TWI571698B - Method for manufacturing EUV mask inorganic protective film module - Google Patents

Method for manufacturing EUV mask inorganic protective film module Download PDF

Info

Publication number
TWI571698B
TWI571698B TW104143475A TW104143475A TWI571698B TW I571698 B TWI571698 B TW I571698B TW 104143475 A TW104143475 A TW 104143475A TW 104143475 A TW104143475 A TW 104143475A TW I571698 B TWI571698 B TW I571698B
Authority
TW
Taiwan
Prior art keywords
layer
protective film
tantalum nitride
inorganic protective
nitride layer
Prior art date
Application number
TW104143475A
Other languages
Chinese (zh)
Other versions
TW201723640A (en
Inventor
Ching-Bore Wang
Original Assignee
Micro Lithography Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Lithography Inc filed Critical Micro Lithography Inc
Priority to TW104143475A priority Critical patent/TWI571698B/en
Application granted granted Critical
Publication of TWI571698B publication Critical patent/TWI571698B/en
Publication of TW201723640A publication Critical patent/TW201723640A/en

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

EUV光罩無機保護薄膜組件製造方法 EUV reticle inorganic protective film assembly manufacturing method

本發明是有關一種EUV光罩無機保護薄膜組件製造方法,特別是一種能夠於一石墨烯層兩個表面分別沉積形成出有一氮化矽層,該氮化矽層能夠用以夾持該石墨烯層、並用以保護該石墨烯層、以增加該石墨烯層的結構強度。 The invention relates to a method for manufacturing an EUV mask inorganic protective film assembly, in particular to deposit a tantalum nitride layer on two surfaces of a graphene layer, and the tantalum nitride layer can be used for clamping the graphene. And protecting the graphene layer to increase the structural strength of the graphene layer.

半導體元件的電路圖案是通過使用光罩及曝光技術的微影製程將電路圖案轉印至矽晶圓的表面。光罩的缺陷會造成矽晶圓表面的電路圖案扭曲或變形,已知造成光罩缺陷的原因之一在於光罩的表面受到污染微粒(contamination particles)的污染,使得矽晶圓表面的電路圖案在有污染微粒之處產生了扭曲或變形;為了維持光罩在使用期間的品質,已知的一種方法是在光罩的表面設置一種光罩保護薄膜組件(pellicle),用以防止污染微粒沈積直接接觸到光罩表面;光罩保護薄膜組件的構造基本上包含透明的一保護薄膜(film)和一框架,保護薄膜提供阻隔外界污染的實體屏障,用於防止來自環境、氣體逸出(outgassing)或其他原因而產生的污染微粒污染光罩的表面。 The circuit pattern of the semiconductor element is a transfer of the circuit pattern to the surface of the germanium wafer by a lithography process using a photomask and an exposure technique. The defect of the mask may cause distortion or deformation of the circuit pattern on the surface of the wafer. One of the reasons for the known defect of the mask is that the surface of the mask is contaminated by contamination particles, so that the circuit pattern on the surface of the wafer is Distortion or distortion occurs in the presence of contaminating particles; in order to maintain the quality of the reticle during use, a known method is to provide a reticle protective film module on the surface of the reticle to prevent deposition of contaminating particles. Direct contact with the reticle surface; the construction of the reticle protective film assembly basically comprises a transparent protective film and a frame, and the protective film provides a physical barrier against external pollution for preventing escape from the environment and gas (outgassing) ) or other contaminant particles that contaminate the surface of the reticle.

依據電路圖案的寬度,曝光技術使用的光源的波長也有不同,針對不同波長的曝光光源,保護薄膜必需具有足夠的穿透率(Transmission)以確 保微影製程的良率,保護薄膜的穿透率取決於保護薄膜的厚度、抗反射塗佈的類型、保護薄膜的材質對光的吸收度及晶圓曝光機或步進機所使用的光源的波長,硝化纖維素(nitrocellulose)是最初被採用的薄膜材質,而且這類保護薄膜是使用於g-line(436nm)或i-line(365nm),另外氟化高分子用於KrF(248nm)或ArF(193nm)的晶圓曝光機或寬頻投射晶圓步進機。隨著電路圖案的細微化,使用波長只有13.5奈米(nanometer,nm)的極紫外光(EUV)作為曝光光源的微影製程開始受到重視並積極地發展相關的技術,然而前述用於製造保護薄膜的硝化纖維素材質會吸收波長小於350nm的光源,而氟化高分子會吸收波長小於190nm,因此不能使用在光源波長低於350nm或190nm的微影製程。 Depending on the width of the circuit pattern, the wavelength of the light source used in the exposure technique is also different. For different wavelengths of exposure light, the protective film must have sufficient transmission to ensure The yield of the micro-film process, the transmittance of the protective film depends on the thickness of the protective film, the type of anti-reflective coating, the light absorption of the material of the protective film, and the light source used in the wafer exposure machine or stepper. The wavelength of nitrocellulose is the material of the film originally used, and the protective film is used for g-line (436nm) or i-line (365nm), and the fluorinated polymer is used for KrF (248nm). Or ArF (193nm) wafer exposure machine or broadband projection wafer stepper. With the miniaturization of circuit patterns, the lithography process using ultra-ultraviolet light (EUV) with a wavelength of only 13.5 nanometers (nm) as an exposure light source has begun to receive attention and actively develop related technologies, but the aforementioned for manufacturing protection The nitrocellulose material of the film absorbs a light source having a wavelength of less than 350 nm, and the fluorinated polymer absorbs a wavelength of less than 190 nm, so that a lithography process in which the wavelength of the light source is lower than 350 nm or 190 nm cannot be used.

因為矽結晶膜是用於EUV的光,故光吸收係數相對比較低,特別是多結晶矽膜,跟非晶質矽膜或單結晶矽膜比較起來吸收係數更低,故能輕易滿足EUV用防護薄膜所需要的透光率;特別是上述採用矽結晶膜製作用於EUV的防護薄膜,在矽結晶膜成形的技術上仍存在著矽結晶膜成形不易的問題,在已公告的美國專利6,623,893,其中提出了一種以矽材質製作的保護薄膜,該保護薄膜係可採用化學汽相沉積(chemical vapor deposition,CVD)技術形成於同樣用矽材質(如二氧化矽)製成的一屏柵層(barrier layer),再利用刻蝕(etching)製程移除屏柵層的方式而令保護薄膜的中央部份顯露出來,但是這種製程較為複雜。 Since the ruthenium crystal film is light for EUV, the light absorption coefficient is relatively low, especially the polycrystalline ruthenium film, which has a lower absorption coefficient than the amorphous ruthenium film or the single crystal ruthenium film, so that it can easily satisfy the EUV. The light transmittance required for the protective film; in particular, the above-mentioned protective film for EUV using a ruthenium crystal film, there is still a problem that the ruthenium crystal film is not easily formed in the technique of ruthenium crystal film formation, and the published US Patent 6,623,893 A protective film made of tantalum material is proposed, which is formed by a chemical vapor deposition (CVD) technique on a gate layer made of a tantalum material such as hafnium oxide. The barrier layer is formed by removing the screen layer by an etching process, but the central portion of the protective film is exposed, but the process is complicated.

另外在已公開的中國專利CN 101414118 A揭露了一種由單結晶矽膜製作而成光罩保護薄膜及其製造方法,該方法係透過將SOI基板薄膜化而製成,具體而言是在薄膜化的SOI基板的一主要表面形成單結晶矽的保護膜,再於後續的製程中同樣地以刻蝕的技術移除SOI基板而令單結晶矽的中央部份顯露 成為保護膜。 Further, in the disclosed Chinese patent CN 101414118 A, a reticle protective film made of a single crystal ruthenium film and a method for producing the same are disclosed, which are produced by thinning an SOI substrate, specifically, thinning. A main surface of the SOI substrate forms a protective film of a single crystal germanium, and in the subsequent process, the SOI substrate is removed by an etching technique to expose the central portion of the single crystal germanium. Become a protective film.

在已公開的台灣專利「EUV用防塵薄膜組件」(公開號201415157),其中提出了一種能夠減輕入射EUV光的減少,同時具有高強度的EUV用防塵薄膜組件。其中透過一種具有用網格形狀(例如蜂窩結構)的輔助結構加固的EUV透過膜(為一種矽晶膜)的EUV用防塵薄膜組件,但是該輔助結構與矽晶膜如果沒有牢固地貼緊,在曝光的過程中會造成輔助結構與矽晶膜的分離,進而造成矽晶膜的破損。 In the disclosed Taiwan patent "Pneumatic film assembly for EUV" (Publication No. 201415157), a dust-proof film assembly for EUV which can reduce the reduction of incident EUV light and has high strength is proposed. Wherein the EUV pellicle is assembled through an EUV permeable film (which is a twin film) reinforced with an auxiliary structure of a mesh shape (for example, a honeycomb structure), but the auxiliary structure and the twin film are not firmly adhered thereto. During the exposure process, the separation of the auxiliary structure from the twin film is caused, which causes damage to the twin film.

不論使用於何種曝光光源的光罩保護薄膜組件,其中保護薄膜的材質必須具備適當的均勻度、機械強度、穿透度、及潔淨度來承受不斷將光罩圖案曝光至晶圓上的微影製程,以及克服儲存和運送過程污染或是損壞光罩保護薄膜的問題;另外在已核准公告的台灣發明專利TW I398723「防護薄膜組件及其製造方法」,提出了一種以矽單結晶膜作為防護薄膜的防護薄膜組件,其中包含在防護薄膜的至少一面形成一無機保護膜,但由於該無機保護膜容易會因為移動時產生破裂,因此如何避免此一情況發生,將是本發明之重點。 Regardless of the exposure of the illuminant protection film assembly, the material of the protective film must have appropriate uniformity, mechanical strength, penetration, and cleanliness to withstand the continual exposure of the reticle pattern to the wafer. Shadow processing, and overcoming the problem of contamination during storage and transportation or damage to the reticle protective film; in addition, the approved invention patent TW I398723 "Protective film assembly and its manufacturing method" has proposed a single crystal film. The pellicle film of the pellicle film comprises an inorganic protective film formed on at least one side of the pellicle film, but since the inorganic protective film is liable to be broken due to movement, how to avoid this situation will be the focus of the present invention.

因此,若能夠於一無機保護膜(石墨烯層)兩個表面分別沉積形成出有一氮化矽層,該氮化矽層能夠用以夾持該石墨烯層、並用以保護該石墨烯層、以增加該石墨烯層的結構強度,因此能夠避免移動時該石墨烯層產生破裂,故本發明應為一最佳解決方案。 Therefore, if a tantalum nitride layer can be separately deposited on both surfaces of an inorganic protective film (graphene layer), the tantalum nitride layer can be used to sandwich the graphene layer and protect the graphene layer. In order to increase the structural strength of the graphene layer, it is possible to avoid cracking of the graphene layer during the movement, so the present invention should be an optimum solution.

本發明係關於一種EUV光罩無機保護薄膜組件製造方法,係能夠於一石墨烯層兩個表面分別沉積形成出有一氮化矽層,該氮化矽層能夠用以夾 持該石墨烯層、並用以保護該石墨烯層、以增加該石墨烯層的結構強度。 The invention relates to a method for manufacturing an EUV mask inorganic protective film module, which is capable of depositing a tantalum nitride layer on two surfaces of a graphene layer, and the tantalum nitride layer can be used for clamping The graphene layer is held and used to protect the graphene layer to increase the structural strength of the graphene layer.

一種EUV光罩無機保護薄膜組件製造方法,其方法為:取一具有平整表面的銅箔,並將銅箔覆蓋於一小框體的頂面,該銅箔表面面積大於小框體的頂面,並將一大框體套入該小框體的外表面,使銅箔的邊緣受到大、小框體的夾持;將夾持有銅箔的大小框體放置在一底座上,並放入一石英玻璃管中加熱至1000℃以上並通以甲烷,使銅箔表面形成一層石墨烯層;取出夾持有銅箔及石墨烯層之大、小框體,並於該石墨烯層表面經由一化學氣相沉積法沉積一第一氮化矽層;於該第一氮化矽層表面利用旋轉塗佈或噴塗方法形成一全氟聚合物層;於該全氟聚合物層表面經由有機膠體黏著一臨時框體;藉由一氯化鐵洗劑將該銅箔溶洗,以使該銅箔受到溶解消失;於該石墨烯層另一表面經由化學氣相沉積法沉積出一第二氮化矽層,用以使該石墨烯層受到該第一氮化矽層及該第二氮化矽層夾持;於該第二層氮化矽層的另一表面上,藉由一無機膠體黏著一主框體;將該臨時框體移除,同時以一全氟溶劑將該全氟聚合物層移除,以形成為一EUV光罩無機保護薄膜組件。 The invention relates to a method for manufacturing an EUV mask inorganic protective film assembly, which comprises: taking a copper foil with a flat surface, and covering the top surface of a small frame with a copper foil surface area larger than a top surface of the small frame body And inserting a large frame into the outer surface of the small frame, so that the edge of the copper foil is clamped by the large and small frame; the size frame with the copper foil is placed on a base, and placed In a quartz glass tube, it is heated to 1000 ° C or higher and methane is applied to form a graphene layer on the surface of the copper foil; the large and small frames sandwiching the copper foil and the graphene layer are taken out and the surface of the graphene layer is removed. Depositing a first tantalum nitride layer by a chemical vapor deposition method; forming a perfluoropolymer layer on the surface of the first tantalum nitride layer by spin coating or spraying; and organically coating the surface of the perfluoropolymer layer The colloid adheres to a temporary frame; the copper foil is eluted by a ferric chloride lotion to dissolve the copper foil; and the second surface of the graphene layer is deposited by chemical vapor deposition. a tantalum nitride layer for receiving the graphene layer from the first tantalum nitride layer And clamping the second tantalum nitride layer; on the other surface of the second layer of tantalum nitride layer, a main frame body is adhered by an inorganic colloid; the temporary frame body is removed, and a perfluorocarbon is simultaneously removed The solvent removes the perfluoropolymer layer to form an EUV reticle inorganic protective film module.

更具體的說,所述第一氮化矽層用以支撐石墨烯層,避免該石墨烯層因移動時而產生破裂。 More specifically, the first tantalum nitride layer serves to support the graphene layer to prevent cracking of the graphene layer due to movement.

更具體的說,所述藉由該氯化鐵洗劑將該銅箔溶洗時,由於該全氟聚合物層及石墨烯層皆為高分子材料,所以不會受到氯化鐵洗劑的侵蝕,用以保護該第一氮化矽層不會受到溶解消失。 More specifically, when the copper foil is eluted by the ferric chloride lotion, since the perfluoropolymer layer and the graphene layer are both polymer materials, they are not subjected to the iron chloride lotion. Erosion to protect the first tantalum nitride layer from dissolution.

更具體的說,所述第一氮化矽層及該第二氮化矽層夾持該石墨烯層,用以保護石墨烯層,並同時增加該石墨烯層的結構強度。 More specifically, the first tantalum nitride layer and the second tantalum nitride layer sandwich the graphene layer to protect the graphene layer and simultaneously increase the structural strength of the graphene layer.

更具體的說,所述EUV光罩無機保護薄膜組件在使用波長13.5nm的極紫外光照射下,於該石墨烯層的厚度為8nm的情況下,該第一氮化矽層之厚度為5nm,而該第二氮化矽層之厚度為5nm,其光穿透率為90%。 More specifically, the EUV photomask inorganic protective film assembly is irradiated with extreme ultraviolet light having a wavelength of 13.5 nm, and the thickness of the first tantalum nitride layer is 5 nm when the thickness of the graphene layer is 8 nm. The second tantalum nitride layer has a thickness of 5 nm and a light transmittance of 90%.

更具體的說,所述EUV光罩無機保護薄膜組件在使用波長13.5nm的極紫外光照射下,於該石墨烯層的厚度為25nm的情況下,該第一氮化矽層之厚度為5nm,而該第二氮化矽層之厚度為5nm,其光穿透率為80%。 More specifically, the EUV mask inorganic protective film assembly is irradiated with extreme ultraviolet light having a wavelength of 13.5 nm, and the thickness of the first tantalum nitride layer is 5 nm when the thickness of the graphene layer is 25 nm. The second tantalum nitride layer has a thickness of 5 nm and a light transmittance of 80%.

更具體的說,所述第一氮化矽層及第二氮化矽層能夠取代為一第一釕金屬層及一第二釕金屬層,該第一釕金屬及第二釕金屬的厚度為5nm。 More specifically, the first tantalum nitride layer and the second tantalum nitride layer can be replaced by a first base metal layer and a second base metal layer, and the thickness of the first base metal and the second base metal is 5nm.

1‧‧‧銅箔 1‧‧‧ copper foil

11‧‧‧石墨烯層 11‧‧‧graphene layer

12‧‧‧第一氮化矽層 12‧‧‧First tantalum layer

13‧‧‧全氟聚合物層 13‧‧‧Perfluoropolymer layer

14‧‧‧第二氮化矽層 14‧‧‧Second tantalum layer

2‧‧‧小框體 2‧‧‧Small frame

3‧‧‧大框體 3‧‧‧ large frame

4‧‧‧底座 4‧‧‧Base

5‧‧‧石英玻璃管 5‧‧‧Quartz glass tube

6‧‧‧臨時框體 6‧‧‧ Temporary frame

7‧‧‧主框體 7‧‧‧Main frame

[第1圖]係本發明EUV光罩無機保護薄膜組件製造方法之流程示意圖。 [Fig. 1] is a schematic flow chart showing a method of manufacturing an EUV photomask inorganic protective film module of the present invention.

[第2A圖]係本發明EUV光罩無機保護薄膜組件製造方法之銅箔設置示意圖。 [Fig. 2A] is a schematic view showing the arrangement of copper foil of the method for producing an EUV photomask inorganic protective film module of the present invention.

[第2B圖]係本發明EUV光罩無機保護薄膜組件製造方法之銅箔設置示意圖。 [Fig. 2B] is a schematic view showing the arrangement of copper foil of the method for producing an EUV photomask inorganic protective film module of the present invention.

[第3圖]係本發明EUV光罩無機保護薄膜組件製造方法之石墨烯層及形成示意圖。 [Fig. 3] Fig. 3 is a schematic diagram showing the graphene layer and formation of the method for producing an EUV mask inorganic protective film module of the present invention.

[第4圖]係本發明EUV光罩無機保護薄膜組件製造方法之第一氮化矽層沉積示意及設置一臨時框體示意圖。 [Fig. 4] is a schematic view showing the deposition of the first tantalum nitride layer of the EUV mask inorganic protective film module manufacturing method of the present invention and a temporary frame.

[第5圖]係本發明EUV光罩無機保護薄膜組件製造方法之全氟聚合物層形成示意圖。 [Fig. 5] Fig. 5 is a schematic view showing the formation of a perfluoropolymer layer of the method for producing an EUV photomask inorganic protective film module of the present invention.

[第6圖]係本發明EUV光罩無機保護薄膜組件製造方法之銅箔溶解後示意圖。 [Fig. 6] Fig. 6 is a schematic view showing dissolution of a copper foil of the method for producing an EUV photomask inorganic protective film module of the present invention.

[第7圖]係本發明EUV光罩無機保護薄膜組件製造方法之第二氮化矽層沉積示意圖。 [Fig. 7] is a schematic view showing deposition of a second tantalum nitride layer in the method for producing an EUV photomask inorganic protective film module of the present invention.

[第8圖]係本發明EUV光罩無機保護薄膜組件製造方法之主框體設置示意圖。 [Fig. 8] Fig. 8 is a schematic view showing the main frame of the manufacturing method of the EUV photomask inorganic protective film module of the present invention.

[第9圖]係本發明EUV光罩無機保護薄膜組件製造方法之移除臨時框體及全氟聚合物層的示意圖。 [Fig. 9] is a schematic view showing the removal of the temporary frame and the perfluoropolymer layer in the method for producing the EUV photomask inorganic protective film module of the present invention.

有關於本發明其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。 Other details, features, and advantages of the present invention will be apparent from the following description of the preferred embodiments.

請參閱第1圖,為本發明EUV光罩無機保護薄膜組件製造方法之解碼辨識流程示意圖,由圖中可知,其方法為:取一具有平整表面的銅箔,並將銅箔覆蓋於一小框體的頂面,該銅箔表面面積大於小框體的頂面,並將一大框體套入該小框體的外表面,使銅箔的邊緣受到大、小框體的夾持101;將夾持有銅箔的大小框體放置在一底座上,並放入一石英玻璃管中加熱至1000℃以上並通以甲烷,使銅箔表面形成一層石墨烯層102;取出夾持有銅箔及石墨烯層之大、小框體,並於該石墨烯層表面經由一化學氣相沉積法沉積一第一氮化矽層103;於該第一氮化矽層表面利用旋轉塗佈或噴塗方法形成一全氟聚合物層104; 於該全氟聚合物層表面經由有機膠體黏著一臨時框體105;藉由一氯化鐵洗劑將該銅箔溶洗,以使該銅箔受到溶解消失106;於該石墨烯層另一表面經由化學氣相沉積法沉積出一第二氮化矽層,用以使該石墨烯層受到該第一氮化矽層及該第二氮化矽層夾持107;於該第二層氮化矽層的另一表面上,藉由一無機膠體黏著一主框體108;將該臨時框體移除,同時以一全氟溶劑將該全氟聚合物層移除,以形成為一EUV光罩無機保護薄膜組件109。 Please refer to FIG. 1 , which is a schematic diagram of a decoding and identification process of a method for manufacturing an EUV photomask inorganic protective film module according to the present invention. The method can be seen as follows: taking a copper foil with a flat surface and covering the copper foil with a small one. The top surface of the frame has a surface area larger than the top surface of the small frame, and a large frame is nested on the outer surface of the small frame, so that the edge of the copper foil is sandwiched by the large and small frames. The size frame with the copper foil is placed on a base, placed in a quartz glass tube and heated to above 1000 ° C and passed through methane to form a layer of graphene 102 on the surface of the copper foil; a large and small frame of the copper foil and the graphene layer, and depositing a first tantalum nitride layer 103 on the surface of the graphene layer by a chemical vapor deposition method; using spin coating on the surface of the first tantalum nitride layer Or spraying method to form a perfluoropolymer layer 104; Adhesively adhering a temporary frame 105 to the surface of the perfluoropolymer layer via an organic colloid; the copper foil is washed by a ferric chloride lotion to dissolve the copper foil 106; and the graphene layer is another Depositing a second tantalum nitride layer on the surface by chemical vapor deposition to sandwich the graphene layer from the first tantalum nitride layer and the second tantalum nitride layer; On the other surface of the ruthenium layer, a main frame 108 is adhered by an inorganic colloid; the temporary frame is removed, and the perfluoropolymer layer is removed by a perfluoro solvent to form an EUV. Photomask inorganic protective film assembly 109.

請參閱第2A、2B圖,為本發明EUV光罩無機保護薄膜組件製造方法之銅箔設置示意圖,由圖中可知,先取一具有平整表面的銅箔1,並將該銅箔1覆蓋於一小框體2的頂面,該銅箔1表面面積大於小框體2的頂面,之後再將一大框體3套入該小框體2的外表面,使該銅箔1的邊緣受到大框體3、小框體2的夾持;請參閱第3圖,為本發明EUV光罩無機保護薄膜組件製造方法之石墨烯層形成示意圖,由圖中可知,之後將上述夾持有銅箔1的大框體3、小框體2放置在一底座4上,並放入一石英玻璃管5中加熱至1000℃以上並通以甲烷,使該銅箔1表面形成一層石墨烯層11(Graphene);請參閱第4~5圖,為本發明EUV光罩無機保護薄膜組件製造方法之第一氮化矽層沉積示意圖及全氟聚合物層形成示意圖,由圖中可知,其中能夠先取出夾持有銅箔1及石墨烯層11上之大框體3、小框體2,並於石墨烯層11表面經由化學氣相沉積法(CVD)沉積第一氮化矽層12,用以支撐石墨烯層,避免石墨烯層因移動時而產生破裂(參第2圖);之後,再於第一氮化矽層12表面利用旋轉塗佈(spin coating)、噴塗(spray coating)方法形成一全氟聚合物層13 (perfluoro polymer),之後,如第4圖所示,於該全氟聚合物層13表面經由一有機膠體黏著一臨時框體6,之後,如第5圖所示,再將大框體3、小框體2與該銅箔1及石墨烯層11分離;請參閱第6圖,為本發明EUV光罩無機保護薄膜組件製造方法之銅箔溶解後示意圖及臨時框體設置示意圖,由圖中可知,能夠藉由一氯化鐵洗劑將該銅箔1溶洗,使銅箔1溶解消失,由於該全氟聚合物層13及石墨烯層11皆為高分子材料,所以不會受到氯化鐵洗劑的侵蝕,用以保護該第一氮化矽層12;請參閱第7~8圖,為本發明EUV光罩無機保護薄膜組件製造方法之第二氮化矽層沉積示意圖及主框體設置示意圖,由圖中可知,於該石墨烯層11另一表面經由化學氣相沉積法(CVD)沉積一第二氮化矽層14,使該石墨烯層11受到第一氮化矽層12及第二氮化矽層14夾持,用以保護該石墨烯層11、同時增加該石墨烯層11的結構強度,之後,如第8圖所示,再於該第二層氮化矽層14的另一表面經由無機膠體黏著一主框體7;請參閱第9圖,為本發明EUV光罩無機保護薄膜組件製造方法之移除臨時框體及全氟聚合物層的示意圖,由圖中可知,能夠將該臨時框體6移除後,再以一全氟溶劑將該全氟聚合物層13移除,以形成為一EUV光罩無機保護薄膜組件。 Please refer to FIGS. 2A and 2B , which are schematic diagrams showing the copper foil of the method for manufacturing the EUV photomask inorganic protective film module of the present invention. As can be seen from the figure, a copper foil 1 having a flat surface is first taken, and the copper foil 1 is covered by a copper foil 1 . The top surface of the small frame 2, the surface area of the copper foil 1 is larger than the top surface of the small frame 2, and then the large frame 3 is placed on the outer surface of the small frame 2, so that the edge of the copper foil 1 is subjected to The clamping of the large frame 3 and the small frame 2; please refer to FIG. 3, which is a schematic view showing the formation of a graphene layer in the method for manufacturing the EUV photomask inorganic protective film module of the present invention. The large frame 3 and the small frame 2 of the foil 1 are placed on a base 4, and placed in a quartz glass tube 5 to be heated to 1000 ° C or higher and methane is passed through to form a graphene layer 11 on the surface of the copper foil 1. (Graphene); please refer to FIGS. 4~5, which are schematic diagrams showing the deposition of the first tantalum nitride layer and the formation of the perfluoropolymer layer in the method for manufacturing the EUV mask inorganic protective film module of the present invention, which can be seen from the figure Taking out the large frame 3 and the small frame 2 on the copper foil 1 and the graphene layer 11 and the graphene 11 surface depositing a first tantalum nitride layer 12 via chemical vapor deposition (CVD) to support the graphene layer to avoid cracking of the graphene layer due to movement (see FIG. 2); A perfluoropolymer layer 13 is formed on the surface of the tantalum nitride layer 12 by spin coating or spray coating. Perfluoro polymer, and then, as shown in FIG. 4, a temporary frame 6 is adhered to the surface of the perfluoropolymer layer 13 via an organic colloid, and then, as shown in FIG. 5, the large frame 3 is further The small frame 2 is separated from the copper foil 1 and the graphene layer 11; please refer to FIG. 6 , which is a schematic diagram of the dissolution of the copper foil of the EUV mask inorganic protective film module manufacturing method and a temporary frame arrangement diagram thereof. It can be seen that the copper foil 1 can be dissolved by the ferric chloride detergent to dissolve and disappear the copper foil 1. Since the perfluoropolymer layer 13 and the graphene layer 11 are both polymer materials, they are not subjected to chlorine. Corrosion of iron-iron lotion to protect the first tantalum nitride layer 12; see Figures 7-8, is a schematic diagram of the second tantalum nitride layer deposition method of the EUV mask inorganic protective film module manufacturing method of the present invention A schematic diagram of the frame arrangement, as shown in the figure, a second tantalum nitride layer 14 is deposited on the other surface of the graphene layer 11 by chemical vapor deposition (CVD) to subject the graphene layer 11 to the first tantalum nitride layer. The layer 12 and the second tantalum nitride layer 14 are sandwiched to protect the graphene layer 11 and simultaneously increase the graphene The structural strength of the layer 11, and then, as shown in Fig. 8, another main surface of the second layer of the tantalum nitride layer 14 is adhered via an inorganic colloid 7; see Fig. 9, which is the EUV of the present invention. Schematic diagram of the removal of the temporary frame and the perfluoropolymer layer in the method for manufacturing the reticle inorganic protective film module. As can be seen from the figure, the temporary frame 6 can be removed, and then the perfluoropolymer is polymerized in a perfluoro solvent. The layer 13 is removed to form an EUV reticle inorganic protective film assembly.

而透過上述製造步驟後所形成之EUV光罩無機保護薄膜組件,在使用波長13.5nm的極紫外光(EUV)照射下,該石墨烯層11的厚度為8nm,該第一氮化矽層及第二氮化矽層之厚度為5nm,其光穿透率為90%。 And the EUV mask inorganic protective film assembly formed by the above manufacturing step has a thickness of 8 nm of the graphene layer 11 under the irradiation of extreme ultraviolet light (EUV) having a wavelength of 13.5 nm, and the first tantalum nitride layer and The second tantalum nitride layer has a thickness of 5 nm and a light transmittance of 90%.

另外若是該石墨烯層11的厚度為25nm,在使用波長13.5nm的極紫外光(EUV)照射下該第一氮化矽層及第二氮化矽層之厚度為5nm,其光穿透率 則是為80%。 Further, if the graphene layer 11 has a thickness of 25 nm, the first tantalum nitride layer and the second tantalum nitride layer have a thickness of 5 nm when irradiated with extreme ultraviolet light (EUV) having a wavelength of 13.5 nm, and the light transmittance thereof is 5 nm. It is 80%.

本發明所提供之EUV光罩無機保護薄膜組件製造方法,與其他習用技術相互比較時,其優點如下:本發明能夠於一無機保護膜(石墨烯層)兩個表面分別沉積形成出有一氮化矽層,該氮化矽層能夠用以夾持該石墨烯層、並用以保護該石墨烯層、以增加該石墨烯層的結構強度,因此能夠避免移動時該石墨烯層產生破裂。 The method for manufacturing the EUV reticle inorganic protective film module provided by the present invention has the following advantages when compared with other conventional techniques: the present invention can deposit a nitriding on both surfaces of an inorganic protective film (graphene layer). In the ruthenium layer, the ruthenium nitride layer can be used to sandwich the graphene layer and to protect the graphene layer to increase the structural strength of the graphene layer, thereby preventing cracking of the graphene layer during movement.

本發明已透過上述之實施例揭露如上,然其並非用以限定本發明,任何熟悉此一技術領域具有通常知識者,在瞭解本發明前述的技術特徵及實施例,並在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之請求項所界定者為準。 The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any of those skilled in the art can understand the foregoing technical features and embodiments of the present invention without departing from the invention. In the spirit and scope, the scope of patent protection of the present invention is subject to the definition of the claims attached to the present specification.

Claims (9)

一種EUV光罩無機保護薄膜組件製造方法,其方法為:取一具有平整表面的銅箔,並將銅箔覆蓋於一小框體的頂面,該銅箔表面面積大於小框體的頂面,並將一大框體套入該小框體的外表面,使銅箔的邊緣受到大、小框體的夾持;將夾持有銅箔的大小框體放置在一底座上,並放入一石英玻璃管中加熱至一設定溫度值後通以甲烷,使銅箔表面形成一層石墨烯層;取出夾持有銅箔及石墨烯層之大、小框體,並於該石墨烯層表面經由一化學氣相沉積法沉積一第一氮化矽層;於該第一氮化矽層表面利用旋轉塗佈或噴塗方法形成一全氟聚合物層;於該全氟聚合物層表面經由有機膠體黏著一臨時框體;藉由一氯化鐵洗劑將該銅箔溶洗,以使該銅箔受到溶解消失;於該石墨烯層另一表面經由化學氣相沉積法沉積出一第二氮化矽層,用以使該石墨烯層受到該第一氮化矽層及該第二氮化矽層夾持;於該第二層氮化矽層的另一表面上,藉由一無機膠體黏著一主框體;將該臨時框體移除,同時以一全氟溶劑將該全氟聚合物層移除,以形成為一EUV光罩無機保護薄膜組件。 The invention relates to a method for manufacturing an EUV mask inorganic protective film assembly, which comprises: taking a copper foil with a flat surface, and covering the top surface of a small frame with a copper foil surface area larger than a top surface of the small frame body And inserting a large frame into the outer surface of the small frame, so that the edge of the copper foil is clamped by the large and small frame; the size frame with the copper foil is placed on a base, and placed After heating into a quartz glass tube to a set temperature value, methane is applied to form a graphene layer on the surface of the copper foil; a large and small frame holding the copper foil and the graphene layer is taken out, and the graphene layer is removed. Depositing a first tantalum nitride layer by a chemical vapor deposition method; forming a perfluoropolymer layer on the surface of the first tantalum nitride layer by spin coating or spraying; forming a surface of the perfluoropolymer layer via the surface The organic colloid adheres to a temporary frame; the copper foil is eluted by a ferric chloride lotion to dissolve the copper foil; and the other surface of the graphene layer is deposited by chemical vapor deposition a layer of tantalum nitride for subjecting the graphene layer to the first nitridation The layer and the second tantalum nitride layer are sandwiched; on the other surface of the second layer of tantalum nitride layer, a main frame body is adhered by an inorganic colloid; the temporary frame body is removed, and at the same time The fluorosolvent removes the perfluoropolymer layer to form an EUV reticle inorganic protective film component. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中石英玻璃管之加熱溫度為1000℃以上。 The method for producing an EUV mask inorganic protective film module according to claim 1, wherein the quartz glass tube has a heating temperature of 1000 ° C or higher. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該第一氮化矽層用以支撐石墨烯層,避免該石墨烯層因移動時而產生破裂。 The method for manufacturing an EUV mask inorganic protective film assembly according to claim 1, wherein the first tantalum nitride layer is used to support the graphene layer to prevent the graphene layer from being broken due to movement. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中藉 由該氯化鐵洗劑將該銅箔溶洗時,由於該全氟聚合物層及石墨烯層皆為高分子材料,所以不會受到氯化鐵洗劑的侵蝕,用以保護該第一氮化矽層不會受到溶解消失。 The method for manufacturing an EUV reticle inorganic protective film assembly according to claim 1, wherein When the copper foil is eluted by the ferric chloride lotion, since the perfluoropolymer layer and the graphene layer are both polymer materials, they are not corroded by the ferric chloride lotion, and are used to protect the first The tantalum nitride layer does not disappear by dissolution. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該第一氮化矽層及該第二氮化矽層夾持該石墨烯層,用以保護石墨烯層,並同時增加該石墨烯層的結構強度。 The method for manufacturing an EUV mask inorganic protective film module according to claim 1, wherein the first tantalum nitride layer and the second tantalum nitride layer sandwich the graphene layer to protect the graphene layer and simultaneously increase The structural strength of the graphene layer. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該EUV光罩無機保護薄膜組件在使用波長13.5nm的極紫外光照射下,在該石墨烯層的厚度為8nm,該第一氮化矽層之厚度為5nm,該第二氮化矽層之厚度為5nm的條件下,其光穿透率為90%。 The method for manufacturing an EUV mask inorganic protective film module according to claim 1, wherein the EUV mask inorganic protective film assembly has a thickness of 8 nm in the graphene layer after being irradiated with extreme ultraviolet light having a wavelength of 13.5 nm. The thickness of the tantalum nitride layer was 5 nm, and the thickness of the second tantalum nitride layer was 5 nm, and the light transmittance was 90%. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該EUV光罩無機保護薄膜組件在使用波長13.5nm的極紫外光照射下,於該石墨烯層的厚度為25nm,該第一氮化矽層之厚度為5nm,該第二氮化矽層之厚度為5nm的條件下,其光穿透率為80%。 The method for manufacturing an EUV mask inorganic protective film module according to claim 1, wherein the EUV mask inorganic protective film assembly has a thickness of 25 nm in the graphene layer after being irradiated with extreme ultraviolet light having a wavelength of 13.5 nm. The thickness of the tantalum nitride layer was 5 nm, and the thickness of the second tantalum nitride layer was 5 nm, and the light transmittance was 80%. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該第一氮化矽層及第二氮化矽層能夠取代為一第一釕金屬層及一第二釕金屬層。 The method for manufacturing an EUV mask inorganic protective film assembly according to claim 1, wherein the first tantalum nitride layer and the second tantalum nitride layer can be replaced by a first tantalum metal layer and a second tantalum metal layer. 如請求項8所述之EUV光罩無機保護薄膜組件製造方法,其中該第一釕金屬層及一第二釕金屬層的厚度皆為5nm。 The method for manufacturing an EUV mask inorganic protective film module according to claim 8, wherein the first base metal layer and the second base metal layer have a thickness of 5 nm.
TW104143475A 2015-12-23 2015-12-23 Method for manufacturing EUV mask inorganic protective film module TWI571698B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104143475A TWI571698B (en) 2015-12-23 2015-12-23 Method for manufacturing EUV mask inorganic protective film module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104143475A TWI571698B (en) 2015-12-23 2015-12-23 Method for manufacturing EUV mask inorganic protective film module

Publications (2)

Publication Number Publication Date
TWI571698B true TWI571698B (en) 2017-02-21
TW201723640A TW201723640A (en) 2017-07-01

Family

ID=58608211

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104143475A TWI571698B (en) 2015-12-23 2015-12-23 Method for manufacturing EUV mask inorganic protective film module

Country Status (1)

Country Link
TW (1) TWI571698B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688635B (en) * 2018-03-13 2020-03-21 美商微相科技股份有限公司 DUV photomask protective film aluminum frame adhesive treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140106265A1 (en) * 2012-10-16 2014-04-17 Shin-Etsu Chemical Co., Ltd. Pellicle
CN104192833A (en) * 2014-08-20 2014-12-10 中国科学院上海高等研究院 Transfer method of graphene film
TW201530251A (en) * 2013-12-05 2015-08-01 Asml Netherlands Bv Apparatus and method for manufacturing a pellicle, and a pellicle
CN105045035A (en) * 2014-04-24 2015-11-11 台湾积体电路制造股份有限公司 Pellicle structure and method for forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140106265A1 (en) * 2012-10-16 2014-04-17 Shin-Etsu Chemical Co., Ltd. Pellicle
TW201530251A (en) * 2013-12-05 2015-08-01 Asml Netherlands Bv Apparatus and method for manufacturing a pellicle, and a pellicle
CN105045035A (en) * 2014-04-24 2015-11-11 台湾积体电路制造股份有限公司 Pellicle structure and method for forming the same
CN104192833A (en) * 2014-08-20 2014-12-10 中国科学院上海高等研究院 Transfer method of graphene film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688635B (en) * 2018-03-13 2020-03-21 美商微相科技股份有限公司 DUV photomask protective film aluminum frame adhesive treatment method

Also Published As

Publication number Publication date
TW201723640A (en) 2017-07-01

Similar Documents

Publication Publication Date Title
JP7047046B2 (en) A method for manufacturing a mask blank substrate, a substrate with a multilayer reflective film, a reflective mask blank and a reflective mask, and a semiconductor device.
TWI570522B (en) Pellicle structure and method for forming the same and pellicle-mask structure
US8679707B2 (en) Method of fabricating a lithography mask
TWI638223B (en) Substrate with multilayer reflective film, reflective reticle substrate for EUV lithography, reflective reticle for EUV lithography, method of manufacturing the same, and method of manufacturing semiconductor device
KR101917407B1 (en) Photomask blank and method for manufacturing photomask blank
JP2010261987A (en) Photomask
KR101811096B1 (en) Method for manufacturing photomask blank
TWI387847B (en) Photomask and method for determining the contamination of the photomask
CN215449882U (en) Pellicle frame and pellicle, exposure original plate, exposure apparatus and exposure system, and manufacturing system
JP2012212043A (en) Pellicle film, manufacturing method thereof, and pellicle with the same stretched thereto
US10012899B2 (en) Graphene pellicle for extreme ultraviolet lithography
WO2020175354A1 (en) Reflective mask blank, reflective mask, method for producing same, and method for producing semiconductor device
JP7040427B2 (en) Pellicle, exposure original plate with pellicle, exposure method and semiconductor manufacturing method
CN111902772A (en) Mask blank, phase shift mask and method for manufacturing semiconductor device
TWI571698B (en) Method for manufacturing EUV mask inorganic protective film module
WO2004049063A2 (en) Photomask and method for creating a protective layer on the same
US11846881B2 (en) EUV photomask
TWI612369B (en) EUV reticle inorganic protective film assembly manufacturing method
TW201627753A (en) Manufacturing method of EUV mask inorganic protective thin-film assembly
TWM520723U (en) EUV photomask protective film structure
WO2005022258A2 (en) Photomask and method for maintaining optical properties of the same
JP5649134B2 (en) Pellicle frame
JP2007293036A (en) Pellicle for lithography
US9152035B2 (en) Lithographic photomask with inclined sides
US20230213850A1 (en) Pellicle Frame, Pellicle, Pellicle-Equipped Exposure Original Plate, Exposure Method, Method for Manufacturing Semiconductor, and Method for Manufacturing Liquid Crystal Display Board