TWI573269B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI573269B
TWI573269B TW104101940A TW104101940A TWI573269B TW I573269 B TWI573269 B TW I573269B TW 104101940 A TW104101940 A TW 104101940A TW 104101940 A TW104101940 A TW 104101940A TW I573269 B TWI573269 B TW I573269B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
growth
region
substrate
Prior art date
Application number
TW104101940A
Other languages
Chinese (zh)
Other versions
TW201628192A (en
Inventor
李明倫
Original Assignee
南臺科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南臺科技大學 filed Critical 南臺科技大學
Priority to TW104101940A priority Critical patent/TWI573269B/en
Publication of TW201628192A publication Critical patent/TW201628192A/en
Application granted granted Critical
Publication of TWI573269B publication Critical patent/TWI573269B/en

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

半導體元件 Semiconductor component

本申請是有關於一種半導體元件,且特別是有關於一種具有成長區與成長抑制區的半導體元件。 The present application relates to a semiconductor device, and more particularly to a semiconductor device having a growth region and a growth suppression region.

由於有機金屬化學氣相沉積(Metal organic chemical vapor deposition,簡稱MOCVD)與分子束磊晶(Molecular Beam Epitaxy,簡稱MBE)技術的發展,使得三五族化合物半導體成長的技術愈趨成熟,其中又以氮化鎵(GaN)及氮化鎵為基底(GaN based)的寬能隙化合物材料十分受到矚目。氮化鎵除了具有直接能隙與寬能隙,亦具備高崩潰電場、高電子移動率、與高飽和電子移動速度。上述的優勢使得氮化鎵半導體材料可應用於光學半導體元件、高壓高功率半導體元件、高速電子以及高溫電子上。此外,在氮化鎵的能帶工程(bandgap engineering)上,採用氮化鋁鎵/氮化鎵的異質結構,可使異質接面處產生二維電子雲(two dimensional electron gas,簡稱2DEG)。由於上述的氮化物的材料特性,使用氮化鋁鎵/氮化鎵異質結構所製造的高電子移動率場效電晶體在高頻、高壓與高功率的應用上具有極佳的潛力。 Due to the development of Metal Organic Chemical Vapor Deposition (MOCVD) and Molecular Beam Epitaxy (MBE) technology, the technology for the growth of the Group III compound semiconductors has become more mature, among which Wide-gap compound materials with gallium nitride (GaN) and gallium nitride as GaN based materials are attracting attention. In addition to direct energy gap and wide energy gap, gallium nitride also has high breakdown electric field, high electron mobility, and high saturation electron moving speed. The above advantages make the gallium nitride semiconductor material applicable to optical semiconductor components, high voltage and high power semiconductor components, high speed electrons, and high temperature electrons. In addition, in the bandgap engineering of gallium nitride, a heterostructure of aluminum gallium nitride/gallium nitride can be used to generate a two-dimensional electron gas (2DEG) at the heterojunction. Due to the material properties of the nitrides described above, high electron mobility field effect transistors fabricated using aluminum gallium nitride/gallium nitride heterostructures have excellent potential for high frequency, high voltage and high power applications.

然而,在現行具有氮化鋁鎵/氮化鎵異質結構的半導體元 件的製作上,在半導體材料成長前,需形成圖案化罩幕層於基板上,且在半導體材料成長的過程中,亦不會將圖案化罩幕層移除。因此,在半導體材料成長的過程中,圖案化罩幕層容易對半導體材料造成污染,進而導致元件特性低落。 However, in the current semiconductor element having an aluminum gallium nitride/gallium nitride heterostructure In the fabrication of the device, a patterned mask layer is formed on the substrate before the semiconductor material is grown, and the patterned mask layer is not removed during the growth of the semiconductor material. Therefore, during the growth of the semiconductor material, the patterned mask layer is liable to cause contamination of the semiconductor material, resulting in low component characteristics.

本申請提供一種半導體元件,其具有成長區與成長抑制區,並且半導體材料可選擇性地自成長區成長。 The present application provides a semiconductor device having a growth region and a growth suppression region, and the semiconductor material can selectively grow from the growth region.

本申請的一實施例提出一種半導體元件,適於配置於一基板上,半導體元件包括一半導體元件層、至少一第一電極以及一第二電極。半導體元件層包括一第一部分以及一第二部分,其中第一部分配置於基板上。第一部份具有一第一表面、多個從第一表面往內部延伸的成長抑制區,以及一與成長抑制區臨接的成長區。第二部分配置於第一表面上,以覆蓋部分的成長區。第二電極配置於第二部份上。 An embodiment of the present application provides a semiconductor device suitable for being disposed on a substrate. The semiconductor device includes a semiconductor device layer, at least a first electrode, and a second electrode. The semiconductor device layer includes a first portion and a second portion, wherein the first portion is disposed on the substrate. The first portion has a first surface, a plurality of growth inhibiting regions extending from the first surface to the inside, and a growth region adjacent to the growth inhibiting region. The second portion is disposed on the first surface to cover a portion of the growth zone. The second electrode is disposed on the second portion.

在本發明的一實施例中,上述的半導體元件包括發光二極體、光二極體、整流二極體或太陽能電池。 In an embodiment of the invention, the semiconductor device includes a light emitting diode, a photodiode, a rectifying diode, or a solar cell.

在本發明的一實施例中,上述的第一部份包括第一型摻雜半導體層,而第二部份包括一主動層以及一第二型摻雜半導體層。此外,主動層位於第一型摻雜半導體層與第二型摻雜半導體層之間。 In an embodiment of the invention, the first portion includes a first type doped semiconductor layer, and the second portion includes an active layer and a second type doped semiconductor layer. Further, the active layer is between the first type doped semiconductor layer and the second type doped semiconductor layer.

在本發明的一實施例中,上述的第一部分更包括一成核層(nucleation layer),而成核層配置於基板與第一型摻雜半導體層之間。 In an embodiment of the invention, the first portion further includes a nucleation layer disposed between the substrate and the first type doped semiconductor layer.

在本發明的一實施例中,上述的第一部分更包括一成核層與一緩衝層,其中成核層配置於基板與第一型摻雜半導體層之間,而緩衝層配置於成核層與基板之間。 In an embodiment of the invention, the first portion further includes a nucleation layer and a buffer layer, wherein the nucleation layer is disposed between the substrate and the first type doped semiconductor layer, and the buffer layer is disposed on the nucleation layer Between the substrate and the substrate.

在本發明的一實施例中,上述的半導體元件包括電晶體。 In an embodiment of the invention, the semiconductor device described above includes a transistor.

在本發明的一實施例中,上述的第二部份進一步覆蓋成長抑制區的邊緣。 In an embodiment of the invention, the second portion further covers an edge of the growth suppression zone.

在本發明的一實施例中,上述的成長抑制區深度介於1奈米至1000奈米。 In an embodiment of the invention, the growth inhibition zone has a depth of between 1 nm and 1000 nm.

在本發明的一實施例中,上述成長區的電阻率高於成長抑制區的電阻率。 In an embodiment of the invention, the resistivity of the growth zone is higher than the resistivity of the growth suppression zone.

在本發明的一實施例中,上述的半導體元件更包括保護層,以覆蓋半導體元件層。 In an embodiment of the invention, the semiconductor device further includes a protective layer to cover the semiconductor device layer.

基於上述,在本發明透過成長抑制區以及成長區的設計,可在無圖案化罩幕層的情況下於成長區上成長半導體材料。由於本發明在半導體材料成長的過程中,無須使用圖案化罩幕層,故可改善半導體材料成長被圖案化罩幕層汙染,進而導致元件性能低落之問題。 Based on the above, in the design of the growth suppression zone and the growth zone of the present invention, the semiconductor material can be grown on the growth zone without the patterned mask layer. Since the present invention does not require the use of a patterned mask layer during the growth of the semiconductor material, the growth of the semiconductor material can be improved by the patterned mask layer, which leads to a problem of low component performance.

為讓本申請的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above features and advantages of the present invention will become more apparent from the following description.

50‧‧‧基板 50‧‧‧Substrate

100、200‧‧‧半導體元件 100, 200‧‧‧ semiconductor components

110‧‧‧半導體元件層 110‧‧‧Semiconductor component layer

112、210‧‧‧第一部分 112, 210‧‧‧ first part

113、313‧‧‧第一表面 113, 313‧‧‧ first surface

113a、313a‧‧‧成長區 113a, 313a‧‧‧ growing areas

113b、313b‧‧‧成長抑制區 113b, 313b‧‧‧ growth inhibition zone

114、220‧‧‧第二部分 114, 220‧‧‧ Part II

120、230‧‧‧第一電極 120, 230‧‧‧ first electrode

130、240‧‧‧第二電極 130, 240‧‧‧ second electrode

211‧‧‧成核層 211‧‧‧ nucleation layer

212‧‧‧第一型摻雜半導體層 212‧‧‧First type doped semiconductor layer

213‧‧‧緩衝層 213‧‧‧buffer layer

222‧‧‧第二型摻雜半導體層 222‧‧‧Second type doped semiconductor layer

224‧‧‧主動層 224‧‧‧ active layer

300‧‧‧高電子移動率電晶體 300‧‧‧High electron mobility transistor

311‧‧‧通道材料層 311‧‧‧Channel material layer

311a‧‧‧二維電子雲 311a‧‧‧Two-dimensional electronic cloud

312‧‧‧第一阻障層 312‧‧‧First barrier layer

314‧‧‧高電阻區 314‧‧‧High resistance zone

316‧‧‧中間層 316‧‧‧Intermediate

320‧‧‧第二阻障層 320‧‧‧second barrier layer

360‧‧‧保護層 360‧‧‧Protective layer

d‧‧‧深度 D‧‧‧depth

D‧‧‧汲極 D‧‧‧汲

G‧‧‧閘極 G‧‧‧ gate

S‧‧‧源極 S‧‧‧ source

SL‧‧‧離子阻檔層 SL‧‧‧Ion barrier layer

PR、PR’、PR2、PR3‧‧‧光阻層 PR, PR', PR2, PR3‧‧‧ photoresist layer

圖1是根據本發明一實施例繪示的半導體元件的剖面示意圖。 1 is a cross-sectional view of a semiconductor device in accordance with an embodiment of the invention.

圖2是根據本發明另一實施例繪示的半導體元件的剖面示意圖。 2 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention.

圖3是根據本發明另一實施例繪示的半導體元件的剖面示意圖。 3 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention.

圖4是根據本發明另一實施例繪示的半導體元件的剖面示意圖。 4 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention.

圖5是根據本發明另一實施例繪示的半導體元件的剖面示意圖。 FIG. 5 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention.

圖6是根據本發明另一實施例繪示的高電子移動率電晶體的剖面示意圖。 FIG. 6 is a cross-sectional view of a high electron mobility transistor according to another embodiment of the invention.

圖7是根據本發明另一實施例繪示的高電子移動率電晶體的剖面示意圖。 FIG. 7 is a cross-sectional view of a high electron mobility transistor according to another embodiment of the invention.

圖8是根據本發明另一實施例繪示的高電子移動率電晶體的剖面示意圖。 FIG. 8 is a cross-sectional view of a high electron mobility transistor according to another embodiment of the invention.

圖9A至圖9M圖是根據本發明另一實施例繪示的高電子移動率電晶體製程步驟的剖面示意圖。 9A-9M are schematic cross-sectional views showing a high electron mobility transistor process step according to another embodiment of the invention.

圖1是根據本發明一實施例繪示的半導體元件的剖面示意圖。請參考圖1,本實施例的半導體元件100適於配置基板50上,並且半導體元件100包括半導體元件層110、至少一第一電極120以及第二電極130。此外,半導體元件層110包括第一部分112以及第二部分114。第一部分112配置於基板50上,並且第一部分112具有第一表面113、多個從第一表面113往其內部延伸成長 的成長抑制區113b以及與成長抑制區113b臨接的成長區113a。另一方面,第二部分114配置於第一部分112的第一表面113上,以覆蓋成長區113a。此外,第一電極120配置於第一表面113上,以覆蓋部分的成長抑制區113b,而第二電極130則是配置於第二部份114上。 1 is a cross-sectional view of a semiconductor device in accordance with an embodiment of the invention. Referring to FIG. 1 , the semiconductor device 100 of the present embodiment is adapted to be disposed on a substrate 50 , and the semiconductor device 100 includes a semiconductor device layer 110 , at least a first electrode 120 , and a second electrode 130 . Further, the semiconductor element layer 110 includes a first portion 112 and a second portion 114. The first portion 112 is disposed on the substrate 50, and the first portion 112 has a first surface 113, and a plurality of extending from the first surface 113 to the inside thereof The growth suppression zone 113b and the growth zone 113a adjacent to the growth suppression zone 113b. On the other hand, the second portion 114 is disposed on the first surface 113 of the first portion 112 to cover the growth region 113a. In addition, the first electrode 120 is disposed on the first surface 113 to cover a portion of the growth suppression region 113b, and the second electrode 130 is disposed on the second portion 114.

在本實施例中,基板50例如是矽(Si)基板、碳化矽(SiC)基板、藍寶石(sapphire)基板、氮化鎵(GaN)基板、氮化鋁鎵(AlGaN)基板、氮化鋁(AlN)基板、磷化鎵(GaP)基板、砷化鎵(GaAs)基板或砷化鋁鎵(AlGaAs)基板。 In the present embodiment, the substrate 50 is, for example, a germanium (Si) substrate, a tantalum carbide (SiC) substrate, a sapphire substrate, a gallium nitride (GaN) substrate, an aluminum gallium nitride (AlGaN) substrate, or aluminum nitride ( AlN) substrate, gallium phosphide (GaP) substrate, gallium arsenide (GaAs) substrate or aluminum gallium arsenide (AlGaAs) substrate.

此外,在本實施例中,第一表面113的成長抑制區113b例如是以離子佈植、雜質擴散或電漿處理的方式形成。舉例而言,由於離子佈植的過程中,成長抑制區113b會受到離子轟擊,而使得半導體材料的晶格散亂並且改變其晶格常數。因此,後續半導體材料將優先地成長(re-growth)於第一表面113的成長區113a。換言之,半導體材料會選擇性地成長於第一表面113上。因此,本實施例在半導體材料於元件表面成長的過程中,無需於半導體元件100的第一表面113上進一步形成圖案化罩幕層。也因此,本實施例的成長方式可避免罩幕層材料於半導體材料成長的過程中造成汙染,進而導致元件性能低落。進一步而言,在本實施例中,成長抑制區113b的深度d例如是介於1奈米至1000奈米之間。然而,本實施例並不以此為限,成長抑制區113b的深度d可藉由離子佈植的能量或離子種類等參數加以控制。再者,經由前述的離子佈植可有效減少成長抑制區113b的電阻率,而使得成長抑制區113b的電阻率小於成長區113a的電阻率。值得注意的是, 成長抑制區113b與覆蓋於其上的第一電極120之間為歐姆接觸(ohmic contact)。換言之,成長抑制區113b與第一電極120之間的接觸電阻可以很低。在本實施例中,成長抑制區113b與第一電極120之間的特徵接觸電阻(specific contact resistance)例如是介於1x10-2Ω cm2至1x10-6Ω cm2之間。 Further, in the present embodiment, the growth suppression region 113b of the first surface 113 is formed, for example, by ion implantation, impurity diffusion, or plasma treatment. For example, during ion implantation, the growth suppression zone 113b is subject to ion bombardment, causing the crystal lattice of the semiconductor material to scatter and change its lattice constant. Therefore, the subsequent semiconductor material will preferentially re-grow the growth region 113a of the first surface 113. In other words, the semiconductor material selectively grows on the first surface 113. Therefore, in this embodiment, in the process of growing the semiconductor material on the surface of the device, it is not necessary to further form a patterned mask layer on the first surface 113 of the semiconductor device 100. Therefore, the growth mode of the embodiment can prevent the mask layer material from causing contamination during the growth of the semiconductor material, thereby causing the component performance to be low. Further, in the present embodiment, the depth d of the growth suppression zone 113b is, for example, between 1 nm and 1000 nm. However, the present embodiment is not limited thereto, and the depth d of the growth suppression region 113b can be controlled by parameters such as ion implantation energy or ion species. Further, the resistivity of the growth suppression region 113b can be effectively reduced by the ion implantation described above, so that the resistivity of the growth suppression region 113b is smaller than that of the growth region 113a. It is to be noted that the growth suppression region 113b is in ohmic contact with the first electrode 120 covered thereon. In other words, the contact resistance between the growth suppression region 113b and the first electrode 120 can be low. In the present embodiment, the specific contact resistance between the growth suppression region 113b and the first electrode 120 is, for example, between 1 x 10 -2 Ω cm 2 and 1 x 10 -6 Ω cm 2 .

圖2是根據本發明另一實施例繪示的半導體元件的剖面示意圖。請參照圖2,在本實施例中,由於側向成長(lateral growth),半導體元件的第二部分114可進一步地覆蓋於成長抑制區113b的邊緣。此外,第二部分114覆蓋成長抑制區113b的程度可依實際的製程條件而有所不同,本實施例不限定第二部分114覆蓋成長抑制區113b的面積。 2 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention. Referring to FIG. 2, in the present embodiment, the second portion 114 of the semiconductor element may further cover the edge of the growth suppression region 113b due to lateral growth. In addition, the extent to which the second portion 114 covers the growth suppression region 113b may vary depending on actual process conditions. This embodiment does not limit the area of the second portion 114 covering the growth suppression region 113b.

圖3是根據本發明另一實施例繪示的半導體元件的剖面示意圖。請參照圖3,在本實施例中,半導體元件200例如是發光二極體、光二極體、整流二極體或太陽能電池等。此外,半導體元件200的第一部分210包括第一型摻雜半導體層212及第一電極230,而半導體元件的第二部分220包括主動層224、第二型摻雜半導體層222以及第二電極240,其中主動層224配置於第一型摻雜半導體層212與第二型摻雜半導體層222之間。舉例而言,第一型摻雜半導體層212例如為N型半導體摻雜層,其材料例如是摻雜有矽(Si)或鍺(Ge)的氮化鎵(GaN),而其形成方法例如是有機金屬化學氣相沈積法(metalorganic chemical vapor deposition,簡稱MOCVD)。此外,第二部份220的第二型摻雜半導體層222例如是P形摻雜層,其材料例如是摻雜有鎂(Mg)或鋅(Zn)的氮化鎵,並且第二型摻雜半導體層222亦可以有機金屬化學氣相沈積法形 成。 3 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention. Referring to FIG. 3, in the present embodiment, the semiconductor device 200 is, for example, a light emitting diode, a photodiode, a rectifying diode, or a solar cell. In addition, the first portion 210 of the semiconductor device 200 includes the first type doped semiconductor layer 212 and the first electrode 230, and the second portion 220 of the semiconductor element includes the active layer 224, the second type doped semiconductor layer 222, and the second electrode 240. The active layer 224 is disposed between the first type doped semiconductor layer 212 and the second type doped semiconductor layer 222. For example, the first type doped semiconductor layer 212 is, for example, an N-type semiconductor doped layer, and the material thereof is, for example, gallium nitride (GaN) doped with germanium (Si) or germanium (Ge), and a method of forming the same, for example. It is a metalorganic chemical vapor deposition (MOCVD). In addition, the second type doped semiconductor layer 222 of the second portion 220 is, for example, a P-type doped layer, and the material thereof is, for example, gallium nitride doped with magnesium (Mg) or zinc (Zn), and the second type is doped. The hetero semiconductor layer 222 can also be formed by an organometallic chemical vapor deposition method. to make.

另一方面,在本實施例中,當半導體元件200為發光二極體時,其主動層224例如為發光層,並且發光層例如為多重量子井層。進一步而言,本實施例之多重量子井層的配置可有效改善電子與電洞結合的量子效率,並且進一步提升半導體元件200的發光效率。此外,當半導體元件200為光二極體(photodiode)時,主動層224可為感光吸收層,也就是第一型摻雜半導體層212與第二型摻雜半導體層222之間的本徵層(intrinsic layer)。再者,當半導體元件200為整流二極體時,主動層224為第一型摻雜半導體層212與第二型摻雜半導體層222之間的本徵層。在其他實施例中,當半導體元件200為太陽能電池時,主動層224可為一對於太陽光線敏感的感光層,也就是上述第一型摻雜半導體層212與第二型摻雜半導體層222之間的光電轉換層(或光吸收層)。 On the other hand, in the present embodiment, when the semiconductor element 200 is a light emitting diode, the active layer 224 is, for example, a light emitting layer, and the light emitting layer is, for example, a multiple quantum well layer. Further, the configuration of the multiple quantum well layers of the present embodiment can effectively improve the quantum efficiency of electron-hole bonding and further improve the luminous efficiency of the semiconductor device 200. In addition, when the semiconductor device 200 is a photodiode, the active layer 224 may be a light absorbing layer, that is, an intrinsic layer between the first type doped semiconductor layer 212 and the second type doped semiconductor layer 222 ( Intrinsic layer). Furthermore, when the semiconductor device 200 is a rectifying diode, the active layer 224 is an intrinsic layer between the first type doped semiconductor layer 212 and the second type doped semiconductor layer 222. In other embodiments, when the semiconductor device 200 is a solar cell, the active layer 224 can be a photosensitive layer sensitive to sunlight, that is, the first type doped semiconductor layer 212 and the second type doped semiconductor layer 222. A photoelectric conversion layer (or light absorbing layer).

圖4是根據本發明另一實施例繪示的半導體元件的剖面示意圖。請參照圖4,在本實施例中,半導體元件200的第一部份210可進一步包括成核層211,並且成核層211配置於基板50與第一型摻雜半導體層212之間。舉例而言,本實施例的成核層211可為氮化鋁(AlN)層。 4 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention. Referring to FIG. 4 , in the embodiment, the first portion 210 of the semiconductor device 200 may further include a nucleation layer 211 , and the nucleation layer 211 is disposed between the substrate 50 and the first type doped semiconductor layer 212 . For example, the nucleation layer 211 of the present embodiment may be an aluminum nitride (AlN) layer.

圖5是根據本發明另一實施例繪示的半導體元件的剖面示意圖。請參照圖5,在本實施例中,半導體元件200的第一部分210除進一步包括配置於基板50與第一型摻雜半導體212之間的成核層211外,可進一步包括配置於成核層211與基板50之間的緩衝層213。在本實施例中,緩衝層213例如為無摻雜氮化鎵(undoped GaN)層。此外,本實施例的緩衝層213可改善成核層211 成長於異質基板50上時所產生的晶格常數不匹配(lattice mismatch)的問題。在本實施例中,緩衝層213形成的方法例如以是低溫磊晶成長的方式形成或以物理沉積(Physical deposition)方式於基板50上沉積氮化鎵(GaN)、氮化鋁鎵或是氮化鋁薄膜層,其厚度介於1奈米至100奈米之間。再者,前述之物理沉積方式可以是電子束(E-beam)或濺鍍(sputtering)的方式。 FIG. 5 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention. Referring to FIG. 5, in the embodiment, the first portion 210 of the semiconductor device 200 may further include a nucleation layer, in addition to the nucleation layer 211 disposed between the substrate 50 and the first type doped semiconductor 212. A buffer layer 213 between the 211 and the substrate 50. In the present embodiment, the buffer layer 213 is, for example, an undoped GaN layer. In addition, the buffer layer 213 of the present embodiment can improve the nucleation layer 211. The problem of lattice mismatch caused when growing on the heterogeneous substrate 50 is a problem of lattice mismatch. In this embodiment, the buffer layer 213 is formed by depositing gallium nitride (GaN), aluminum gallium nitride or nitrogen on the substrate 50, for example, by low temperature epitaxial growth or by physical deposition. The aluminum film layer has a thickness of between 1 nm and 100 nm. Furthermore, the aforementioned physical deposition method may be an electron beam (E-beam) or a sputtering method.

圖6是根據本發明另一實施例繪示的高電子移動率電晶體的剖面示意圖。請參照圖6,本實施例的半導體元件例如是高電子移動率電晶體(High electron mobility transistor,簡稱HEMT)300,且此高電子移動率電晶體300適於配置於基板50上。在本實施例中,高電子移動率電晶體300包括通道材料層311、第一阻障層312、第二阻障層320、源極S、汲極D以及閘極G。通道材料層311配置於基板50上,而第一阻障層312配置於通道材料層311上。此外,第一阻障層312具有第一表面313、多個從第一表面313往其內部延伸的成長抑制區313b,以及與成長抑制區313b臨接的成長區313a。第二阻障層320則是配置於第一阻障層312的第一表面313上,以覆蓋成長區313a。另一方面,本實施例的閘極G配置於第二阻障層上320。 FIG. 6 is a cross-sectional view of a high electron mobility transistor according to another embodiment of the invention. Referring to FIG. 6 , the semiconductor device of the present embodiment is, for example, a high electron mobility transistor (HEMT) 300 , and the high electron mobility transistor 300 is suitable for being disposed on the substrate 50 . In the present embodiment, the high electron mobility transistor 300 includes a channel material layer 311, a first barrier layer 312, a second barrier layer 320, a source S, a drain D, and a gate G. The channel material layer 311 is disposed on the substrate 50, and the first barrier layer 312 is disposed on the channel material layer 311. Further, the first barrier layer 312 has a first surface 313, a plurality of growth suppression regions 313b extending from the first surface 313 toward the inside thereof, and a growth region 313a adjacent to the growth suppression region 313b. The second barrier layer 320 is disposed on the first surface 313 of the first barrier layer 312 to cover the growth region 313a. On the other hand, the gate G of the present embodiment is disposed on the second barrier layer 320.

在本實施例中,基板50例如是矽(Si)基板、碳化矽(SiC)基板、藍寶石(sapphire)基板、氮化鎵(GaN)基板、氮化鋁鎵(AlGaN)基板、氮化鋁(AlN)基板、磷化鎵(GaP)基板、砷化鎵(GaAs)基板或砷化鋁鎵(AlGaAs)基板。然而,本實施例並不以此為限。 In the present embodiment, the substrate 50 is, for example, a germanium (Si) substrate, a tantalum carbide (SiC) substrate, a sapphire substrate, a gallium nitride (GaN) substrate, an aluminum gallium nitride (AlGaN) substrate, or aluminum nitride ( AlN) substrate, gallium phosphide (GaP) substrate, gallium arsenide (GaAs) substrate or aluminum gallium arsenide (AlGaAs) substrate. However, the embodiment is not limited thereto.

在本實施例中,第一阻障層312的第一表面313上的成長抑制區313b可以如同前述實施例以離子佈植、雜質擴散或電漿 處理的方式形成。此外,本實施例的成長抑制區313b的深度d可為介於1奈米1000奈米之間。然而,本實施例並不以此為限。另外,值得注意的是,前述的成長抑制區313b的深度d小於第一阻障層312的厚度。再者,本實施例的成長抑制區313b例如是以離子佈植的方式形成,其中佈植的離子種類例如是矽(Si)、磷(P)、砷(As)、氧(O)、硒(Se)、鍺(Ge)、碲(Te)、Ti(鈦)或者是前述離子的組合。 In the present embodiment, the growth suppression region 313b on the first surface 313 of the first barrier layer 312 may be ion implanted, impurity diffused or plasma as in the previous embodiment. The way of processing is formed. In addition, the depth d of the growth suppression zone 313b of the present embodiment may be between 1 nm and 1000 nm. However, the embodiment is not limited thereto. In addition, it is to be noted that the depth d of the aforementioned growth suppression region 313b is smaller than the thickness of the first barrier layer 312. Furthermore, the growth suppression zone 313b of the present embodiment is formed, for example, by ion implantation, wherein the implanted ion species are, for example, germanium (Si), phosphorus (P), arsenic (As), oxygen (O), and selenium. (Se), germanium (Ge), tellurium (Te), Ti (titanium) or a combination of the foregoing ions.

進一步而言,經由前述的離子佈植,本實施例可降低成長抑制區313b的電阻率,使得成長抑制區313b的電阻率小於成長區313a的電阻率。換言之,成長抑制區313b與覆蓋其上的源極S、汲極G之間會形成較低的歐姆接觸(ohmic contact)。 Further, according to the ion implantation described above, the present embodiment can reduce the resistivity of the growth suppression region 313b such that the resistivity of the growth suppression region 313b is smaller than the resistivity of the growth region 313a. In other words, a lower ohmic contact is formed between the growth suppression region 313b and the source S and the drain G overlying it.

此外,在本實施例中,通道材料層311與第一阻障層312臨接的界面可產生高濃度的二維電子雲311a(two dimensional electron gas,簡稱2DEG)。在本實施例中,通道材料層311與第一阻障層312的材料分別例如是無摻雜氮化鎵以及無摻雜氮化鋁鎵。 In addition, in the present embodiment, the interface of the channel material layer 311 and the first barrier layer 312 can generate a high concentration of two dimensional electron gas 311a (2DEG). In this embodiment, the materials of the channel material layer 311 and the first barrier layer 312 are respectively undoped gallium nitride and undoped aluminum gallium nitride.

如圖6所示,本實施例的源極S與汲極D分別配置於第二阻障層320的成長抑制區313b上,而閘極G則是配置於第二阻障層320上,且源極S和汲極D分別位於閘極G的兩側。在本實施例中,當未施加偏壓於閘極G時(即閘極電壓Vg為0時),閘極G會使其下方的通道材料層311空乏。換言之,存在於通道材料層311中的二維電子雲311a會在閘極下方產生空乏區(depletion region),此時,高電子移動率電晶體300會呈現關閉狀態。相對地,當順向電壓施加於閘極G時,閘極G下方的通道材料層311 會出現二維電子雲311a,而使高電子移動率電晶體300呈現開啟狀態。換言之,本實施例的高電子移動率電晶體300可為常關(normally off)型的半導體元件,並且其可藉由外加施加的偏壓控制其開啟或關閉。此類型的高電子移動率電晶體300一般稱為增強型態(Enhancement-mode,簡稱E-mode)的高電子移動率電晶體。 As shown in FIG. 6 , the source S and the drain D are respectively disposed on the growth suppression region 313 b of the second barrier layer 320 , and the gate G is disposed on the second barrier layer 320 , and The source S and the drain D are respectively located on both sides of the gate G. In the present embodiment, when the bias voltage G is not applied (i.e., when the gate voltage Vg is 0), the gate G causes the channel material layer 311 below it to be depleted. In other words, the two-dimensional electron cloud 311a present in the channel material layer 311 creates a depletion region under the gate, at which time the high electron mobility transistor 300 will assume a closed state. In contrast, when a forward voltage is applied to the gate G, the channel material layer 311 under the gate G The two-dimensional electron cloud 311a will appear, and the high electron mobility transistor 300 will be turned on. In other words, the high electron mobility transistor 300 of the present embodiment can be a normally off type semiconductor element, and it can be controlled to be turned on or off by applying an applied bias. This type of high electron mobility transistor 300 is generally referred to as an enhancement mode-mode (E-mode) high electron mobility transistor.

圖7是本發明另一實施例繪示的高電子移動率電晶體的剖面示意圖。請參照圖7,本實施例的高電子移動率電晶體300可進一步包括配置於第一阻障層312與通道材料層311之間的中間層(interlayer)316。在本實施例中,中間層316例如為氮化鋁(AlN)層。 FIG. 7 is a cross-sectional view of a high electron mobility transistor according to another embodiment of the present invention. Referring to FIG. 7 , the high electron mobility transistor 300 of the present embodiment may further include an interlayer 316 disposed between the first barrier layer 312 and the channel material layer 311 . In the present embodiment, the intermediate layer 316 is, for example, an aluminum nitride (AlN) layer.

圖8是本發明另一實施例繪示的高電子移動率電晶體的剖面示意圖。請參照圖8,在本實施例中,第一阻障層312可進一步具有多個從第一表面313往其內部沿伸的高電阻區314,高電阻區314分別位於源極S與第二阻障層320之間以及汲極D與第二阻障層320之間。詳細而言,本實施例可於源極S與第二阻障層320之間以及汲極D與第二阻障層320之間的第一表面313上進行離子佈植,以提高這些區域的電阻值而於第一阻障層312中形成高電阻區314。前述的高電阻區314可降低閘極G與源極S之間及/或閘極G與汲極D之間發生漏電流的機率。在本實施例中,用以形成高電阻區314所使用的離子例如是氬(Ar)、鋅(Zn)、鈹(Be)、氮(N)、氫(H)、氦(He)、鎂(Mg)、鐵(Fe)、錳(Mn)或者是前述離子的組合等。此外,經由前述的離子佈植所形成的高電阻區314可具有高於成長區313a的電阻值。承上述,在本實施例中,高電阻區314的電阻值高於成長抑制區313b的電阻值。 FIG. 8 is a cross-sectional view of a high electron mobility transistor according to another embodiment of the present invention. Referring to FIG. 8, in the embodiment, the first barrier layer 312 may further have a plurality of high resistance regions 314 extending from the first surface 313 toward the inside thereof, and the high resistance regions 314 are respectively located at the source S and the second Between the barrier layers 320 and between the drain D and the second barrier layer 320. In detail, the present embodiment can perform ion implantation on the first surface 313 between the source S and the second barrier layer 320 and between the drain D and the second barrier layer 320 to improve the area. A high resistance region 314 is formed in the first barrier layer 312 by a resistance value. The aforementioned high resistance region 314 can reduce the probability of leakage current between the gate G and the source S and/or between the gate G and the drain D. In the present embodiment, the ions used to form the high resistance region 314 are, for example, argon (Ar), zinc (Zn), bismuth (Be), nitrogen (N), hydrogen (H), helium (He), magnesium. (Mg), iron (Fe), manganese (Mn) or a combination of the foregoing ions. Further, the high resistance region 314 formed through the aforementioned ion implantation may have a resistance value higher than that of the growth region 313a. As described above, in the present embodiment, the resistance value of the high resistance region 314 is higher than the resistance value of the growth suppression region 313b.

圖9A至圖9M圖是根據本發明另一實施例繪示的半導體元件製程步驟的剖面示意圖。請參考圖9A及9B,在本實例中,高電子移動率電晶體300的製造方法包括下列步驟。首先,提供基板50。接著,依序於基板50上形成通道材料層311與第一阻障層312。通道材料層311與第一阻障層312例如是以金屬有機化學氣相沈積(MOCVD)的方式成長於基板50上。此外,本實施例的通道材料層311與第一阻障層312臨接的表面可產生高濃度的二維電子雲311a。在本實施例中,通道材料層311與第一阻障層312的材料分別例如是無摻雜氮化鎵以及無摻雜氮化鋁鎵。另一方面,第一阻障層312的第一表面313可選擇性地形成離子阻擋層SL(ion stopping layer),以使後續離子佈植的製程步驟中所植入的離子可大部分停留於第一阻障層312的第一表面313上。再者,本實施例的離子阻擋層SL的材料例如是二氧化矽(SiO2),但本實施例並不以此為限。 9A-9M are schematic cross-sectional views showing a process of fabricating a semiconductor device in accordance with another embodiment of the present invention. Referring to FIGS. 9A and 9B, in the present example, the method of manufacturing the high electron mobility transistor 300 includes the following steps. First, a substrate 50 is provided. Next, a channel material layer 311 and a first barrier layer 312 are formed on the substrate 50 in sequence. The channel material layer 311 and the first barrier layer 312 are grown on the substrate 50, for example, by metal organic chemical vapor deposition (MOCVD). In addition, the surface of the channel material layer 311 of the present embodiment adjacent to the first barrier layer 312 can generate a high concentration of the two-dimensional electron cloud 311a. In this embodiment, the materials of the channel material layer 311 and the first barrier layer 312 are respectively undoped gallium nitride and undoped aluminum gallium nitride. On the other hand, the first surface 313 of the first barrier layer 312 can selectively form an ion stopping layer (SL) so that ions implanted in the process step of subsequent ion implantation can mostly stay at The first surface 313 of the first barrier layer 312 is on. Further, the material of the ion barrier layer SL of the present embodiment is, for example, cerium oxide (SiO 2 ), but the embodiment is not limited thereto.

接著,於第一阻障層312的第一表面313上定義離子佈植區域。在本實施例中,定義離子佈植區域的方式例如是於第一表面上形成光阻層PR或圖案化材料層,其中未被光阻層PR或圖案化材料層所覆蓋的區域被定義為離子佈植區域,而被光阻層PR或圖案化材料層所覆蓋的區域則被定義為非離子佈植區域。 Next, an ion implantation region is defined on the first surface 313 of the first barrier layer 312. In this embodiment, the ion implantation region is defined by, for example, forming a photoresist layer PR or a patterned material layer on the first surface, wherein a region not covered by the photoresist layer PR or the patterned material layer is defined as The ion implantation region, and the region covered by the photoresist layer PR or the patterned material layer is defined as a non-ion implantation region.

如圖9B所示,接著,於第一表面313上的離子佈植區域進行離子佈植。當完成離子佈植後,離子佈植區域即形成半導體材料的成長抑制區313b。詳細而言,第一表面313的離子佈植區域在進行離子佈植的過程中會受到離子轟擊,使得離子佈植區域的半導體材料晶格散亂,並且改變其晶格常數。因此,在後續的 製程中,相較於非離子佈植的區域而言,半導體材料不易於離子佈植區域上成長,而形成半導體材料的成長抑制區313b。 As shown in FIG. 9B, ion implantation is performed on the ion implantation region on the first surface 313. When the ion implantation is completed, the ion implantation region forms a growth suppression region 313b of the semiconductor material. In detail, the ion implantation region of the first surface 313 is subjected to ion bombardment during ion implantation, causing the semiconductor material crystal lattice of the ion implantation region to be scattered and changing its lattice constant. Therefore, in the follow-up In the process, the semiconductor material is less likely to grow on the ion implantation region than the non-ion implanted region, and the growth inhibiting region 313b of the semiconductor material is formed.

相對地,光阻層PR所覆蓋的部分第一阻障層312的第一表面313,由於未受到離子的轟擊破壞,半導體材料可順利地成長於該區域的表面,因而形成半導體材料的成長區313a。在本實施例中,成長抑制區313b的離子佈植方式例如是電漿離子佈植,而佈植的離子例如是矽(Si)、磷(P)、砷(As)、氧(O)、硒(Se)、鍺(Ge)、碲(Te)、Ti(鈦)或者是前述離子的組合等。然而,本實施例成長抑制區313b形成的方式並不以前述的製作方式為限。 In contrast, the first surface 313 of the first barrier layer 312 covered by the photoresist layer PR is not damaged by the bombardment of ions, and the semiconductor material can smoothly grow on the surface of the region, thereby forming a growth region of the semiconductor material. 313a. In the present embodiment, the ion implantation mode of the growth suppression zone 313b is, for example, plasma ion implantation, and the implanted ions are, for example, germanium (Si), phosphorus (P), arsenic (As), oxygen (O), Selenium (Se), germanium (Ge), tellurium (Te), Ti (titanium) or a combination of the foregoing ions. However, the manner in which the growth suppression region 313b of the present embodiment is formed is not limited to the above-described manufacturing method.

請參考圖9C,在完成第一阻障層312上的離子佈植後,接著移除覆蓋於成長區313a與成長抑制區313b上的離子阻擋層SL與光阻層PR。在本實施例中,離子阻擋層SL與光阻層PR移除的方式例如是以氫氟酸(HF)、丙酮(ACE)或是異丙醇(IPA)等化學蝕刻的方式去除。此外,在成長抑制區313b完成離子佈植後,成長抑制區313b可經由適當的熱退火處理,以產生局部的表面破壞層(selective-area damaged surface),並同時提升成長抑制區313b的電子濃度。因此,成長抑制區313b在經過前述的熱退火處理後,其與後續形成的電極之間可具有良好的歐姆接觸。 Referring to FIG. 9C, after the ion implantation on the first barrier layer 312 is completed, the ion barrier layer SL and the photoresist layer PR covering the growth region 313a and the growth suppression region 313b are subsequently removed. In the present embodiment, the manner in which the ion barrier layer SL and the photoresist layer PR are removed is removed by chemical etching such as hydrofluoric acid (HF), acetone (ACE) or isopropyl alcohol (IPA). Further, after the ion implantation is completed in the growth suppression region 313b, the growth suppression region 313b can be subjected to a suitable thermal annealing treatment to generate a localized surface-dead surface, and simultaneously increase the electron concentration of the growth suppression region 313b. . Therefore, the growth suppression region 313b can have a good ohmic contact with the subsequently formed electrode after the thermal annealing treatment described above.

請參考圖9D,完成定義第一表面313上的成長區313a與成長抑制區313b後,接著,於成長區313a上形成第二阻障層320。舉例而言。高電子移動率電晶體300的第二阻障層320可以金屬有機化學氣相沈積的方式形成。此外,在本實施例中,高電子移動率電晶體300的第二阻障層320例如是P型氮化鎵層。 Referring to FIG. 9D, after defining the growth region 313a and the growth suppression region 313b on the first surface 313, a second barrier layer 320 is formed on the growth region 313a. For example. The second barrier layer 320 of the high electron mobility transistor 300 can be formed by metal organic chemical vapor deposition. Further, in the present embodiment, the second barrier layer 320 of the high electron mobility transistor 300 is, for example, a P-type gallium nitride layer.

請參考圖9E,本實施例的第二阻障層320由於側向成 長,第二阻障層320另可進一步地覆蓋於成長抑制區313b的邊緣。在本實施例中,第二阻障層320覆蓋成長抑制區313b的程度可依實際的製程條件而有所不同,本實施例不限定第二阻障層320覆蓋成長抑制區313b的面積。 Referring to FIG. 9E, the second barrier layer 320 of the embodiment is laterally formed. The second barrier layer 320 may further cover the edge of the growth suppression region 313b. In this embodiment, the extent to which the second barrier layer 320 covers the growth suppression region 313b may vary according to actual process conditions. This embodiment does not limit the area of the second barrier layer 320 covering the growth suppression region 313b.

再者,請參考圖9F至圖9H,在本實施例中,可選擇性地於第二阻障層320兩側的成長抑制區313b進行離子佈植,而佈植的離子例如是氬(Ar)、磷(P)、鋅(Zn)、鈹(Be)、氮(N)、氫(H)、氦(He)、鎂(Mg)、鐵(Fe)、錳(Mn)或者是前述離子的組合等,以形成高電阻區314。高電阻區314的形成可避免後續源極S、汲極D以及閘極G形成時,源極S與閘極G之間或是汲極D與閘極G之間產生漏電流,並可增加高電子移動率電晶體300的崩潰電壓(breakdown voltage)。如圖9F所示,形成前述高電阻區314的製程步驟包括於部分的成長抑制區313b以及第二阻障層320上形成光阻層PR’,以定義出形成高電阻區314(如圖9G所示)的區域。接著,以光阻層PR’為罩幕,選擇性地對第一表面313進行離子佈植以形成高電阻區314。然後,如圖9H所示,在完成離子佈植之後,以例如是丙酮或異丙醇等化學蝕刻方式移除光阻層PR’。在本實施例中,上述圖9F至圖9H形成高電阻區314的製程步驟,可依實際需求而進行或者省略。 Furthermore, referring to FIG. 9F to FIG. 9H, in the present embodiment, ion implantation can be selectively performed on the growth suppression regions 313b on both sides of the second barrier layer 320, and the implanted ions are, for example, argon (Ar). ), phosphorus (P), zinc (Zn), bismuth (Be), nitrogen (N), hydrogen (H), helium (He), magnesium (Mg), iron (Fe), manganese (Mn) or the aforementioned ions A combination or the like to form a high resistance region 314. The formation of the high resistance region 314 can prevent leakage current from being generated between the source S and the gate G or between the gate D and the gate G when the subsequent source S, the drain D, and the gate G are formed, and can be increased. The breakdown voltage of the high electron mobility transistor 300. As shown in FIG. 9F, the process of forming the high resistance region 314 includes forming a photoresist layer PR' on a portion of the growth suppression region 313b and the second barrier layer 320 to define a high resistance region 314 (FIG. 9G). The area shown). Next, the first surface 313 is selectively ion implanted with the photoresist layer PR' as a mask to form a high resistance region 314. Then, as shown in Fig. 9H, after ion implantation is completed, the photoresist layer PR' is removed by chemical etching such as acetone or isopropyl alcohol. In the embodiment, the process steps of forming the high resistance region 314 in FIG. 9F to FIG. 9H described above may be performed or omitted according to actual needs.

接著,請參考圖9I,在第一表面313上形成光阻層PR2,以於第二阻障層320兩側的成長抑制區313b定義出源極S與汲極D的形成位置。之後,形成金屬電極材料於前述成長抑制區313b所定義的形成位置上。然後,如圖9J所示,再以例如是化學蝕刻 的方式移除覆蓋於第一表面313的光阻層PR2,而在移除光阻層PR2之後,即於成長抑制區313b上形成源極S與汲極D。在本實施例中,源極S與汲極D的材料包括鈦鋁(Ti/Al)合金或是鉻金(Cr/Au)合金等金屬。 Next, referring to FIG. 9I, a photoresist layer PR2 is formed on the first surface 313 to define a formation position of the source S and the drain D on the growth suppression regions 313b on both sides of the second barrier layer 320. Thereafter, a metal electrode material is formed at a formation position defined by the growth suppression zone 313b. Then, as shown in FIG. 9J, for example, chemical etching The photoresist layer PR2 covering the first surface 313 is removed, and after the photoresist layer PR2 is removed, the source S and the drain D are formed on the growth suppression region 313b. In the present embodiment, the material of the source S and the drain D includes a metal such as a titanium aluminum (Ti/Al) alloy or a chromium gold (Cr/Au) alloy.

接著,請參考圖9K及9L,在形成源極S與汲極D之後,於第一表面313及部分第二阻障層320上形成光阻層PR3,以於第二阻障層320上定義出閘極G的形成位置。接著,形成金屬電極材料於前述定義的閘極G的形成位置。然後,將光阻層PR3去除,即完成於第二阻障層320上形成閘極G。 Next, referring to FIGS. 9K and 9L, after the source S and the drain D are formed, a photoresist layer PR3 is formed on the first surface 313 and a portion of the second barrier layer 320 to be defined on the second barrier layer 320. The position at which the gate G is formed. Next, a metal electrode material is formed at a position where the gate G is defined as described above. Then, the photoresist layer PR3 is removed, that is, the gate G is formed on the second barrier layer 320.

最後,請參考圖9M,在完成上述的製程步驟後,本實施例可進一步地以例如是電漿輔助化學氣相沈積(PECVD)的方式形成保護層360,其中保護層360暴露出源極S與汲極D。至此,即初步完成高電子移動率電晶體300的製作。值得注意的是,前述的保護層360非為並要的構件,可依實際需求而省略。 Finally, referring to FIG. 9M, after completing the above process steps, the embodiment may further form the protective layer 360 by, for example, plasma-assisted chemical vapor deposition (PECVD), wherein the protective layer 360 exposes the source S. With bungee D. So far, the fabrication of the high electron mobility transistor 300 is initially completed. It should be noted that the foregoing protective layer 360 is not a component and may be omitted according to actual needs.

綜上所述,在上述的多個實施例中,以離子佈植的方式於半導體元件層的表面上定義出成長區與成長抑制區,以使得半導體元件可選擇性地成長於成長區上。因此,本發明在半導體元件的後續製程上,在無須圖案化罩幕層輔助的情形下,即可優先選擇於成長區上再成長半導體材料。由於本發明的半導體元件在半導體材料成長的過程中,無須使用圖案化罩幕層,可避免半導體材料成長過程中可能造成的汙染進而使得性能低落之疑慮。 As described above, in the above embodiments, the growth region and the growth suppression region are defined on the surface of the semiconductor element layer by ion implantation so that the semiconductor element can selectively grow on the growth region. Therefore, in the subsequent process of the semiconductor device, the present invention can preferentially grow the semiconductor material on the growth region without the aid of the patterned mask layer. Since the semiconductor device of the present invention does not need to use a patterned mask layer in the process of growing the semiconductor material, the contamination caused by the growth of the semiconductor material can be avoided and the performance is lowered.

雖然本申請已以實施例揭露如上,然其並非用以限定本申請,任何所屬技術領域中具有通常知識者,在不脫離本申請的精神和範圍內,當可作些許的更動與潤飾,故本申請的保護範圍 當視後附的申請專利範圍所界定者為準。 Although the present application has been disclosed in the above embodiments, it is not intended to limit the present application, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present application. The scope of protection of this application It is subject to the definition of the scope of the patent application attached.

50‧‧‧基板 50‧‧‧Substrate

100‧‧‧半導體元件 100‧‧‧Semiconductor components

110‧‧‧半導體元件層 110‧‧‧Semiconductor component layer

112‧‧‧第一部分 112‧‧‧Part I

113‧‧‧第一表面 113‧‧‧ first surface

113a‧‧‧成長區 113a‧‧‧ Growing Area

113b‧‧‧成長抑制區 113b‧‧‧ Growth inhibition zone

114‧‧‧第二部分 114‧‧‧Part II

120‧‧‧第一電極 120‧‧‧first electrode

130‧‧‧第二電極 130‧‧‧second electrode

d‧‧‧深度 D‧‧‧depth

Claims (9)

一種半導體元件,適於配置於一基板上,該半導體元件包括:一半導體元件層,包括一第一部分以及一第二部分,其中該第一部分配置於該基板上,且該第一部分具有一第一表面、多個從該第一表面往其內部延伸的成長抑制區以及一與該些成長抑制區臨接的成長區,而該第二部分配置於該第一表面上,以覆蓋該成長區,且該第二部分進一步覆蓋該些成長抑制區的邊緣;至少一第一電極,配置於該第一表面上,以覆蓋部分的成長抑制區;以及一第二電極,配置於該第二部分上。 A semiconductor device, configured to be disposed on a substrate, the semiconductor device comprising: a semiconductor device layer comprising a first portion and a second portion, wherein the first portion is disposed on the substrate, and the first portion has a first a surface, a plurality of growth suppression regions extending from the first surface toward the interior thereof, and a growth region adjacent to the growth suppression regions, wherein the second portion is disposed on the first surface to cover the growth region, And the second portion further covers the edges of the growth suppression regions; at least one first electrode is disposed on the first surface to cover a portion of the growth suppression region; and a second electrode is disposed on the second portion . 如申請專利範圍第1項所述的半導體元件,其中該半導體元件包括發光二極體、光二極體、整流二極體或太陽能電池。 The semiconductor device according to claim 1, wherein the semiconductor device comprises a light emitting diode, a photodiode, a rectifying diode or a solar cell. 如申請專利範圍第2項所述的半導體元件,其中該第一部分包括第一型摻雜半導體層,而該第二部份包括一主動層以及一第二型摻雜半導體層,且該主動層位於該第一型摻雜半導體層與該第二型摻雜半導體層之間。 The semiconductor device of claim 2, wherein the first portion comprises a first type doped semiconductor layer, and the second portion comprises an active layer and a second type doped semiconductor layer, and the active layer Located between the first type doped semiconductor layer and the second type doped semiconductor layer. 如申請專利範圍第3項所述的半導體元件,其中該第一部份更包括:一成核層(nucleation layer),配置於該基板與該第一型摻雜半導體層之間。 The semiconductor device of claim 3, wherein the first portion further comprises: a nucleation layer disposed between the substrate and the first type doped semiconductor layer. 如申請專利範圍第3項所述的半導體元件,其中該第一部 份更包括:一成核層(nucleation layer),配置於該基板與該第一型摻雜半導體層之間;以及一緩衝層,配置於該成核層與該基板之間。 The semiconductor component according to claim 3, wherein the first component The portion further includes: a nucleation layer disposed between the substrate and the first type doped semiconductor layer; and a buffer layer disposed between the nucleation layer and the substrate. 如申請專利範圍第1項所述的半導體元件,其中該半導體元件包括電晶體。 The semiconductor device of claim 1, wherein the semiconductor device comprises a transistor. 如申請專利範圍第1項所述的半導體元件,其中該成長抑制區的深度介於1奈米至1000奈米。 The semiconductor device according to claim 1, wherein the growth suppression region has a depth of from 1 nm to 1000 nm. 如申請專利範圍第1項所述的半導體元件,其中各該成長區的電阻率高於該成長抑制區的電阻率。 The semiconductor device according to claim 1, wherein a resistivity of each of the growth regions is higher than a resistivity of the growth suppression region. 如申請專利範圍第1項所述的半導體元件,更包括:一保護層,覆蓋該半導體元件層。 The semiconductor device according to claim 1, further comprising: a protective layer covering the semiconductor device layer.
TW104101940A 2015-01-21 2015-01-21 Semiconductor device TWI573269B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104101940A TWI573269B (en) 2015-01-21 2015-01-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104101940A TWI573269B (en) 2015-01-21 2015-01-21 Semiconductor device

Publications (2)

Publication Number Publication Date
TW201628192A TW201628192A (en) 2016-08-01
TWI573269B true TWI573269B (en) 2017-03-01

Family

ID=57181870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104101940A TWI573269B (en) 2015-01-21 2015-01-21 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI573269B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128753A1 (en) * 2006-11-30 2008-06-05 Cree, Inc. Transistors and method for making ohmic contact to transistors
TW201227954A (en) * 2010-12-30 2012-07-01 Lextar Electronics Corp Semiconductor structures and method of manufacturing the same
TW201342596A (en) * 2012-04-02 2013-10-16 Win Semiconductors Corp Group III nitride-based high electron mobility transistor
TW201503326A (en) * 2013-07-05 2015-01-16 Hon Hai Prec Ind Co Ltd Light emitting display with function of touch control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128753A1 (en) * 2006-11-30 2008-06-05 Cree, Inc. Transistors and method for making ohmic contact to transistors
TW201227954A (en) * 2010-12-30 2012-07-01 Lextar Electronics Corp Semiconductor structures and method of manufacturing the same
TW201342596A (en) * 2012-04-02 2013-10-16 Win Semiconductors Corp Group III nitride-based high electron mobility transistor
TW201503326A (en) * 2013-07-05 2015-01-16 Hon Hai Prec Ind Co Ltd Light emitting display with function of touch control

Also Published As

Publication number Publication date
TW201628192A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
US11031399B2 (en) Semiconductor device and manufacturing method of the same
US8723229B2 (en) Semiconductor device and method of manufacturing the device
JP5469098B2 (en) Field effect transistor and manufacturing method thereof
US8912570B2 (en) High electron mobility transistor and method of forming the same
US8866192B1 (en) Semiconductor device, high electron mobility transistor (HEMT) and method of manufacturing
TWI478337B (en) High electron mobility transistor and method of forming the same
US8350297B2 (en) Compound semiconductor device and production method thereof
JP2005129696A (en) Semiconductor device and its manufacturing method
JP2007220895A (en) Nitride semiconductor device and its manufacturing method
JP7175727B2 (en) Nitride semiconductor device
JP5691138B2 (en) Field effect transistor and manufacturing method thereof
US8698202B2 (en) Semiconductor device
KR101256466B1 (en) Nitride baced heterostructure semiconductor device and manufacturing method thereof
US20160190260A1 (en) Doped zinc oxide as n+ layer for semiconductor devices
JP2016100450A (en) Heterojunction field effect transistor and manufacturing method of the same
TWI573269B (en) Semiconductor device
TWI545660B (en) High electron mobility transistor
TWI497721B (en) Enhanced gan transistor and the forming method thereof
JP2011228720A (en) Semiconductor device
JP4907731B2 (en) Semiconductor device and manufacturing method thereof
TWI832676B (en) Method for manufacturing high electron mobility transistor
US20230246100A1 (en) Enhancement-mode hemt and manufacturing process of the same
JP2017034019A (en) Field-effect transistor and manufacturing method therefor
JP2012064758A (en) Semiconductor laminate, hfet including the same, and manufacturing method thereof
JP2010153524A (en) Epitaxial substrate, manufacturing method thereof, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees