TWI573270B - Multigate field effect transistor and process thereof - Google Patents

Multigate field effect transistor and process thereof Download PDF

Info

Publication number
TWI573270B
TWI573270B TW101139964A TW101139964A TWI573270B TW I573270 B TWI573270 B TW I573270B TW 101139964 A TW101139964 A TW 101139964A TW 101139964 A TW101139964 A TW 101139964A TW I573270 B TWI573270 B TW I573270B
Authority
TW
Taiwan
Prior art keywords
effect transistor
fin
gate field
field effect
gate
Prior art date
Application number
TW101139964A
Other languages
Chinese (zh)
Other versions
TW201417284A (en
Inventor
劉志建
吳俊元
林進富
簡金城
許嘉麟
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101139964A priority Critical patent/TWI573270B/en
Publication of TW201417284A publication Critical patent/TW201417284A/en
Application granted granted Critical
Publication of TWI573270B publication Critical patent/TWI573270B/en

Links

Description

多閘極場效電晶體及其製程 Multi-gate field effect transistor and its process

本發明係關於一種多閘極場效電晶體及其製程,且特別係關於一種在各鰭狀結構之間的介電層中形成孔隙的多閘極場效電晶體及其製程。 The present invention relates to a multi-gate field effect transistor and a process thereof, and more particularly to a multi-gate field effect transistor for forming a void in a dielectric layer between fin structures and a process therefor.

隨著半導體元件尺寸的縮小,維持小尺寸半導體元件的效能是目前業界的主要目標。為了提高半導體元件的效能,目前已逐漸發展出各種多閘極場效電晶體元件(multi-gate MOSFET)。多閘極場效電晶體元件包含以下幾項優點。首先,多閘極場效電晶體元件的製程能與傳統的邏輯元件製程整合,因此具有相當的製程相容性;其次,由於立體結構增加了閘極與基底的接觸面積,因此可增加閘極對於通道區域電荷的控制,從而降低小尺寸元件帶來的汲極引發的能帶降低(Drain Induced Barrier Lowering,DIBL)效應以及短通道效應(short channel effect);此外,由於同樣長度的閘極具有更大的通道寬度,因此亦可增加源極與汲極間之電流量。 As the size of semiconductor components shrinks, maintaining the performance of small-sized semiconductor components is currently the main goal of the industry. In order to improve the performance of semiconductor components, various multi-gate MOSFETs have been developed. Multi-gate field effect transistor components include the following advantages. First, the process of the multi-gate field-effect transistor component can be integrated with the conventional logic component process, so it has considerable process compatibility. Secondly, since the three-dimensional structure increases the contact area between the gate and the substrate, the gate can be increased. Controlling the charge of the channel region, thereby reducing the Drain Induced Barrier Lowering (DIBL) effect and the short channel effect caused by the small-sized components; in addition, since the same length of the gate has The larger the channel width, the more the current between the source and the drain can be increased.

詳細而言,多閘極場效電晶體元件係有鰭狀結構於基底上,而閘極結構及源/汲極等則設置於此些鰭狀結構上,以形成具有多閘極通道之多閘極場效電晶體。然而,隨著多閘極場效電晶體的尺寸日趨縮小,在各鰭狀結構之間易形成有較大的寄生電容而降低多閘極 場效電晶體的電性表現。 In detail, the multi-gate field effect transistor component has a fin structure on the substrate, and the gate structure and the source/drain electrodes are disposed on the fin structures to form a multi-gate channel. Gate field effect transistor. However, as the size of the multi-gate field effect transistor shrinks, a large parasitic capacitance is easily formed between the fin structures to reduce the multi-gate. Electrical performance of field effect transistors.

本發明提供一種多閘極場效電晶體及其製程,其形成孔隙於鰭狀結構之間的介電層中,俾降低多閘極場效電晶體的寄生電容,以解決上述問題。 The invention provides a multi-gate field effect transistor and a process thereof, which form a pore in a dielectric layer between the fin structures, and reduce the parasitic capacitance of the multi-gate field effect transistor to solve the above problem.

本發明提出一種多閘極場效電晶體,包含二鰭狀結構以及一介電層。二鰭狀結構位於一基底上。介電層覆蓋基底以及二鰭狀結構,且至少二孔隙位於二鰭狀結構之間的介電層中。 The invention provides a multi-gate field effect transistor comprising a two fin structure and a dielectric layer. The second fin structure is located on a substrate. The dielectric layer covers the substrate and the second fin structure, and at least two pores are located in the dielectric layer between the two fin structures.

本發明提出一種多閘極場效電晶體製程,包含有下述步驟。首先,形成二鰭狀結構於一基底上。接著,形成一介電層覆蓋基底以及二鰭狀結構,其中至少有二孔隙形成於二鰭狀結構之間的介電層中。 The invention provides a multi-gate field effect transistor process comprising the following steps. First, a two fin structure is formed on a substrate. Next, a dielectric layer is formed to cover the substrate and the second fin structure, wherein at least two of the pores are formed in the dielectric layer between the second fin structures.

基於上述,本發明提出一種多閘極場效電晶體及其製程,其形成孔隙於鰭狀結構之間的介電層中,俾降低多閘極場效電晶體,特別是鰭狀結構之間的寄生電容。再者,本發明直接形成空隙於鰭狀結構之間的介電層中,能較意圖完全填滿介電層的製程更能降低製程成本。 Based on the above, the present invention provides a multi-gate field effect transistor and a process thereof, which are formed in a dielectric layer between the fin structures, and reduce the multi-gate field effect transistor, especially between the fin structures. Parasitic capacitance. Moreover, the present invention directly forms a dielectric layer between the fin structures, which can reduce the process cost more than the process of completely filling the dielectric layer.

第1-7圖係繪示本發明一第一實施例之多閘極場效電晶體製程之剖面示意圖。首先於一基底上形成複數個鰭狀結構。如第1圖所示,形成二鰭狀結構112於一基底110上。基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。詳細而言,形成二鰭狀結構112於基底110上的方法,可包含下述步驟。首先,提供一塊狀底材(未繪示),在其上形成硬遮罩層(未繪示),並將其圖案化而形成一圖案化的硬遮罩層P以定義出其下之塊狀底材中欲對應形成之鰭狀結構112的位置。接著,進行一蝕刻製程,於塊狀底材(未繪示)中形成鰭狀結構112。如此,完成鰭狀結構112於基底110上之製作。 1-7 are schematic cross-sectional views showing a process of a multi-gate field effect transistor according to a first embodiment of the present invention. First, a plurality of fin structures are formed on a substrate. As shown in FIG. 1, a second fin structure 112 is formed on a substrate 110. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a tri-five-layer overlying substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on-insulator (silicon- On-insulator, SOI) A semiconductor substrate such as a substrate. In detail, the method of forming the second fin structure 112 on the substrate 110 may include the following steps. First, a piece of substrate (not shown) is provided, a hard mask layer (not shown) is formed thereon, and patterned to form a patterned hard mask layer P to define the underlying layer. The position of the fin structure 112 to be formed correspondingly in the bulk substrate. Next, an etching process is performed to form the fin structure 112 in a bulk substrate (not shown). Thus, the fabrication of the fin structure 112 on the substrate 110 is completed.

如第2圖所示,形成一絕緣結構10於二鰭狀結構112之間的基底110上。絕緣結構10例如為一淺溝隔離(shallow trench isolation,STI)結構,其例如以一淺溝隔離製程形成。在本實施例中,係先全面性形成一絕緣層(未繪示);然後,進行例如化學機械研磨製程等一研磨製程並以圖案化的硬遮罩層P作為停止層,研磨絕緣層(未繪示)至暴露出圖案化的硬遮罩層P,但本發明不以此為限。 As shown in FIG. 2, an insulating structure 10 is formed on the substrate 110 between the two fin structures 112. The insulating structure 10 is, for example, a shallow trench isolation (STI) structure, which is formed, for example, by a shallow trench isolation process. In this embodiment, an insulating layer (not shown) is integrally formed; then, a polishing process such as a chemical mechanical polishing process is performed, and the patterned hard mask layer P is used as a stop layer to polish the insulating layer ( It is not shown) until the patterned hard mask layer P is exposed, but the invention is not limited thereto.

接著,移除圖案化的硬遮罩層P,而於後續製程中形成三閘極場效電晶體(tri-gate MOSFET)。如此一來,由於鰭狀結構112與後續形成之介電層之間具有三直接接觸面(包含二接觸側面及一接觸頂 面),因此被稱作三閘極場效電晶體(tri-gate MOSFET)。相較於平面場效電晶體,三閘極場效電晶體可藉由將上述三直接接觸面作為載子流通之通道,而在同樣的閘極長度下具有較寬的載子通道寬度,俾使在相同之驅動電壓下可獲得加倍的汲極驅動電流。而在其他實施例中,亦可保留硬遮罩層(未繪示),而於後續製程中形成另一具有鰭狀結構之多閘極場效電晶體(multi-gate MOSFET)-鰭式場效電晶體(fin field effect transistor,Fin FET)。鰭式場效電晶體中,由於保留了硬遮罩層(未繪示),鰭狀結構112與後續將形成之介電層之間僅有兩接觸側面。 Next, the patterned hard mask layer P is removed, and a three-gate tri-gate MOSFET is formed in a subsequent process. As a result, there are three direct contact faces (including two contact sides and one contact top) between the fin structure 112 and the subsequently formed dielectric layer. It is called a three-gate tri-gate MOSFET. Compared with the planar field effect transistor, the three-gate field effect transistor can have a wider carrier channel width under the same gate length by using the above three direct contact surfaces as a channel through which the carrier flows. Double the drain drive current at the same drive voltage. In other embodiments, a hard mask layer (not shown) may be left, and another multi-gate MOSFET-fin field effect having a fin structure is formed in a subsequent process. Fin field effect transistor (Fin FET). In a fin field effect transistor, since a hard mask layer (not shown) is left, there are only two contact sides between the fin structure 112 and a dielectric layer to be formed later.

此外,如前所述,本發明亦可應用於其他種類的半導體基底,例如在另一實施態樣中,提供一矽覆絕緣基底(未繪示),並以蝕刻暨微影之方法蝕刻矽覆絕緣基底(未繪示)上之單晶矽層而停止於氧化層,即可完成鰭狀結構於矽覆絕緣基底上的製作。 In addition, as described above, the present invention can also be applied to other kinds of semiconductor substrates. For example, in another embodiment, an insulating substrate (not shown) is provided and etched by etching and lithography. The formation of the fin structure on the insulating substrate can be completed by covering the single crystal germanium layer on the insulating substrate (not shown) and stopping at the oxide layer.

此外,為能清晰揭示本發明,本實施例之鰭狀結構112僅繪示二個,但本發明所能應用之鰭狀結構112亦可為三個以上之陣列組合。 In addition, in order to clearly disclose the present invention, only two fin structures 112 are shown in the present embodiment, but the fin structures 112 to which the present invention can be applied may also be a combination of three or more arrays.

然後,回蝕刻絕緣結構10,如第3圖所示,形成絕緣結構10a。在本實施例中,回蝕刻後的絕緣結構10a具有一底部12a以及二側壁部12b,其中底部12a位於二鰭狀結構112之間的基底110上,而側壁部12b分別位於二鰭狀結構112的相對兩側。如此一來,本實施例之絕緣結構10a可促使後續形成之磊晶結構向鰭狀結構112 上方成長,而不是向下包覆各鰭狀結構112之側壁。在其他實施例中,亦可不回蝕刻絕緣結構10,視實際需要而定。此外,本實施例係為先移除圖案化的硬遮罩層P,再回蝕刻絕緣結構10;但在其他實施例中,亦可先回蝕刻絕緣結構10,再移除圖案化的硬遮罩層P。 Then, the insulating structure 10 is etched back, and as shown in Fig. 3, the insulating structure 10a is formed. In the present embodiment, the etched back insulating structure 10a has a bottom portion 12a and two side wall portions 12b, wherein the bottom portion 12a is located on the substrate 110 between the two fin structures 112, and the side wall portions 12b are respectively located in the second fin structure 112. The opposite sides. In this way, the insulating structure 10a of the embodiment can promote the subsequently formed epitaxial structure toward the fin structure 112. The top is grown instead of covering the side walls of each fin structure 112 downward. In other embodiments, the insulating structure 10 may not be etched back, depending on actual needs. In addition, in this embodiment, the patterned hard mask layer P is removed first, and the insulating structure 10 is etched back; however, in other embodiments, the insulating structure 10 may be etched back first, and then the patterned hard mask is removed. Cover layer P.

當然,在其他實施例中,回蝕刻絕緣結構10,亦可如第4圖所示,形成絕緣結構10b,其僅位於二鰭狀結構112之間的基底110上,而沒有形成在鰭狀結構112的側壁上,然後再選擇性於各鰭狀結構112之側壁上分別形成一間隙壁(未繪示),其視實際之製程及結構需要而定。此外,在一矽覆絕緣基底的實施態樣中,亦可於蝕刻單晶矽層而停止於氧化層以形成鰭狀結構後,再選擇性於各鰭狀結構之側壁上分別形成一間隙壁(未繪示)。 Of course, in other embodiments, the insulating structure 10 can be etched back, or as shown in FIG. 4, the insulating structure 10b can be formed only on the substrate 110 between the two fin structures 112 without being formed in the fin structure. A spacer (not shown) is formed on the sidewall of the 112, and then selectively formed on the sidewalls of each of the fin structures 112, depending on actual process and structural requirements. In addition, in an embodiment of the insulating substrate, after etching the single crystal germanium layer and stopping the oxide layer to form the fin structure, a spacer is selectively formed on the sidewalls of each fin structure. (not shown).

如第5圖所示,形成一閘極結構G跨設基底110以及各鰭狀結構112,其中閘極結構G包含一閘極介電層122、一選擇性的阻障層(未繪示)、一犧牲電極層124、一蓋層126以及一間隙壁128。詳細而言,閘極介電層122、選擇性的阻障層(未繪示)、犧牲電極層124以及蓋層126形成一堆疊結構120,而間隙壁128則形成於此堆疊結構120側壁的基底110上。再者,形成閘極結構G的方法可包含依序覆蓋介電層(未繪示)、選擇性的阻障層(未繪示)、犧牲電極層(未繪示)以及蓋層(未繪示)於基底110以及鰭狀結構112上並將其圖案化,而形成包含閘極介電層122、選擇性的阻障層(未繪示)、犧牲電極層124、蓋層126的堆疊結構120。接著,全 面覆蓋間隙壁材料(未繪示)於堆疊結構120、鰭狀結構112以及基底110上,然後圖案化間隙壁材料(未繪示),而形成間隙壁128於堆疊結構120側壁的絕緣結構10a/10b以及鰭狀結構112上。 As shown in FIG. 5, a gate structure G is formed across the substrate 110 and each of the fin structures 112. The gate structure G includes a gate dielectric layer 122 and a selective barrier layer (not shown). A sacrificial electrode layer 124, a cap layer 126, and a spacer 128. In detail, the gate dielectric layer 122, the selective barrier layer (not shown), the sacrificial electrode layer 124, and the cap layer 126 form a stacked structure 120, and the spacers 128 are formed on the sidewalls of the stacked structure 120. On the substrate 110. Furthermore, the method of forming the gate structure G may include sequentially covering a dielectric layer (not shown), a selective barrier layer (not shown), a sacrificial electrode layer (not shown), and a cap layer (not shown). The substrate 110 and the fin structure 112 are patterned and patterned to form a stacked structure including a gate dielectric layer 122, a selective barrier layer (not shown), a sacrificial electrode layer 124, and a cap layer 126. 120. Then, all The spacers cover the spacer material (not shown) on the stacked structure 120, the fin structure 112 and the substrate 110, and then pattern the spacer material (not shown) to form the spacers 128 on the sidewalls of the stacked structure 120. /10b and the fin structure 112.

本實施例為一後置高介電常數後閘極(Gate-Last for High-K Last)製程,故閘極介電層122將於後續製程中選擇性被完全或部分移除,並再另外填入高介電常數閘極介電層,故此實施態樣下之閘極介電層122可僅為一般方便於後續製程中移除之犧牲材料,例如為一氧化層,但本發明不以此為限。選擇性的阻障層(未繪示)例如為氮化鉭(tantalum nitride,TaN)、氮化鈦(titanium nitride,TiN)等之單層結構或複合層結構。犧牲電極層124可例如由多晶矽所形成,但本發明不以此為限。蓋層126則可為一氮化層或氧化層等所組成之單層或雙層結構,作為一圖案化的硬遮罩,但本發明不以此為限。間隙壁128例如是以氮化矽或氧化矽等材質所組成之單層或多層複合結構。 In this embodiment, a gate-to-high gate constant (Gate-Last for High-K Last) process is performed, so that the gate dielectric layer 122 is selectively removed completely or partially in a subsequent process, and Filling in the high dielectric constant gate dielectric layer, the gate dielectric layer 122 in this embodiment may be only a sacrificial material that is generally convenient for removal in subsequent processes, such as an oxide layer, but the present invention does not This is limited. The selective barrier layer (not shown) is, for example, a single layer structure or a composite layer structure of tantalum nitride (TaN), titanium nitride (TiN) or the like. The sacrificial electrode layer 124 may be formed, for example, of polysilicon, but the invention is not limited thereto. The cover layer 126 can be a single layer or a double layer structure composed of a nitride layer or an oxide layer, and is used as a patterned hard mask, but the invention is not limited thereto. The spacer 128 is, for example, a single layer or a multilayer composite structure composed of a material such as tantalum nitride or tantalum oxide.

在另一實施例中,當應用於一前置高介電常數後閘極(Gate-Last for High-K First)製程時,則閘極介電122則為一高介電常數閘極介電層,其可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide, La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組,但本發明不以此為限。並且,在形成閘極介電層122之前,可先選擇性形成一緩衝層(未繪示),其可為一氧化層,且例如以熱氧化製程或化學氧化製程形成,但本發明不以此為限。緩衝層(未繪示)位於閘極介電層122與基底110之間,係作為閘極介電層122與基底110緩衝之用。 In another embodiment, when applied to a Gate-Last for High-K First process, the gate dielectric 122 is a high dielectric constant gate dielectric. a layer selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), and aluminum oxide (aluminum oxide, Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ) ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), strontium bismuth tantalate (strontium bismuth tantalate, SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (Ba x Sr 1-x TiO 3 , BST The group consisting of, but the invention is not limited thereto. Moreover, before forming the gate dielectric layer 122, a buffer layer (not shown) may be selectively formed, which may be an oxide layer, and is formed, for example, by a thermal oxidation process or a chemical oxidation process, but the present invention does not This is limited. A buffer layer (not shown) is located between the gate dielectric layer 122 and the substrate 110 and serves as a buffer for the gate dielectric layer 122 and the substrate 110.

如第6圖所示,選擇性地形成一磊晶結構130於各鰭狀結構112上。磊晶結構130可例如為一矽鍺磊晶結構用以形成一PMOS電晶體的磊晶結構,或者一矽碳磊晶結構/一摻雜有磷的矽磊晶結構用以形成一NMOS電晶體的磊晶結構,但本發明不以此為限。在本實施例中,由於絕緣結構10之側壁部12b覆蓋鰭狀結構112之側壁,故以磊晶技術成長出的磊晶結構130可如圖所示為一向上成長的五角形的結構,而不會包覆鰭狀結構112。再者,本實施例之磊晶結構130的剖面結構具有一橫向最寬部132,俾使各鰭狀結構112之間可具有一中間寬上方窄的開口(如第6圖所示中間寬度a大於開口寬 度b),方便後續全面覆蓋之介電層時,可於各鰭狀結構112之間以及各磊晶結構130之橫向最寬部132的下方分別形成孔隙而達到本發明之目的,但本發明不以此為限。在其他實施例中,亦可藉由調整絕緣結構10回蝕刻後的深度以及形狀,來控制成長出的磊晶結構130的形狀。 As shown in FIG. 6, an epitaxial structure 130 is selectively formed on each of the fin structures 112. The epitaxial structure 130 can be, for example, a germanium epitaxial structure for forming an epitaxial structure of a PMOS transistor, or a germanium carbon epitaxial structure/phosphorus-doped germanium epitaxial structure for forming an NMOS transistor. Epitaxial structure, but the invention is not limited thereto. In this embodiment, since the sidewall portion 12b of the insulating structure 10 covers the sidewall of the fin structure 112, the epitaxial structure 130 grown by the epitaxial technique can be an upwardly growing pentagon structure as shown, instead of The fin structure 112 is covered. Furthermore, the cross-sectional structure of the epitaxial structure 130 of the present embodiment has a laterally widest portion 132, so that each of the fin structures 112 can have a narrow opening between the middle width (as shown in FIG. 6). Greater than the opening width Degree b), in order to facilitate the subsequent comprehensive coverage of the dielectric layer, the pores may be formed between the fin structures 112 and the lateral widest portions 132 of the epitaxial structures 130, respectively, to achieve the object of the present invention, but the present invention Not limited to this. In other embodiments, the shape of the elongated epitaxial structure 130 can also be controlled by adjusting the depth and shape of the insulating structure 10 after etching back.

隨後,分別形成源/汲極(未繪示)於閘極結構G側邊的磊晶結構130或/且鰭狀結構112中。在其他實施例中,源/汲極(未繪示)亦可在形成磊晶結構130前,或者與磊晶結構130一起形成。此外,值得注意的是,本發明之各實施例,無論於前述步驟中有無先回蝕刻絕緣結構10或先於各鰭狀結構112之側壁上分別形成一間隙壁(未繪示),本發明在形成閘極結構G以及磊晶結構130於各鰭狀結構112上之後,都可選擇性再進行一蝕刻部分絕緣結構10的步驟,以加大各鰭狀結構112間之間隙的深寬比,視實際需要而定。 Subsequently, a source/drain (not shown) is formed in the epitaxial structure 130 or/and the fin structure 112 on the side of the gate structure G, respectively. In other embodiments, the source/drain (not shown) may also be formed prior to forming the epitaxial structure 130 or together with the epitaxial structure 130. In addition, it should be noted that, in various embodiments of the present invention, the present invention is formed by forming a spacer (not shown) on the sidewalls of each of the fin structures 112, respectively, in the foregoing steps. After forming the gate structure G and the epitaxial structure 130 on each fin structure 112, a step of etching a portion of the insulating structure 10 may be selectively performed to increase the aspect ratio of the gap between the fin structures 112. , depending on actual needs.

如第7圖所示,形成一介電層140覆蓋基底110以及鰭狀結構112,其中有二孔隙V會分別形成於閘極結構G兩側的各鰭狀結構112之間的介電層140中。介電層140可例如以一化學氣相沉積(chemical vapor deposition,CVD)製程、電漿加強化學氣相沉積(Plasma Enhance Chemical Vapor Deposition,PECVD)製程、或高密度電漿化學氣相沉積(High-density plasma chemical vapor deposition,HDPCVD)製程形成,其中所採用之製程較佳為在形成介電層140時能一併形成孔隙V於介電層140中。再者,本發明可 藉由調整回蝕刻絕緣結構10a等的深度d來控制孔隙V形成的位置,例如一開始形成絕緣結構10a時或是形成閘極結構G及磊晶結構130之後的蝕刻製程,以及調整絕緣結構10a等的形狀來控制孔隙V形成的尺寸及形狀。此外,本發明亦可藉由形成磊晶結構130於鰭狀結構112上來調整孔隙V所形成的位置、尺寸及形狀。以本實施例為例,由於磊晶結構130的剖面結構具有一橫向最寬部132,俾使各鰭狀結構112之間可具有一中間寬上方窄的開口,因此當介電層140覆蓋於鰭狀結構112以及基底110上時,介電層140則較難填入各鰭狀結構112之間,而使各鰭狀結構112之間的介電層140可形成孔隙V。更進一步而言,孔隙V係位於橫向最寬部132的下方。當然,在其他實施例中,可不形成磊晶結構130,但亦可藉由調整絕緣結構10a等的深度及形狀,俾控制孔隙V的位置、尺寸及形狀,其中孔隙V較佳係位於鰭狀結構112的頂端T的下方。 As shown in FIG. 7, a dielectric layer 140 is formed to cover the substrate 110 and the fin structure 112, wherein the dielectric layer 140 is formed between the fin structures 112 on both sides of the gate structure G. in. The dielectric layer 140 can be, for example, a chemical vapor deposition (CVD) process, a Plasma Enhanced Chemical Vapor Deposition (PECVD) process, or a high density plasma chemical vapor deposition (High). The process of forming a process is preferably performed by forming a dielectric layer 140 into the dielectric layer 140 when the dielectric layer 140 is formed. Furthermore, the invention can The position at which the pores V are formed is controlled by adjusting the depth d of the etch-back insulating structure 10a or the like, for example, an etching process after forming the insulating structure 10a or forming the gate structure G and the epitaxial structure 130, and adjusting the insulating structure 10a. The shape of the equals controls the size and shape of the formation of the pores V. In addition, the present invention can also adjust the position, size and shape of the pores V by forming the epitaxial structure 130 on the fin structure 112. Taking the embodiment as an example, since the cross-sectional structure of the epitaxial structure 130 has a laterally widest portion 132, the fin structures 112 may have a narrow opening between the middle and the width, so that the dielectric layer 140 is covered. When the fin structure 112 and the substrate 110 are on, the dielectric layer 140 is more difficult to fill between the fin structures 112, and the dielectric layer 140 between the fin structures 112 can form the pores V. Still further, the aperture V is located below the laterally widest portion 132. Of course, in other embodiments, the epitaxial structure 130 may not be formed, but the position, size, and shape of the aperture V may be controlled by adjusting the depth and shape of the insulating structure 10a, etc., wherein the aperture V is preferably located in the fin shape. Below the top T of the structure 112.

介電層140之形成步驟:可先全面覆蓋介電層(未繪示)於基底110、鰭狀結構112以及閘極結構G,再將介電層(未繪示)平坦化至暴露出犧牲電極層124(如第7圖所示)。然後,進行一金屬閘極置換(metal gate replacement,RMG)製程,以將犧牲電極層124以及閘極介電層122置換為一金屬閘極M,如第11圖所示。具體而言,可移除犧牲電極層124以及選擇性地移除閘極介電層122;然後,在同位置依序形成一選擇性的緩衝層(未繪示)、一高介電常數介電層(未繪示)、一選擇性的底阻障層(未繪示)、一功函數金屬層(未繪示)、一選擇性的頂阻障層(未繪示)以及一低 電阻率材料(未繪示)並研磨至介電層140,而形成金屬閘極M,其中金屬閘極M包含一緩衝層152、一高介電常數介電層154、一選擇性的底阻障層(未繪示)、一功函數金屬層156、一選擇性的頂阻障層(未繪示)以及一低電阻率材料158。因此,金屬閘極M中之緩衝層152、高介電常數介電層154、選擇性的底阻障層(未繪示)、功函數金屬層層156以及選擇性的頂阻障層(未繪示)皆具有U形剖面結構。然後,可再繼續後續之半導體製程以形成所需之半導體結構。在另一實施例中,可不移除閘極介電層122並將其延用為緩衝層,在此情況下,移除犧牲電極層124後便毋需再形成緩衝層,因此在完成的結構中緩衝層152會具有一字形的剖面結構。 The step of forming the dielectric layer 140: firstly covering the dielectric layer (not shown) on the substrate 110, the fin structure 112, and the gate structure G, and then planarizing the dielectric layer (not shown) to expose the sacrifice Electrode layer 124 (as shown in Figure 7). Then, a metal gate replacement (RMG) process is performed to replace the sacrificial electrode layer 124 and the gate dielectric layer 122 with a metal gate M, as shown in FIG. Specifically, the sacrificial electrode layer 124 can be removed and the gate dielectric layer 122 can be selectively removed; then, a selective buffer layer (not shown) and a high dielectric constant layer are sequentially formed at the same position. Electrical layer (not shown), a selective bottom barrier layer (not shown), a work function metal layer (not shown), a selective top barrier layer (not shown), and a low A resistive material (not shown) is ground to the dielectric layer 140 to form a metal gate M, wherein the metal gate M includes a buffer layer 152, a high-k dielectric layer 154, and a selective bottom resistance. A barrier layer (not shown), a work function metal layer 156, a selective top barrier layer (not shown), and a low resistivity material 158. Therefore, the buffer layer 152 in the metal gate M, the high-k dielectric layer 154, the selective bottom barrier layer (not shown), the work function metal layer 156, and the selective top barrier layer (not All of them have a U-shaped cross-sectional structure. Subsequent semiconductor processes can then be continued to form the desired semiconductor structure. In another embodiment, the gate dielectric layer 122 may not be removed and extended as a buffer layer. In this case, after the sacrificial electrode layer 124 is removed, the buffer layer needs to be formed again, thus completing the structure. The middle buffer layer 152 will have a cross-sectional structure of a straight line.

承上,本實施例係先形成絕緣結構10於鰭狀結構112之間的基底110上,並回蝕刻之以形成絕緣結構10a;之後,形成閘極結構G跨設鰭狀結構112以及基底110;然後,形成磊晶結構130於閘極結構G側邊的鰭狀結構112上;再全面覆蓋介電層140而同時於鰭狀結構112之間的介電層140中形成孔隙V。然而,本發明所提供之多閘極場效電晶體製程亦可應用於各種半導體製程中,而不限於本實施例。以下再提出另一實施例,其先形成磊晶結構130之後回蝕刻絕緣結構10,再形成閘極結構G。 In this embodiment, the insulating structure 10 is first formed on the substrate 110 between the fin structures 112, and etched back to form the insulating structure 10a; thereafter, the gate structure G is formed to span the fin structure 112 and the substrate 110. Then, an epitaxial structure 130 is formed on the fin structure 112 on the side of the gate structure G; the dielectric layer 140 is completely covered while the void V is formed in the dielectric layer 140 between the fin structures 112. However, the multi-gate field effect transistor process provided by the present invention can also be applied to various semiconductor processes without being limited to the embodiment. Another embodiment is further described below, in which the epitaxial structure 130 is formed first, and then the insulating structure 10 is etched back to form the gate structure G.

第8-9圖係繪示本發明一第二實施例之多閘極場效電晶體製程之剖面示意圖。本實施例之前段製程與前一實施例相同(如第1-2 圖所示),形成二鰭狀結構112於一基底110上(如第1圖);形成一絕緣結構10於二鰭狀結構112之間的基底110上(如第2圖)。之後,先不回蝕刻絕緣結構10,而如第8圖所示,先分別形成一磊晶結構130於各鰭狀結構112上。然後,再回蝕刻絕緣結構10,而如第9圖所示,形成絕緣結構10a。在此一提,在前一實施例中形成絕緣結構10a,其具有一底部12a以及二側壁部12b,其中底部12a位於二鰭狀結構112之間的基底110上,以及側壁部12b分別位於二鰭狀結構112的相對兩側,係為隔絕鰭狀結構112而能形成向上成長的磊晶結構130,俾使在後續填入介電層時可形成所需之孔隙V。在本實施例中,由於未回蝕刻絕緣結構10就先形成磊晶結構130,因此絕緣結構10已隔絕鰭狀結構112,是以可直接形成向上成長的磊晶結構130。因此,在回蝕刻絕緣結構10時,則可選擇不保留鰭狀結構112側壁上的絕緣結構10a的側壁部12b,而直接形成絕緣結構10b(如第10圖之虛線所示),甚至可再搭配一等向性之蝕刻,如濕蝕刻,來完全掏空鰭狀結構112間之絕緣結構10。在此為方便後續之說明,而仍以具有絕緣結構10a為例加以說明,俾使與第6-7圖所繪示一致。 8-9 are schematic cross-sectional views showing a process of a multi-gate field effect transistor according to a second embodiment of the present invention. The previous stage process of this embodiment is the same as the previous embodiment (such as the first 1-2) As shown, a second fin structure 112 is formed on a substrate 110 (as shown in FIG. 1); an insulating structure 10 is formed on the substrate 110 between the second fin structures 112 (as shown in FIG. 2). Thereafter, the insulating structure 10 is not etched back, and as shown in FIG. 8, an epitaxial structure 130 is formed on each of the fin structures 112, respectively. Then, the insulating structure 10 is etched back, and as shown in Fig. 9, the insulating structure 10a is formed. It is noted that in the previous embodiment, the insulating structure 10a is formed having a bottom portion 12a and two side wall portions 12b, wherein the bottom portion 12a is located on the substrate 110 between the two fin structures 112, and the side wall portions 12b are respectively located at two The opposite sides of the fin structure 112 are formed by isolating the fin structure 112 to form an upwardly grown epitaxial structure 130, so that a desired void V can be formed when the dielectric layer is subsequently filled. In the present embodiment, since the epitaxial structure 130 is formed first without etching back the insulating structure 10, the insulating structure 10 has been isolated from the fin structure 112 so that the epitaxial structure 130 can be directly formed upward. Therefore, when the insulating structure 10 is etched back, the side wall portion 12b of the insulating structure 10a on the sidewall of the fin structure 112 may be selected to be formed, and the insulating structure 10b may be directly formed (as indicated by a broken line in FIG. 10), and may even be further An isotropic etching, such as wet etching, is used to completely hollow the insulating structure 10 between the fin structures 112. Here, for the convenience of the following description, the insulating structure 10a is taken as an example for illustration, which is consistent with the drawing of FIGS. 6-7.

再者,本實施例之磊晶結構130係與前一實施例相同,較佳為一向上成長的五角形的結構,而不會包覆鰭狀結構112,且磊晶結構130的剖面結構具有一橫向最寬部132,俾使各鰭狀結構112之間可具有一中間寬上方窄的開口(如第9圖所示中間寬度a大於開口寬度b),方便後續全面覆蓋之介電層可於鰭狀結構112之間以及磊晶 結構130之橫向最寬部132的下方形成孔隙而達到本發明之目的。此外,由於整條鰭狀結構112的頂面都會形成一磊晶結構130,因此磊晶結構130可僅為矽磊晶,並且因為磊晶成長的特定角度而可形成多面體。如此一來,磊晶結構130便可與後續形成之閘極結構之間享有多個直接接觸面,而形成具有更大的通道寬度的多閘極場效電晶體。當然,磊晶結構130亦可例如為一矽鍺磊晶結構用以形成一PMOS電晶體的磊晶結構,或者一矽碳磊晶結構用以形成一NMOS電晶體的磊晶結構,本發明不以此為限。 Furthermore, the epitaxial structure 130 of the present embodiment is the same as the previous embodiment, preferably an upwardly growing pentagon structure without covering the fin structure 112, and the cross-sectional structure of the epitaxial structure 130 has a The lateral widest portion 132, such that each of the fin structures 112 may have a narrow opening above the middle width (as shown in FIG. 9 , the intermediate width a is greater than the opening width b), so that the subsequently fully covered dielectric layer can be Fin structure 112 and epitaxial An aperture is formed below the laterally widest portion 132 of the structure 130 for the purposes of the present invention. In addition, since the top surface of the entire fin structure 112 forms an epitaxial structure 130, the epitaxial structure 130 may be only germanium epitaxial, and a polyhedron may be formed due to a specific angle of epitaxial growth. In this way, the epitaxial structure 130 can enjoy a plurality of direct contact faces with the subsequently formed gate structure to form a multi-gate field effect transistor having a larger channel width. Of course, the epitaxial structure 130 can also be, for example, an epitaxial structure for forming an epitaxial structure of a PMOS transistor, or a carbon epitaxial structure for forming an epitaxial structure of an NMOS transistor. This is limited to this.

之後,如第6圖所示,形成閘極結構G跨設於磊晶結構130以及基底110上,其中閘極結構G包含一閘極介電層122、一選擇性的阻障層(未繪示)、一犧牲電極層124、一蓋層126以及一間隙壁128,而其形成方法同前實施例,故不再贅述。之後,分別形成源/汲極(未繪示)於閘極結構G側邊的磊晶結構130或/且鰭狀結構112中。在其他實施例中,源/汲極(未繪示)亦可在形成磊晶結構130前,或者與磊晶結構130一起形成。然後,可在繼續後續之半導體製程以形成所需之半導體結構。 Then, as shown in FIG. 6, the gate structure G is formed across the epitaxial structure 130 and the substrate 110. The gate structure G includes a gate dielectric layer 122 and a selective barrier layer (not shown). A sacrificial electrode layer 124, a cap layer 126, and a spacer wall 128 are formed in the same manner as the previous embodiment, and thus will not be described again. Thereafter, a source/drain (not shown) is formed in the epitaxial structure 130 or/and the fin structure 112 on the side of the gate structure G, respectively. In other embodiments, the source/drain (not shown) may also be formed prior to forming the epitaxial structure 130 or together with the epitaxial structure 130. Subsequent semiconductor processes can then be continued to form the desired semiconductor structure.

而後,如第7圖所示,形成一介電層140覆蓋基底110以及磊晶結構130,其中有二孔隙V會分別形成於閘極結構G兩側的鰭狀結構112之間的介電層140中。介電層140可例如以一化學氣相沉積(chemical vapor deposition,CVD)製程、電漿加強化學氣相沉積(Plasma Enhance Chemical Vapor Deposition,PECVD)製程、或高 密度電漿化學氣相沉積(High-density plasma chemical vapor deposition,HDPCVD)製程形成,其中採用之製程較佳在形成介電層140時能形成孔隙V於介電層140中。再者,本發明可藉由調整回蝕刻絕緣結構10a的深度來控制孔隙V形成的位置,以及絕緣結構10a的形狀來控制孔隙V形成的尺寸及形狀。此外,本發明亦可藉由形成磊晶結構於鰭狀結構112上來調整孔隙V所形成的位置、尺寸及形狀。以本實施例為例,由於磊晶結構130的剖面結構具有一橫向最寬部132,俾使各鰭狀結構112之間可具有一中間寬上方窄的開口,因此當介電層140覆蓋於鰭狀結構112以及基底110上時,介電層140則較難填入鰭狀結構112之間,而使鰭狀結構112之間的介電層140中可形成孔隙V。更進一步而言,孔隙V係位於橫向最寬部132的下方。當然,在其他實施例中,可不形成磊晶結構130,但亦可藉由調整絕緣結構10a的深度及形狀,俾控制孔隙V的位置、尺寸及形狀,其中孔隙V較佳係位於鰭狀結構112的頂端T的下方。 Then, as shown in FIG. 7, a dielectric layer 140 is formed to cover the substrate 110 and the epitaxial structure 130, wherein the two holes V are respectively formed in the dielectric layer between the fin structures 112 on both sides of the gate structure G. 140. The dielectric layer 140 can be, for example, a chemical vapor deposition (CVD) process, a Plasma Enhanced Chemical Vapor Deposition (PECVD) process, or a high process. A high-density plasma chemical vapor deposition (HDPCVD) process is formed, wherein the process is preferably formed in the dielectric layer 140 when the dielectric layer 140 is formed. Furthermore, the present invention can control the size and shape of the formation of the pores V by adjusting the depth of the etch back insulating structure 10a to control the position at which the pores V are formed, and the shape of the insulating structure 10a. In addition, the present invention can also adjust the position, size and shape of the pores V by forming an epitaxial structure on the fin structure 112. Taking the embodiment as an example, since the cross-sectional structure of the epitaxial structure 130 has a laterally widest portion 132, the fin structures 112 may have a narrow opening between the middle and the width, so that the dielectric layer 140 is covered. When the fin structure 112 and the substrate 110 are on, the dielectric layer 140 is more difficult to fill between the fin structures 112, and the pores V may be formed in the dielectric layer 140 between the fin structures 112. Still further, the aperture V is located below the laterally widest portion 132. Of course, in other embodiments, the epitaxial structure 130 may not be formed, but the position, size, and shape of the aperture V may be controlled by adjusting the depth and shape of the insulating structure 10a, wherein the aperture V is preferably located in the fin structure. Below the top T of 112.

同樣值得注意的是,本實施例在形成磊晶結構130及/或閘極結構G於各鰭狀結構112上之後,都可選擇性再進行一蝕刻部分絕緣結構10a的步驟,以加大各鰭狀結構112間之間隙的深寬比,視實際需要而定。 It should also be noted that, after forming the epitaxial structure 130 and/or the gate structure G on each of the fin structures 112, the present embodiment may selectively perform a step of etching a portion of the insulating structure 10a to increase each The aspect ratio of the gap between the fin structures 112 depends on actual needs.

介電層140之形成步驟:可先全面覆蓋介電層(未繪示)於基底110、鰭狀結構112以及閘極結構G,再將介電層(未繪示)平坦化 至暴露出犧牲電極層124(,如第7圖所示)。然後,進行一金屬閘極置換(metal gate replacement,RMG)製程,以將犧牲電極層124以及閘極介電層122置換為一金屬閘極M,如第11圖所示。具體而言,可先依序移除犧牲電極層124以及選擇性地移除閘極介電層122;然後,在同位置依序形成一選擇性的緩衝層(未繪示)、一高介電常數介電層(未繪示)、一選擇性的底阻障層(未繪示)、一功函數金屬層(未繪示)、一選擇性的頂阻障層(未繪示)以及一低電阻率材料(未繪示)並研磨至介電層140,而形成金屬閘極M,其中金屬閘極M包含一緩衝層152、一高介電常數介電層154、一選擇性的底阻障層(未繪示)、一功函數金屬層156、一選擇性的頂阻障層(未繪示)以及一低電阻率材料158。因此,金屬閘極M中之緩衝層152、高介電常數介電層154、選擇性的底阻障層(未繪示)、功函數金屬層層156以及選擇性的頂阻障層(未繪示)皆具有U形剖面結構。然後,可再繼續後續之半導體製程以形成所需之半導體結構。在另一實施例中,可不移除閘極介電層122並將其延用為緩衝層,在此情況下,移除犧牲電極層124後便毋需再形成緩衝層,因此在完成的結構中緩衝層152會具有一字形的剖面結構。 The step of forming the dielectric layer 140: firstly covering the dielectric layer (not shown) on the substrate 110, the fin structure 112, and the gate structure G, and then planarizing the dielectric layer (not shown) The sacrificial electrode layer 124 is exposed (as shown in FIG. 7). Then, a metal gate replacement (RMG) process is performed to replace the sacrificial electrode layer 124 and the gate dielectric layer 122 with a metal gate M, as shown in FIG. Specifically, the sacrificial electrode layer 124 may be sequentially removed and the gate dielectric layer 122 may be selectively removed; then, a selective buffer layer (not shown) and a high dielectric are sequentially formed at the same position. a constant dielectric layer (not shown), a selective bottom barrier layer (not shown), a work function metal layer (not shown), a selective top barrier layer (not shown), and a low resistivity material (not shown) is ground to the dielectric layer 140 to form a metal gate M, wherein the metal gate M comprises a buffer layer 152, a high-k dielectric layer 154, and a selective A bottom barrier layer (not shown), a work function metal layer 156, a selective top barrier layer (not shown), and a low resistivity material 158. Therefore, the buffer layer 152 in the metal gate M, the high-k dielectric layer 154, the selective bottom barrier layer (not shown), the work function metal layer 156, and the selective top barrier layer (not All of them have a U-shaped cross-sectional structure. Subsequent semiconductor processes can then be continued to form the desired semiconductor structure. In another embodiment, the gate dielectric layer 122 may not be removed and extended as a buffer layer. In this case, after the sacrificial electrode layer 124 is removed, the buffer layer needs to be formed again, thus completing the structure. The middle buffer layer 152 will have a cross-sectional structure of a straight line.

承上,前二實施例之多閘極場效電晶體製程步驟有些微不同,而所形成之多閘極場效電晶體結構大致相同,除了第二實施例之磊晶結構130係形成於整條鰭狀結構112上,故較第一實施例之磊晶結構130多了位於金屬閘極M正下方的部分。然而,此二實施例之上 視圖皆相同,如第10圖所示,係繪示本發明一實施例之多閘極場效電晶體之上視圖。一多閘極場效電晶體100包含至少二鰭狀結構112位於一基底110上。一金屬閘極M跨設於鰭狀結構112以及基底110上。一磊晶結構130選擇性地位於金屬閘極M側邊的鰭狀結構112上。一源/汲極(未繪示)則分別位於金屬閘極M側邊的鰭狀結構112或/且磊晶結構130中,並且各鰭狀結構112中之源/汲極(未繪示)則分別電連接至一源極端S以及一汲極端D。介電層140覆蓋鰭狀結構112以及基底110,且鰭狀結構112之間的介電層140中具有孔隙V。上述之各構件之配置方法及功用皆已於前述之二實施例中說明,故不再贅述。 The process of the multi-gate field effect transistor of the first embodiment is slightly different, and the structure of the multi-gate field effect transistor formed is substantially the same, except that the epitaxial structure 130 of the second embodiment is formed in the whole On the strip fin structure 112, there is more than the epitaxial structure 130 of the first embodiment located directly under the metal gate M. However, above these two embodiments The views are all the same. As shown in FIG. 10, a top view of a multi-gate field effect transistor according to an embodiment of the present invention is shown. A multi-gate field effect transistor 100 includes at least two fin structures 112 on a substrate 110. A metal gate M is spanned over the fin structure 112 and the substrate 110. An epitaxial structure 130 is selectively located on the fin structure 112 on the side of the metal gate M. A source/drain (not shown) is respectively located in the fin structure 112 or/and the epitaxial structure 130 on the side of the metal gate M, and the source/drain in each fin structure 112 (not shown) They are electrically connected to a source terminal S and a terminal D, respectively. The dielectric layer 140 covers the fin structure 112 and the substrate 110, and the dielectric layer 140 between the fin structures 112 has a void V therein. The configuration methods and functions of the above-mentioned components have been described in the foregoing two embodiments, and therefore will not be described again.

綜上所述,本發明提出一種多閘極場效電晶體及其製程,其形成孔隙於鰭狀結構之間的介電層中,俾降低多閘極場效電晶體,特別是鰭狀結構之間的寄生電容。較佳而言,孔隙係位於鰭狀結構的頂端的下方。更佳而言,可在鰭狀結構上形成具有一橫向最寬部的磊晶結構,促使孔隙位於其橫向最寬部的下方,如此以更容易且準確控制孔隙的位置、尺寸及形狀。此外,本發明可藉由調整位於鰭狀結構之間的基底上之絕緣結構的深度及形狀,以控制孔隙所形成之位置、尺寸及形狀。再者,本發明直接形成空隙於鰭狀結構之間的介電層中,能較意圖完全填滿介電層的製程更能降低製程成本。 In summary, the present invention provides a multi-gate field effect transistor and a process thereof, which form a pore in a dielectric layer between the fin structures, and reduce a multi-gate field effect transistor, particularly a fin structure. Parasitic capacitance between. Preferably, the pores are located below the top end of the fin structure. More preferably, an epitaxial structure having a laterally widest portion can be formed on the fin structure to cause the pores to be located below the widest portion of the lateral direction, thereby making it easier and more accurate to control the position, size and shape of the pores. Furthermore, the present invention can control the position, size and shape of the apertures by adjusting the depth and shape of the insulating structures on the substrate between the fin structures. Moreover, the present invention directly forms a dielectric layer between the fin structures, which can reduce the process cost more than the process of completely filling the dielectric layer.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10、10a、10b‧‧‧絕緣結構 10, 10a, 10b‧‧‧ insulation structure

12a‧‧‧底部 12a‧‧‧ bottom

12b‧‧‧側壁部 12b‧‧‧ Sidewall

110‧‧‧基底 110‧‧‧Base

112‧‧‧鰭狀結構 112‧‧‧Fin structure

120‧‧‧堆疊結構 120‧‧‧Stack structure

122‧‧‧閘極介電層 122‧‧‧ gate dielectric layer

124‧‧‧犧牲電極層 124‧‧‧Sacrificial electrode layer

126‧‧‧蓋層 126‧‧‧ cover

128‧‧‧間隙壁 128‧‧‧ spacer

130‧‧‧磊晶結構 130‧‧‧ epitaxial structure

132‧‧‧橫向最寬部 132‧‧‧ horizontal widest part

140‧‧‧介電層 140‧‧‧Dielectric layer

152‧‧‧緩衝層 152‧‧‧buffer layer

154‧‧‧高介電常數介電層 154‧‧‧High dielectric constant dielectric layer

156‧‧‧功函數金屬層 156‧‧‧Work function metal layer

158‧‧‧低電阻率材料 158‧‧‧ Low resistivity material

a‧‧‧中間寬度 A‧‧‧intermediate width

b‧‧‧開口寬度 B‧‧‧ opening width

d‧‧‧深度 D‧‧‧depth

D‧‧‧汲極端 D‧‧‧汲 Extreme

G‧‧‧閘極結構 G‧‧‧ gate structure

M‧‧‧金屬閘極 M‧‧‧Metal gate

P‧‧‧圖案化的硬遮罩層 P‧‧‧ patterned hard mask layer

S‧‧‧源極端 S‧‧‧ source extreme

T‧‧‧頂端 T‧‧‧ top

V‧‧‧孔隙 V‧‧‧ pores

第1-7圖係繪示本發明一第一實施例之多閘極場效電晶體製程之剖面示意圖。 1-7 are schematic cross-sectional views showing a process of a multi-gate field effect transistor according to a first embodiment of the present invention.

第8-9圖係繪示本發明一第二實施例之多閘極場效電晶體製程之剖面示意圖。 8-9 are schematic cross-sectional views showing a process of a multi-gate field effect transistor according to a second embodiment of the present invention.

第10圖係繪示本發明一實施例之多閘極場效電晶體之上視圖。 Fig. 10 is a top view showing a multi-gate field effect transistor according to an embodiment of the present invention.

第11圖係繪示本發明一實施例之多閘極場效電晶體製程之剖面示意圖。 11 is a cross-sectional view showing a process of a multi-gate field effect transistor according to an embodiment of the present invention.

10a‧‧‧絕緣結構 10a‧‧‧Insulation structure

12a‧‧‧底部 12a‧‧‧ bottom

12b‧‧‧側壁部 12b‧‧‧ Sidewall

110‧‧‧基底 110‧‧‧Base

112‧‧‧鰭狀結構 112‧‧‧Fin structure

128‧‧‧間隙壁 128‧‧‧ spacer

130‧‧‧磊晶結構 130‧‧‧ epitaxial structure

132‧‧‧橫向最寬部 132‧‧‧ horizontal widest part

140‧‧‧介電層 140‧‧‧Dielectric layer

152‧‧‧緩衝層 152‧‧‧buffer layer

154‧‧‧高介電常數介電層 154‧‧‧High dielectric constant dielectric layer

156‧‧‧功函數金屬層 156‧‧‧Work function metal layer

158‧‧‧低電阻率材料 158‧‧‧ Low resistivity material

d‧‧‧深度 D‧‧‧depth

M‧‧‧金屬閘極 M‧‧‧Metal gate

T‧‧‧頂端 T‧‧‧ top

V‧‧‧孔隙 V‧‧‧ pores

Claims (22)

一種多閘極場效電晶體,包含有:二鰭狀結構位於一基底上;以及一介電層覆蓋該基底以及該二鰭狀結構,且至少二孔隙位於該二鰭狀結構之間的該介電層中。 A multi-gate field effect transistor comprising: a second fin structure on a substrate; and a dielectric layer covering the substrate and the second fin structure, and at least two pores between the two fin structures In the dielectric layer. 如申請專利範圍第1項所述之多閘極場效電晶體,其中各該二鰭狀結構上均另設置有一磊晶結構。 The multi-gate field effect transistor according to claim 1, wherein each of the two fin structures is further provided with an epitaxial structure. 如申請專利範圍第2項所述之多閘極場效電晶體,其中各該磊晶結構的剖面結構均具有一橫向最寬部。 The multi-gate field effect transistor according to claim 2, wherein the cross-sectional structure of each of the epitaxial structures has a lateral widest portion. 如申請專利範圍第3項所述之多閘極場效電晶體,其中該二孔隙位於該橫向最寬部的下方。 The multi-gate field effect transistor of claim 3, wherein the two apertures are located below the lateral widest portion. 如申請專利範圍第1項所述之多閘極場效電晶體,其中該二孔隙位於該二鰭狀結構的頂端的下方。 The multi-gate field effect transistor of claim 1, wherein the two apertures are located below a top end of the second fin structure. 如申請專利範圍第1項所述之多閘極場效電晶體,更包含:一絕緣結構位於該二鰭狀結構之間的該基底上。 The multi-gate field effect transistor according to claim 1, further comprising: an insulating structure on the substrate between the two fin structures. 如申請專利範圍第6項所述之多閘極場效電晶體,其中該絕緣結構具有一底部,位於該二鰭狀結構之間的該基底上,以及二側壁 部分別位於該二鰭狀結構的相對兩側。 The multi-gate field effect transistor of claim 6, wherein the insulating structure has a bottom, the substrate between the two fin structures, and two sidewalls The portions are respectively located on opposite sides of the two fin structures. 如申請專利範圍第1項所述之多閘極場效電晶體,更包含:一閘極結構設置於該介電層中,跨設該基底以及該二鰭狀結構,且位於該二孔隙之間。 The multi-gate field effect transistor according to claim 1, further comprising: a gate structure disposed in the dielectric layer, spanning the substrate and the second fin structure, and located in the second aperture between. 如申請專利範圍第8項所述之多閘極場效電晶體,更包含:二源/汲極分別位於該閘極結構側邊的該二鰭狀結構中。 The multi-gate field effect transistor according to claim 8, further comprising: the two source/drain electrodes are respectively located in the two fin structures on the side of the gate structure. 一種多閘極場效電晶體製程,包含有:形成二鰭狀結構於一基底上;以及形成一介電層覆蓋該基底以及該二鰭狀結構,其中至少有二孔隙形成於該二鰭狀結構之間的該介電層中。 A multi-gate field-effect transistor process includes: forming a second fin structure on a substrate; and forming a dielectric layer covering the substrate and the second fin structure, wherein at least two pores are formed in the second fin The structure is between the dielectric layers. 如申請專利範圍第10項所述之多閘極場效電晶體製程,更包含:分別形成一磊晶結構位於各該二鰭狀結構上。 The multi-gate field-effect transistor process as described in claim 10, further comprising: forming an epitaxial structure on each of the two fin structures. 如申請專利範圍第11項所述之多閘極場效電晶體製程,其中各該磊晶結構的剖面結構具有一橫向最寬部。 The multi-gate field effect transistor process of claim 11, wherein the cross-sectional structure of each of the epitaxial structures has a laterally widest portion. 如申請專利範圍第12項所述之多閘極場效電晶體製程,其中該二孔隙形成於該橫向最寬部的下方。 The multi-gate field effect transistor process of claim 12, wherein the two apertures are formed below the lateral widest portion. 如申請專利範圍第10項所述之多閘極場效電晶體製程,其中該二孔隙形成於該二鰭狀結構的頂端的下方。 The multi-gate field effect transistor process of claim 10, wherein the two pores are formed below the top end of the second fin structure. 如申請專利範圍第10項所述之多閘極場效電晶體製程,其中該介電層包含以一化學氣相沉積(chemical vapor deposition,CVD)製程、電漿加強化學氣相沉積(Plasma Enhance Chemical Vapor Deposition,PECVD)製程、或高密度電漿化學氣相沉積(High-density plasma chemical vapor deposition,HDPCVD)製程形成。 The multi-gate field effect transistor process of claim 10, wherein the dielectric layer comprises a chemical vapor deposition (CVD) process and plasma enhanced chemical vapor deposition (Plasma Enhance). Chemical Vapor Deposition (PECVD) process, or high-density plasma chemical vapor deposition (HDPCVD) process. 如申請專利範圍第10項所述之多閘極場效電晶體製程,在形成該二鰭狀結構之後,更包含:形成一絕緣結構於該二鰭狀結構之間的該基底上。 The multi-gate field effect transistor process of claim 10, after forming the second fin structure, further comprises: forming an insulating structure on the substrate between the two fin structures. 如申請專利範圍第16項所述之多閘極場效電晶體製程,在形成該絕緣結構之後,更包含:回蝕刻該絕緣結構。 The multi-gate field-effect transistor process of claim 16, wherein after forming the insulating structure, the method further comprises: etching back the insulating structure. 如申請專利範圍第17項所述之多閘極場效電晶體製程,其中回蝕刻後的該絕緣結構具有一底部,位於該二鰭狀結構之間的該基底上,以及二側壁部分別位於該二鰭狀結構的相對兩側。 The multi-gate field effect transistor process of claim 17, wherein the etched back insulating structure has a bottom portion on the substrate between the two fin structures, and the two side wall portions are respectively located The opposite sides of the two fin structure. 如申請專利範圍第18項所述之多閘極場效電晶體製程,在回蝕 刻該絕緣結構之後,更包含:分別形成一磊晶結構於該二鰭狀結構上。 The multi-gate field-effect transistor process as described in claim 18 of the patent application, in eclipse After the insulating structure is engraved, the method further comprises: forming an epitaxial structure on the second fin structure respectively. 如申請專利範圍第16項所述之多閘極場效電晶體製程,在形成該絕緣結構之後,更包含:分別形成一磊晶結構於該二鰭狀結構上;以及回蝕刻該絕緣結構。 The multi-gate field effect transistor process of claim 16, wherein after forming the insulating structure, further comprising: forming an epitaxial structure on the second fin structure respectively; and etching back the insulating structure. 如申請專利範圍第10項所述之多閘極場效電晶體製程,在形成該二鰭狀結構之後,更包含:形成一閘極結構跨設該基底以及該二鰭狀結構。 The multi-gate field effect transistor process of claim 10, after forming the second fin structure, further comprises: forming a gate structure spanning the substrate and the second fin structure. 如申請專利範圍第21項所述之多閘極場效電晶體製程,在形成該閘極結構之後,更包含:形成二源/汲極分別於該閘極結構側邊的該二鰭狀結構中。 The multi-gate field-effect transistor process as described in claim 21, after forming the gate structure, further comprising: forming the two-fin structure of the two source/drain electrodes respectively on the side of the gate structure in.
TW101139964A 2012-10-29 2012-10-29 Multigate field effect transistor and process thereof TWI573270B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101139964A TWI573270B (en) 2012-10-29 2012-10-29 Multigate field effect transistor and process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101139964A TWI573270B (en) 2012-10-29 2012-10-29 Multigate field effect transistor and process thereof

Publications (2)

Publication Number Publication Date
TW201417284A TW201417284A (en) 2014-05-01
TWI573270B true TWI573270B (en) 2017-03-01

Family

ID=51293926

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101139964A TWI573270B (en) 2012-10-29 2012-10-29 Multigate field effect transistor and process thereof

Country Status (1)

Country Link
TW (1) TWI573270B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110210404A1 (en) * 2010-02-26 2011-09-01 Taiwan Seminconductor Manufacturing Company, Ltd. Epitaxy Profile Engineering for FinFETs
US20120091538A1 (en) * 2010-10-13 2012-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Finfet and method of fabricating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110210404A1 (en) * 2010-02-26 2011-09-01 Taiwan Seminconductor Manufacturing Company, Ltd. Epitaxy Profile Engineering for FinFETs
US20120091538A1 (en) * 2010-10-13 2012-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Finfet and method of fabricating the same

Also Published As

Publication number Publication date
TW201417284A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
US20170103896A1 (en) Method for fabricating semiconductor device
US8796695B2 (en) Multi-gate field-effect transistor and process thereof
US9318609B2 (en) Semiconductor device with epitaxial structure
US9799769B2 (en) Semiconductor device and method for fabricating the same
US8691652B2 (en) Semiconductor process
US10141432B2 (en) Semiconductor structure
US8872280B2 (en) Non-planar FET and manufacturing method thereof
US8722501B2 (en) Method for manufacturing multi-gate transistor device
US9570578B2 (en) Gate and gate forming process
US20170194212A1 (en) Semiconductor device and method for fabriacting the same
TWI658593B (en) Semiconductor device and a fabrication method thereof
US20160190011A1 (en) Epitaxial structure and process thereof for forming fin-shaped field effect transistor
US9627544B2 (en) Method of forming semiconductor device
TWI573270B (en) Multigate field effect transistor and process thereof
TWI518790B (en) Semiconductor device and method of making the same
TWI521705B (en) Finfet and method of fabricating finfet
TWI523114B (en) Fin-fet and method of forming the same
TWI518794B (en) Non-planar fet and manufacturing method thereof
TWI528461B (en) Semicondoctor process
TW201447988A (en) Semiconductor process
US11527652B2 (en) Semiconductor process
TWI528460B (en) Method for fabricating field effect transistor with fin structure
TWI574308B (en) Semiconductor structure and process thereof
TW201701471A (en) Semiconductor structure and manufacturing method thereof
TWI523081B (en) Semiconductor process