TWI571451B - Apparatus and method for manufacturing ti-based dielectric material - Google Patents

Apparatus and method for manufacturing ti-based dielectric material Download PDF

Info

Publication number
TWI571451B
TWI571451B TW102123455A TW102123455A TWI571451B TW I571451 B TWI571451 B TW I571451B TW 102123455 A TW102123455 A TW 102123455A TW 102123455 A TW102123455 A TW 102123455A TW I571451 B TWI571451 B TW I571451B
Authority
TW
Taiwan
Prior art keywords
titanium
dielectric material
reactor
based dielectric
barium titanate
Prior art date
Application number
TW102123455A
Other languages
Chinese (zh)
Other versions
TW201402518A (en
Inventor
崔連圭
車炅津
鄭元植
金賢
朴志鎬
Original Assignee
三星電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電機股份有限公司 filed Critical 三星電機股份有限公司
Publication of TW201402518A publication Critical patent/TW201402518A/en
Application granted granted Critical
Publication of TWI571451B publication Critical patent/TWI571451B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

製造鈦基介電材料的裝置及其方法 Device and method for manufacturing titanium-based dielectric material

本發明之一實施例係關於一種製造鈦基介電材料的裝置及其方法,且更特定言之,係關於可在高溫及高壓條件下操作的一種製造鈦基介電材料的裝置及其方法。 An embodiment of the present invention relates to an apparatus and method for fabricating a titanium-based dielectric material, and more particularly to an apparatus and method for fabricating a titanium-based dielectric material that can operate under high temperature and high pressure conditions .

由於各種電子設備行業最近已趨向於追求具有體積小、重量輕的主體之高效能元件,因此電子組件(諸如多層陶瓷電容器(MLCC))已變得需要具有小尺寸、高效能且具有輕重量。因此,電子組件中使用之介電材料需被功能化,且該等電子組件之電氣特性亦需被改良。 As various electronic device industries have recently tended to pursue high-performance components having small, lightweight bodies, electronic components such as multilayer ceramic capacitors (MLCC) have become demanding to have small size, high performance, and light weight. Therefore, the dielectric materials used in electronic components need to be functionalized, and the electrical characteristics of such electronic components also need to be improved.

介電材料之合成法可為固態法、液態法及汽態法。 The synthesis method of the dielectric material may be a solid state method, a liquid method, or a vapor method.

固態法係使用固相反應物的方法。作為固態法之一實例,KR 2004-0020252揭露一種合成鈦酸鋇(BaTiO3)之方法,其中該方法包括藉由混合碳酸鋇(BaCO3)與二氧化鈦(TiO2)來形成一種混合物;以及藉由將該混合物之溫度增加至1000℃或更高來煆燒該混合物。該方法包括以高溫煆燒混合物,且因此可能發生生成物之劇烈聚結,生成物之粒度分佈可能較為寬廣,且生成物之顆粒精煉可能較為困難。 The solid state method uses a method of solid phase reactants. As an example of a solid state method, KR 2004-0020252 discloses a method of synthesizing barium titanate (BaTiO 3 ), wherein the method comprises forming a mixture by mixing barium carbonate (BaCO 3 ) with titanium dioxide (TiO 2 ); The mixture was calcined by increasing the temperature of the mixture to 1000 ° C or higher. The method involves calcining the mixture at a high temperature, and thus violent coalescence of the product may occur, the particle size distribution of the product may be broad, and particle refining of the product may be difficult.

液態法係使用液相反應物的方法,且該方法包括共同沈澱法及熱液合成法。 The liquid method is a method using a liquid phase reactant, and the method includes a coprecipitation method and a hydrothermal synthesis method.

一般共同沈澱法包括藉由使用氨水及強鹼來萃取且沈 澱兩個或兩個以上的相;以及以1000℃之溫度煆燒所得的沈澱物。該方法需要同時沈澱兩個或兩個以上的相,且因此合成的介電材料之組合物可因該等相之不同萃取速率而不均勻,且高溫煆燒過程中可能發生劇烈聚結。 The general co-precipitation method involves extraction and sinking by using ammonia water and a strong alkali. Two or more phases are deposited; and the resulting precipitate is calcined at a temperature of 1000 °C. This method requires the simultaneous precipitation of two or more phases, and thus the composition of the synthesized dielectric material may be uneven due to the different extraction rates of the phases, and severe coalescence may occur during high temperature calcination.

一般熱液合成法在100℃至200℃的溫度及1巴(bar)至15.5巴的壓力下執行。又,最終合成的介電材料(例如BaTiO3)具有立方晶體結構,且因此需要額外煆燒過程來將立方晶體結構轉換為正方晶體結構。然而,即使在額外煆燒過程之後,因羥基(OH-)而形成之多個內部孔可存在於介電材料中,且因此結晶度可能降低。 The general hydrothermal synthesis is carried out at a temperature of from 100 ° C to 200 ° C and a pressure of from 1 bar (bar) to 15.5 bar. Also, the finally synthesized dielectric material (for example, BaTiO 3 ) has a cubic crystal structure, and thus an additional calcination process is required to convert the cubic crystal structure into a tetragonal crystal structure. However, even after the additional calcination process, a plurality of internal pores formed by the hydroxyl group (OH - ) may exist in the dielectric material, and thus crystallinity may be lowered.

汽態法係藉由噴塗液相反應物以便進行汽化及冷凝來合成介電材料之方法。藉由使用該方法而合成的介電材料(例如BaTiO3)具有立方晶體結構且包括大量碳酸鋇(BaCO3)之二次相。 The vapor process is a method of synthesizing a dielectric material by spraying a liquid phase reactant for vaporization and condensation. A dielectric material (for example, BaTiO 3 ) synthesized by using this method has a cubic crystal structure and includes a large amount of a secondary phase of barium carbonate (BaCO 3 ).

本發明之一實施例提供一種製造鈦基介電材料的裝置,該裝置在高溫及高壓條件下操作。 One embodiment of the present invention provides an apparatus for making a titanium-based dielectric material that operates under conditions of high temperature and pressure.

本發明之另一實施例亦提供一種藉由在高溫及高壓條件下進行反應來製造鈦基介電材料的方法。 Another embodiment of the present invention also provides a method of producing a titanium-based dielectric material by performing a reaction under high temperature and high pressure conditions.

根據本發明之一態樣,提供一種製造鈦基介電材料的裝置,其中該裝置包括反應器,該反應器包括主體單元、蓋單元及圍繞該主體單元之至少一部分的發熱單元,其中該主體單元及該蓋單元中之至少一者包括鈦。 According to an aspect of the present invention, there is provided an apparatus for manufacturing a titanium-based dielectric material, wherein the apparatus comprises a reactor, the reactor comprising a body unit, a cover unit, and a heat generating unit surrounding at least a portion of the body unit, wherein the body At least one of the unit and the cover unit comprises titanium.

該反應器可為高壓釜。 The reactor can be an autoclave.

該裝置可進一步包括高壓水供應器,其對水加壓並將加壓水供應至主體單元中。 The apparatus may further include a high pressure water supply that pressurizes water and supplies pressurized water to the main unit.

鈦基介電材料可為鈦酸鋇化合物(CaxSryBa1-x-yTiO3,0x0.2,0y0.2,0x+y0.2)或鈦酸鉛(PbTiO3)。 The titanium-based dielectric material may be a barium titanate compound (Ca x Sr y Ba 1-xy TiO 3 , 0 x 0.2,0 y 0.2,0 x+y 0.2) or lead titanate (PbTiO 3 ).

根據本發明之另一態樣,提供一種製造鈦基介電材料的方法,其中該方法包括:向反應器中引入包括鈦的反應物;將反應器之溫度增加至250℃至400℃的範圍;將反應器之壓力增加至39.8巴至400巴的範圍;及將反應器之增加後的溫度及壓力保持一段時間tm,其中界定反應器之內部空間的各部分之至少一部分包括鈦。 According to another aspect of the present invention, there is provided a method of producing a titanium-based dielectric material, wherein the method comprises: introducing a reactant comprising titanium into a reactor; increasing a temperature of the reactor to a range of from 250 ° C to 400 ° C ; the pressure of the reactor increased to 39.8 bar to 400 bar range; and the temperature and pressure of the reactor is increased after a period of time t m, wherein at least a portion of the parts defining an internal space of the reactor comprises titanium.

反應物可進一步包括Ba、Pb、Ca及Sr中之至少一者。 The reactant may further include at least one of Ba, Pb, Ca, and Sr.

該段時間tm可在10小時至50小時的範圍內。 This period of time t m can range from 10 hours to 50 hours.

100‧‧‧製造裝置 100‧‧‧ manufacturing equipment

110‧‧‧反應器 110‧‧‧Reactor

111‧‧‧主體單元 111‧‧‧Main unit

112‧‧‧蓋單元 112‧‧‧ cover unit

113‧‧‧發熱單元 113‧‧‧Fever unit

114‧‧‧攪拌器 114‧‧‧Agitator

115‧‧‧溫度計 115‧‧‧ thermometer

116‧‧‧緊固螺栓 116‧‧‧ fastening bolts

117‧‧‧加壓水注射管 117‧‧‧ Pressurized water injection tube

120‧‧‧溫度控制器 120‧‧‧temperature controller

130‧‧‧高壓水供應器 130‧‧‧High pressure water supply

140‧‧‧儲水箱 140‧‧‧Water tank

WF‧‧‧供水管線 WF‧‧‧Water supply pipeline

本發明之上述及其他特徵及優勢可藉由參考所附圖式詳細描述本發明之示範性實施例而變得顯而易見,在該等圖式中:圖1為根據本發明之一實施例的製造鈦基介電材料的裝置的示意圖;圖2為根據本發明之一實施例(實例5)的製造鈦基介電材料的裝置所製備的鈦酸鋇顆粒的掃描電子顯微鏡(SEM)影像;圖3為根據習知技術(比較實例1)的製造鈦基介電材料的裝置所製備的鈦酸鋇顆粒的SEM影像;圖4為根據本發明之一實施例(實例5)的製造鈦基介電材料的裝置所製備的鈦酸鋇顆粒的裏特沃爾德(Rietveld)分析結果; 圖5為根據習知技術(比較實例1)的製造鈦基介電材料的裝置所製備的鈦酸鋇顆粒的Rietveld分析結果;圖6為根據本發明之一實施例(實例5)的製造鈦基介電材料的裝置所製備的鈦酸鋇顆粒的透射電子顯微鏡(TEM)影像;以及圖7為根據習知技術(比較實例1)的製造鈦基介電材料的裝置所製備的鈦酸鋇顆粒的TEM影像。 The above and other features and advantages of the present invention will become more apparent from the aspects of the embodiments of the invention illustrated herein Schematic diagram of a device for a titanium-based dielectric material; FIG. 2 is a scanning electron microscope (SEM) image of barium titanate particles prepared by a device for fabricating a titanium-based dielectric material according to an embodiment (Example 5) of the present invention; 3 is an SEM image of barium titanate particles prepared by a device for manufacturing a titanium-based dielectric material according to a conventional technique (Comparative Example 1); FIG. 4 is a process for producing a titanium-based medium according to an embodiment (Example 5) of the present invention. Rietveld analysis results of barium titanate particles prepared by a device of electrical material; 5 is a Rietveld analysis result of barium titanate particles prepared by a device for manufacturing a titanium-based dielectric material according to a conventional technique (Comparative Example 1); FIG. 6 is a process for producing titanium according to an embodiment (Example 5) of the present invention. Transmission electron microscope (TEM) image of barium titanate particles prepared by a device of a dielectric material; and FIG. 7 is a barium titanate prepared by a device for manufacturing a titanium-based dielectric material according to the prior art (Comparative Example 1) TEM image of the particles.

下文中將參考所附圖式更全面地描述根據本發明之一實施例的製造鈦基介電材料的裝置及其方法。 Hereinafter, an apparatus for manufacturing a titanium-based dielectric material and a method thereof according to an embodiment of the present invention will be described more fully with reference to the accompanying drawings.

圖1為根據本發明之一實施例的鈦基介電材料的製造裝置100的示意圖。 1 is a schematic view of a manufacturing apparatus 100 for a titanium-based dielectric material in accordance with an embodiment of the present invention.

根據本發明之一實施例的用於製造鈦基介電材料的製造裝置100包括反應器110、溫度控制器120、高壓水供應器130及儲水箱140。 A manufacturing apparatus 100 for manufacturing a titanium-based dielectric material according to an embodiment of the present invention includes a reactor 110, a temperature controller 120, a high pressure water supply 130, and a water storage tank 140.

反應器110包括主體單元111、蓋單元112、圍繞該主體單元111之至少一部分的發熱單元113及安裝在該主體單元111中的攪拌器114。 The reactor 110 includes a main body unit 111, a cover unit 112, a heat generating unit 113 surrounding at least a portion of the main body unit 111, and an agitator 114 installed in the main body unit 111.

主體單元111係添加包括鈦(Ti)的反應物(未圖示)且將其轉化為鈦基介電材料之處。 The body unit 111 is a place where a reactant (not shown) including titanium (Ti) is added and converted into a titanium-based dielectric material.

蓋單元112被佈置來覆蓋主體單元111且用來密封主體單元111。蓋單元112可藉由緊固螺栓116與主體單元111耦合。複數個貫穿孔(未圖示)形成於蓋單元112中,且攪拌器114、溫度計115、緊固螺栓116及加壓水注射管117可藉由該等貫穿孔安裝在反應器110中。 The cover unit 112 is arranged to cover the main body unit 111 and to seal the main body unit 111. The cover unit 112 can be coupled to the body unit 111 by a fastening bolt 116. A plurality of through holes (not shown) are formed in the cover unit 112, and the agitator 114, the thermometer 115, the fastening bolts 116, and the pressurized water injection pipe 117 can be installed in the reactor 110 through the through holes.

攪拌器114可安裝在主體單元111中以便攪拌器114之 一部分穿透蓋單元112。攪拌器114攪拌反應器110之內含物(未圖示)(諸如反應物),且因此促進內含物中的熱傳遞及質量傳遞。 The agitator 114 can be installed in the main body unit 111 so that the agitator 114 A portion penetrates the cover unit 112. The agitator 114 agitates the contents of the reactor 110 (not shown), such as reactants, and thus promotes heat transfer and mass transfer in the contents.

主體單元111、蓋單元112及攪拌器114中之至少一者包括鈦。例如,主體單元111之一部分及蓋單元112之一部分界定反應器110之內部空間,且曝露於該內部空間的攪拌器114之一部分可包括鈦。由於反應器110之每一部分包括鈦,因此當反應器110之內含物中包括強鹼時,該每一部分可具有高耐腐蝕性,且當鈦在高溫及高壓條件下執行長時間反應的過程中被腐蝕或熔化,因而鈦從反應器110之每一部分分離時,被分離的鈦變成包括鈦的反應物的一部分,而不是變成雜質。因此,如下所述,可將反應器110之溫度及壓力分別增加至250℃至400℃及39.8巴至400巴,且因此可獲得具有正方晶體結構、高結晶度及高密實度之鈦基介電材料。就此而言,在製造裝置100中製造的鈦基介電材料不需要額外煆燒過程。 At least one of the main body unit 111, the cover unit 112, and the agitator 114 includes titanium. For example, a portion of the body unit 111 and a portion of the lid unit 112 define an interior space of the reactor 110, and a portion of the agitator 114 exposed to the interior space may include titanium. Since each portion of the reactor 110 includes titanium, each portion of the reactor 110 can have high corrosion resistance when a strong base is included in the contents of the reactor 110, and a long-term reaction process when titanium is subjected to high temperature and high pressure. The medium is corroded or melted, so that when titanium is separated from each portion of the reactor 110, the separated titanium becomes a part of the reactant including titanium, instead of becoming an impurity. Therefore, as described below, the temperature and pressure of the reactor 110 can be increased to 250 ° C to 400 ° C and 39.8 to 400 bar, respectively, and thus a titanium-based medium having a square crystal structure, high crystallinity, and high density can be obtained. Electrical material. In this regard, the titanium-based dielectric material fabricated in the manufacturing apparatus 100 does not require an additional calcination process.

鈦基介電材料之習知製造裝置包括不銹鋼(例如SUS 304)高壓釜及置放在高壓釜中的鐵氟龍(Teflon)容器。Teflon容器用來防止不銹鋼高壓釜被pH值為13或更高的強鹼(即含有反應物的漿料)腐蝕,但Teflon容器在高於200℃的溫度下會熱變形。因此,用於鈦基介電材料的習知製造裝置之反應溫度局限於100℃至200℃的範圍,且反應壓力限於各反應溫度下的飽和水蒸汽壓力。因此,可產生具有立方晶體結構之鈦基介電材料。因此,為了藉由使用用於鈦基材料的習知製造裝置來製造具有正方晶體結構之鈦基介電材料,習知製造裝置所製造的具有立方結構的鈦基介電材料需要進 一步煆燒,且因此,製造過程可變得複雜,且製造成本可能增加。另外,即使當習知製造裝置所製造的具有立方晶體結構的鈦基介電材料被進一步煆燒時,仍因反應所生成的羥基(OH-)而形成複數個孔,且因此結晶度可能降低。 A conventional manufacturing apparatus for a titanium-based dielectric material includes a stainless steel (e.g., SUS 304) autoclave and a Teflon container placed in an autoclave. The Teflon container is used to prevent the stainless steel autoclave from being corroded by a strong base (i.e., a slurry containing the reactant) having a pH of 13 or higher, but the Teflon container is thermally deformed at a temperature higher than 200 °C. Therefore, the reaction temperature of the conventional manufacturing apparatus for a titanium-based dielectric material is limited to the range of 100 ° C to 200 ° C, and the reaction pressure is limited to the saturated water vapor pressure at each reaction temperature. Therefore, a titanium-based dielectric material having a cubic crystal structure can be produced. Therefore, in order to manufacture a titanium-based dielectric material having a square crystal structure by using a conventional manufacturing apparatus for a titanium-based material, a titanium-based dielectric material having a cubic structure manufactured by a conventional manufacturing apparatus requires further calcination. And, therefore, the manufacturing process can become complicated and the manufacturing cost may increase. In addition, even when a titanium-based dielectric material having a cubic crystal structure manufactured by a conventional manufacturing apparatus is further calcined, a plurality of pores are formed due to a hydroxyl group (OH - ) formed by the reaction, and thus crystallinity may be lowered. .

一般而言,具有正方晶體結構的鈦基介電材料為鐵電體,而具有立方晶體結構的鈦基介電材料為順電體。因此,伴有靜電電荷積聚功能的多層陶瓷電容器中所用的鈦基介電材料需擁有正方晶體結構(《陶瓷簡介》,W.D.Kingery等,阪東出版社,第436頁(Introduction to Ceramics,W.D.Kingery,et al.,Bando publication,pp.436))。 In general, a titanium-based dielectric material having a square crystal structure is a ferroelectric, and a titanium-based dielectric material having a cubic crystal structure is a paraelectric. Therefore, the titanium-based dielectric material used in the multilayer ceramic capacitor with the electrostatic charge accumulation function needs to have a square crystal structure ("Introduction to Ceramics", WD Kingery et al., Sakae Press, p. 436 (Introduction to Ceramics, WDKingery, Et al., Bando publication, pp. 436)).

發熱單元113被佈置來圍繞主體單元111之至少一部分以向主體單元111供應熱且增加反應器110的溫度。 The heat generating unit 113 is disposed to surround at least a portion of the body unit 111 to supply heat to the body unit 111 and increase the temperature of the reactor 110.

反應器110可為高壓釜,但不限於高壓釜。如本文中所使用,「高壓釜」一詞代表可在高溫及高壓條件下執行化學處理(諸如合成、分解、昇華、萃取等)的耐熱且耐壓力的容器。該容器中之溫度及壓力可分別保持在250℃至400℃的範圍中及39.8巴至400巴的範圍中。 Reactor 110 can be an autoclave, but is not limited to an autoclave. As used herein, the term "autoclave" refers to a heat resistant and pressure resistant container that can perform chemical treatments (such as synthesis, decomposition, sublimation, extraction, etc.) under high temperature and pressure conditions. The temperature and pressure in the vessel can be maintained in the range of 250 ° C to 400 ° C and in the range of 39.8 to 400 bar, respectively.

溫度控制器120控制發熱單元113的溫度。特定而言,溫度控制器120可對發熱單元113加熱或停止加熱以補償由溫度計115量測得的反應器110之實際溫度與反應器110之預定目標溫度(例如250℃至400℃)之間的差,從而控制反應器110的溫度。 The temperature controller 120 controls the temperature of the heat generating unit 113. In particular, the temperature controller 120 may heat or stop heating the firing unit 113 to compensate for the actual temperature of the reactor 110 as measured by the thermometer 115 and the predetermined target temperature of the reactor 110 (eg, 250 ° C to 400 ° C). The difference is thus controlled by the temperature of the reactor 110.

高壓水供應器130對水加壓並藉由供水管線WF將加壓水供應至主體單元111中。高壓水供應器130可包括高壓計量泵(未圖示)。高壓水供應器130可能不包括在製造裝置100中。 The high pressure water supplier 130 pressurizes water and supplies pressurized water to the main body unit 111 through the water supply line WF. The high pressure water supply 130 can include a high pressure metering pump (not shown). The high pressure water supply 130 may not be included in the manufacturing apparatus 100.

儲水箱140與高壓水供應器130連通以將水供應至高壓水供應器130。詳言之,高壓水供應器130將填充在儲水箱140中的水抽上來。填充在儲水箱140中的水可為純水。 The water storage tank 140 is in communication with the high pressure water supply 130 to supply water to the high pressure water supply 130. In detail, the high pressure water supply 130 draws up the water filled in the water storage tank 140. The water filled in the water storage tank 140 may be pure water.

用於鈦基介電材料之製造裝置100所製造的鈦基介電材料可具有正方晶體結構。 The titanium-based dielectric material produced by the manufacturing apparatus 100 for a titanium-based dielectric material may have a square crystal structure.

鈦基介電材料可為鈦酸鋇基化合物(CaxSryBa1-x-yTiO3,0x0.2,0y0.2,0x+y0.2)或鈦酸鉛(PbTiO3),但並不限於該兩者。 The titanium-based dielectric material may be a barium titanate-based compound (Ca x Sr y Ba 1-xy TiO 3 , 0 x 0.2,0 y 0.2,0 x+y 0.2) or lead titanate (PbTiO 3 ), but is not limited to the two.

下文中將詳細描述根據本發明之一實施例的一種製造鈦基介電材料的方法。 A method of fabricating a titanium-based dielectric material in accordance with an embodiment of the present invention will hereinafter be described in detail.

鈦基材料之製造方法包括:向配備有攪拌器的反應器中引入包括鈦的反應物(S1),將反應器之溫度增加至250℃至400℃的範圍(S2),將反應器之壓力增加至39.8巴至400巴的範圍(S3),將增加後的溫度及壓力保持一段時間tm(S4),及在四個前述步驟中之至少一者中使用攪拌器攪拌反應器之內含物(S5)。 The manufacturing method of the titanium-based material comprises: introducing a reactant (S1) including titanium into a reactor equipped with a stirrer, increasing the temperature of the reactor to a range of 250 ° C to 400 ° C (S2), and bringing the pressure of the reactor Increasing to a range of 39.8 bar to 400 bar (S3), maintaining the increased temperature and pressure for a period of time t m (S4), and agitating the reactor with a stirrer in at least one of the four aforementioned steps (S5).

反應器及攪拌器可分別與圖1中之反應器110及攪拌器114相同或類似。 The reactor and agitator can be the same or similar to reactor 110 and agitator 114 of Figure 1, respectively.

攪拌器及界定反應器之內部空間的各部分(即反應器之內壁、天花板及底部)中之至少一者包括鈦。就此而言,即使當攪拌器及界定反應器之內部空間的各部分在高溫及高壓下在長時間後變形,且因此鈦可從攪拌器及界定反應器之內部空間的各部分分離且混合至反應器之內含物中時,被混合的鈦仍然被用作反應物,而不是雜質。 At least one of the agitator and portions defining the interior space of the reactor (i.e., the inner wall, ceiling, and bottom of the reactor) comprises titanium. In this regard, even when the agitator and the portions defining the internal space of the reactor are deformed after a long period of time at a high temperature and a high pressure, and thus titanium can be separated from the agitator and portions defining the internal space of the reactor and mixed to The titanium being mixed is still used as a reactant rather than an impurity in the contents of the reactor.

在步驟S1中,將反應物與水(例如純水)混合併以漿料形式使用。因此,在反應器中產生之生成物(例如鈦基介 電材料)可以漿料形式獲得。反應物可進一步包括Ba、Pb、Ca及Sr中之至少一者。詳言之,反應物可包括異丙醇鈦(Ti[OCH(CH3)2]4)、四氯化鈦(TiCl4)、二氯氧鈦(TiOCl2)、二氧化鈦(TiO2)或以上各者之混合物,來作為鈦的來源。又,反應物可包括氫氧化鋇(Ba(OH)2.8H2O)、氫氧化鉛(Pb(OH)2)、氫氧化鈣(Ca(OH)2)、氫氧化鍶(Sr(OH)2)或以上各者之混合物,來作為額外組分。 In step S1, the reactants are mixed with water (for example pure water) and used in the form of a slurry. Therefore, the product produced in the reactor (for example, a titanium-based dielectric material) can be obtained in the form of a slurry. The reactant may further include at least one of Ba, Pb, Ca, and Sr. In particular, the reactants may include titanium isopropoxide (Ti[OCH(CH 3 ) 2 ] 4 ), titanium tetrachloride (TiCl 4 ), titanium oxychloride (TiOCl 2 ), titanium dioxide (TiO 2 ) or more. A mixture of each of them comes as a source of titanium. Further, the reactant may include barium hydroxide (Ba(OH) 2 .8H 2 O), lead hydroxide (Pb(OH) 2 ), calcium hydroxide (Ca(OH) 2 ), barium hydroxide (Sr(OH) 2 ) or a mixture of the above, as an additional component.

在步驟S2中,當反應器之溫度增加時,反應器之內含物中的水蒸發,且因此反應器之壓力在反應器之最終溫度下增加至飽和水蒸汽壓力。當反應器之溫度低於250℃時,合成的鈦基介電材料具有立方晶體結構。當反應器之溫度高於400℃時,反應器之氣密性降低,且反應器可被過度腐蝕。 In step S2, as the temperature of the reactor increases, the water in the contents of the reactor evaporates, and thus the pressure of the reactor increases to the saturated water vapor pressure at the final temperature of the reactor. When the temperature of the reactor is lower than 250 ° C, the synthesized titanium-based dielectric material has a cubic crystal structure. When the temperature of the reactor is higher than 400 ° C, the airtightness of the reactor is lowered, and the reactor can be excessively corroded.

在步驟S3中,反應器之壓力可為各反應溫度下的飽和水蒸汽壓力,或可藉由向已加壓至飽和水蒸汽壓力反應器中引入加壓水而增加至高於飽和水蒸汽壓力之壓力。當反應器之壓力低於39.8巴時,合成的鈦基介電材料中之孔的尺寸可增加,且因此結晶度可能降低。當反應器之壓力高於400巴時,反應器可被過度腐蝕,且反應器之使用壽命可能縮短。 In step S3, the pressure of the reactor may be the saturated water vapor pressure at each reaction temperature, or may be increased to be higher than the saturated water vapor pressure by introducing pressurized water into the pressurized steam pressure reactor. pressure. When the pressure of the reactor is lower than 39.8 bar, the size of the pores in the synthetic titanium-based dielectric material may increase, and thus the degree of crystallinity may decrease. When the pressure of the reactor is higher than 400 bar, the reactor can be excessively corroded and the service life of the reactor may be shortened.

在步驟S4中,將反應物轉化為鈦基介電材料。該段時間tm可為10小時至50小時。當該段時間tm小於10小時時,合成的鈦基介電材料之結晶度降低。當該段時間tm超過50小時時,合成的鈦基介電材料的顆粒分佈不均勻。 In step S4, the reactants are converted to a titanium based dielectric material. The period of time t m can be from 10 hours to 50 hours. When the period of time t m is less than 10 hours, the crystallinity of the synthesized titanium-based dielectric material is lowered. When the period of time t m exceeds 50 hours, the particle distribution of the synthesized titanium-based dielectric material is not uniform.

當反應器溫度、反應器壓力及該段時間tm在上述範圍(即步驟S2及步驟S4中的溫度範圍、步驟S3及步驟S4中的壓力範圍及步驟S4之保持時間)之內時,可獲得具有高結晶度及高密實度之鈦基介電材料。特定而言,在步驟S4 中最終產生之鈦基介電材料可具有正方晶體結構。 When the reactor temperature, the reactor pressure, and the period of time t m are within the above range (ie, the temperature range in step S2 and step S4, the pressure range in step S3 and step S4, and the holding time in step S4), A titanium-based dielectric material having high crystallinity and high density is obtained. In particular, the titanium-based dielectric material ultimately produced in step S4 may have a tetragonal crystal structure.

步驟S5可與步驟S1至步驟S4中之至少一者同時進行。在步驟S5中,促進反應器之內含物中的熱傳遞及質量傳遞,以便反應器中之幾乎任何地方可發生幾乎相同程度之反應,且因此生成物可為均質的。 Step S5 can be performed simultaneously with at least one of steps S1 to S4. In step S5, heat transfer and mass transfer in the contents of the reactor are promoted so that almost the same degree of reaction can occur almost anywhere in the reactor, and thus the product can be homogeneous.

下文中將參考以下實例更詳細地描述本發明,但此等實例僅用於說明性目的,且不欲限制本發明之範疇。 The invention is described in more detail below with reference to the following examples, but these examples are for illustrative purposes only and are not intended to limit the scope of the invention.

實例 Instance 比較實例1及比較實例2以及實例1至實例9 Comparative Example 1 and Comparative Example 2 and Examples 1 to 9

將過量純水添加至異丙醇鈦,來水解異丙醇鈦。將HNO3添加至異丙醇鈦之水解產物,且在60℃之溫度下對其進行熱處理10小時,來獲得1.2 M的TiO2溶膠。將Ba(OH)2.8H2O添加至TiO2溶膠來得到1.05之Ba/Ti莫耳比,且在100℃之溫度下對其進行熱處理10小時,來獲得BaTiO3漿料。過濾並濃縮BaTiO3漿料來得到為過濾前濃度的兩倍大的濃度。隨後,向圖1之用於鈦基介電材料的製造裝置中引入濃縮的BaTiO3漿料且在各條件下對其進行熱處理,該條件包括下表1中詳述之反應溫度、反應時間及反應壓力。因此,獲得鈦酸鋇(BaTiO3))。反應壓力本身係對應之反應溫度下的飽和水蒸汽壓力,或者係藉由用高壓水供應器(高壓計量泵,蘭博(LabAlliance),CP-24)向反應器(高壓釜,內部製造)供應純水而設定為高於對應之反應溫度下之飽和水蒸汽壓力的壓力。 Excess pure water was added to titanium isopropoxide to hydrolyze titanium isopropoxide. HNO 3 was added to the hydrolyzate of titanium isopropoxide, and it was heat-treated at 60 ° C for 10 hours to obtain a 1.2 M TiO 2 sol. Will Ba(OH) 2 . 8H 2 O was added to the TiO 2 sol to obtain a Ba/Ti molar ratio of 1.05, and it was heat-treated at a temperature of 100 ° C for 10 hours to obtain a BaTiO 3 slurry. The BaTiO 3 slurry was filtered and concentrated to give a concentration twice as high as the concentration before filtration. Subsequently, a concentrated BaTiO 3 slurry is introduced into the apparatus for manufacturing a titanium-based dielectric material of FIG. 1 and subjected to heat treatment under various conditions, including the reaction temperature, reaction time, and reaction time detailed in Table 1 below. Reaction pressure. Thus, barium titanate (BaTiO 3 )) was obtained. The reaction pressure itself is the saturated water vapor pressure at the corresponding reaction temperature, or is supplied to the reactor (autoclave, internal manufacturing) by a high pressure water supply (high pressure metering pump, LabAlliance, CP-24). Pure water is set to a pressure higher than the saturated water vapor pressure at the corresponding reaction temperature.

評估實例 Evaluation example

量測在比較實例1及比較實例2以及實例1至實例9中所製備的各鈦酸鋇之孔的平均直徑、晶體結構、結晶度(c/a)及尺寸,且結果在下表2中示出。 The average diameter, crystal structure, crystallinity (c/a) and size of the pores of each barium titanate prepared in Comparative Example 1 and Comparative Example 2 and Examples 1 to 9 were measured, and the results are shown in Table 2 below. Out.

藉由使用掃描電子顯微鏡(SEM,日本電子株式會社(Jeol),JSM-7400F)得到鈦酸鋇之影像,且隨後藉由使用影像分析程式(Image-pro Plus版本4.5)對掃描電子顯微鏡影像中所含的鈦酸鋇顆粒之長軸與短軸求平均值來獲得鈦酸鋇的平均直徑。在此種狀況下,所量測的鈦酸鋇顆粒之數量為800個或更多。又,在包括10°至150°之2θ、0.125°之掃描速率、200 mA之量測電流及40 kV之量測電壓的分析條件下,藉由使用X-射線繞射偵測器(XRD;日本理學電機株式會社(Rigaku),D/Max 2000系列)分析鈦酸鋇,且隨後使用軟體Rietan-2000藉由Rietveld法分析得到的X-射線繞射偵測器圖譜,來獲得鈦酸鋇之結晶度(c/a)。又,藉由來自 Rietveld分析結果的2θ為44°至46°之一點處的峰形(例如圖4之Pt峰及圖5之Pc峰)來判定晶體結構。特定而言,得出的結論是,當峰被明顯地分為兩個峰(如圖4之Pt峰)時,鈦酸鋇具有正方晶體結構,且當峰為一個峰(如圖5之Pc峰)時,鈦酸鋇具有立方晶體結構(H.Xu與L.Gao,材料快報第58期(2004),第1582頁(H.Xu and L.Gao,Materials Letters 58(2004),pp 1582))。又,藉由量測使用透射電子顯微鏡(TEM,日立(Hitachi),CM200)所得到的鈦酸鋇影像中的所有個別顆粒的孔來判定鈦酸鋇之孔的尺寸。 An image of barium titanate was obtained by using a scanning electron microscope (SEM, JEOL, JSM-7400F), and then in a scanning electron microscope image by using an image analysis program (Image-pro Plus version 4.5) The long axis and the minor axis of the barium titanate particles contained are averaged to obtain an average diameter of barium titanate. In this case, the amount of the barium titanate particles measured is 800 or more. Further, under the analysis conditions including a 2θ of 10° to 150°, a scan rate of 0.125°, a current of 200 mA, and a measurement voltage of 40 kV, by using an X-ray diffraction detector (XRD; Rigaku, D/Max 2000 series) analyzed barium titanate, and then used the Rietan-2000 software to analyze the X-ray diffraction detector spectrum obtained by the Rietveld method to obtain barium titanate. Crystallinity (c/a). Further, the crystal structure was determined by the peak shape at the point where the 2θ of the Rietveld analysis was 44 to 46 (for example, the P t peak of Fig. 4 and the P c peak of Fig. 5). In particular, it is concluded that when the peak is clearly divided into two peaks (such as the P t peak in Figure 4), barium titanate has a tetragonal crystal structure, and when the peak is a peak (as shown in Fig. 5) peak P c), the barium titanate having a cubic crystal structure (H.Xu and L.Gao, the material of Letters 58 (2004), pp. 1582 (H.Xu and L.Gao, materials Letters 58 (2004), Pp 1582)). Further, the size of the pores of the barium titanate was determined by measuring the pores of all the individual particles in the barium titanate image obtained by a transmission electron microscope (TEM, Hitachi, CM200).

實例5及比較實例1中製備的鈦酸鋇之SEM影像分別在圖2及圖3中示出。又,實例5及比較實例1中製備的鈦酸鋇的Rietveld分析結果分別在圖4及圖5中示出。又,實例5及比較實例1中製備的鈦酸鋇之TEM影像分別在圖6及圖7中示出。 The SEM images of the barium titanate prepared in Example 5 and Comparative Example 1 are shown in Figs. 2 and 3, respectively. Further, the results of Rietveld analysis of the barium titanate prepared in Example 5 and Comparative Example 1 are shown in Figs. 4 and 5, respectively. Further, the TEM images of the barium titanate prepared in Example 5 and Comparative Example 1 are shown in Figs. 6 and 7, respectively.

參照表2,實例1至實例9中製備的鈦酸鋇具有正方晶體結構,而比較實例1及比較實例2中製備的鈦酸鋇具有立方晶體結構。另外,與比較實例1及比較實例2中製備的鈦酸鋇相比,實例1至實例9中製備的鈦酸鋇具有較高的結晶度及較小的孔尺寸。根據表2之結果可確認的是,與比較實例1及比較實例2中製備的鈦酸鋇相比,實例1至實例9中製備的鈦酸鋇具有更好的介電性質、更高的結晶度及更高的密實度。 Referring to Table 2, the barium titanate prepared in Examples 1 to 9 had a tetragonal crystal structure, and the barium titanate prepared in Comparative Example 1 and Comparative Example 2 had a cubic crystal structure. In addition, the barium titanate prepared in Examples 1 to 9 had higher crystallinity and a smaller pore size than the barium titanate prepared in Comparative Example 1 and Comparative Example 2. According to the results of Table 2, it was confirmed that the barium titanate prepared in Examples 1 to 9 had better dielectric properties and higher crystallization than the barium titanate prepared in Comparative Example 1 and Comparative Example 2. Degree and higher density.

而且,參照圖2及圖3以及圖6及圖7,與比較實例1中製備的鈦酸鋇相比,實例5中製備的鈦酸鋇具有更小之平均直徑。 Further, referring to FIGS. 2 and 3 and FIGS. 6 and 7, the barium titanate prepared in Example 5 had a smaller average diameter than the barium titanate prepared in Comparative Example 1.

根據本發明之一實施例,提供一種製造鈦基介電材料的裝置及其方法,來獲得具有高結晶度及低雜質含量且具有窄粒度分佈之奈米尺寸(例如0.02 μm至0.5 μm)的鈦基介電材料。 According to an embodiment of the present invention, an apparatus for manufacturing a titanium-based dielectric material and a method thereof are provided to obtain a nanometer size (for example, 0.02 μm to 0.5 μm) having a high crystallinity and a low impurity content and having a narrow particle size distribution. Titanium based dielectric material.

又,根據製造鈦基介電材料的裝置及其方法,可在無需單獨的煆燒過程之情況下獲得具有高結晶正方結構之鈦基介電材料。 Further, according to the apparatus for manufacturing a titanium-based dielectric material and the method thereof, a titanium-based dielectric material having a high crystal square structure can be obtained without a separate honing process.

雖然已參考本發明之示範性實施例特定地示出且描述本發明,但一般熟習此項技術者應瞭解,在不脫離以下申請專利範圍所界定的本發明之精神及範疇的情況下,可進行形式及細節上的多種變更。 Although the present invention has been particularly shown and described with reference to the exemplary embodiments of the present invention, it will be understood by those skilled in the art Make a variety of changes in form and detail.

100‧‧‧製造裝置 100‧‧‧ manufacturing equipment

110‧‧‧反應器 110‧‧‧Reactor

111‧‧‧主體單元 111‧‧‧Main unit

112‧‧‧蓋單元 112‧‧‧ cover unit

113‧‧‧發熱單元 113‧‧‧Fever unit

114‧‧‧攪拌器 114‧‧‧Agitator

115‧‧‧溫度計 115‧‧‧ thermometer

116‧‧‧緊固螺栓 116‧‧‧ fastening bolts

117‧‧‧加壓水注射管 117‧‧‧ Pressurized water injection tube

120‧‧‧溫度控制器 120‧‧‧temperature controller

130‧‧‧高壓水供應器 130‧‧‧High pressure water supply

140‧‧‧儲水箱 140‧‧‧Water tank

WF‧‧‧供水管線 WF‧‧‧Water supply pipeline

Claims (6)

一種製造鈦基介電材料的裝置,該裝置包含一反應器,其包含一主體單元、一蓋單元、圍繞該主體單元之至少一部分的一發熱單元及一高壓水供應器,其對水加壓並將該加壓水供應至該主體單元中,其中該主體單元及該蓋單元中之至少一者包括鈦。 An apparatus for manufacturing a titanium-based dielectric material, the apparatus comprising a reactor comprising a body unit, a cover unit, a heat generating unit surrounding at least a portion of the body unit, and a high pressure water supply for pressurizing water The pressurized water is supplied to the body unit, wherein at least one of the body unit and the cover unit comprises titanium. 如請求項1所記載之製造鈦基介電材料的裝置,其中該反應器為一高壓釜。 The apparatus for producing a titanium-based dielectric material according to claim 1, wherein the reactor is an autoclave. 如請求項1所記載之製造鈦基介電材料的裝置,其中該鈦基介電材料為鈦酸鋇化合物(CaxSryBa1-x-yTiO3,0x0.2,0y0.2,0x+y0.2)或鈦酸鉛(PbTiO3)。 The apparatus for producing a titanium-based dielectric material according to claim 1, wherein the titanium-based dielectric material is a barium titanate compound (Ca x Sr y Ba 1-xy TiO 3 , 0 x 0.2,0 y 0.2,0 x+y 0.2) or lead titanate (PbTiO 3 ). 一種製造鈦基介電材料的方法,該方法包含:向一反應器中引入包含鈦的反應物;將該反應器之溫度增加至250℃至400℃的一範圍;將該反應器之壓力增加至39.8巴至400巴的一範圍;以及將該增加後的溫度及壓力保持10小時至50小時;界定該反應器之一內部空間的各部分之至少一部分包含鈦。 A method of producing a titanium-based dielectric material, the method comprising: introducing a reactant comprising titanium into a reactor; increasing the temperature of the reactor to a range of from 250 ° C to 400 ° C; increasing the pressure of the reactor a range of from 39.8 to 400 bar; and maintaining the increased temperature and pressure for from 10 hours to 50 hours; at least a portion of the portions defining one of the interior spaces of the reactor comprising titanium. 如請求項4所記載之製造鈦基介電材料的方法,其中該反應物進一步包含Ba、Pb、Ca及Sr中之至少一者。 The method of producing a titanium-based dielectric material according to claim 4, wherein the reactant further comprises at least one of Ba, Pb, Ca, and Sr. 如請求項4所記載之製造鈦基介電材料的方法,其中該鈦基介電材料為鈦酸鋇化合物(CaxSryBa1-x-yTiO3,0x0.2,0y0.2,0x+y0.2)或鈦酸鉛(PbTiO3)。 The method for producing a titanium-based dielectric material according to claim 4, wherein the titanium-based dielectric material is a barium titanate compound (Ca x Sr y Ba 1-xy TiO 3 , 0 x 0.2,0 y 0.2,0 x+y 0.2) or lead titanate (PbTiO 3 ).
TW102123455A 2012-07-02 2013-07-01 Apparatus and method for manufacturing ti-based dielectric material TWI571451B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120071972A KR101771727B1 (en) 2012-07-02 2012-07-02 Apparatus and method for manufacturing Ti-based dielectric material

Publications (2)

Publication Number Publication Date
TW201402518A TW201402518A (en) 2014-01-16
TWI571451B true TWI571451B (en) 2017-02-21

Family

ID=49882173

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102123455A TWI571451B (en) 2012-07-02 2013-07-01 Apparatus and method for manufacturing ti-based dielectric material

Country Status (3)

Country Link
KR (1) KR101771727B1 (en)
TW (1) TWI571451B (en)
WO (1) WO2014007439A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169046A (en) * 2004-12-16 2006-06-29 Tdk Corp Hydrothermal synthesis apparatus, method for manufacturing titanate powder, titanate powder, and laminated ceramic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590661B2 (en) * 1999-08-31 2010-12-01 パナソニック株式会社 Hermetic compressor
KR100395512B1 (en) * 2000-09-08 2003-08-25 한국과학기술연구원 Method for Fabrication of Easily Sinterable Ultrafine BaTiO3 Powders
KR100953187B1 (en) * 2007-11-22 2010-04-15 한국표준과학연구원 Barium titanate nanoparticles and method for preparing the same
JP2011073947A (en) * 2009-10-02 2011-04-14 Fuji Titan Kogyo Kk Multiple oxide and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169046A (en) * 2004-12-16 2006-06-29 Tdk Corp Hydrothermal synthesis apparatus, method for manufacturing titanate powder, titanate powder, and laminated ceramic capacitor

Also Published As

Publication number Publication date
WO2014007439A1 (en) 2014-01-09
KR101771727B1 (en) 2017-08-28
KR20140006296A (en) 2014-01-16
TW201402518A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
CN100410180C (en) Method of producing a powder, powder, and multilayered ceramic capacitor using the same
Chen et al. Preparation and properties of barium titanate nanopowder by conventional and high-gravity reactive precipitation methods
CN100344579C (en) Ceramic powder with perofskite structure and its producing method, electronic parts and capacitor
CN105271378A (en) Preparation method of tetragonal barium titanate with high tetragonal rate
JP4743481B2 (en) Titanium-containing perovskite type compound and method for producing the same
Wieczorek-Ciurowa et al. Effects of reagents’ nature on mechanochemical synthesis of calcium titanate
JP4102872B2 (en) High crystalline barium titanate ultrafine particles and method for producing the same
Shen et al. Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method
JP5932397B2 (en) Method for producing ceramic powder having perovskite structure and ceramic powder having perovskite structure produced thereby
JP5375838B2 (en) Method for producing perovskite complex oxide powder
US7001585B2 (en) Method of making barium titanate
Tzeng et al. Template‐free synthesis of hollow porous strontium titanate particles
TWI571451B (en) Apparatus and method for manufacturing ti-based dielectric material
Reveron et al. Supercritical fluid route for synthesizing crystalline barium strontium titanate nanoparticles
JP2006169046A (en) Hydrothermal synthesis apparatus, method for manufacturing titanate powder, titanate powder, and laminated ceramic capacitor
CN107431123A (en) The manufacture method of PTZT piezoelectric films and its piezoelectric film formation fluid composition
JP5216186B2 (en) Method for producing highly crystalline mixed metal oxide fine powder
RU2713141C1 (en) Method of producing highly pure fine-crystal barium titanate
KR101771744B1 (en) Method for manufacturing dielectric material with high-tetragonality
KR101546603B1 (en) Manufacturing method of the zirconium dioxide powders
Sadeghzadeh-Attar et al. Structure and dielectric behaviour of Sr-modified Bi4Si3O12 thin films prepared via sol gel method
Agarwal Preparation and Characterization of Barium Strontium Titanate Ceramics by Gel-Combustion Technique.
KR20110010182A (en) Manufacturing method of oxide nano powder having perovskite structure
JP2015205807A (en) Method for producing barium titanate particle
Kegler et al. Synthesis of BaHfO3 through with reduction of KOH