TWI572014B - Non-volatile memory - Google Patents

Non-volatile memory Download PDF

Info

Publication number
TWI572014B
TWI572014B TW104100389A TW104100389A TWI572014B TW I572014 B TWI572014 B TW I572014B TW 104100389 A TW104100389 A TW 104100389A TW 104100389 A TW104100389 A TW 104100389A TW I572014 B TWI572014 B TW I572014B
Authority
TW
Taiwan
Prior art keywords
volatile memory
disposed
channel
structures
layer
Prior art date
Application number
TW104100389A
Other languages
Chinese (zh)
Other versions
TW201626547A (en
Inventor
朱建隆
陳俊宏
邱達乾
Original Assignee
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 filed Critical 力晶科技股份有限公司
Priority to TW104100389A priority Critical patent/TWI572014B/en
Priority to CN201510031583.9A priority patent/CN105870120B/en
Publication of TW201626547A publication Critical patent/TW201626547A/en
Application granted granted Critical
Publication of TWI572014B publication Critical patent/TWI572014B/en

Links

Description

非揮發性記憶體 Non-volatile memory

本發明是有關於一種記憶體,且特別是有關於一種非揮發性記憶體。 This invention relates to a memory, and more particularly to a non-volatile memory.

非揮發性記憶體元件由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和電子設備所廣泛採用的一種記憶體元件。 Since the non-volatile memory element has the advantage that the stored data does not disappear after the power is turned off, it is a memory element widely used in personal computers and electronic devices.

目前業界較常使用的快閃記憶體陣列包括反或閘(NOR)型陣列結構與反及閘(NAND)型陣列結構。由於反及閘(NAND)型陣列的非揮發性記憶體結構是使各記憶胞串接在一起,其積集度與面積利用率較反或閘(NOR)型陣列的非揮發性記憶體佳,已經廣泛地應用在多種電子產品中。 The flash memory arrays currently used in the industry include an inverted OR gate (NOR) type array structure and a NAND type array structure. Since the non-volatile memory structure of the NAND type array is such that the memory cells are connected in series, the degree of integration and area utilization is better than that of the non-volatile memory of the gate (NOR) type array. , has been widely used in a variety of electronic products.

然而,在目前元件小型化的趨勢下,如何在有限的空間中進一步地提升記憶體元件的積集度為目前業界積極追求的目標。 However, under the current trend of miniaturization of components, how to further enhance the accumulation of memory components in a limited space is an active goal of the industry.

本發明提供一種非揮發性記憶體,其可有效地降低三維記憶體中的記憶胞面積,進而提升記憶體元件的積集度。 The invention provides a non-volatile memory, which can effectively reduce the memory cell area in the three-dimensional memory, thereby improving the integration of the memory elements.

本發明提出一種非揮發性記憶體,包括基底、堆疊結構、二個通道結構及二層電荷儲存層。堆疊結構設置於基底上,且包括多層第一導體層、多層介電層及二層第二導體層。介電層與第一導體層交替地堆疊。第二導體層分離設置於介電層中最上方的一者上。通道結構設置於堆疊結構兩側的基底上。電荷儲存層設置於堆疊結構與通道結構之間。 The invention provides a non-volatile memory comprising a substrate, a stacked structure, two channel structures and two layers of charge storage layers. The stacked structure is disposed on the substrate and includes a plurality of first conductor layers, a plurality of dielectric layers, and two second conductor layers. The dielectric layer and the first conductor layer are alternately stacked. The second conductor layer is separately disposed on the uppermost one of the dielectric layers. The channel structure is disposed on the substrate on both sides of the stack structure. The charge storage layer is disposed between the stacked structure and the channel structure.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,堆疊結構更包括第一隔離結構。第一隔離結構設置於第二導體層之間。 According to an embodiment of the present invention, in the non-volatile memory described above, the stacked structure further includes a first isolation structure. The first isolation structure is disposed between the second conductor layers.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,各第二導體層的寬度例如是小於各第一導體層的寬度。 According to an embodiment of the present invention, in the non-volatile memory, the width of each of the second conductor layers is, for example, smaller than the width of each of the first conductor layers.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,通道結構彼此耦接。通道結構彼此耦接的方式可藉由一體成型的方式形成通道結構與連接通道結構的連接部而進行耦接或可藉由內連線結構進行耦接。 According to an embodiment of the invention, in the non-volatile memory described above, the channel structures are coupled to each other. The manner in which the channel structures are coupled to each other can be coupled by forming a connection portion of the channel structure and the connection channel structure by integral molding or can be coupled by the interconnection structure.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,更包括二個第二隔離結構。第二隔離結構設置於通道結構中。 According to an embodiment of the invention, in the non-volatile memory, the second isolation structure is further included. The second isolation structure is disposed in the channel structure.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,各隔離結構的底部高度例如是低於或等於第一導體層中最下 方的一者的下表面高度,且各隔離結構的頂部高度例如是高於或等於第二導體層的上表面高度。 According to an embodiment of the present invention, in the non-volatile memory, the bottom height of each isolation structure is, for example, lower than or equal to the lowest of the first conductor layers. The lower surface height of one of the sides, and the top height of each of the isolation structures is, for example, higher than or equal to the upper surface height of the second conductor layer.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,當非揮發性記憶體包括多個堆疊結構時,各通道結構包括二層主通道部及二個間隙壁通道部。主通道部設置於各第二隔離結構兩側的基底上,且主通道部的底部相互連接或互不相連。間隙壁通道部設置於相鄰兩個堆疊結構之間的電荷儲存層與主通道部之間。 According to an embodiment of the present invention, in the non-volatile memory, when the non-volatile memory includes a plurality of stacked structures, each of the channel structures includes a two-layer main channel portion and two spacer channel portions. The main channel portion is disposed on the bases on both sides of each of the second isolation structures, and the bottoms of the main channel portions are connected to each other or are not connected to each other. The spacer channel portion is disposed between the charge storage layer and the main channel portion between the adjacent two stacked structures.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,更包括第一摻雜區。第一摻雜區設置於基底中。 According to an embodiment of the invention, in the non-volatile memory, the first doped region is further included. The first doped region is disposed in the substrate.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,更包括二個第二摻雜區。第二摻雜區設置於通道結構下方的第一摻雜區中。 According to an embodiment of the invention, in the non-volatile memory, the second doping region is further included. The second doped region is disposed in the first doped region below the channel structure.

依照本發明的一實施例所述,在上述之非揮發性記憶體中,更包括導線。導線耦接於通道結構。 According to an embodiment of the invention, in the non-volatile memory described above, a wire is further included. The wire is coupled to the channel structure.

基於上述,在本發明所提出的非揮發性記憶體中,由於堆疊結構包括堆疊設置的第一導體層、介電層及分離設置的二層第二導體層,所以可藉由單一個堆疊結構形成兩串反及閘(NAND)記憶胞串。第二導體層可作為選擇閘極來選擇要對堆疊結構哪一側的NAND記憶胞串中的電荷儲存層進行操作,且各第一導體層可對位於其兩側的電荷儲存層進行操作,進而形成單一記憶胞儲存二位元(two bits per cell)的記憶胞。因此,上述非揮發性記憶體 可有效地降低三維記憶體中的記憶胞面積,進而提升記憶體元件的積集度。 Based on the above, in the non-volatile memory proposed by the present invention, since the stacked structure includes the stacked first conductor layer, the dielectric layer, and the separated two second conductor layers, a single stacked structure can be used. Two strings of NAND memory cells are formed. The second conductor layer can serve as a selection gate to select which side of the stacked structure is to operate the charge storage layer in the NAND memory cell string, and each of the first conductor layers can operate on the charge storage layer on both sides thereof. Further, a single memory cell of two bits per cell is formed. Therefore, the above non-volatile memory It can effectively reduce the memory cell area in the three-dimensional memory, thereby improving the accumulation of memory components.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧非揮發性記憶體 100‧‧‧Non-volatile memory

102‧‧‧基底 102‧‧‧Base

104‧‧‧堆疊結構 104‧‧‧Stack structure

106‧‧‧通道結構 106‧‧‧Channel structure

108‧‧‧電荷儲存層 108‧‧‧Charge storage layer

110、114‧‧‧導體層 110, 114‧‧‧ conductor layer

112、118‧‧‧介電層 112, 118‧‧‧ dielectric layer

116、124‧‧‧隔離結構 116, 124‧‧‧Isolation structure

120、134‧‧‧硬罩幕層 120, 134‧‧‧ hard mask layer

122‧‧‧連接部 122‧‧‧Connecting Department

126‧‧‧主通道部 126‧‧‧Main Channel Department

127‧‧‧通道材料層 127‧‧‧Channel material layer

128‧‧‧間隙壁通道部 128‧‧‧clear channel section

130、132‧‧‧摻雜區 130, 132‧‧‧Doped area

136‧‧‧導線 136‧‧‧ wire

138‧‧‧接觸窗 138‧‧‧Contact window

140‧‧‧記憶胞 140‧‧‧ memory cells

BL1~BL3‧‧‧位元線 BL1~BL3‧‧‧ bit line

CG‧‧‧控制閘極 CG‧‧‧Control gate

CSL‧‧‧源極線 CSL‧‧‧ source line

WL1~WL6‧‧‧字元線 WL1~WL6‧‧‧ character line

SGL1-1~SGL1-3、SGL2-1~SGL2-6‧‧‧選擇閘極線 SGL1-1~SGL1-3, SGL2-1~SGL2-6‧‧‧Select gate line

SGD、SGS‧‧‧選擇閘極 SGD, SGS‧‧‧ select gate

圖1為本發明一實施例的非揮發性記憶體的剖面圖。 1 is a cross-sectional view showing a non-volatile memory according to an embodiment of the present invention.

圖2為圖1中的部分非揮發性記憶體的立體圖。 2 is a perspective view of a portion of the non-volatile memory of FIG. 1.

圖3為本發明另一實施例的非揮發性記憶體的剖面圖。 3 is a cross-sectional view showing a non-volatile memory according to another embodiment of the present invention.

圖4為圖3中的部分非揮發性記憶體的立體圖。 4 is a perspective view of a portion of the non-volatile memory of FIG. 3.

圖5為圖1與圖3中的非揮發性記憶體的電路簡圖。 FIG. 5 is a schematic circuit diagram of the non-volatile memory of FIGS. 1 and 3.

圖6為圖1與圖3中的非揮發性記憶體的另一電路簡圖。 Figure 6 is a schematic diagram of another circuit of the non-volatile memory of Figures 1 and 3.

圖1為本發明一實施例的非揮發性記憶體的剖面圖。圖2為圖1中的部分非揮發性記憶體的立體圖。在圖2中,為了清楚地進行說明,僅繪示出位於導體層側壁的電荷儲存層,且省略繪示介電層、硬罩幕層與堆疊結構中的隔離結構。 1 is a cross-sectional view showing a non-volatile memory according to an embodiment of the present invention. 2 is a perspective view of a portion of the non-volatile memory of FIG. 1. In FIG. 2, for the sake of clarity, only the charge storage layer on the sidewall of the conductor layer is illustrated, and the isolation structure in the dielectric layer, the hard mask layer, and the stacked structure is omitted.

請同時參照圖1及圖2,非揮發性記憶體100包括基底102、堆疊結構104、通道結構106及電荷儲存層108。基底102例如是矽基底。在此實施例中,圖1及圖2中的堆疊結構104、通 道結構106及電荷儲存層108的數量僅為舉例說明,本發明並不以此為限。只要非揮發性記憶體100包括一個堆疊結構104、兩個通道結構106及兩層電荷儲存層108即屬於本發明所保護的範圍。 Referring to FIG. 1 and FIG. 2 simultaneously, the non-volatile memory 100 includes a substrate 102, a stacked structure 104, a channel structure 106, and a charge storage layer 108. The substrate 102 is, for example, a crucible substrate. In this embodiment, the stack structure 104 and the pass in FIG. 1 and FIG. The number of the track structure 106 and the charge storage layer 108 is merely illustrative, and the invention is not limited thereto. As long as the non-volatile memory 100 comprises a stacked structure 104, two channel structures 106 and two layers of charge storage layer 108, it is within the scope of the present invention.

堆疊結構104設置於基底102上。各堆疊結構104包括多層導體層110、多層介電層112及二層導體層114。在此實施例中,圖1及圖2中的導體層110及介電層112的數量僅為舉例說明,本發明並不以此為限。於此技術領域具有通常知識者可依照產品設計需求對導體層110及介電層112的數量進行調整。 The stacked structure 104 is disposed on the substrate 102. Each of the stacked structures 104 includes a plurality of conductor layers 110, a plurality of dielectric layers 112, and two conductor layers 114. In this embodiment, the number of the conductor layer 110 and the dielectric layer 112 in FIG. 1 and FIG. 2 is merely illustrative, and the invention is not limited thereto. Those skilled in the art can adjust the number of conductor layers 110 and dielectric layers 112 in accordance with product design requirements.

介電層112與導體層110交替地堆疊。在此實施例中,是以介電層112作為堆疊結構104的最下層為例來進行說明,因此可藉由介電層112將導體層110與基底102進行隔離。導體層110可依照產品設計需求來決定作為控制閘極或選擇閘極使用。介電層112的材料例如是氧化矽等介電材料。導體層110的材料例如是摻雜多晶矽等導體材料。介電層112與導體層110的形成方法例如是組合使用沉積製程、微影製程與蝕刻製程而形成。 The dielectric layer 112 and the conductor layer 110 are alternately stacked. In this embodiment, the dielectric layer 112 is taken as the lowermost layer of the stacked structure 104 as an example, so that the conductor layer 110 can be isolated from the substrate 102 by the dielectric layer 112. The conductor layer 110 can be used as a control gate or a select gate in accordance with product design requirements. The material of the dielectric layer 112 is, for example, a dielectric material such as ruthenium oxide. The material of the conductor layer 110 is, for example, a conductor material such as doped polysilicon. The method of forming the dielectric layer 112 and the conductor layer 110 is formed, for example, by using a deposition process, a lithography process, and an etching process in combination.

導體層114分離設置於介電層112中最上方的一者上。導體層114可作為選擇閘極使用,因此藉由導體層114可選擇要對堆疊結構104左側或右側的電荷儲存層108進行操作。各導體層114的寬度例如是小於各導體層110的寬度。導體層114的材料例如是摻雜多晶矽等導體材料。導體層114的形成方法例如是組合使用沉積製程、微影製程與蝕刻製程而形成。 The conductor layer 114 is separately disposed on the uppermost one of the dielectric layers 112. Conductor layer 114 can be used as a select gate, so that charge storage layer 108 on the left or right side of stack structure 104 can be selected to be operated by conductor layer 114. The width of each conductor layer 114 is, for example, smaller than the width of each conductor layer 110. The material of the conductor layer 114 is, for example, a conductor material such as doped polysilicon. The method of forming the conductor layer 114 is formed, for example, by using a deposition process, a lithography process, and an etching process in combination.

此外,各堆疊結構104更可選擇性地包括隔離結構116、 介電層118與硬罩幕層120中的至少一者。隔離結構116設置於導體層114之間,因此可藉由隔離結構116將堆疊結構104中的二個導體層114進行隔離。隔離結構116的材料例如是氧化矽等介電材料。隔離結構116的形成方法例如是組合使用沉積製程與化學機械研磨製程而形成。 In addition, each stack structure 104 can further include an isolation structure 116, At least one of the dielectric layer 118 and the hard mask layer 120. The isolation structure 116 is disposed between the conductor layers 114 so that the two conductor layers 114 in the stacked structure 104 can be isolated by the isolation structure 116. The material of the isolation structure 116 is, for example, a dielectric material such as ruthenium oxide. The formation method of the isolation structure 116 is formed, for example, by using a deposition process and a chemical mechanical polishing process in combination.

介電層118的材料例如是氧化矽等介電材料。介電層118的形成方法例如是組合使用沉積製程、微影製程與蝕刻製程而形成。在另一實施例中,亦可不形成介電層118。 The material of the dielectric layer 118 is, for example, a dielectric material such as ruthenium oxide. The method of forming the dielectric layer 118 is formed, for example, by using a deposition process, a lithography process, and an etching process in combination. In another embodiment, the dielectric layer 118 may not be formed.

硬罩幕層120的材料例如是氮化矽等硬罩幕材料。硬罩幕層120可作為形成隔離結構116時的研磨終止層。硬罩幕層120的形成方法例如是組合使用沉積製程、微影製程與蝕刻製程而形成。 The material of the hard mask layer 120 is, for example, a hard mask material such as tantalum nitride. The hard mask layer 120 can serve as a polish stop layer when the isolation structure 116 is formed. The method of forming the hard mask layer 120 is formed, for example, by using a deposition process, a lithography process, and an etching process in combination.

通道結構106設置於堆疊結構104兩側的基底102上。通道結構106可連接於基底102,如連接於基底102中的摻雜區132。通道結構106可彼此耦接。在此實施例中,通道結構106彼此耦接的方式例如是藉由一體成型的方式形成通道結構106與連接通道結構106的連接部122而進行耦接。在另一實施例中,通道結構106亦可藉由內連線結構進行耦接。 The channel structures 106 are disposed on the substrate 102 on both sides of the stacked structure 104. Channel structure 106 can be coupled to substrate 102, such as doped region 132 that is coupled to substrate 102. The channel structures 106 can be coupled to each other. In this embodiment, the channel structures 106 are coupled to each other by, for example, forming the channel structure 106 and the connecting portion 122 connecting the channel structures 106 to be coupled by integral molding. In another embodiment, the channel structure 106 can also be coupled by an interconnect structure.

此外,非揮發性記憶體100更包括至少二個隔離結構124。隔離結構124設置於通道結構106中。各隔離結構124的底部高度例如是低於或等於導體層110中最下方的一者的下表面高度,且各隔離結構124的頂部高度例如是高於或等於導體層114 的上表面高度。隔離結構124例如是氧化矽層或氣隙(air gap)。在此實施例中,隔離結構124是以氣隙為例進行說明。 In addition, the non-volatile memory 100 further includes at least two isolation structures 124. The isolation structure 124 is disposed in the channel structure 106. The bottom height of each isolation structure 124 is, for example, lower than or equal to the lower surface height of the lowermost one of the conductor layers 110, and the top height of each isolation structure 124 is, for example, higher than or equal to the conductor layer 114. The height of the upper surface. The isolation structure 124 is, for example, a ruthenium oxide layer or an air gap. In this embodiment, the isolation structure 124 is illustrated by taking an air gap as an example.

舉例來說,各通道結構106可包括二層主通道部126及二個間隙壁通道部128。主通道部126設置於各隔離結構124兩側的基底102上,且主通道部126的底部可相互連接。間隙壁通道部128設置於相鄰兩個堆疊結構104之間的電荷儲存層108與主通道部126之間。間隙壁通道部128與主通道部126的材料例如是多晶矽。間隙壁通道部128的形成方法例如是先在堆疊結構104上形成共形的間隙壁通道材料層(未繪示),再對間隙壁通道材料層進行回蝕刻製程而形成。主通道部126的形成方法例如是共形地在堆疊結構104以及間隙壁通道部128上沉積通道材料層127而形成,其中主通道部126與連接部122分別為通道材料層127的一部分。亦即,此實施例中的主通道部126與連接部122可為一體成型。 For example, each channel structure 106 can include a two-layer main channel portion 126 and two spacer channel portions 128. The main channel portion 126 is disposed on the substrate 102 on both sides of each of the isolation structures 124, and the bottoms of the main channel portions 126 are connectable to each other. The spacer channel portion 128 is disposed between the charge storage layer 108 and the main channel portion 126 between the adjacent two stacked structures 104. The material of the spacer passage portion 128 and the main passage portion 126 is, for example, polysilicon. The method for forming the spacer channel portion 128 is formed by first forming a conformal spacer channel material layer (not shown) on the stacked structure 104, and then performing an etch back process on the spacer channel material layer. The method of forming the main channel portion 126 is formed, for example, by conformally depositing a channel material layer 127 on the stacked structure 104 and the spacer channel portion 128, wherein the main channel portion 126 and the connecting portion 122 are respectively part of the channel material layer 127. That is, the main passage portion 126 and the connecting portion 122 in this embodiment may be integrally formed.

電荷儲存層108設置於堆疊結構104與通道結構106之間。電荷儲存層108可為單層結構或多層結構。當電荷儲存層108為單層結構時,電荷儲存層108例如是電荷捕捉層,如氮化矽層。當電荷儲存層108為多層結構時,電荷儲存層108例如是介電層與電荷捕捉層的組合層,如氧化矽/氮化矽/氧化矽組合層。電荷儲存層108的形成方法例如是先在堆疊結構104上形成電荷儲存材料層(未繪示),再移除未被間隙壁通道部128所覆蓋的電荷儲存材料層而形成。 The charge storage layer 108 is disposed between the stacked structure 104 and the channel structure 106. The charge storage layer 108 may be a single layer structure or a multilayer structure. When the charge storage layer 108 is a single layer structure, the charge storage layer 108 is, for example, a charge trap layer such as a tantalum nitride layer. When the charge storage layer 108 is of a multilayer structure, the charge storage layer 108 is, for example, a combined layer of a dielectric layer and a charge trap layer, such as a tantalum oxide/tantalum nitride/yttria composite layer. The method of forming the charge storage layer 108 is formed by first forming a charge storage material layer (not shown) on the stacked structure 104 and then removing the charge storage material layer not covered by the spacer channel portion 128.

此外,非揮發性記憶體100更可選擇性地包括摻雜區130、至少二個摻雜區132、硬罩幕層134與導線136中的至少一者。 In addition, the non-volatile memory 100 more preferably includes at least one of the doped region 130, the at least two doped regions 132, the hard mask layer 134, and the wires 136.

摻雜區130設置於基底102中。摻雜區130可作為源極線使用。摻雜區130例如是N型摻雜區或P型摻雜區。在此實施例中,摻雜區130是以N型摻雜區為例進行說明。摻雜區130的形成方法例如是離子植入法。 The doped region 130 is disposed in the substrate 102. Doped region 130 can be used as a source line. The doped region 130 is, for example, an N-type doped region or a P-type doped region. In this embodiment, the doping region 130 is exemplified by an N-type doping region. The method of forming the doping region 130 is, for example, an ion implantation method.

摻雜區132設置於通道結構106下方的摻雜區130中。摻雜區132可用以降低通道結構106與基底102之間的阻值。摻雜區132的摻雜濃度例如是大於摻雜區130的摻雜濃度。摻雜區132例如是N型摻雜區或P型摻雜區。在此實施例中,摻雜區132是以N型摻雜區為例進行說明。摻雜區132的形成方法例如是離子植入法。 The doped region 132 is disposed in the doped region 130 below the channel structure 106. Doped region 132 can be used to reduce the resistance between channel structure 106 and substrate 102. The doping concentration of the doping region 132 is, for example, greater than the doping concentration of the doping region 130. The doping region 132 is, for example, an N-type doped region or a P-type doped region. In this embodiment, the doping region 132 is exemplified by an N-type doping region. The method of forming the doping region 132 is, for example, an ion implantation method.

硬罩幕層134的材料例如是氧化矽或氮化矽等硬罩幕材料。硬罩幕層134可用於定義出通道結構106的圖案。硬罩幕層134的形成方法例如是組合使用沉積製程、微影製程與蝕刻製程而形成。 The material of the hard mask layer 134 is, for example, a hard mask material such as tantalum oxide or tantalum nitride. The hard mask layer 134 can be used to define the pattern of the channel structure 106. The method of forming the hard mask layer 134 is formed, for example, by using a deposition process, a lithography process, and an etching process in combination.

導線136耦接於通道結構106。舉例來說,導線136可藉由接觸窗138與連接部122而耦接至通道結構106。導線136可作為字元線使用。導線136的材料例如是金屬或摻雜多晶矽等導體材料。導線136的形成方法例如是物理氣相沉積法或化學氣相沉積法。 The wire 136 is coupled to the channel structure 106. For example, the wire 136 can be coupled to the channel structure 106 by the contact window 138 and the connection portion 122. Wire 136 can be used as a word line. The material of the wire 136 is, for example, a conductor material such as a metal or doped polysilicon. The method of forming the wire 136 is, for example, a physical vapor deposition method or a chemical vapor deposition method.

基於上述實施例可知,由於各堆疊結構104包括堆疊設置的導體層110、介電層112及分離設置的二層導體層114,所以可藉由單一個堆疊結構104形成兩串NAND記憶胞串。導體層114可作為選擇閘極來選擇對堆疊結構104左側或右側的NAND記憶胞串中的電荷儲存層108進行操作,且各導體層110可對位於其兩側的電荷儲存層108進行操作,進而形成單一記憶胞儲存二位元(two bits per cell)的記憶胞140。因此,上述非揮發性記憶體100可有效地降低三維記憶體中的記憶胞面積,進而提升記憶體元件的積集度。 Based on the above embodiments, since each of the stacked structures 104 includes a stacked conductor layer 110, a dielectric layer 112, and a separately disposed two-layer conductor layer 114, two strings of NAND memory cells can be formed by a single stacked structure 104. The conductor layer 114 can serve as a select gate to selectively operate the charge storage layer 108 in the NAND memory cell string on the left or right side of the stacked structure 104, and each conductor layer 110 can operate on the charge storage layer 108 on both sides thereof. In turn, a single memory cell 140 of two bits per cell is formed. Therefore, the non-volatile memory 100 can effectively reduce the memory cell area in the three-dimensional memory, thereby improving the integration of the memory elements.

圖3為本發明另一實施例的非揮發性記憶體的剖面圖。圖4為圖3中的部分非揮發性記憶體的立體圖。在圖4中,為了清楚地進行說明,僅繪示出位於導體層側壁的電荷儲存層,且省略繪示介電層、硬罩幕層與堆疊結構中的隔離結構。 3 is a cross-sectional view showing a non-volatile memory according to another embodiment of the present invention. 4 is a perspective view of a portion of the non-volatile memory of FIG. 3. In FIG. 4, for the sake of clarity, only the charge storage layer on the sidewall of the conductor layer is illustrated, and the isolation structure in the dielectric layer, the hard mask layer, and the stacked structure is omitted.

請同時參照圖1至圖4,圖3與圖4中的非揮發性記憶體100a與圖1與圖2中的非揮發性記憶體100的差異如下。在非揮發性記憶體100a中,主通道部126a的底部互不相連,例如是藉由延伸至摻雜區132的隔離結構124a將相鄰的主通道部126a隔離。此外,在非揮發性記憶體100a中,通道結構106彼此之間例如是藉由接觸窗138與導線136所組成的內連線結構進行耦接,而非如同非揮發性記憶體100中的通道結構106藉由連接部122進行耦接。另外,非揮發性記憶體100a與非揮發性記憶體100相似的構件使用相同的符號表示並省略其說明。 Referring to FIG. 1 to FIG. 4 simultaneously, the difference between the non-volatile memory 100a of FIGS. 3 and 4 and the non-volatile memory 100 of FIGS. 1 and 2 is as follows. In the non-volatile memory 100a, the bottoms of the main channel portions 126a are not connected to each other, for example, by isolating the adjacent main channel portions 126a by the isolation structures 124a extending to the doping regions 132. In addition, in the non-volatile memory 100a, the channel structures 106 are coupled to each other by, for example, an interconnect structure formed by the contact window 138 and the wires 136, rather than the channels in the non-volatile memory 100. The structure 106 is coupled by the connection portion 122. In addition, members similar to the non-volatile memory 100a and the non-volatile memory 100 are denoted by the same reference numerals and their description will be omitted.

圖5為圖1與圖3中的非揮發性記憶體的電路簡圖。 FIG. 5 is a schematic circuit diagram of the non-volatile memory of FIGS. 1 and 3.

請同時參照圖1、圖3及圖5,將導體層110設為字元線WL1~WL6,且將字元線WL1~WL6位於堆疊結構104中的部分設為控制閘極CG。將堆疊結構104中最下方的導體層110設為選擇閘極線SGL1-1~SGL1-3,且將選擇閘極線SGL1-1~SGL1-3位於堆疊結構104中的部分設為選擇閘極SGS。將摻雜區134設為源極線CSL。將導線136設為位元線BL1~BL3。將導體層114設為選擇閘極線SGL2-1~SGL2-6,且選擇閘極線SGL2-1~SGL2-6位於堆疊結構104上方的部分設為選擇閘極SGD。 Referring to FIG. 1 , FIG. 3 and FIG. 5 simultaneously, the conductor layer 110 is set as the word lines WL1 WL WL6 , and the portion in which the word lines WL1 WL WL6 are located in the stacked structure 104 is set as the control gate CG. The lowermost conductor layer 110 in the stacked structure 104 is set as the selection gate lines SGL1-1 to SGL1-3, and the portion in which the selection gate lines SGL1-1 to SGL1-3 are located in the stacked structure 104 is set as the selection gate. SGS. The doping region 134 is set as the source line CSL. The wire 136 is set to the bit lines BL1 to BL3. The conductor layer 114 is set as the selection gate lines SGL2-1 to SGL2-6, and the portion where the selection gate lines SGL2-1 to SGL2-6 are located above the stacked structure 104 is set as the selection gate SGD.

在此實施例中,是以三條位元線BL1~BL3為例進行說明,但本發明並不以此為限。位元線BL1~BL3分別連接至由三個堆疊結構104所形成的六串NAND記憶胞串,亦即位元線BL1~BL3分別連接位於同一行的六串NAND記憶胞串。因此,在圖5中共有十八串NAND記憶胞串,且十八串NAND記憶胞串共用源極線CSL。 In this embodiment, the three bit lines BL1 BLBL3 are taken as an example for description, but the invention is not limited thereto. The bit lines BL1 BLBL3 are respectively connected to six strings of NAND memory cells formed by three stacked structures 104, that is, the bit lines BL1 BLBL3 are respectively connected to six strings of NAND memory cells in the same row. Therefore, there are a total of eighteen strings of NAND memory cells in FIG. 5, and eighteen strings of NAND memory cells share the source line CSL.

選擇閘極線SGL2-1~SGL2-6連接位於同一列的選擇閘極SGD,且一個選擇閘極SGD控制一串NAND記憶胞串。字元線WL1~WL6連接位於同一列的控制閘極CG,且二串NAND記憶胞串共用一個控制閘極CG。字元線WL1~WL3互相耦接,字元線WL4~WL6互相耦接。選擇閘極線SGL1-1~SGL1-3連接位於同一列的選擇閘極SGS,且二串NAND記憶胞串共用一個選擇閘極SGS。選擇閘極線SGL1-1~SGL1-3互相耦接。 Select gate lines SGL2-1~SGL2-6 are connected to the select gate SGD in the same column, and one select gate SGD controls a string of NAND memory cells. The word lines WL1 WL WL6 are connected to the control gate CG in the same column, and the two strings of NAND memory cells share one control gate CG. The word lines WL1 WL WL3 are coupled to each other, and the word lines WL4 WL WL6 are coupled to each other. The selection gate lines SGL1-1~SGL1-3 are connected to the selection gate SGS in the same column, and the two strings of NAND memory cells share one selection gate SGS. The gate lines SGL1-1~SGL1-3 are coupled to each other.

在進行操作時,藉由選擇閘極線SGL2-1~SGL2-6選擇所要操作的記憶胞串之後,可搭配位元線BL1~BL3、字元線WL1~WL6、選擇閘極線SGL1-1~SGL1-3與源極線CSL來對選定的記憶胞進行操作。 In the operation, after selecting the gate line SGL2-1~SGL2-6 to select the memory cell string to be operated, the bit line BL1~BL3, the word line WL1~WL6, and the select gate line SGL1-1 can be matched. ~SGL1-3 and source line CSL operate on selected memory cells.

圖6為圖1與圖3中的非揮發性記憶體的另一電路簡圖。 Figure 6 is a schematic diagram of another circuit of the non-volatile memory of Figures 1 and 3.

圖6的實施例與圖5的實施例的差異在於:圖6中是將同一層中的第奇數條字元線進行耦接,且將同一層的第偶數條字元線進行耦接。如圖6所示,同一層的字元線WL1、WL3互相耦接,而不與同一層的字元線WL2耦接。同一層的字元線WL4、WL6互相耦接,而不與同一層的字元線WL5耦接。此外,圖6中與圖5相似的導線使用相同的符號表示並省略其說明。 The difference between the embodiment of FIG. 6 and the embodiment of FIG. 5 is that in FIG. 6, the odd-numbered word lines in the same layer are coupled, and the even-numbered word lines of the same layer are coupled. As shown in FIG. 6, the word lines WL1, WL3 of the same layer are coupled to each other without being coupled to the word line WL2 of the same layer. The word lines WL4, WL6 of the same layer are coupled to each other without being coupled to the word line WL5 of the same layer. In addition, the wires similar to those in FIG. 5 in FIG. 6 are denoted by the same reference numerals and the description thereof will be omitted.

綜上所述,上述實施例至少具有下列特點。由於在單一個堆疊結構中具有分離設置的兩個選擇閘極,所以可藉由單一個堆疊結構形成兩串NAND記憶胞串。因此,上述實施例的非揮發性記憶體可有效地降低三維記憶體中的記憶胞面積,進而提升記憶體元件的積集度。 In summary, the above embodiment has at least the following features. Since there are two select gates that are separately disposed in a single stacked structure, two strings of NAND memory cells can be formed by a single stacked structure. Therefore, the non-volatile memory of the above embodiment can effectively reduce the memory cell area in the three-dimensional memory, thereby improving the integration of the memory elements.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧非揮發性記憶體 100‧‧‧Non-volatile memory

102‧‧‧基底 102‧‧‧Base

104‧‧‧堆疊結構 104‧‧‧Stack structure

106‧‧‧通道結構 106‧‧‧Channel structure

108‧‧‧電荷儲存層 108‧‧‧Charge storage layer

110、114‧‧‧導體層 110, 114‧‧‧ conductor layer

112、118‧‧‧介電層 112, 118‧‧‧ dielectric layer

116、124‧‧‧隔離結構 116, 124‧‧‧Isolation structure

120、134‧‧‧硬罩幕層 120, 134‧‧‧ hard mask layer

122‧‧‧連接部 122‧‧‧Connecting Department

126‧‧‧主通道部 126‧‧‧Main Channel Department

127‧‧‧通道材料層 127‧‧‧Channel material layer

128‧‧‧間隙壁通道部 128‧‧‧clear channel section

130、132‧‧‧摻雜區 130, 132‧‧‧Doped area

136‧‧‧導線 136‧‧‧ wire

138‧‧‧接觸窗 138‧‧‧Contact window

140‧‧‧記憶胞 140‧‧‧ memory cells

Claims (10)

一種非揮發性記憶體,包括:一基底;一堆疊結構,設置於該基底上,且包括:多層第一導體層;多層介電層,其中該些介電層與該些第一導體層交替地堆疊;以及二第二導體層,分離設置於該些介電層中最上方的同一者上;二通道結構,設置於該堆疊結構兩側的該基底上;以及二電荷儲存層,設置於該堆疊結構與該些通道結構之間。 A non-volatile memory comprising: a substrate; a stacked structure disposed on the substrate, and comprising: a plurality of first conductor layers; a plurality of dielectric layers, wherein the dielectric layers alternate with the first conductor layers And two second conductor layers are disposed on the same one of the uppermost ones of the plurality of dielectric layers; two channel structures are disposed on the substrate on both sides of the stacked structure; and two charge storage layers are disposed on The stack structure is between the channel structures. 如申請專利範圍第1項所述的非揮發性記憶體,其中該堆疊結構更包括一第一隔離結構,設置於該些第二導體層之間。 The non-volatile memory of claim 1, wherein the stacked structure further comprises a first isolation structure disposed between the second conductor layers. 如申請專利範圍第1項所述的非揮發性記憶體,其中各該第二導體層的寬度小於各該第一導體層的寬度。 The non-volatile memory of claim 1, wherein each of the second conductor layers has a width smaller than a width of each of the first conductor layers. 如申請專利範圍第1項所述的非揮發性記憶體,其中該些通道結構彼此耦接,且該些通道結構彼此耦接的方式包括藉由一體成型的方式形成該些通道結構與連接該些通道結構的連接部而進行耦接或藉由內連線結構進行耦接。 The non-volatile memory of claim 1, wherein the channel structures are coupled to each other, and the manner in which the channel structures are coupled to each other comprises forming the channel structures and connecting them by integral molding. The connection portions of the channel structures are coupled or coupled by an interconnect structure. 如申請專利範圍第1項所述的非揮發性記憶體,更包括二第二隔離結構,設置於該些通道結構中。 The non-volatile memory of claim 1, further comprising two second isolation structures disposed in the channel structures. 如申請專利範圍第5項所述的非揮發性記憶體,其中各該 隔離結構的底部高度低於或等於該些第一導體層中最下方的一者的下表面高度,且各該隔離結構的頂部高度高於或等於該些第二導體層的上表面高度。 Non-volatile memory as described in claim 5, wherein each The bottom height of the isolation structure is lower than or equal to the lower surface height of the lowermost one of the first conductor layers, and the top height of each of the isolation structures is higher than or equal to the upper surface height of the second conductor layers. 如申請專利範圍第5項所述的非揮發性記憶體,其中當該非揮發性記憶體包括多個堆疊結構時,各該通道結構包括:二主通道部,設置於各該第二隔離結構兩側的該基底上,且該些主通道部的底部相互連接或互不相連;以及二間隙壁通道部,設置於相鄰兩個堆疊結構之間的該些電荷儲存層與該些主通道部之間。 The non-volatile memory of claim 5, wherein when the non-volatile memory comprises a plurality of stacked structures, each of the channel structures comprises: two main channel portions disposed in each of the second isolation structures On the side of the substrate, and the bottoms of the main channel portions are connected to each other or not connected to each other; and the two gap wall channel portions are disposed between the adjacent two stacked structures and the main channel portions between. 如申請專利範圍第1項所述的非揮發性記憶體,更包括一第一摻雜區,設置於該基底中。 The non-volatile memory of claim 1, further comprising a first doped region disposed in the substrate. 如申請專利範圍第8項所述的非揮發性記憶體,更包括二第二摻雜區,設置於該些通道結構下方的該第一摻雜區中。 The non-volatile memory according to claim 8 further includes two second doped regions disposed in the first doped region below the channel structures. 如申請專利範圍第1項所述的非揮發性記憶體,更包括一導線,耦接於該些通道結構。 The non-volatile memory of claim 1, further comprising a wire coupled to the channel structures.
TW104100389A 2015-01-07 2015-01-07 Non-volatile memory TWI572014B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104100389A TWI572014B (en) 2015-01-07 2015-01-07 Non-volatile memory
CN201510031583.9A CN105870120B (en) 2015-01-07 2015-01-22 non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104100389A TWI572014B (en) 2015-01-07 2015-01-07 Non-volatile memory

Publications (2)

Publication Number Publication Date
TW201626547A TW201626547A (en) 2016-07-16
TWI572014B true TWI572014B (en) 2017-02-21

Family

ID=56623143

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104100389A TWI572014B (en) 2015-01-07 2015-01-07 Non-volatile memory

Country Status (2)

Country Link
CN (1) CN105870120B (en)
TW (1) TWI572014B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678793B (en) * 2019-01-31 2019-12-01 華邦電子股份有限公司 Memeory device and method of manufacturing the same
US10872811B2 (en) 2019-03-27 2020-12-22 Winbond Electronics Corp. Memory device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201413969A (en) * 2012-09-06 2014-04-01 Samsung Electronics Co Ltd Semiconductor devices and methods of fabricating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755234B1 (en) * 2010-08-26 2017-07-07 삼성전자 주식회사 Method for fabricating non-volatile memory device
KR20120131687A (en) * 2011-05-26 2012-12-05 에스케이하이닉스 주식회사 Nonvolatile memory device and method for fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201413969A (en) * 2012-09-06 2014-04-01 Samsung Electronics Co Ltd Semiconductor devices and methods of fabricating the same

Also Published As

Publication number Publication date
CN105870120B (en) 2018-12-07
CN105870120A (en) 2016-08-17
TW201626547A (en) 2016-07-16

Similar Documents

Publication Publication Date Title
US10818728B2 (en) Three-dimensional semiconductor device
US20210313348A1 (en) 3-dimensional nor memory array with very fine pitch: device and method
JP6515046B2 (en) Semiconductor memory device
US8581323B2 (en) Nonvolatile semiconductor memory device and method of manufacturing same
US11672112B2 (en) Semiconductor memory device with protruding separating portions
US20180350836A1 (en) Semiconductor devices and related methods
US11587947B2 (en) Three-dimensional semiconductor memory devices
CN109192735B (en) 3D memory device and method of manufacturing the same
CN102468283A (en) Memory device and method of manufacturing the same, memory system and multilayer device
JP2008258458A (en) Semiconductor memory and production method therefor
TW201423913A (en) Nonvolatile semiconductor memory device
US20120205805A1 (en) Semiconductor device and method of manufacturing the same
TWI697105B (en) 3-dimensional junction semiconductor memory device and fabrication method thereof
US11088164B2 (en) Semiconductor memory device
US11145671B2 (en) Three-dimensional semiconductor memory device and method of manufacturing the same
US20200251491A1 (en) Semiconductor memory device and manufacturing method of semiconductor memory device
TW201707193A (en) Memory device and method for fabricating the same
US11088167B2 (en) Transistor, three dimensional memory device including such transistor and method of fabricating such memory device
US11222900B2 (en) Semiconductor memory device
US20130270623A1 (en) Semiconductor memory device and manufacturing method of semiconductor memory device
TWI572014B (en) Non-volatile memory
US20120299087A1 (en) Non-volatile memory device and method for fabricating the same
US9219071B1 (en) Semiconductor device
JP6972223B2 (en) NAND flash memory and its manufacturing method
US11195855B2 (en) Semiconductor memory device and method of manufacturing the same