribution density of the microstructures 12 may also be not uniform. In addition, each of the microstructures 12 has an opening width, and the opening widths may all be uniform or not uniform.
舉例而言,如圖2所示,各該等微結構12具有一開口寬度W,且該等開口寬度W皆相等。同時,靠近該第二端113之該等微結構12間之間距d1係小於靠近該第一端114之該等微結構12間之間距d2。亦即,靠近該第一端114之微結構12之密度至靠近該第二端113之微結構12之密度係為由小逐漸變大。利用該等微結構12之不同密度設計,可調整引導至該光電轉換元件14之光線亮度。 For example, as shown in FIG. 2, each of the microstructures 12 has an opening width W, and the opening widths W are all equal. At the same time, the distance d 1 between the microstructures 12 adjacent to the second end 113 is smaller than the distance d 2 between the microstructures 12 adjacent to the first end 114. That is, the density of the microstructures 12 adjacent the first end 114 to the microstructures 12 adjacent the second end 113 is gradually increased from small to small. The brightness of the light directed to the photoelectric conversion element 14 can be adjusted using the different density designs of the microstructures 12.
該等微結構12可以利用雷射加工而成,且製程簡單。本發明之該等微結構12亦可採其他製程方式而形成,例如:壓印(Imprint)、射出(Injection)、銑製(Milling process)、蝕刻(Etching)等方式,但不侷限上述之製程方式。 The microstructures 12 can be processed by laser processing and have a simple process. The microstructures 12 of the present invention may also be formed by other processes, such as Imprint, Injection, Milling process, Etching, etc., but are not limited to the above processes. the way.
該光電轉換元件14係鄰近設置於導光基板1之該第一端114。較佳地,該光學轉換元件14係為太陽能晶片。在本實施例中,該光電轉換元件14係直接貼合於該第一端114、該第三端115及該第四端116,且該光電轉換元件14用以接收光線之一面係朝向該第一端114、該第三端115及該第四端116。 The photoelectric conversion element 14 is disposed adjacent to the first end 114 of the light guide substrate 1 . Preferably, the optical conversion element 14 is a solar wafer. In this embodiment, the photoelectric conversion element 14 is directly attached to the first end 114, the third end 115, and the fourth end 116, and the photoelectric conversion element 14 is configured to receive a light surface facing the first One end 114, the third end 115 and the fourth end 116.
在實際使用時,當一入射光線16(例如太陽光束)入射至該第一表面111時,該等微結構12導引該入射光線16之全部或一部分至該光電轉換元件14,以將該入射光線16之能量轉換成電能。較佳地,該等微結構12導引該入射光線16之一部分至該光電轉換元件14,以將部分該入射光線16之能量轉換成電能,同時,該入射光線16之另一部份係直接穿透該導光基板10。因此,該導光發電模組1實際應用於窗戶時較不易造成視覺阻礙,且也較不易影響室內採光。亦即,可以兼顧光穿透性和發電量。 In actual use, when an incident ray 16 (eg, a solar beam) is incident on the first surface 111, the microstructures 12 direct all or a portion of the incident ray 16 to the photoelectric conversion element 14 to The energy of the light 16 is converted into electrical energy. Preferably, the microstructures 12 direct a portion of the incident light 16 to the photoelectric conversion element 14 to convert a portion of the energy of the incident light 16 into electrical energy, while the other portion of the incident light 16 is directly The light guide substrate 10 is penetrated. Therefore, when the light-guiding power generation module 1 is actually applied to a window, it is less likely to cause visual obstruction, and it is also less likely to affect indoor lighting. That is, it is possible to achieve both light penetration and power generation.
參考圖3,顯示圖2中沿著線3-3之剖視示意圖。如圖所示,該等微結構12係為弧狀凹入,其中各該等微結構12會投射於該第一表面111,而形成一投射面積A。在本實施例中,該等微結構12之投射面積A總和係為該第一表面111之表面積之15%至50%,亦即該等微結構12之密度係定義為該等微結構12之投射面積A總和與該第一表面111之表面積之比例。在本實施例中,該等微結構12之投射面積A總和係為該第一表面111之表面積之15%至50%,較佳為20%至40%。 Referring to Figure 3, a cross-sectional view along line 3-3 of Figure 2 is shown. As shown, the microstructures 12 are arcuately concave, wherein each of the microstructures 12 is projected onto the first surface 111 to form a projected area A. In this embodiment, the sum of the projected areas A of the microstructures 12 is 15% to 50% of the surface area of the first surface 111, that is, the density of the microstructures 12 is defined as the microstructures 12 The ratio of the sum of the projected area A to the surface area of the first surface 111. In this embodiment, the sum of the projected areas A of the microstructures 12 is 15% to 50%, preferably 20% to 40%, of the surface area of the first surface 111.
參考圖4,顯示圖3之微結構之另一態樣。如圖所示,該等微結構12a係為槽狀凹入。 Referring to Figure 4, another aspect of the microstructure of Figure 3 is shown. As shown, the microstructures 12a are groove-like recesses.
參考圖5,顯示圖3之微結構之另一態樣。如圖所示,該等微結構12b係為柱狀凹入。 Referring to Figure 5, another aspect of the microstructure of Figure 3 is shown. As shown, the microstructures 12b are cylindrically concave.
參考圖6,顯示本發明之導光發電模組之另一實施例之立體示意圖。本實施例之導光發電模組1a與圖1所示之導 光發電模組1大致相同,其不同處在於,在本實施例中,係將該導光發電模組1轉動180度。因此,在該導光發電模組1a中,該導光基板10之第二表面112係面對該入射光線16,亦即,該入射光線16到達該第一表面111前係先經過該第二表面112。同樣地,當該入射光線16到達該第一表面111時,該等微結構12導引部分該入射光線16至該光電轉換元件14,以將部分該入射光線16之能量轉換成電能。 Referring to FIG. 6, a perspective view of another embodiment of the light guiding power generation module of the present invention is shown. The light guiding power generation module 1a of the embodiment and the guide shown in FIG. The photovoltaic power generation module 1 is substantially the same, except that in the present embodiment, the light-guiding power generation module 1 is rotated by 180 degrees. Therefore, in the light guiding power generation module 1a, the second surface 112 of the light guiding substrate 10 faces the incident light ray 16, that is, the incident light ray 16 passes through the second surface before reaching the first surface 111. Surface 112. Similarly, when the incident ray 16 reaches the first surface 111, the microstructures 12 direct a portion of the incident ray 16 to the photoelectric conversion element 14 to convert a portion of the energy of the incident ray 16 into electrical energy.
參考圖7,顯示圖3之微結構之另一態樣。如圖所示,該等微結構12c係突出於該第一表面111。同樣地,各該等微結構12c會投射於該第一表面111,而形成一投射面積A。 Referring to Figure 7, another aspect of the microstructure of Figure 3 is shown. As shown, the microstructures 12c protrude from the first surface 111. Similarly, each of the microstructures 12c is projected onto the first surface 111 to form a projected area A.
參考圖8,顯示圖3之微結構之另一態樣。如圖所示,該等微結構12d係位於該基材本體部11內部,且不連通至該第一表面111或該第二表面112。同樣地,各該等微結構12d會投射於該第一表面111,而形成一投射面積A。 Referring to Figure 8, another aspect of the microstructure of Figure 3 is shown. As shown, the microstructures 12d are located inside the substrate body portion 11 and are not connected to the first surface 111 or the second surface 112. Similarly, each of the microstructures 12d is projected onto the first surface 111 to form a projected area A.
參考圖9,顯示本發明之導光發電模組之另一實施例之前視示意圖。本實施例之導光發電模組1b與圖2所示之導光發電模組1大致相同,其不同處在於,在本實施例中,該等微結構12間之間距皆相等。 Referring to Figure 9, a front view of another embodiment of a light directing power generation module of the present invention is shown. The light guiding power generation module 1b of the present embodiment is substantially the same as the light guiding power generating module 1 shown in FIG. 2, except that in the present embodiment, the distances between the microstructures 12 are equal.
參考圖10,顯示本發明之導光發電模組之另一實施例之前視示意圖。本實施例之導光發電模組1c與圖2所示之導光發電模組1大致相同,其不同處在於,在本實施例中,靠近該第二端113之該等微結構12間之間距d1係大於靠近該第一端114之該等微結構12間之間距d2。亦即,靠近該第一端114之微結構12之密度至靠近該第二端113之微結構 12之密度係為由大逐漸變小。 Referring to FIG. 10, a front view of another embodiment of the light guiding power generation module of the present invention is shown. The light-guiding power generation module 1c of the present embodiment is substantially the same as the light-guiding power generation module 1 shown in FIG. 2, and is different in the present embodiment, between the microstructures 12 adjacent to the second end 113. The spacing d 1 is greater than the distance d 2 between the microstructures 12 adjacent the first end 114. That is, the density of the microstructures 12 adjacent the first end 114 to the microstructures 12 adjacent the second end 113 is gradually reduced from large to large.
參考圖11,顯示本發明之導光發電模組之另一實施例之前視示意圖。本實施例之導光發電模組1d與圖2所示之導光發電模組1大致相同,其不同處在於,在本實施例中,該導光基板10更具有一中央部33,該中央部33係位於該第一端114及該第二端113之間。靠近該第一端114之微結構12之密度與靠近該第二端113之微結構之密度係相等,且大於位於該中央部33之微結構12之密度。 Referring to Figure 11, a front view of another embodiment of a light directing power generation module of the present invention is shown. The light guiding power generation module 1d of the present embodiment is substantially the same as the light guiding power generating module 1 shown in FIG. 2, and the difference is that in the embodiment, the light guiding substrate 10 further has a central portion 33, the center The portion 33 is located between the first end 114 and the second end 113. The density of the microstructures 12 adjacent the first end 114 is equal to the density of the microstructures adjacent the second end 113 and greater than the density of the microstructures 12 located at the central portion 33.
參考圖12,顯示本發明之導光發電模組之另一實施例之前視示意圖。本實施例之導光發電模組1e與圖2所示之導光發電模組1大致相同,其不同處在於,在本實施例中,該導光基板10更具有一中央部33,該中央部33係位於該第一端114及該第二端113之間。靠近該第一端114之微結構12之密度與靠近該第二端113之微結構之密度係相等,且小於位於該中央部33之微結構12之密度。 Referring to Figure 12, there is shown a front view of another embodiment of the light-guiding power generation module of the present invention. The light guiding power generation module 1e of the present embodiment is substantially the same as the light guiding power generating module 1 shown in FIG. 2, and the difference is that in the embodiment, the light guiding substrate 10 further has a central portion 33, the center The portion 33 is located between the first end 114 and the second end 113. The density of the microstructures 12 adjacent the first end 114 is equal to the density of the microstructures adjacent the second end 113 and less than the density of the microstructures 12 located at the central portion 33.
參考圖13,顯示本發明之導光發電模組之另一實施例之前視示意圖。本實施例之導光發電模組1f與圖2所示之導光發電模組1大致相同,其不同處在於,在本實施例中,靠近該第一端114之微結構12之密度至靠近該第二端113之微結構12之密度係為大小交替排列。 Referring to Figure 13, a front elevational view of another embodiment of a light directing power generation module of the present invention is shown. The light guiding power generation module 1f of the present embodiment is substantially the same as the light guiding power generating module 1 shown in FIG. 2, except that in the present embodiment, the density of the microstructures 12 close to the first end 114 is close to The density of the microstructures 12 of the second end 113 is alternately arranged in size.
參考圖14,顯示本發明之導光發電模組之另一實施例之前視示意圖。本實施例之導光發電模組1g與圖2所示之導光發電模組1大致相同,其不同處在於,在本實施例中,各該微結構12具有一最大寬度,且該些最大寬度係非全為 均一。如圖所示,鄰近該第二端113之各該等微結構12具有一最大寬度W1,鄰近該第一端114之各該等微結構12具有一最大寬度W2,且該最大寬度W1大於該最大寬度W2。同時,鄰近該第二端113之該等微結構12間之間距d1係小於鄰近該第一端114之該等微結構12間之間距d2。 Referring to Figure 14, a front elevational view of another embodiment of a light directing power generation module of the present invention is shown. The light guiding power generation module 1g of the present embodiment is substantially the same as the light guiding power generating module 1 shown in FIG. 2, except that in the embodiment, each of the microstructures 12 has a maximum width, and the maximum The width is not all uniform. As shown, each of the microstructures 12 adjacent the second end 113 has a maximum width W 1 , and each of the microstructures 12 adjacent the first end 114 has a maximum width W 2 and the maximum width W 1 is greater than the maximum width W 2 . At the same time, the distance d 1 between the microstructures 12 adjacent to the second end 113 is smaller than the distance d 2 between the microstructures 12 adjacent to the first end 114.
本發明所述微結構之形狀、尺寸、間距或密度等,並非侷限於文中型式,微結構之各種不同之形狀、尺寸、間距及/或密度等皆可相互搭配,如第一表面111上具有多種形狀之微結構,或如第一表面111上具有不同之形狀與尺寸之微結構相互搭配。 The shape, size, pitch or density of the microstructures of the present invention are not limited to the above-mentioned types, and various shapes, sizes, pitches, and/or densities of the microstructures may be matched with each other, such as having the first surface 111. Microstructures of various shapes, or microstructures having different shapes and sizes on the first surface 111, are matched with each other.
參考圖15,顯示本發明之導光發電模組之測試環境示意圖。在此測試中,係利用一6吋大小之太陽模擬光源20照射該導光基板10之第一表面111,而於該導光基板10之該第一端114、該第三端115及該第四端116設置感測器進行量測。該導光基板10之尺寸為長30 cm,寬30 cm,厚度0.6 cm。 Referring to Figure 15, a schematic diagram of the test environment of the light guiding power generation module of the present invention is shown. In this test, the first surface 111 of the light guiding substrate 10 is illuminated by a 6-inch solar analog light source 20, and the first end 114, the third end 115, and the first portion of the light guiding substrate 10 The four-terminal 116 sets the sensor for measurement. The light guide substrate 10 has a size of 30 cm in length, 30 cm in width, and 0.6 cm in thickness.
太陽模擬光源20開啟後,其係照射該導光基板10之第一表面111上正中間之位置,且入射角度θ係為一可改變之參數(該入射角度θ係為入射光線與該第一表面111法線之夾角)。 After the solar analog light source 20 is turned on, it is irradiated to a position in the middle of the first surface 111 of the light guiding substrate 10, and the incident angle θ is a changeable parameter (the incident angle θ is incident light and the first The angle of the surface 111 normal line).
參考圖16,顯示圖9之導光基板在不同微結構密度之下之測試結果曲線圖。其中,◆代表微結構密度為78%之導光基板在不同入射角度之入射光照射下該等感測器所量測到的電流值,■代表微結構密度為39%之導光基板在不同 入射角度之入射光照射下該等感測器所量測到的電流值,▲代表微結構密度為19.5%之導光基板在不同入射角度之入射光照射下該等感測器所量測到的電流值。由圖中可看出,微結構密度即使小至19.5%,其在高入射角時反而可在該等感測器量測到較大電流值,可見微結構密度並非越大越好。 Referring to Figure 16, a graph of test results for the light guide substrate of Figure 9 under different microstructure densities is shown. Wherein, ◆ represents the current value measured by the sensors under the incident light of different incident angles of the light guide substrate having a microstructure density of 78%, and ■ the light guide substrate having a microstructure density of 39% is different. The current value measured by the incident light irradiated by the incident light, ▲ represents that the light guide substrate with a microstructure density of 19.5% is measured by the sensors under different incident angles of incident light. Current value. As can be seen from the figure, even if the microstructure density is as small as 19.5%, it can measure a large current value at the high incident angles, and it can be seen that the microstructure density is not as large as possible.
參考圖17,顯示微結構密度同樣為19.5%但是分佈型態不同之導光基板之測試結果曲線圖。其中,▲代表微結構均勻分佈之導光基板10(圖9)在不同入射角度之入射光照射下該等感測器所量測到的電流值(此曲線與圖16相同),◆代表微結構分佈型態為圖2之導光基板10(靠近該第一端114之微結構12之密度至靠近該第二端113之微結構12之密度係為由小逐漸變大)在不同入射角度之入射光照射下該等感測器所量測到的電流值,■代表微結構分佈型態為圖12之導光基板10(靠近該第一端114之微結構12之密度與靠近該第二端113之微結構之密度係相等,且小於位於該中央部33之微結構12之密度)在不同入射角度之入射光照射下該等感測器所量測到的電流值,●代表微結構分佈型態為圖11之導光基板10(靠近該第一端114之微結構12之密度與靠近該第二端113之微結構之密度係相等,且大於位於該中央部33之微結構12之密度)在不同入射角度之入射光照射下該等感測器所量測到的電流值。由圖中可看出,微結構密度同樣為19.5%,但是微結構分佈型態不同之導光基板,在該等感測器量測到的電流值幾乎差異不大。可見 微結構分佈型態影響該導光基板10之導光效能較小。 Referring to Fig. 17, a test result graph showing a light guide substrate having a microstructure density of 19.5% but a different distribution pattern is shown. Wherein, ▲ represents the current value measured by the sensors of the light guide substrate 10 (Fig. 9) with uniform microstructure distribution under the incident light of different incident angles (this curve is the same as Fig. 16), ◆ represents micro The structure distribution pattern is the light guiding substrate 10 of FIG. 2 (the density of the microstructures 12 close to the first end 114 to the microstructure 12 close to the second end 113 is gradually increased from small to large) at different incident angles. The current value measured by the sensors under the illumination of the incident light, ■ represents the microstructure distribution pattern of the light guide substrate 10 of FIG. 12 (the density of the microstructure 12 near the first end 114 is close to the first The density of the microstructures of the two ends 113 are equal and smaller than the density of the microstructures 12 located at the central portion 33. The current values measured by the sensors under different incident angles of incident light, ● represents micro The structure distribution pattern is the light guiding substrate 10 of FIG. 11 (the density of the microstructures 12 close to the first end 114 is equal to the density of the microstructures close to the second end 113, and is larger than the microstructure located at the central portion 33. 12 density) measured by the sensors under different incident angles of incident light The current value. As can be seen from the figure, the microstructure density is also 19.5%, but the light guide substrates with different microstructure distribution patterns have little difference in the current values measured by the sensors. visible The microstructure distribution pattern affects the light guiding performance of the light guiding substrate 10 to be small.
參考圖18,顯示在不同入射角度之入射光照射下,不同微結構密度之導光基板之光學模擬結果曲線圖。其中,●代表入射光之入射角度θ為80度,■代表入射光之入射角度θ為70度,▲代表入射光之入射角度θ為60度,×代表入射光之入射角度θ為50度,*代表入射光之入射角度θ為40度。此外,縱座標導光效率係表示入射光能量與該等感測器可量測到的能量之比值。由圖中可看出,微結構密度會影響導光效率,且在微結構密度為15%至50%(較佳為20%至40%)時有良好的導光效率,尤其是高入射角度(例如70度或80度)。 Referring to Fig. 18, there is shown a graph of optical simulation results of light guide substrates of different microstructure densities under illumination of incident light at different incident angles. Wherein, ● the incident angle θ representing the incident light is 80 degrees, ■ the incident angle θ representing the incident light is 70 degrees, ▲ represents the incident angle θ of the incident light is 60 degrees, and × represents the incident angle θ of the incident light is 50 degrees. * The incident angle θ representing the incident light is 40 degrees. In addition, the ordinate light guiding efficiency is the ratio of the incident light energy to the energy measurable by the sensors. As can be seen from the figure, the microstructure density affects the light guiding efficiency, and has a good light guiding efficiency at a microstructure density of 15% to 50% (preferably 20% to 40%), especially a high incident angle. (eg 70 degrees or 80 degrees).
參考圖19,顯示本發明之導光發電窗組之一實施例之側視示意圖。該導光發電窗組2包括至少一透光板,故可為一透光板或二透光板,鄰近設置於該導光基板10。較佳地,該導光基板10係連接至該透光板。在此以二透光板之態樣說明之。該導光發電窗組2包括一第一透光板21、一第二透光板22、至少一導光基板10及至少一光電轉換元件14。該第二透光板22係相對該第一透光板21,且該導光基板10係位於該第二透光板22及該第一透光板21之間。該導光基板10及該光電轉換元件14係與上述該導光基板10及該光電轉換元件14(圖1至圖14)相同。該第一透光板21及該第二透光板22係可做為該導光基板10支撐之用,且可保護該導光基板10。 Referring to Figure 19, there is shown a side elevational view of one embodiment of a light-guiding power generating window set of the present invention. The light-guiding power generation window group 2 includes at least one light-transmitting plate, so it can be a light-transmitting plate or a two-light-transmissive plate, and is disposed adjacent to the light-guiding substrate 10. Preferably, the light guiding substrate 10 is connected to the light transmissive plate. Here, the description will be made in the form of two light-transmitting plates. The light-guiding power generation window group 2 includes a first light-transmissive plate 21, a second light-transmissive plate 22, at least one light-guiding substrate 10, and at least one photoelectric conversion element 14. The second light-transmissive plate 22 is opposite to the first light-transmissive plate 21 , and the light-guiding substrate 10 is located between the second light-transmissive plate 22 and the first light-transmissive plate 21 . The light guide substrate 10 and the photoelectric conversion element 14 are the same as the light guide substrate 10 and the photoelectric conversion element 14 (FIGS. 1 to 14). The first light-transmissive plate 21 and the second light-transmissive plate 22 can be used for supporting the light-guiding substrate 10 and can protect the light-guiding substrate 10 .
上述實施例僅為說明本發明之原理及其功效,並非限制 本發明。因此習於此技術之人士對上述實施例進行修改及變化仍不脫本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。 The above embodiments are merely illustrative of the principles and effects of the present invention, and are not limiting. this invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims.
1‧‧‧本發明之導光發電模組之一實施例 1‧‧‧One embodiment of the light guiding power generation module of the present invention
1a‧‧‧本發明之導光發電模組之另一實施例 1a‧‧‧Another embodiment of the light guiding power generation module of the present invention
1b‧‧‧本發明之導光發電模組之另一實施例 1b‧‧‧Another embodiment of the light guiding power generation module of the present invention
1c‧‧‧本發明之導光發電模組之另一實施例 1c‧‧‧Another embodiment of the light guiding power generation module of the present invention
1d‧‧‧本發明之導光發電模組之另一實施例 1d‧‧‧Another embodiment of the light guiding power generation module of the present invention
1e‧‧‧本發明之導光發電模組之另一實施例 1e‧‧‧Another embodiment of the light guiding power generation module of the present invention
1f‧‧‧本發明之導光發電模組之另一實施例 1f‧‧‧Another embodiment of the light guiding power generation module of the present invention
1g‧‧‧本發明之導光發電模組之另一實施例 1g‧‧‧Another embodiment of the light guiding power generation module of the present invention
2‧‧‧本發明之導光發電窗組之一實施例 2‧‧‧One embodiment of the light-guiding power generation window set of the present invention
10‧‧‧導光基板 10‧‧‧Light guide substrate
11‧‧‧基材本體部 11‧‧‧Substrate body
12‧‧‧微結構 12‧‧‧Microstructure
12a‧‧‧微結構 12a‧‧‧Microstructure
12b‧‧‧微結構 12b‧‧‧Microstructure
12c‧‧‧微結構 12c‧‧‧Microstructure
12d‧‧‧微結構 12d‧‧‧Microstructure
14‧‧‧光電轉換元件 14‧‧‧ photoelectric conversion components
16‧‧‧入射光線 16‧‧‧ incident light
20‧‧‧太陽模擬光源 20‧‧‧Sun analog light source
21‧‧‧第一透光板 21‧‧‧First light-transmissive plate
22‧‧‧第二透光板 22‧‧‧Second light-transmissive plate
33‧‧‧中央部 33‧‧‧Central Department
111‧‧‧第一表面 111‧‧‧ first surface
112‧‧‧第二表面 112‧‧‧ second surface
113‧‧‧第二端 113‧‧‧ second end
114‧‧‧第一端 114‧‧‧ first end
115‧‧‧第三端 115‧‧‧ third end
116‧‧‧第四端 116‧‧‧ fourth end
A‧‧‧投射面積 A‧‧‧projected area
d1‧‧‧間距 d 1 ‧‧‧ spacing
d2‧‧‧間距 d 2 ‧‧‧ spacing
W‧‧‧開口寬度 W‧‧‧ opening width
W1‧‧‧最大寬度 W 1 ‧‧‧Maximum width
W2‧‧‧最大寬度 W 2 ‧‧‧Maximum width
θ‧‧‧入射角度 Θ‧‧‧incidence angle
圖1顯示本發明之導光發電模組之一實施例之立體示意圖;圖2顯示本發明之導光發電模組之一實施例之前視示意圖;圖3顯示圖2中沿著線3-3之剖視示意圖;圖4顯示圖3之微結構之另一態樣;圖5顯示圖3之微結構之另一態樣;圖6顯示本發明之導光發電模組之另一實施例之立體示意圖;圖7顯示圖3之微結構之另一態樣;圖8顯示圖3之微結構之另一態樣;圖9顯示本發明之導光發電模組之另一實施例之前視示意圖;圖10顯示本發明之導光發電模組之另一實施例之前視示意圖;圖11顯示本發明之導光發電模組之另一實施例之前視示意圖;圖12顯示本發明之導光發電模組之另一實施例之前視示意圖;圖13顯示本發明之導光發電模組之另一實施例之前視示 意圖;圖14顯示本發明之導光發電模組之另一實施例之前視示意圖;圖15顯示本發明之導光發電模組之測試環境示意圖;圖16顯示圖9之導光基板在不同微結構密度之下之測試結果曲線圖;圖17顯示微結構密度同樣為19.5%但是分佈型態不同之導光基板之測試結果曲線圖;圖18顯示在不同入射角度之入射光照射下,不同微結構密度之導光基板之光學模擬結果曲線;圖19顯示本發明之導光發電窗組之一實施例之側視示意圖。 1 is a perspective view showing an embodiment of a light-guiding power generation module of the present invention; FIG. 2 is a front view showing an embodiment of a light-guiding power generation module of the present invention; and FIG. 3 is a view along line 3-3 of FIG. FIG. 4 shows another aspect of the microstructure of FIG. 3; FIG. 5 shows another aspect of the microstructure of FIG. 3; FIG. 6 shows another embodiment of the light-guiding power generation module of the present invention. Figure 7 shows another aspect of the microstructure of Figure 3; Figure 8 shows another aspect of the microstructure of Figure 3; Figure 9 shows a front view of another embodiment of the light-guiding power generation module of the present invention FIG. 10 is a front view showing another embodiment of the light guiding power generation module of the present invention; FIG. 11 is a front view showing another embodiment of the light guiding power generating module of the present invention; and FIG. 12 is a view showing the light guiding power generation of the present invention. Another embodiment of the module is a front view; FIG. 13 shows a front view of another embodiment of the light guiding power generating module of the present invention. FIG. 14 is a front view showing another embodiment of the light-guiding power generation module of the present invention; FIG. 15 is a schematic view showing the test environment of the light-guiding power generation module of the present invention; and FIG. 16 is a view showing the light-guide substrate of FIG. The test result graph under the structural density; FIG. 17 shows the test result graph of the light guide substrate with the microstructure density also being 19.5% but different in the distribution pattern; FIG. 18 shows the different light at different incident angles. Optical simulation result curve of light guide substrate of structural density; FIG. 19 is a side view showing an embodiment of the light-guiding power generation window set of the present invention.
1‧‧‧本發明之導光發電模組之一實施例 1‧‧‧One embodiment of the light guiding power generation module of the present invention
10‧‧‧導光基板 10‧‧‧Light guide substrate
11‧‧‧基材本體部 11‧‧‧Substrate body
12‧‧‧微結構 12‧‧‧Microstructure
14‧‧‧光電轉換元件 14‧‧‧ photoelectric conversion components
16‧‧‧入射光線 16‧‧‧ incident light
111‧‧‧第一表面 111‧‧‧ first surface
112‧‧‧第二表面 112‧‧‧ second surface
113‧‧‧第二端 113‧‧‧ second end
114‧‧‧第一端 114‧‧‧ first end
115‧‧‧第三端 115‧‧‧ third end
116‧‧‧第四端 116‧‧‧ fourth end
Claims (13)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101150790A TWI574424B (en) | 2012-12-28 | 2012-12-28 | Light guiding and power generating window set and light guiding and power generating module thereof |
JP2013120113A JP5921489B2 (en) | 2012-06-15 | 2013-06-06 | Power generation window set and power generation module thereof |
US13/911,860 US20130333742A1 (en) | 2012-06-15 | 2013-06-06 | Power generating window set and power generating module thereof |
EP13171272.1A EP2674989A3 (en) | 2012-06-15 | 2013-06-10 | Power generating window set and power generating module thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101150790A TWI574424B (en) | 2012-12-28 | 2012-12-28 | Light guiding and power generating window set and light guiding and power generating module thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201427039A TW201427039A (en) | 2014-07-01 |
TWI574424B true TWI574424B (en) | 2017-03-11 |
Family
ID=51725690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101150790A TWI574424B (en) | 2012-06-15 | 2012-12-28 | Light guiding and power generating window set and light guiding and power generating module thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI574424B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200937655A (en) * | 2007-11-16 | 2009-09-01 | Qualcomm Mems Technologies Inc | Thin film solar concentrator/collector |
TW200944729A (en) * | 2008-02-12 | 2009-11-01 | Qualcomm Mems Technologies Inc | Thin film holographic solar concentrator/collector |
TW201019485A (en) * | 2008-11-06 | 2010-05-16 | Ind Tech Res Inst | Solar concentrating module |
TW201023379A (en) * | 2008-12-03 | 2010-06-16 | Ind Tech Res Inst | Light concentrating module |
-
2012
- 2012-12-28 TW TW101150790A patent/TWI574424B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200937655A (en) * | 2007-11-16 | 2009-09-01 | Qualcomm Mems Technologies Inc | Thin film solar concentrator/collector |
TW200944729A (en) * | 2008-02-12 | 2009-11-01 | Qualcomm Mems Technologies Inc | Thin film holographic solar concentrator/collector |
TW201019485A (en) * | 2008-11-06 | 2010-05-16 | Ind Tech Res Inst | Solar concentrating module |
TW201023379A (en) * | 2008-12-03 | 2010-06-16 | Ind Tech Res Inst | Light concentrating module |
Also Published As
Publication number | Publication date |
---|---|
TW201427039A (en) | 2014-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Antireflection silicon structures with hydrophobic property fabricated by three-beam laser interference | |
JP5921489B2 (en) | Power generation window set and power generation module thereof | |
ES2371720T3 (en) | PHOTOVOLTAIC DEVICE. | |
US20100288352A1 (en) | Integrated solar cell nanoarray layers and light concentrating device | |
TW201120299A (en) | Light guide microstructure plate, light guiding method, and application on window structure | |
Dottermusch et al. | Micro‐cone textures for improved light in‐coupling and retroreflection‐inspired light trapping at the front surface of solar modules | |
Ram et al. | Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells | |
DK200200929A (en) | Optical element for shielding light | |
Kuna et al. | Reducing shadowing losses with femtosecond‐laser‐written deflective optical elements in the bulk of EVA encapsulation | |
TWI574424B (en) | Light guiding and power generating window set and light guiding and power generating module thereof | |
US8529822B2 (en) | Method for manufacturing a flexible optical plate, product and backlight module made therewith | |
Huang et al. | Design and fabrication of sunlight-redirecting and infrared-insulating microstructure | |
TWI529020B (en) | Beam diffusing module and beam generating system | |
KR101561455B1 (en) | Producing method of solar cell | |
TWI470176B (en) | Light concentrating and power generating window set and light concentrating and power generating module thereof | |
TWM447955U (en) | light convergence module and window assembly | |
JP2005340583A (en) | Acceptance surface structure for optical power generating body | |
TWI490574B (en) | Power generating module and light guiding film thereof | |
Talaat et al. | Investigation of transparent pyramidal covers effect to PV power output using detected wireless sensors incident radiation | |
KR20180025589A (en) | Solar cell panel and the window having thereof | |
Escarré et al. | Spectral analysis of the angular distribution function of back reflectors for thin film silicon solar cells | |
Shimizu et al. | High-temperature solar selective absorbers based on a transparent conductive oxide film coated periodic micro-hole array | |
TWI382548B (en) | A two-dimensional polymer grating of the solar cells | |
Agrawal et al. | Performance characterization of a small form-factor 100X micro-optic concentrator | |
Goswami et al. | Simulation and Experimental Characterization of Nanograting Array for Reflectance Reduction in c-Si |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |