TWI572879B - Electronic apparatus and method to estimate state of charge for battery - Google Patents

Electronic apparatus and method to estimate state of charge for battery Download PDF

Info

Publication number
TWI572879B
TWI572879B TW104108868A TW104108868A TWI572879B TW I572879 B TWI572879 B TW I572879B TW 104108868 A TW104108868 A TW 104108868A TW 104108868 A TW104108868 A TW 104108868A TW I572879 B TWI572879 B TW I572879B
Authority
TW
Taiwan
Prior art keywords
battery
signal
temperature
voltage
current
Prior art date
Application number
TW104108868A
Other languages
Chinese (zh)
Other versions
TW201634947A (en
Inventor
張文宇
Original Assignee
聖約翰科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聖約翰科技大學 filed Critical 聖約翰科技大學
Priority to TW104108868A priority Critical patent/TWI572879B/en
Publication of TW201634947A publication Critical patent/TW201634947A/en
Application granted granted Critical
Publication of TWI572879B publication Critical patent/TWI572879B/en

Links

Landscapes

  • Secondary Cells (AREA)

Description

評估電池之殘電量狀態之電子裝置及方法 Electronic device and method for evaluating battery residual state

本發明係關於一種用於評估一電池之一殘電量狀態之電子裝置及方法。更詳細地說,本發明係關於一種藉由類神經網路評估電池之殘電量狀態之電子裝置及方法。 The present invention relates to an electronic device and method for evaluating the state of a residual charge of a battery. More specifically, the present invention relates to an electronic device and method for evaluating the state of residual state of a battery by a neural network.

在電子科技的不斷進步發展下,現代人在日常生活中常使用具有各種形式之電池的裝置或產品。一般而言,電池在放電時,其殘電量呈現一非線性特徵的狀態,因此很難精確地被偵測。因此,電池之殘電量狀態係為評估而得之一估計值,而非精確偵測取得之一數值。舉例來說,由於混合式電動車(hybrid electrical vehicles;HEVs)或純電動車(electrical vehicles;EVs)所使用的電池具有高放電速率(C-rate),其呈現相當強烈之非線性特徵的殘電量狀態,因此幾乎不可能準確地評估此類電池之殘電量狀態。 With the continuous advancement of electronic technology, modern people often use devices or products with various forms of batteries in their daily lives. In general, when the battery is discharged, its residual power exhibits a state of non-linear characteristics, so it is difficult to accurately detect it. Therefore, the residual state of the battery is one of the estimated values obtained by evaluation, rather than one of the values obtained by accurate detection. For example, batteries used in hybrid electric vehicles (HEVs) or electric vehicles (EVs) have a high discharge rate (C-rate), which exhibits a relatively strong nonlinear characteristic. The state of charge, so it is almost impossible to accurately assess the state of residual power of such batteries.

目前有許多評估電池之殘電量狀態的方法,例如安培-小時計數(ampere-hour counting)方法、開路電壓(open circuit voltage;OCV)測量方法或是電池阻抗測量方法等。 There are many methods for evaluating the state of residual state of a battery, such as an ampere-hour counting method, an open circuit voltage (OCV) measuring method, or a battery impedance measuring method.

安培-小時計數方法係藉由偵測電池之實際電量來評估其殘電量狀態。在使用這種方法的情形下,評估取得之電池的殘電量狀態會與用以偵測電池之實際電量的感測器之好壞相關。因此,以安培-小時計數方法進行評估的電池之殘電量狀態會隨著用以偵測電池之實際電量的感測器之準確度以及誤差而產生變化。 The amp-hour counting method evaluates the state of the residual charge by detecting the actual amount of power in the battery. In the case of using this method, the state of the residual power of the obtained battery is evaluated in relation to the quality of the sensor used to detect the actual amount of power of the battery. Therefore, the state of the residual power of the battery evaluated by the ampere-hour counting method varies depending on the accuracy and error of the sensor for detecting the actual amount of power of the battery.

開路電壓測量方法係藉由電池之開路電壓為基準,進行其殘電量狀態之評估。在使用這種方法的情形下,僅能在電 池非使用的時候評估電池之殘電量狀態。此外,開路電壓測量方法相當容易受到外在環境(如溫度)的影響而降低其評估電池之殘電量狀態的準確度。 The open circuit voltage measurement method is based on the open circuit voltage of the battery as a reference to evaluate the state of the residual power. In the case of using this method, it can only be used in electricity. The battery's residual state is evaluated when the pool is not in use. In addition, the open circuit voltage measurement method is quite susceptible to the external environment (such as temperature) and reduces the accuracy of evaluating the residual state of the battery.

電池阻抗測量方法係藉由電池之阻抗值為基準,進 行其殘電量狀態之評估。然而,電池阻抗測量方法相當容易受到溫度與電池老化程度的影響而降低其評估電池之殘電量狀態的準確度。 The battery impedance measurement method is based on the impedance value of the battery. An assessment of the state of its residual capacity. However, the battery impedance measurement method is quite susceptible to the temperature and the degree of battery aging, which reduces the accuracy of evaluating the residual state of the battery.

有鑑於此,如何提供一種不受到外在環境影響的評 估電池之殘電量狀態的機制,使得使用者可快速且精確地獲得電池之殘電量狀態,乃是業界亟待解決的問題。 In view of this, how to provide a review that is not affected by the external environment Estimating the state of the battery's residual state allows the user to quickly and accurately obtain the state of the battery's residual charge, which is an urgent problem to be solved in the industry.

本發明之一目的在於提供一種用於評估一電池之一殘電量狀態之電子裝置。 It is an object of the present invention to provide an electronic device for evaluating the state of residual charge of a battery.

為達上述目的,本發明之電子裝置包含一感測模組、一儲存單元以及一處理器。該感測模組電性連接該電池。該儲存單元用以儲存一訓練資料庫。該處理器電性連接該電池、該感測模組以及該儲存單元並具有一類神經網路。該感測模組用以擷取該電池之一溫度、一端電壓以及一放電電流;產生相應於該電池之溫度、端電壓以及放電電流之一溫度訊號、一電壓訊號以及一電流訊號;並輸出該溫度訊號、該電壓訊號以及該電流訊號。該處理器接收該溫度訊號、該電壓訊號以及該電流訊號後,藉由該類神經網路,並根據訓練資料庫、溫度訊號、電壓訊號以及電流訊號計算電池之殘電量狀態。最後,處理器輸出具有電池之殘電量狀態之一顯示訊號。 To achieve the above objective, the electronic device of the present invention comprises a sensing module, a storage unit and a processor. The sensing module is electrically connected to the battery. The storage unit is configured to store a training database. The processor is electrically connected to the battery, the sensing module and the storage unit and has a neural network. The sensing module is configured to capture a temperature, a voltage of one end, and a discharge current of the battery; generate a temperature signal, a voltage signal, and a current signal corresponding to the temperature, the terminal voltage, and the discharge current of the battery; and output The temperature signal, the voltage signal, and the current signal. After receiving the temperature signal, the voltage signal and the current signal, the processor calculates the residual state of the battery according to the training database, the temperature signal, the voltage signal and the current signal by using the neural network. Finally, the processor outputs a display signal with one of the remaining states of the battery.

本發明之另一目的在於提供一種用於前段所述的電子裝置之評估一電池之一殘電量狀態之方法。該方法包括下列步驟:使該感測模組擷取該電池之一溫度、一端電壓以及一放電電流;使該感測模組產生相應於該電池之溫度、端電壓以及放電電流之一溫度訊號、一電壓訊號以及一電流訊號;使該感測模組輸出該溫度訊號、該電壓訊號以及該電流訊號;使該處理器接收該 溫度訊號、該電壓訊號以及該電流訊號;使該處理器藉由該類神經網路,根據該訓練資料庫、該溫度訊號、該電壓訊號以及該電流訊號計算該電池之殘電量狀態;以及使該處理器輸出具有該電池之殘電量狀態之一顯示訊號。 Another object of the present invention is to provide a method for evaluating the state of residual power of a battery for the electronic device described in the preceding paragraph. The method includes the following steps: causing the sensing module to capture a temperature, a voltage of one end, and a discharge current of the battery; and causing the sensing module to generate a temperature signal corresponding to a temperature, a terminal voltage, and a discharge current of the battery a voltage signal and a current signal; causing the sensing module to output the temperature signal, the voltage signal, and the current signal; causing the processor to receive the signal a temperature signal, the voltage signal, and the current signal; causing the processor to calculate a state of residual power of the battery according to the training database, the temperature signal, the voltage signal, and the current signal by using the neural network; and The processor outputs a display signal having a state of residual state of the battery.

綜上所述,本發明之用於評估電池之殘電量狀態之 電子裝置及方法可在感測模組擷取電池之溫度、端電壓以及放電電流後,藉由處理器的類神經網路以及預先儲存的訓練資料庫,計算電池之殘電量狀態。最後,並輸出具有前述經過計算的電池之殘電量狀態之顯示訊號。據此,本發明之用於評估電池之殘電量狀態之電子裝置及方法即可有效地克服習知技術中,因受到外在環境影響,而造成評估的電池之殘電量狀態的準確度降低的問題。同時,透過預先儲存的訓練資料庫,亦可提升藉由類神經網路計算電池之殘電量狀態的速度。 In summary, the present invention is used to evaluate the state of residual power of a battery. The electronic device and method can calculate the residual state of the battery by using the neural network of the processor and the pre-stored training database after the sensing module draws the temperature, the terminal voltage and the discharge current of the battery. Finally, a display signal having the state of the residual state of the battery calculated above is output. Accordingly, the electronic device and method for evaluating the state of the residual state of the battery of the present invention can effectively overcome the prior art, and the accuracy of the residual state of the battery of the battery is lowered due to the influence of the external environment. problem. At the same time, through the pre-stored training database, the speed of calculating the residual state of the battery by the neural network can also be improved.

在參閱圖式及隨後描述之實施方式後,所屬技術領域具有通常知識者便可瞭解本發明之其它目的、優點以及本發明之技術手段及實施態樣。 Other objects, advantages, and technical means and embodiments of the present invention will become apparent to those skilled in the <RTIgt;

1‧‧‧電子裝置 1‧‧‧Electronic device

11‧‧‧感測模組 11‧‧‧Sensor module

13‧‧‧處理器 13‧‧‧ Processor

15‧‧‧儲存單元 15‧‧‧ storage unit

17‧‧‧電池 17‧‧‧Battery

19‧‧‧顯示單元 19‧‧‧Display unit

110‧‧‧溫度訊號 110‧‧‧temperature signal

111‧‧‧溫度感測電路 111‧‧‧Temperature sensing circuit

112‧‧‧電壓訊號 112‧‧‧Voltage signal

113‧‧‧電壓感測電路 113‧‧‧ voltage sensing circuit

114‧‧‧電流訊號 114‧‧‧current signal

115‧‧‧電流感測電路 115‧‧‧ Current sensing circuit

130‧‧‧顯示訊號 130‧‧‧Display signal

131‧‧‧輸入層 131‧‧‧Input layer

133‧‧‧隱藏層 133‧‧‧ hidden layer

135‧‧‧輸出層 135‧‧‧ Output layer

1311、1312、1313‧‧‧輸入層之節點 The nodes of the input layer 1311, 1312, 1313‧‧

1331、1332、1333、1334、...、133(n-2)、133(n-1)、133n‧‧‧隱藏層之節點 1331, 1332, 1333, 1334, ..., 133 (n-2), 133 (n-1), 133n‧‧‧ hidden layer nodes

1350‧‧‧電池之殘電量狀態 1350‧‧‧ Battery residual status

1351‧‧‧輸出層之節點 1351‧‧‧ nodes of the output layer

150‧‧‧目標訓練檔案 150‧‧‧Target Training File

151‧‧‧訓練資料庫 151‧‧‧ Training database

170‧‧‧溫度 170‧‧‧temperature

172‧‧‧端電壓 172‧‧‧ terminal voltage

174‧‧‧放電電流 174‧‧‧Discharge current

176‧‧‧電池之型號 176‧‧‧Model of battery

第1圖係為本發明之第一實施例之電子裝置之示意圖。 1 is a schematic view of an electronic device according to a first embodiment of the present invention.

第2圖係為本發明之第一實施例之電子裝置之類神經網路之示意圖。 Fig. 2 is a schematic view showing a neural network such as an electronic device according to a first embodiment of the present invention.

第3圖係為本發明之第二實施例之評估電池之殘電量狀態之流程圖。 Figure 3 is a flow chart for evaluating the state of residual charge of a battery in accordance with a second embodiment of the present invention.

第4圖係為本發明之第二實施例之擷取電池之溫度、端電壓以及放電電流之流程圖。 Figure 4 is a flow chart showing the temperature, terminal voltage and discharge current of the battery taken in the second embodiment of the present invention.

第5圖係為本發明之第二實施例之產生相應於電池之溫度、端電壓以及放電電流之溫度訊號、電壓訊號以及電流訊號之流程圖。 Figure 5 is a flow chart showing the generation of temperature signals, voltage signals, and current signals corresponding to the temperature, terminal voltage, and discharge current of the battery in accordance with the second embodiment of the present invention.

第6圖係為本發明之第二實施例之輸出溫度訊號、電壓訊號以及電流訊號之流程圖。 Figure 6 is a flow chart showing the output temperature signal, voltage signal and current signal of the second embodiment of the present invention.

第7圖係為本發明之第三實施例之以強化型粒子群優化 (enhanced particle swarm optimization;EPSO)演算法計算訓練資料檔案之流程圖。 Figure 7 is an enhanced particle swarm optimization for the third embodiment of the present invention. (enhanced particle swarm optimization; EPSO) algorithm to calculate the flow chart of the training data file.

以下將透過實施例來解釋本發明內容,本發明的實施例並非用以限制本發明須在如實施例所述之任何特定的環境、應用或特殊方式方能實施。因此,關於實施例之說明僅為闡釋本發明之目的,而非用以限制本發明。須說明者,以下實施例及圖式中,與本發明非直接相關之元件已省略而未繪示;且圖式中各元件間之尺寸關係僅為求容易瞭解,非用以限制實際比例。 The present invention is not limited by the embodiment, and the embodiment of the present invention is not intended to limit the invention to any specific environment, application or special mode as described in the embodiments. Therefore, the description of the embodiments is merely illustrative of the invention and is not intended to limit the invention. It should be noted that, in the following embodiments and drawings, components that are not directly related to the present invention have been omitted and are not shown; and the dimensional relationships between the components in the drawings are merely for ease of understanding and are not intended to limit the actual ratio.

本發明之第一實施例如第1圖所示。第1圖係繪示一電子裝置1之示意圖,電子裝置1包含一感測模組11、一處理器13、一儲存單元15、一電池17以及一顯示單元19。感測模組11包含一溫度感測電路111、一電壓感測電路113以及一電流感測電路115。溫度感測電路111、電壓感測電路113以及電流感測電路115分別電性連接處理器13以及電池17。換句話說,感測模組11電性連接處理器13以及電池17。 The first embodiment of the present invention is shown in Fig. 1. 1 is a schematic diagram of an electronic device 1. The electronic device 1 includes a sensing module 11, a processor 13, a storage unit 15, a battery 17, and a display unit 19. The sensing module 11 includes a temperature sensing circuit 111, a voltage sensing circuit 113, and a current sensing circuit 115. The temperature sensing circuit 111, the voltage sensing circuit 113, and the current sensing circuit 115 are electrically connected to the processor 13 and the battery 17, respectively. In other words, the sensing module 11 is electrically connected to the processor 13 and the battery 17.

處理器13電性連接儲存單元15、電池17以及顯示單元19,其具有如第2圖所繪示之一幅狀基底函數(radial basis function;RBF)類神經網路。儲存單元15儲存一訓練資料庫151。訓練資料庫151包含以一EPSO演算法計算之複數個訓練資料檔案。訓練資料庫151之訓練資料檔案則分別對應於各種不同型號之電池。在本實施例中,處理器13以及儲存單元15係二個分開之元件並互相電性連接。然而,在其它實施例中,儲存單元15可藉由積體電路製程嵌入於處理器13內,並不以本實施例所述之二個分開之元件為限。 The processor 13 is electrically connected to the storage unit 15, the battery 17, and the display unit 19, which has a radial basis function (RBF)-like neural network as shown in FIG. The storage unit 15 stores a training database 151. The training database 151 contains a plurality of training data files calculated by an EPSO algorithm. The training data files of the training database 151 correspond to batteries of various models. In this embodiment, the processor 13 and the storage unit 15 are two separate components and are electrically connected to each other. However, in other embodiments, the storage unit 15 can be embedded in the processor 13 by an integrated circuit process, and is not limited to the two separate components described in this embodiment.

以EPSO演算法計算前述之訓練資料檔案包含下列步驟。步驟(一):設定粒子之一數量;步驟(二):定義每個粒子之一位置向量的各維分量;步驟(三):以隨機方式初始化每個粒子之位置向量;步驟(四):以均方誤差(mean squared error)計算每個粒子之一評估函數;步驟(五):紀錄每個粒子之一區域 最佳解(personal best;pbest)以及所有粒子之一整體最佳解(global best;gbest);步驟(六):修正每個粒子之一運動速度以及位置向量;步驟(七):依據每個粒子之評估函數選擇需進行突變的粒子;步驟(八):修正需進行突變的粒子之運動速度以及位置向量;步驟(九):判斷是否符合結束條件,若是,則將每個粒子之位置向量的各維分量紀錄為一訓練資料檔案;若否,則繼續執行步驟(四)。 The calculation of the aforementioned training data file by the EPSO algorithm includes the following steps. Step (1): setting the number of particles; step (2): defining each dimension component of the position vector of each particle; step (3): initializing the position vector of each particle in a random manner; step (4): Calculate one of the evaluation functions for each particle with a mean squared error; Step (5): Record a region of each particle The best solution (personal best; pbest) and one of the best global solutions (global best; gbest); step (6): correct one of the particle motion speed and position vector; step (7): according to each The evaluation function of the particle selects the particle to be mutated; step (8): corrects the velocity of the particle to be mutated and the position vector; step (9): determines whether the end condition is met, and if so, the position vector of each particle The dimensions of each dimension are recorded as a training data file; if not, proceed to step (4).

詳細地說,前述步驟(四)至步驟(八)係完成一 次疊代之計算。其中,在步驟(一)中,被設定之粒子數量越大,則需要較多時間以EPSO演算法計算訓練資料檔案,以取得整體最佳解;反之,被設定之粒子數量越小,則需要較少時間以EPSO演算法計算訓練資料檔案,但較難以取得整體最佳解。在步驟(二)中,每個粒子之位置向量的各維分量即為RBF類神經網路之一高斯函數的一中心位置、一寬度以及一節點權值。在步驟(五)中,係於每個粒子之歷次疊代中,選擇每個粒子之歷次疊代之一最小評估函數為其區域最佳解;而於所有區域最佳解中,選擇一最小評估函數為整體最佳解。在步驟(六)中,每個粒子之運動速度以及位置向量係根據區域最佳解以及整體最佳解進行修正。在步驟(九)中,則係將RBF類神經網路之高斯函數的中心位置、寬度以及節點權值紀錄為訓練資料檔案。 In detail, the foregoing steps (4) to (8) are completed. The calculation of the second iteration. Wherein, in step (1), the larger the number of particles to be set, the more time is needed to calculate the training data file by the EPSO algorithm to obtain the overall optimal solution; otherwise, the smaller the number of particles to be set, the less Less time to calculate the training data file by EPSO algorithm, but it is more difficult to obtain the overall optimal solution. In step (2), each dimension component of the position vector of each particle is a central position, a width, and a node weight of one of the RBF-like neural networks. In step (5), in each iteration of each particle, one of the least evaluation functions of each of the particles is selected as the optimal solution for the region; and among the optimal solutions for all regions, the smallest one is selected. The evaluation function is the overall optimal solution. In step (6), the motion velocity and position vector of each particle are corrected according to the regional optimal solution and the overall optimal solution. In step (9), the center position, width and node weight of the Gaussian function of the RBF-like neural network are recorded as training data files.

第2圖所示之RBF類神經網路包含一輸入層131、一隱 藏層133以及一輸出層135。輸入層131包含三個節點1311、1312、1313。隱藏層133包含複數個節點1331、1332、1333、1334、...、133(n-2)、133(n-1)、133n。輸出層135包含一節點1351。在本實施例中,隱藏層133之節點之一數目係透過一正交最小平方(orthogonal least squares;OLS)方法進行設定。然而,在其它實施例中,隱藏層133之節點之數目可透過不同方式進行設定,並不以本實施例所述之OLS方法為限。 The RBF-like neural network shown in Figure 2 contains an input layer 131, a hidden A layer 133 and an output layer 135. The input layer 131 includes three nodes 1311, 1312, 1313. The hidden layer 133 includes a plurality of nodes 1331, 1332, 1333, 1334, ..., 133(n-2), 133(n-1), 133n. The output layer 135 includes a node 1351. In the present embodiment, the number of nodes of the hidden layer 133 is set by an orthogonal least squares (OLS) method. However, in other embodiments, the number of nodes of the hidden layer 133 can be set in different manners, and is not limited to the OLS method described in this embodiment.

以下將透過第1圖以及第2圖進一步說明本實施例之 電子裝置1評估電池17之一殘電量狀態的運作流程。當電子裝置1 運作時,溫度感測電路111由電池17擷取一溫度170;電壓感測電路113由電池17擷取一端電壓172;電流感測電路115由電池17擷取一放電電流174。隨後,溫度感測電路111產生相應於溫度170之一溫度訊號110;電壓感測電路113產生相應於端電壓172之一電壓訊號112;電流感測電路115產生相應於放電電流174之一電流訊號114。最後,溫度感測電路111、電壓感測電路113以及電流感測電路115分別輸出溫度訊號110、電壓訊號112以及電流訊號114至處理器13。 The present embodiment will be further described below with reference to FIG. 1 and FIG. The electronic device 1 evaluates the operational flow of the state of the residual state of the battery 17. When the electronic device 1 In operation, the temperature sensing circuit 111 draws a temperature 170 from the battery 17; the voltage sensing circuit 113 draws a voltage 172 from the battery 17; and the current sensing circuit 115 draws a discharge current 174 from the battery 17. Subsequently, the temperature sensing circuit 111 generates a temperature signal 110 corresponding to the temperature 170; the voltage sensing circuit 113 generates a voltage signal 112 corresponding to the terminal voltage 172; and the current sensing circuit 115 generates a current signal corresponding to the discharging current 174. 114. Finally, the temperature sensing circuit 111, the voltage sensing circuit 113, and the current sensing circuit 115 output the temperature signal 110, the voltage signal 112, and the current signal 114 to the processor 13, respectively.

當處理器13接收溫度訊號110、電壓訊號112以及電 流訊號114後,隨即擷取電池17之一型號176,並由儲存單元15之訓練資料庫151的訓練資料檔案中,擷取相應於電池17之型號176之一目標訓練檔案150。隨後,處理器13藉由第2圖繪示之類神經網路,根據目標訓練檔案150、溫度訊號110、電壓訊號112以及電流訊號114計算電池17之一殘電量狀態1350。換句話說,處理器13藉由第2圖繪示之類神經網路,根據訓練資料庫151、溫度訊號110、電壓訊號112以及電流訊號114計算電池17之殘電量狀態1350。最後,處理器13輸出具有電池17之殘電量狀態1350之一顯示訊號130。 When the processor 13 receives the temperature signal 110, the voltage signal 112, and the power After the stream signal 114, one of the models 176 of the battery 17 is retrieved, and the target training file 150 corresponding to the model 176 of the battery 17 is retrieved from the training data file of the training database 151 of the storage unit 15. Then, the processor 13 calculates a residual state 1350 of the battery 17 according to the target training file 150, the temperature signal 110, the voltage signal 112, and the current signal 114 by using a neural network such as the second figure. In other words, the processor 13 calculates the residual state 1350 of the battery 17 based on the training database 151, the temperature signal 110, the voltage signal 112, and the current signal 114 by using a neural network such as the second diagram. Finally, the processor 13 outputs a display signal 130 having a residual state 1350 of the battery 17.

詳細來說,當處理器13接收溫度訊號110、電壓訊號 112以及電流訊號114後,將溫度訊號110輸入至類神經網路之輸入層131的節點1311,將電壓訊號112輸入至類神經網路之輸入層131的節點1312,並將電流訊號114輸入至類神經網路之輸入層131的節點1313。隨後,類神經網路之隱藏層133的每個節點1331、1332、1333、1334、...、133(n-2)、133(n-1)、133n分別接收溫度訊號110、電壓訊號112以及電流訊號114,並根據目標訓練檔案150之RBF類神經網路之高斯函數的中心位置、寬度以及節點權值紀錄進行計算。最後,類神經網路之輸出層135的節點1351輸出電池17之殘電量狀態1350。 In detail, when the processor 13 receives the temperature signal 110, the voltage signal After 112 and the current signal 114, the temperature signal 110 is input to the node 1311 of the input layer 131 of the neural network, the voltage signal 112 is input to the node 1312 of the input layer 131 of the neural network, and the current signal 114 is input to A node 1313 of the input layer 131 of the neural network. Then, each node 1331, 1332, 1333, 1334, ..., 133(n-2), 133(n-1), 133n of the hidden layer 133 of the neural network receives the temperature signal 110 and the voltage signal 112, respectively. And the current signal 114 is calculated according to the center position, the width, and the node weight record of the Gaussian function of the RBF-like neural network of the target training file 150. Finally, node 1351 of output layer 135 of the neural network is outputting the residual state 1350 of battery 17.

當顯示單元19接收由處理器13輸出之具有電池17之 殘電量狀態1350的顯示訊號130後,即根據顯示訊號130顯示電池 17之殘電量狀態1350。 When the display unit 19 receives the battery 17 output by the processor 13 After the display signal 130 of the residual state 1350, the battery is displayed according to the display signal 130. 17 residual power status 1350.

本發明之第二實施例如第3圖所示,其係為評估一電 池之一殘電量狀態之方法的流程圖,本實施例所述之評估電池之殘電量狀態之方法可用於一電子裝置,例如:第一實施例所述之電子裝置1。電子裝置包含一感測模組、一儲存單元以及一處理器。感測模組電性連接電池。處理器電性連接電池、感測模組以及儲存單元且具有一類神經網路。儲存單元用以儲存包含以一強化型粒子群優化演算法計算之複數個訓練資料檔案之一訓練資料庫。 A second embodiment of the present invention is shown in FIG. 3, which is for evaluating an electric A flowchart of a method for determining the state of the residual state of the battery, the method for estimating the state of the residual state of the battery described in this embodiment can be applied to an electronic device, such as the electronic device 1 described in the first embodiment. The electronic device includes a sensing module, a storage unit, and a processor. The sensing module is electrically connected to the battery. The processor is electrically connected to the battery, the sensing module and the storage unit and has a type of neural network. The storage unit is configured to store a training database containing a plurality of training data files calculated by an enhanced particle swarm optimization algorithm.

第二實施例所述之評估電池之殘電量狀態之方法包 含下列步驟。首先,於步驟301中,感測模組擷取電池之一溫度、一端電壓以及一放電電流。於步驟303中,感測模組產生相應於電池之溫度、端電壓以及放電電流之一溫度訊號、一電壓訊號以及一電流訊號。於步驟305中,感測模組輸出溫度訊號、電壓訊號以及電流訊號。於步驟307中,處理器接收溫度訊號、電壓訊號以及電流訊號。於步驟309中,微處理器擷取電池之一型號。於步驟311中,微處理器根據電池之型號,由儲存單元儲存之訓練資料庫之訓練資料檔案中,擷取相應於電池之型號之一目標訓練檔案。接著,於步驟313中,處理器藉由類神經網路,根據目標訓練檔案、溫度訊號、電壓訊號以及電流訊號計算電池之殘電量狀態。接著,執行步驟315,處理器輸出具有電池之殘電量狀態之一顯示訊號。 於步驟317中,顯示單元接收顯示訊號。最後,於步驟319中,顯示單元根據顯示訊號顯示電池之殘電量狀態。 Method for evaluating the state of residual state of a battery as described in the second embodiment The following steps are included. First, in step 301, the sensing module captures one of the temperature of the battery, the voltage of one end, and a discharge current. In step 303, the sensing module generates a temperature signal, a voltage signal, and a current signal corresponding to the temperature, the terminal voltage, and the discharge current of the battery. In step 305, the sensing module outputs a temperature signal, a voltage signal, and a current signal. In step 307, the processor receives the temperature signal, the voltage signal, and the current signal. In step 309, the microprocessor captures one of the battery models. In step 311, the microprocessor retrieves the target training file corresponding to one of the battery models from the training data file of the training database stored in the storage unit according to the model of the battery. Next, in step 313, the processor calculates the residual state of the battery according to the target training file, the temperature signal, the voltage signal, and the current signal by using a neural network. Next, in step 315, the processor outputs a display signal having a state of residual state of the battery. In step 317, the display unit receives the display signal. Finally, in step 319, the display unit displays the state of the residual power of the battery according to the display signal.

需說明者,第二實施例所述之評估電池之殘電量狀態之方法中,電子裝置之感測模組包含一溫度感測電路、一電壓感測電路以及一電流感測電路。溫度感測電路、電壓感測電路以及電流感測電路分別電性連接電池以及處理器。感測模組擷取電池之一溫度、一端電壓以及一放電電流之步驟301更包含如第4圖所示之步驟。首先,於步驟401中,溫度感測電路擷取電池之溫度。接著,於步驟403中,電壓感測電路擷取電池之端電壓,最後,執 行步驟405,電流感測電路擷取電池之放電電流。 It should be noted that in the method for evaluating the residual state of the battery according to the second embodiment, the sensing module of the electronic device includes a temperature sensing circuit, a voltage sensing circuit, and a current sensing circuit. The temperature sensing circuit, the voltage sensing circuit, and the current sensing circuit are electrically connected to the battery and the processor, respectively. The step 301 of sensing the module to extract one of the temperature of the battery, the voltage of one end, and a discharge current further includes the steps as shown in FIG. First, in step 401, the temperature sensing circuit draws the temperature of the battery. Next, in step 403, the voltage sensing circuit draws the terminal voltage of the battery, and finally, In step 405, the current sensing circuit draws the discharge current of the battery.

感測模組產生相應於電池之溫度、端電壓以及放電 電流之一溫度訊號、一電壓訊號以及一電流訊號之步驟303更包含如第5圖所示之步驟。首先,於步驟501中,溫度感測電路產生相應於電池之溫度之溫度訊號。接著,於步驟503中,電壓感測電路產生相應於電池之端電壓之電壓訊號,最後,執行步驟505,電流感測電路產生相應於電池之放電電流之電流訊號。 The sensing module generates a temperature, a terminal voltage, and a discharge corresponding to the battery The step 303 of one of the current temperature signal, a voltage signal, and a current signal further includes the steps as shown in FIG. First, in step 501, the temperature sensing circuit generates a temperature signal corresponding to the temperature of the battery. Next, in step 503, the voltage sensing circuit generates a voltage signal corresponding to the terminal voltage of the battery. Finally, in step 505, the current sensing circuit generates a current signal corresponding to the discharge current of the battery.

感測模組輸出溫度訊號、電壓訊號以及電流訊號之 步驟305更包含如第6圖所示之步驟。首先,於步驟601中,溫度感測電路輸出溫度訊號。接著,於步驟603中,電壓感測電路輸出電壓訊號,最後,執行步驟605,電流感測電路輸出電流訊號。 The sensing module outputs temperature signals, voltage signals, and current signals. Step 305 further includes the steps as shown in FIG. First, in step 601, the temperature sensing circuit outputs a temperature signal. Next, in step 603, the voltage sensing circuit outputs a voltage signal. Finally, in step 605, the current sensing circuit outputs a current signal.

除了上述步驟,第二實施例的評估電池之殘電量狀 態之方法亦能執行第一實施例之電子裝置1中所描述的所有操作及具備所對應的所有功能,且所屬技術領域具有通常知識者可直接了解第二實施例的評估電池之殘電量狀態之方法如何基於第一實施例之電子裝置1的揭露內容執行此等操作及具備此等功能,故在此不再贅述。 In addition to the above steps, the second embodiment evaluates the residual state of the battery The method of the present invention can also perform all the operations described in the electronic device 1 of the first embodiment and have all the functions corresponding thereto, and those skilled in the art can directly understand the state of the residual battery of the evaluation battery of the second embodiment. The method of performing the operations and having such functions based on the disclosed content of the electronic device 1 of the first embodiment is not described herein.

具體而言,第二實施例所述之評估電池之殘電量狀 態之方法可由一電腦程式產品執行,當一電子裝置載入該電腦程式產品並執行該電腦程式產品所包含之複數個指令後,即可完成第二實施例所述之評估電池之殘電量狀態之方法。前述之電腦程式產品可儲存於電腦可讀取記錄媒體中,例如唯讀記憶體(read only memory;ROM)、快閃記憶體、軟碟、硬碟、光碟、隨身碟、磁帶、可由網路存取之資料庫或熟習此項技藝者所習知且具有相同功能之任何其它儲存媒體中。 Specifically, the residual power of the battery is evaluated in the second embodiment. The method can be executed by a computer program product. When an electronic device loads the computer program product and executes a plurality of instructions included in the computer program product, the state of the residual battery of the evaluation battery described in the second embodiment can be completed. The method. The aforementioned computer program product can be stored in a computer readable recording medium, such as read only memory (ROM), flash memory, floppy disk, hard disk, optical disk, flash drive, tape, network available Access to the database or any other storage medium known to those skilled in the art and having the same function.

本發明之第三實施例如第7圖所示,其係為以EPSO 演算法計算訓練資料檔案之流程圖,其包含下列步驟。首先,於步驟701中,設定粒子之一數量。於步驟703中,定義每個粒子之一位置向量的各維分量,其中,每個粒子之位置向量的各維分量即為類神經網路之一高斯函數的一中心位置、一寬度以及一節點 權值。於步驟705中,以隨機方式初始化每個粒子之位置向量。於步驟707中,以均方誤差計算每個粒子之一評估函數。於步驟709中,紀錄每個粒子之一區域最佳解以及所有粒子之一整體最佳解,其中,在每個粒子之歷次疊代中,係選擇每個粒子之歷次疊代之一最小評估函數為其區域最佳解;而於所有區域最佳解中,係選擇一最小評估函數為整體最佳解。 A third embodiment of the present invention is shown in Fig. 7, which is an EPSO The algorithm calculates a flow chart of the training data file, which includes the following steps. First, in step 701, the number of particles is set. In step 703, each dimension component of a position vector of each particle is defined, wherein each dimension component of the position vector of each particle is a center position, a width, and a node of a Gaussian function of the neural network. Weight. In step 705, the position vector of each particle is initialized in a random manner. In step 707, one of the evaluation functions of each particle is calculated with the mean square error. In step 709, an optimal solution for one of the regions of each particle and an overall optimal solution for all of the particles are recorded, wherein, in each iteration of each particle, a minimum evaluation of one of the previous iterations of each particle is selected. The function is the best solution for its region; and in the best solution for all regions, a minimum evaluation function is chosen as the overall optimal solution.

接著,執行步驟711,修正每個粒子之一運動速度以 及位置向量,其中,每個粒子之運動速度以及位置向量係根據區域最佳解以及整體最佳解進行修正。於步驟713中,依據每個粒子之評估函數選擇需進行突變的粒子。於步驟715中,修正需進行突變的粒子之運動速度以及位置向量。接著,執行步驟717,判斷是否符合結束條件。 Then, step 711 is performed to correct one of the moving speeds of each particle. And a position vector, wherein the velocity of each particle and the position vector are corrected according to the optimal solution of the region and the overall optimal solution. In step 713, the particles to be mutated are selected according to the evaluation function of each particle. In step 715, the motion velocity and the position vector of the particles to be abrupt are corrected. Next, step 717 is executed to determine whether the end condition is met.

於步驟717中,若已符合結束條件,則執行步驟719, 將每個粒子之位置向量的各維分量紀錄為一訓練資料檔案,換句話說,係將類神經網路之高斯函數的中心位置、寬度以及節點權值紀錄為訓練資料檔案。於步驟717中,若尚未符合結束條件,則繼續執行步驟707。 In step 717, if the end condition has been met, step 719 is performed. Each dimension component of the position vector of each particle is recorded as a training data file. In other words, the center position, width, and node weight of the Gaussian function of the neural network are recorded as training data files. In step 717, if the end condition has not been met, step 707 is continued.

具體而言,第三實施例所述之以EPSO演算法計算訓 練資料檔案可由一電腦程式產品執行,當一裝置載入該電腦程式產品並執行該電腦程式產品所包含之複數個指令後,即可完成第三實施例所述之以EPSO演算法計算訓練資料檔案。前述之電腦程式產品可儲存於電腦可讀取記錄媒體中,例如唯讀記憶體、快閃記憶體、軟碟、硬碟、光碟、隨身碟、磁帶、可由網路存取之資料庫或熟習此項技藝者所習知且具有相同功能之任何其它儲存媒體中。 Specifically, the EPSO algorithm is used to calculate the training described in the third embodiment. The training data file can be executed by a computer program product. After a device loads the computer program product and executes a plurality of instructions included in the computer program product, the training data calculated by the EPSO algorithm described in the third embodiment can be completed. file. The aforementioned computer program product can be stored in a computer readable recording medium such as a read only memory, a flash memory, a floppy disk, a hard disk, a compact disk, a flash drive, a magnetic tape, a database accessible by the network, or familiar with Any other storage medium known to the skilled artisan and having the same function.

綜上所述,本發明之用於評估電池之殘電量狀態之 電子裝置及方法可在感測模組擷取電池之溫度、端電壓以及放電電流後,藉由處理器的類神經網路以及預先儲存的訓練資料庫,計算電池之殘電量狀態。最後,並輸出具有前述經過計算的電池之殘電量狀態之顯示訊號。據此,本發明之用於評估電池之殘電 量狀態之電子裝置及方法即可有效地克服習知技術中,因受到外在環境影響,而造成評估的電池殘電量狀態的準確度降低的問題。同時,透過預先儲存的訓練資料庫,亦可提升藉由類神經網路計算電池之殘電量狀態的速度。 In summary, the present invention is used to evaluate the state of residual power of a battery. The electronic device and method can calculate the residual state of the battery by using the neural network of the processor and the pre-stored training database after the sensing module draws the temperature, the terminal voltage and the discharge current of the battery. Finally, a display signal having the state of the residual state of the battery calculated above is output. Accordingly, the present invention is used to evaluate the residual current of the battery. The electronic device and method of the quantity state can effectively overcome the problem that the accuracy of the estimated battery residual state is lowered due to the influence of the external environment in the prior art. At the same time, through the pre-stored training database, the speed of calculating the residual state of the battery by the neural network can also be improved.

上述之實施例僅用來例舉本發明之實施態樣,以及闡釋本發明之技術特徵,並非用來限制本發明之保護範疇。任何熟悉此技術者可輕易完成之改變或均等性之安排均屬於本發明所主張之範圍,本發明之權利保護範圍應以申請專利範圍為準。 The embodiments described above are only intended to illustrate the embodiments of the present invention, and to explain the technical features of the present invention, and are not intended to limit the scope of protection of the present invention. Any changes or equivalents that can be easily made by those skilled in the art are within the scope of the invention. The scope of the invention should be determined by the scope of the claims.

1‧‧‧電子裝置 1‧‧‧Electronic device

11‧‧‧感測模組 11‧‧‧Sensor module

13‧‧‧處理器 13‧‧‧ Processor

15‧‧‧儲存單元 15‧‧‧ storage unit

17‧‧‧電池 17‧‧‧Battery

19‧‧‧顯示單元 19‧‧‧Display unit

110‧‧‧溫度訊號 110‧‧‧temperature signal

111‧‧‧溫度感測電路 111‧‧‧Temperature sensing circuit

112‧‧‧電壓訊號 112‧‧‧Voltage signal

113‧‧‧電壓感測電路 113‧‧‧ voltage sensing circuit

114‧‧‧電流訊號 114‧‧‧current signal

115‧‧‧電流感測電路 115‧‧‧ Current sensing circuit

130‧‧‧顯示訊號 130‧‧‧Display signal

150‧‧‧目標訓練檔案 150‧‧‧Target Training File

151‧‧‧訓練資料庫 151‧‧‧ Training database

170‧‧‧溫度 170‧‧‧temperature

172‧‧‧端電壓 172‧‧‧ terminal voltage

174‧‧‧放電電流 174‧‧‧Discharge current

176‧‧‧電池之型號 176‧‧‧Model of battery

Claims (8)

一種用於評估一電池之一殘電量狀態之電子裝置,包含:一感測模組,電性連接該電池,用以擷取該電池之一溫度、一端電壓以及一放電電流,產生相應於該電池之溫度、端電壓以及放電電流之一溫度訊號、一電壓訊號以及一電流訊號,並輸出該溫度訊號、該電壓訊號以及該電流訊號;一儲存單元,用以儲存一訓練資料庫,該訓練資料庫包含以一強化型粒子群優化(enhanced particle swarm optimization;EPSO)演算法計算之複數個訓練資料檔案;以及一處理器,電性連接該電池、該感測模組以及該儲存單元,具有一類神經網路,用以接收該溫度訊號、該電壓訊號以及該電流訊號並擷取該電池之一型號,根據該電池之型號,由該等訓練資料檔案中擷取相應於該電池之型號之一目標訓練檔案,藉由該類神經網路,根據該目標訓練檔案、該溫度訊號、該電壓訊號以及該電流訊號計算該電池之殘電量狀態,並輸出具有該電池之殘電量狀態之一顯示訊號。 An electronic device for evaluating a residual state of a battery, comprising: a sensing module electrically connected to the battery for extracting a temperature, a voltage of one end, and a discharge current of the battery, corresponding to the a temperature signal, a voltage signal, and a current signal of the battery, and outputting the temperature signal, the voltage signal, and the current signal; and a storage unit for storing a training database, the training The data library includes a plurality of training data files calculated by an enhanced particle swarm optimization (EPSO) algorithm; and a processor electrically connected to the battery, the sensing module, and the storage unit, a type of neural network for receiving the temperature signal, the voltage signal, and the current signal, and extracting a model of the battery, and selecting, according to the model of the battery, a model corresponding to the battery from the training data file. a target training file, through which the neural network, the training file, the temperature signal, the voltage signal, and Calculating the residual current signal of the state of charge of the battery, and outputs a residue of one of the battery charge status display signal. 如請求項1所述之電子裝置,其中,該感測模組包含:一溫度感測電路,電性連接該電池以及該處理器,用以擷取該電池之溫度,產生相應於該電池之溫度之該溫度訊號,並輸出該溫度訊號;一電壓感測電路,電性連接該電池以及該處理器,用以擷取該電池之端電壓,產生相應於該電池之端電壓之該電壓訊號,並輸出該電壓訊號;以及一電流感測電路,電性連接該電池以及該處理器,用以擷取該電池之放電電流,產生相應於該電池之放電電流之該電流訊號,並輸出該電流訊號。 The electronic device of claim 1, wherein the sensing module comprises: a temperature sensing circuit electrically connected to the battery and the processor for capturing the temperature of the battery to generate a battery corresponding to the battery The temperature signal of the temperature, and outputting the temperature signal; a voltage sensing circuit electrically connecting the battery and the processor for capturing the voltage of the terminal of the battery to generate the voltage signal corresponding to the terminal voltage of the battery, and Outputting the voltage signal; and a current sensing circuit electrically connected to the battery and the processor for capturing a discharge current of the battery, generating the current signal corresponding to a discharge current of the battery, and outputting the current signal . 如請求項1所述之電子裝置,更包含一顯示單元,電性連接該處理器,用以接收該顯示訊號,並根據該顯示訊號顯示該電池之殘電量狀態。 The electronic device of claim 1, further comprising a display unit electrically connected to the processor for receiving the display signal and displaying the residual state of the battery according to the display signal. 一種用於評估一電池之一殘電量狀態之電子裝置,包含: 一感測模組,電性連接該電池,用以擷取該電池之一溫度、一端電壓以及一放電電流,產生相應於該電池之溫度、端電壓以及放電電流之一溫度訊號、一電壓訊號以及一電流訊號,並輸出該溫度訊號、該電壓訊號以及該電流訊號;一儲存單元,用以儲存一訓練資料庫;以及一處理器,電性連接該電池、該感測模組以及該儲存單元,具有一幅狀基底函數(radial basis function;RBF)類神經網路,用以接收該溫度訊號、該電壓訊號以及該電流訊號,藉由該幅狀基底函數類神經網路,根據該訓練資料庫、該溫度訊號、該電壓訊號以及該電流訊號計算該電池之殘電量狀態,並輸出具有該電池之殘電量狀態之一顯示訊號。 An electronic device for evaluating a residual state of a battery, comprising: a sensing module electrically connected to the battery for capturing temperature, one end voltage and a discharging current of the battery, generating a temperature signal and a voltage signal corresponding to the temperature, the terminal voltage and the discharging current of the battery And a current signal, and outputting the temperature signal, the voltage signal and the current signal; a storage unit for storing a training database; and a processor electrically connecting the battery, the sensing module, and the storage a unit having a radial basis function (RBF)-like neural network for receiving the temperature signal, the voltage signal, and the current signal, by the web-based base function neural network, according to the training The data base, the temperature signal, the voltage signal, and the current signal calculate a state of residual power of the battery, and output a display signal having a state of residual power of the battery. 一種評估一電池之一殘電量狀態之方法,該方法用於一電子裝置,該電子裝置包含一感測模組、一儲存單元以及一處理器,該感測模組電性連接該電池,該處理器電性連接該電池、該感測模組以及該儲存單元且具有一類神經網路,該儲存單元儲存一訓練資料庫,該訓練資料庫包含以一強化型粒子群優化演算法計算之複數個訓練資料檔案,該方法包含下列步驟:使該感測模組擷取該電池之一溫度、一端電壓以及一放電電流;使該感測模組產生相應於該電池之溫度、端電壓以及放電電流之一溫度訊號、一電壓訊號以及一電流訊號;使該感測模組輸出該溫度訊號、該電壓訊號以及該電流訊號;使該處理器接收該溫度訊號、該電壓訊號以及該電流訊號;使該處理器擷取該電池之一型號;使該處理器根據該電池之型號,由該等訓練資料檔案中擷取相應於該電池之型號之一目標訓練檔案;使該處理器藉由該類神經網路,根據該目標訓練檔案、該溫度訊號、該電壓訊號以及該電流訊號計算該電池之殘電量狀態;以及使該處理器輸出具有該電池之殘電量狀態之一顯示訊號。 A method for evaluating a residual state of a battery, the method is used for an electronic device, the electronic device includes a sensing module, a storage unit, and a processor, the sensing module is electrically connected to the battery, The processor is electrically connected to the battery, the sensing module and the storage unit and has a neural network. The storage unit stores a training database, and the training database includes a complex number calculated by an enhanced particle swarm optimization algorithm. a training data file, the method comprising the steps of: causing the sensing module to capture a temperature, a voltage of one end, and a discharge current of the battery; causing the sensing module to generate a temperature, a terminal voltage, and a discharge corresponding to the battery a temperature signal, a voltage signal, and a current signal; the sensing module outputs the temperature signal, the voltage signal, and the current signal; and the processor receives the temperature signal, the voltage signal, and the current signal; Having the processor capture a model of the battery; causing the processor to retrieve the corresponding data from the training data files according to the model of the battery One of the model target training files; the processor is configured to calculate the residual state of the battery according to the target training file, the temperature signal, the voltage signal, and the current signal by using the neural network; and The output has one of the display states of the residual state of the battery. 如請求項5所述之方法,該電子裝置之感測模組包含一溫度感測 電路、一電壓感測電路以及一電流感測電路,該溫度感測電路、該電壓感測電路以及該電流感測電路分別電性連接該電池以及該處理器,使該感測模組擷取該電池之一溫度、一端電壓以及一放電電流、產生並輸出相應於該電池之溫度、端電壓以及放電電流之一溫度訊號、一電壓訊號以及一電流訊號之步驟更包含下列步驟:使該溫度感測電路擷取該電池之溫度;使該溫度感測電路產生相應於該電池之溫度之該溫度訊號;使該溫度感測電路輸出該溫度訊號;使該電壓感測電路擷取該電池之端電壓;使該電壓感測電路產生相應於該電池之端電壓之該電壓訊號;使該電壓感測電路輸出該電壓訊號;使該電流感測電路擷取該電池之放電電流;使該電流感測電路產生相應於該電池之放電電流之該電流訊號;以及使該電流感測電路輸出該電流訊號。 The method of claim 5, the sensing module of the electronic device includes a temperature sensing a circuit, a voltage sensing circuit, and a current sensing circuit, the temperature sensing circuit, the voltage sensing circuit, and the current sensing circuit are electrically connected to the battery and the processor respectively, so that the sensing module captures The step of generating a temperature signal, a voltage at one end, and a discharge current, generating and outputting a temperature signal, a voltage signal, and a current signal corresponding to the temperature, the terminal voltage, and the discharge current of the battery further comprises the steps of: The sensing circuit captures the temperature of the battery; the temperature sensing circuit generates the temperature signal corresponding to the temperature of the battery; causes the temperature sensing circuit to output the temperature signal; and causes the voltage sensing circuit to capture the end of the battery The voltage sensing circuit generates the voltage signal corresponding to the terminal voltage of the battery; causing the voltage sensing circuit to output the voltage signal; causing the current sensing circuit to capture the discharge current of the battery; and causing the current sensing The circuit generates the current signal corresponding to the discharge current of the battery; and causes the current sensing circuit to output the current signal. 如請求項5所述之方法,該電子裝置更包含一顯示單元,電性連接該處理器,該方法更包含下列步驟:使該顯示單元接收該顯示訊號;以及使該顯示單元根據該顯示訊號顯示該電池之殘電量狀態。 The method of claim 5, the electronic device further comprising a display unit electrically connected to the processor, the method further comprising the steps of: causing the display unit to receive the display signal; and causing the display unit to display the signal according to the display signal The status of the battery's residual capacity is displayed. 一種評估一電池之一殘電量狀態之方法,該方法用於一電子裝置,該電子裝置包含一感測模組、一儲存單元以及一處理器,該感測模組電性連接該電池,該處理器電性連接該電池、該感測模組以及該儲存單元且具有一幅狀基底函數類神經網路,該儲存單元儲存一訓練資料庫,該方法包含下列步驟:使該感測模組擷取該電池之一溫度、一端電壓以及一放電電流;使該感測模組產生相應於該電池之溫度、端電壓以及放電電流之一溫度訊號、一電壓訊號以及一電流訊號;使該感測模組輸出該溫度訊號、該電壓訊號以及該電流訊號;使該處理器接收該溫度訊號、該電壓訊號以及該電流訊號; 使該處理器藉由該幅狀基底函數類神經網路,根據該訓練資料庫、該溫度訊號、該電壓訊號以及該電流訊號計算該電池之殘電量狀態;以及使該處理器輸出具有該電池之殘電量狀態之一顯示訊號。 A method for evaluating a residual state of a battery, the method is used for an electronic device, the electronic device includes a sensing module, a storage unit, and a processor, the sensing module is electrically connected to the battery, The processor is electrically connected to the battery, the sensing module and the storage unit and has a web-based function-like neural network, the storage unit stores a training database, and the method comprises the following steps: Taking a temperature, a voltage of one end, and a discharge current of the battery; causing the sensing module to generate a temperature signal, a voltage signal, and a current signal corresponding to the temperature, the terminal voltage, and the discharge current of the battery; The measuring module outputs the temperature signal, the voltage signal and the current signal; and the processor receives the temperature signal, the voltage signal and the current signal; Having the processor calculate the residual state of the battery according to the training database, the temperature signal, the voltage signal, and the current signal by using the web-based function-like neural network; and causing the processor to output the battery One of the residual power states displays a signal.
TW104108868A 2015-03-20 2015-03-20 Electronic apparatus and method to estimate state of charge for battery TWI572879B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104108868A TWI572879B (en) 2015-03-20 2015-03-20 Electronic apparatus and method to estimate state of charge for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104108868A TWI572879B (en) 2015-03-20 2015-03-20 Electronic apparatus and method to estimate state of charge for battery

Publications (2)

Publication Number Publication Date
TW201634947A TW201634947A (en) 2016-10-01
TWI572879B true TWI572879B (en) 2017-03-01

Family

ID=57847318

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104108868A TWI572879B (en) 2015-03-20 2015-03-20 Electronic apparatus and method to estimate state of charge for battery

Country Status (1)

Country Link
TW (1) TWI572879B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633318B (en) * 2017-06-23 2018-08-21 神雲科技股份有限公司 Electronic device and method capable of monitoring battery power

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526361B1 (en) * 1997-06-19 2003-02-25 Snap-On Equipment Limited Battery testing and classification
TWM425280U (en) * 2011-08-11 2012-03-21 Chunghwa Telecom Co Ltd Battery capacity estimation apparatus
TW201407176A (en) * 2012-08-01 2014-02-16 Univ Ishou Battery level testing method
TW201421056A (en) * 2012-11-30 2014-06-01 O2Micro Inc Device, method and system for estimating battery remaining capacity
TW201435374A (en) * 2013-03-06 2014-09-16 Htc Corp Electronic device and method for detecting the amount of charge of a battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526361B1 (en) * 1997-06-19 2003-02-25 Snap-On Equipment Limited Battery testing and classification
TWM425280U (en) * 2011-08-11 2012-03-21 Chunghwa Telecom Co Ltd Battery capacity estimation apparatus
TW201407176A (en) * 2012-08-01 2014-02-16 Univ Ishou Battery level testing method
TW201421056A (en) * 2012-11-30 2014-06-01 O2Micro Inc Device, method and system for estimating battery remaining capacity
TW201435374A (en) * 2013-03-06 2014-09-16 Htc Corp Electronic device and method for detecting the amount of charge of a battery

Also Published As

Publication number Publication date
TW201634947A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
US9255973B2 (en) System and method for estimating long term characteristics of battery
US8412658B2 (en) System and method for estimating long term characteristics of battery
JP4884404B2 (en) Method and apparatus for detecting internal information of secondary battery
JP4772871B2 (en) System and method for estimating a state vector associated with a battery
CN101395489B (en) System and method for determining both an estimated battery state vector and an estimated battery parameter vector
JP2015060761A (en) Deterioration diagnostic system and deterioration diagnostic method of secondary battery
JP6848143B2 (en) Parameter estimation method, device and recording medium of battery equivalent circuit model
KR102016715B1 (en) Method, apparatus and computer program for estimating state of battery charge
WO2020259096A1 (en) Method, device and system for estimating state of power of battery, and storage medium
JP6305988B2 (en) Device and method for determining energy status based on data derived from processing methods
JP6818947B1 (en) Storage battery state estimation device and storage battery state estimation method
JPWO2016208251A1 (en) Power storage system
WO2019057006A1 (en) Battery detection method
JP5803053B2 (en) Power storage device state estimation method and state estimation device
CN107037375B (en) Method and device for measuring direct current internal resistance of battery
Yang et al. An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time
JP2003308885A (en) Deterioration diagnosis method for lithium ion battery and device incorporating the same
TWI572879B (en) Electronic apparatus and method to estimate state of charge for battery
Yang et al. Internal short circuit detection and evaluation in battery packs based on transformation matrix and an improved state-space model
Xu et al. Multi-objective nonlinear observer design for multi-fault detection of lithium-ion battery in electric vehicles
JP2010203935A (en) Device of estimating inputtable/outputtable power of secondary battery
JP5724980B2 (en) Sealed battery manufacturing method, inspection device, and inspection program
CN112578292A (en) Method and system for graded utilization and sorting of retired batteries
US20230152383A1 (en) System and method with battery management
JP2011122918A (en) Device for evaluating battery characteristics

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees