TWI570893B - Memory architecture of 3d array with interleaved control structures - Google Patents

Memory architecture of 3d array with interleaved control structures Download PDF

Info

Publication number
TWI570893B
TWI570893B TW103126694A TW103126694A TWI570893B TW I570893 B TWI570893 B TW I570893B TW 103126694 A TW103126694 A TW 103126694A TW 103126694 A TW103126694 A TW 103126694A TW I570893 B TWI570893 B TW I570893B
Authority
TW
Taiwan
Prior art keywords
stack
stacks
semiconductor material
stripe
gate
Prior art date
Application number
TW103126694A
Other languages
Chinese (zh)
Other versions
TW201606993A (en
Inventor
李冠儒
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW103126694A priority Critical patent/TWI570893B/en
Publication of TW201606993A publication Critical patent/TW201606993A/en
Application granted granted Critical
Publication of TWI570893B publication Critical patent/TWI570893B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

具有交錯之控制結構的三維陣列記憶體構造 Three-dimensional array memory structure with interleaved control structure

本發明是有關於一種高密度記憶體裝置,且特別是有關於一種記憶體裝置,其中配置有記憶胞的數個面至三維陣列中。 The present invention relates to a high density memory device, and more particularly to a memory device in which a plurality of faces of a memory cell are disposed in a three dimensional array.

由於積體電路中裝置的臨界尺寸微縮化已至一般記憶胞技術的極限,設計者不斷尋求堆疊數個記憶胞面(plane)的技術,藉此達到更大的儲存容量,並降低每位元的成本。 Since the critical size miniaturization of devices in integrated circuits has reached the limit of general memory cell technology, designers are constantly seeking to stack several memory cell planes to achieve greater storage capacity and lower per bit. the cost of.

第1圖為三維積體電路裝置的立體圖,其使用垂直閘結構。第1圖中的裝置100包括在積體電路基底上,由導電條紋與絕緣條紋在Z方向上交錯構成的堆疊。 Fig. 1 is a perspective view of a three-dimensional integrated circuit device using a vertical gate structure. The apparatus 100 of Fig. 1 includes a stack of conductive stripes and staggered stripes in the Z direction on the integrated circuit substrate.

第1圖所示的例子中,多層陣列形成在絕緣層上,並包括數個導電材料的結構,例如數個字元線125-1 WL至125-N WL,正交在堆疊上,並與堆疊共形。數面(例如112、113、114、與115)中導電條紋堆疊中的導電條紋可包括記憶體元件的通道,且結構(例如125-1 WL至125-N WL)中的結構可配置為字元線與串列選擇線,包括記憶體元件的垂直閘。相同面中的導電條紋藉 由連接元件(例如102B、103B、104B、與105B)的堆疊電性耦接在一起。 In the example shown in FIG. 1, the multilayer array is formed on the insulating layer and includes a structure of a plurality of conductive materials, such as a plurality of word lines 125-1 WL to 125-N WL, orthogonally stacked on the stack, and Stack conformal. Conductive stripes in a stack of conductive stripes in a number of faces (eg, 112, 113, 114, and 115) may include channels of memory elements, and structures in structures (eg, 125-1 WL to 125-N WL) may be configured as words The meta-line and the serial selection line, including the vertical gate of the memory element. Conductive stripes in the same plane Electrically coupled by a stack of connecting elements (eg, 102B, 103B, 104B, and 105B).

包括連接元件112A、113A、114A、及115A之堆疊的接觸結構終止導電條紋,例如堆疊中的導電條紋112、113、114、及115。這些連接元件112A、113A、114A、及115A電性連接至不同的位元線以連接至解碼電路,以在陣列中選擇面。連接元件112A、113A、114A、及115A可同時圖案化,其中定義出堆疊。 The contact structure including the stack of connection elements 112A, 113A, 114A, and 115A terminates conductive stripes, such as conductive stripes 112, 113, 114, and 115 in the stack. These connection elements 112A, 113A, 114A, and 115A are electrically coupled to different bit lines for connection to a decoding circuit to select faces in the array. The connecting elements 112A, 113A, 114A, and 115A can be simultaneously patterned, with a stack defined.

連接元件(例如102B、103B、104B、與105B)的堆疊藉由絕緣層(未顯示)在Z方向上彼此分開,並終止導電條紋,例如導電條紋102、103、104、與105。絕緣層可包括絕緣材料,如述,用作配置在Z方向上導電條紋之間的絕緣條紋。連接元件(例如102B、103B、104B、及105B)之堆疊中的數個介層連接體(例如172、173、174、與175),從連接體表面延伸至個別的連接元件。連接體表面之頂上的圖案化導電線可連接至各別的介層連接體。介層連接體172、173、174、175電性連接連接元件102B、103B、104B、及105B至圖案化的導電線中的不同位元線,例如金屬層ML3,用以連接至解碼電路以在陣列選擇面。連接元件102B、103B、104B、及105B的堆疊可同時圖案化,其中定義出數個堆疊。 The stack of connecting elements (e.g., 102B, 103B, 104B, and 105B) is separated from one another in the Z direction by an insulating layer (not shown) and terminates conductive stripes, such as conductive strips 102, 103, 104, and 105. The insulating layer may include an insulating material, as described, for use as an insulating stripe disposed between the conductive stripes in the Z direction. A plurality of via connectors (e.g., 172, 173, 174, and 175) in a stack of connecting elements (e.g., 102B, 103B, 104B, and 105B) extend from the surface of the connector to individual connecting elements. The patterned conductive lines on top of the surface of the connector can be connected to respective via connectors. The via connectors 172, 173, 174, 175 are electrically connected to the connection elements 102B, 103B, 104B, and 105B to different bit lines in the patterned conductive lines, such as the metal layer ML3, for connection to the decoding circuit to The array selects the face. The stack of connecting elements 102B, 103B, 104B, and 105B can be simultaneously patterned, with several stacks defined.

導電條紋的堆疊耦接至連接元件112A、113A、114A、及115A的堆疊,或連接元件102B、103B、104B、及105B 的堆疊,而非同時兩者。導電條紋112、113、114、及115的堆疊一個末端結束在連接元件112A、113A、114A、及115A的堆疊,穿過SSL閘極結構119、接地選擇線(GSL)126、字元線125-1 WL至125-N WL、接地選擇線(GSL)127,且另一末端結束在源極線128。導電條紋112、113、114、及115的堆疊並未到達連接元件102B、103B、104B、及105B的堆疊。 The stack of conductive stripes is coupled to a stack of connecting elements 112A, 113A, 114A, and 115A, or connecting elements 102B, 103B, 104B, and 105B Stacking, not both. The stack of conductive stripes 112, 113, 114, and 115 ends at a stack of connecting elements 112A, 113A, 114A, and 115A, passing through SSL gate structure 119, ground select line (GSL) 126, word line 125- 1 WL to 125-N WL, ground select line (GSL) 127, and the other end ends at source line 128. The stack of conductive stripes 112, 113, 114, and 115 does not reach the stack of connecting elements 102B, 103B, 104B, and 105B.

導電條紋的堆疊102、103、104、與105一個末端結束在連接元件102B、103B、104B、及105B的堆疊,穿過SSL閘極結構109、接地選擇線(GSL)127、字元線125-N WL至125-1 WL、接地選擇線(GSL)126,且另一末端結束在源極線(在圖中的其他部分)。導電條紋102、103、104、與105的堆疊並未到達連接元件112A、113A、114A、及115A的堆疊。 Stacks of conductive strips 102, 103, 104, and 105 end at a stack of connecting elements 102B, 103B, 104B, and 105B, passing through SSL gate structure 109, ground select line (GSL) 127, word line 125- N WL to 125-1 WL, ground select line (GSL) 126, and the other end ends at the source line (in other parts of the figure). The stack of conductive stripes 102, 103, 104, and 105 does not reach the stack of connecting elements 112A, 113A, 114A, and 115A.

記憶層配置在導電條紋堆疊中導電條紋112至115與102至105的表面與導電材料的結構之間的交叉點處的界面區,導電材料的結構例如字元線125-1 WL至125-N WL。特別是,記憶層形成在堆疊中導電條紋的側表面上。記憶體元件設置在堆疊之側表面與字元線之間的交叉點處的界面區中。接地選擇線(GSL)126與127共形於堆疊,類似字元線。 The memory layer is disposed in an interface region at an intersection between the surface of the conductive strips 112 to 115 and 102 to 105 and the structure of the conductive material in the conductive stripe stack, such as word lines 125-1 WL to 125-N WL. In particular, the memory layer is formed on the side surface of the conductive stripes in the stack. The memory element is disposed in an interface region at an intersection between the side surface of the stack and the word line. Ground select lines (GSL) 126 and 127 are conformal to the stack, similar to word lines.

每個導電條紋的堆疊的一個末端結束在連接元件,且另一末端結束在源極線。舉例來說,導電條紋112、113、114、及115的堆疊的一個末端結束在連接元件112A、113A、114A、及115A,且另一末端結束在源極線128。在鄰近圖的末端處,其 他每個導電條紋的堆疊結束在連接元件102B、103B、104B、及105B,且其他每個導電條紋的堆疊結束在分開的源極線。在遠離圖的末端處,每個其他導電條紋的堆疊結束在連接元件112A、113A、114A、及115A,且其他每個導電條紋的堆疊結束在分開的源極線。 One end of each stack of conductive stripes ends at the connecting element and the other end ends at the source line. For example, one end of the stack of conductive stripes 112, 113, 114, and 115 ends at connection elements 112A, 113A, 114A, and 115A, and the other end ends at source line 128. At the end of the adjacent map, His stack of conductive stripes ends at connection elements 102B, 103B, 104B, and 105B, and the stack of each of the other conductive stripes ends at a separate source line. At a distance away from the end of the figure, the stack of each of the other conductive stripes ends at the connecting elements 112A, 113A, 114A, and 115A, and the stack of each of the other conductive stripes ends at a separate source line.

位元線與串列選擇閘極結構形成在金屬層ML1、ML2、與ML3。位元線耦接至面解碼器(未顯示)。串列選擇閘極結構耦接至串列選擇線解碼器(未顯示)。 A bit line and a tandem selection gate structure are formed in the metal layers ML1, ML2, and ML3. The bit line is coupled to a surface decoder (not shown). The serial select gate structure is coupled to a tandem select line decoder (not shown).

接地選擇線(GSL)126與127可在定義字元線125-1 WL至125-N WL的相同步驟中圖案化。接地選擇裝置形成在堆疊的表面與接地選擇線GSL 126與127之間的交叉點處。SSL閘極結構119與109可在定義字元線125-1 WL至125-N WL的相同步驟中圖案化。串列選擇裝置形成在堆疊的表面與串列選擇(SSL)閘極結構119與109之間的交叉點處。這些裝置耦接至解碼電路用以在陣列中選擇特定堆疊中的串列。 Ground select lines (GSL) 126 and 127 may be patterned in the same step of defining word lines 125-1 WL through 125-N WL. A ground selection device is formed at the intersection between the surface of the stack and the ground selection lines GSL 126 and 127. The SSL gate structures 119 and 109 can be patterned in the same step of defining the word lines 125-1 WL to 125-N WL. A tandem selection device is formed at the intersection between the surface of the stack and the tandem select (SSL) gate structures 119 and 109. These devices are coupled to decoding circuitry for selecting a string in a particular stack in the array.

為了提高記憶胞的數量,第1圖的記憶體陣列的額外例可沿Y方向重複配置。為了連接第1圖的記憶體陣列的額外例,形成在金屬層ML3處的位元線沿Y方向延伸。這些形成在金屬層ML3處沿伸的位元線連接至第1圖的記憶體陣列的額外例中記憶胞的不同面。未了達成延伸位元線與記憶胞之不同面之間的連接,連接元件112A、113A、114A、及115A的額外例與連接元件102B、103B、104B、及105B的額外例係沿著記憶體陣列的 額外例重複配置。這些連接元件112A、113A、114A、及115A與連接元件102B、103B、104B、及105B的數個例子耗費緻密的記憶體陣列區域的面積。結果,降低了陣列效率。因此期望能藉由減少連接元件在緻密的記憶體陣列區域中所佔據的面積,來提高陣列效率。 In order to increase the number of memory cells, an additional example of the memory array of Fig. 1 can be repeatedly arranged in the Y direction. In order to connect the additional example of the memory array of FIG. 1, the bit lines formed at the metal layer ML3 extend in the Y direction. These are formed on the different faces of the memory cells in the additional example of the memory array of Fig. 1 which is formed along the extended bit line at the metal layer ML3. The connection between the extension bit line and the different faces of the memory cell is not achieved, and additional examples of connection elements 112A, 113A, 114A, and 115A and additional examples of connection elements 102B, 103B, 104B, and 105B are along the memory. Array Additional examples are repeated. Several examples of these connection elements 112A, 113A, 114A, and 115A and connection elements 102B, 103B, 104B, and 105B consume the area of the dense memory array area. As a result, the efficiency of the array is reduced. It is therefore desirable to increase array efficiency by reducing the area occupied by the connecting elements in the dense memory array region.

其他點則是傳送解碼的位址訊號至三維陣列中特定記憶胞或記憶胞組的複雜性。第1圖中SSL閘極結構109與119從數個導電條紋堆疊中選擇特定的堆疊。連接元件112A、113A、114A、及115A與連接元件102B、103B、104B、及105B從數個導電條紋堆疊中選擇特定的面。字元線125-1至125-N沿導電條紋堆疊選擇特定位置。因此期望能簡化傳送解碼的位址訊號至三維振列中特定的記憶胞或記憶胞組的記憶體構造。 Other points are the complexity of transmitting the decoded address signal to a particular memory cell or group of memory cells in the three-dimensional array. The SSL gate structures 109 and 119 in Figure 1 select a particular stack from a plurality of conductive stripe stacks. The connecting elements 112A, 113A, 114A, and 115A and the connecting elements 102B, 103B, 104B, and 105B select a particular face from a plurality of conductive stripe stacks. The word lines 125-1 to 125-N select a specific position along the conductive stripe stack. It is therefore desirable to simplify the transfer of the decoded address signal to the memory structure of a particular memory cell or group of memory cells in the three dimensional oscillator.

本技術的其中一個概念為記憶體裝置,包括)三維垂直閘極NAND陣列、數個階層選擇閘線(有時稱作SSL閘線)在NAND陣列的個別階層中、及區塊選擇閘線(有時稱作GSL閘線)。 One of the concepts of the present technology is a memory device, including a three-dimensional vertical gate NAND array, several hierarchical selection gate lines (sometimes referred to as SSL gate lines) in individual levels of the NAND array, and block selection gate lines ( Sometimes called the GSL gate line).

NAND陣列包括數個階層,該些階層各包括數個NAND串列,該些NAND串列於一個末端上具有一第一開關,並於一相反末端上具與一第二開關,該第一開關連接該串列至一共用的源極結構,該第二開關連接該串列至一對應的位元線。開關可為電晶體。 The NAND array includes a plurality of levels, each of the plurality of NAND strings comprising a plurality of NAND strings, the NAND strings having a first switch at one end and a second switch at an opposite end, the first switch The string is connected to a common source structure, and the second switch connects the string to a corresponding bit line. The switch can be a transistor.

數個階層選擇閘線於該NAND陣列的數個分別階層 中,其中該些階層選擇閘線中的該些階層選擇閘線連接至該NAND陣列的該些分別階層中該些NAND串列的該些第二開關。區塊選擇閘線,連接至該些階層中該些NAND串列的該些第一開關 Several levels select the gate line for several separate levels of the NAND array The plurality of hierarchical selection gates of the plurality of hierarchical selection gates are connected to the second switches of the plurality of NAND strings of the respective layers of the NAND array. a block selection gate line connected to the first switches of the NAND strings in the hierarchy

一實施例中,該三維垂直閘NAND陣列包括數個半導體材料條紋的第一堆疊,該些階層選擇閘線包括數個閘材料條紋的第二堆疊,該些第一堆疊係交錯且共平面該些第二堆疊。 In one embodiment, the three-dimensional vertical gate NAND array includes a first stack of stripes of semiconductor material, the hierarchical selection gate lines including a second stack of stripes of gate material, the first stacks being staggered and coplanar Some second stacks.

一實施例中,該三維垂直閘NAND陣列具有數個記憶胞,位於數個堆疊中之半導體條紋與數個字元線的數個交叉點中。 In one embodiment, the three-dimensional vertical gate NAND array has a plurality of memory cells located in a plurality of intersections of semiconductor stripes and a plurality of word lines in a plurality of stacks.

本技術的其中一個概念為記憶體裝置,其包括一NAND串列,位於一半導體材料條紋中;數個第一字元線配置在該NAND串列上,及一對閘材料條紋。該些第一字元線沿一第一方向延伸。對閘材料條紋與該NAND串列共平面,並沿一第二方向在該NAND串列的兩側延伸。該第二方向垂直於該第一方向。該對閘材料條紋配置為用以該半導體材料條紋部分的一閘極。 One of the concepts of the present technology is a memory device that includes a NAND string in a strip of semiconductor material; a plurality of first word lines are disposed on the NAND string, and a pair of gate material stripes. The first word lines extend in a first direction. The gate material stripes are coplanar with the NAND string and extend along both sides of the NAND string in a second direction. The second direction is perpendicular to the first direction. The pair of gate material stripes are configured as a gate for the stripe portion of the semiconductor material.

一實施例更包括控制電路,其提供一偏壓安排至該對閘材料條紋以作用為用以該半導體材料條紋的該部分的該閘極。 An embodiment further includes a control circuit that provides a biasing arrangement to the pair of gate material strips to act as the gate for the portion of the strip of semiconductor material.

本技術的其中一個概念為記憶體裝置,其包括數個半導體材料條紋的第一堆疊,數個第一字元線;數個閘材料條紋的第二堆疊,其交錯並共平面於該些第一堆疊,及控制電路。該 些第二堆疊配置為用以該些第一堆疊的數個閘極。 One of the concepts of the present technology is a memory device that includes a first stack of stripes of semiconductor material, a plurality of first word lines, and a second stack of stripes of gate material that are staggered and coplanar to the first A stack, and control circuit. The The second stacks are configured as a plurality of gates for the first stacks.

一實施例更包括控制電路,其提供數個偏壓安排至該些第二堆疊,以控制該些第二堆疊用作該些第一堆疊的數個閘極。 An embodiment further includes a control circuit that provides a plurality of bias arrangements to the second stacks to control the plurality of gates to serve as the plurality of gates of the first stack.

該些字元線正交在該些第一堆疊上,且具有共形於該些第一堆疊的數個表面,使得一記憶體元件的三維陣列建立在該些第一堆疊的數個表面與該些字元線之間的數個交叉點處。 The word lines are orthogonal to the first stacks and have a plurality of surfaces conformal to the first stacks such that a three-dimensional array of memory elements is established on a plurality of surfaces of the first stack A number of intersections between the word lines.

一實施例中,該些半導體材料條紋的第一堆疊包括:一第一長度,其中該些字元線係沿著該第一長度正交於其上;以及鄰近該第一長度的一第二長度。該第二長度上沒有配置正交該第二長度的字元線。該些第二堆疊沿著至少部分該第二長度,而未沿著該第一長度,交錯於該些第一堆疊。 In one embodiment, the first stack of strips of semiconductor material includes: a first length, wherein the word lines are orthogonal thereto along the first length; and a second adjacent to the first length length. No word line orthogonal to the second length is disposed on the second length. The second stacks are staggered along the first stack along at least a portion of the second length, and not along the first length.

一實施例更包括數個閘材料條紋的一橫向堆疊於基底上。該橫向堆疊垂直於該些第二堆疊。該些第二堆疊延伸自該些閘材料條紋的該橫向堆疊。 An embodiment further includes a lateral stack of a plurality of gate material stripes stacked on the substrate. The lateral stack is perpendicular to the second stacks. The second stack extends from the lateral stack of strips of the brake material.

一實施例中,藉由絕緣材料互相分開的數個閘材料條紋的面(plane)係包括在其中:(i)該些閘材料條紋的第二堆疊,以及(ii)該閘材料條紋的橫向堆疊中。位於不同個該些第二堆疊中,且位於該些面中一相同面的數個閘材料條紋係藉由該相同面處的該橫向堆疊的一閘材料條紋彼此電性連接。 In one embodiment, a plurality of strips of sluice material strips separated from each other by an insulating material are included therein: (i) a second stack of strips of the gate material, and (ii) a lateral direction of the strip of the gate material In the stack. The plurality of sluice material strips located in a plurality of the second stacks are electrically connected to each other by the laterally stacked sluice material strips at the same side.

一實施例中,該閘材料條紋的橫向堆疊具有一較外部分與一較內部分,該較外部分鄰近該些第二堆疊,該較內部 分藉由該較外部分分開自該些第二堆疊。該較外部分包括由絕緣材料分開的數個閘材料條紋的面,且該較內部分被該絕緣材料所填充。 In one embodiment, the lateral stack of strips of the gate material has an outer portion and an inner portion, the outer portion being adjacent to the second stack, the inner portion The sub-portions are separated from the second stack by the outer portion. The outer portion includes a plurality of strips of sluice material strips separated by an insulating material, and the inner portion is filled with the insulating material.

一實施例更包括數個半導體材料條紋的第三堆疊、數個第二字元線、與數個閘材料條紋的第四堆疊,該些第四堆疊與該些第三堆疊交錯。該些第四堆疊係配置為該些第四堆疊的數個閘極。 An embodiment further includes a third stack of stripes of semiconductor material, a plurality of second word lines, and a fourth stack of stripes of thyristors, the fourth stacks being interleaved with the third stacks. The fourth stacking system is configured as a plurality of gates of the fourth stack.

該橫向堆疊具有相對的一第一側與一第二側。該橫向堆疊的該第一側面向該些第一堆疊、該些第二堆疊、該些第一字元線。該些第二堆疊延伸自該閘材料條紋的橫向堆疊的該第一側。 The lateral stack has a first side and a second side opposite each other. The first side of the lateral stack faces the first stack, the second stacks, and the first word lines. The second stack extends from the first side of the lateral stack of stripes of the gate material.

該橫向堆疊的該第二側面向該些第三堆疊、該些第四堆疊、該些第二字元線。該些第四堆疊延伸自該閘材料條紋的橫向堆疊的該第二側。 The second side of the lateral stack faces the third stack, the fourth stack, and the second word lines. The fourth stack extends from the second side of the lateral stack of stripes of the gate material.

該些第二字元線正交在該些第三堆疊上,並具有共形於該些第三堆疊的數個表面,藉此使另一記憶體元件的三維陣列建立於該些第三堆疊的數個表面與該些第二字元線的交叉點處。 The second word lines are orthogonal to the third stacks and have a plurality of surfaces conformal to the third stacks, thereby establishing a three-dimensional array of another memory element on the third stacks The intersection of several surfaces and the second word lines.

一實施例中,該些第二堆疊位在沿著該橫向堆疊之一長度的數個第一位置處。該些第四堆疊位在沿著該橫向堆疊之該長度的該些第一位置處。 In one embodiment, the second stacking locations are at a plurality of first locations along a length of the lateral stack. The fourth stacking locations are at the first locations along the length of the lateral stack.

一實施例中,該些第二堆疊位在沿著該橫向堆疊之 一長度的數個第一位置處。該些第四堆疊位在沿著該橫向堆疊之該長度的數個第二位置處。該些第一位置與該些第二位置交錯。 In an embodiment, the second stacked bits are stacked along the horizontal direction A number of first positions of a length. The fourth stacking locations are at a plurality of second locations along the length of the lateral stack. The first positions are interlaced with the second positions.

一實施例中,藉由絕緣材料互相分開的數個閘材料條紋的面係包括在:(i)該些閘材料條紋的第二堆疊,以及(ii)該閘材料條紋的橫向堆疊中。控制電路提供該些偏壓安排中的一第一個至該些第二堆疊中的一特定面,與該些偏壓安排中的一第二個至該些第二堆疊中的另一面,以在該些第一堆疊中該些面中選擇該特定面的數個記憶胞。 In one embodiment, the fringe of the plurality of gate material strips separated from each other by the insulating material is included in: (i) a second stack of strips of the gate material, and (ii) a lateral stack of strips of the gate material. The control circuit provides a first one of the biasing arrangements to a particular one of the second stacks, and a second one of the biasing arrangements to the other of the second stacks A plurality of memory cells of the particular face are selected among the faces in the first stack.

一實施例中,該些第二堆疊交錯該些第一堆疊,使得該些第二堆疊其中一個係位於該些第一堆疊中鄰近的兩個之間。 In an embodiment, the second stacks interlace the first stacks such that one of the second stacks is located between two adjacent ones of the first stacks.

一實施例中,該些第一堆疊中的鄰近堆疊具有相反的堆疊方位,包括一位元線接觸至源極線接觸(bit line contact-to-source line contact)的第一堆疊方位,及一源極線接觸至位元線接觸(source line contact-to-bit line contact)的第二堆疊方位。 In an embodiment, adjacent stacks in the first stacks have opposite stack orientations, including a first stack orientation of a bit line contact-to-source line contact, and a The second stack orientation of the source line contact-to-bit line contact.

一實施例中,該些第二堆疊交錯該些第一堆疊,使得該些第二堆疊其中一個位於該些第一堆疊中具有相同堆疊方位的鄰近兩個之間,並位於該第一堆疊方位與該第二堆疊方位之外。 In an embodiment, the second stacks interlace the first stacks, such that one of the second stacks is located between two adjacent ones of the first stacks having the same stack orientation, and is located at the first stack orientation Beyond this second stack orientation.

一實施例中,該些第一堆疊中鄰近的堆疊具有一相同的堆疊方位,包括一位元線接觸至源極線接觸的第一堆疊方 位,與一源極線接觸至位元線接觸的第二堆疊方位其中一個。 In an embodiment, adjacent stacks in the first stacks have an identical stacking orientation, including a first stacking surface in which one bit line contacts the source line contact. Bit, one of the second stack orientations in contact with a source line to the bit line.

一實施例中,該些半導體材料條紋的第一堆疊彼此平行,該些閘材料條紋的第二堆疊彼此平行。 In one embodiment, the first stacks of strips of semiconductor material are parallel to each other, and the second stack of strips of thyrist material are parallel to each other.

一實施例中,該些半導體材料條紋的第一堆疊具有耦接至一源極線電壓的數個第一末端,以及耦接至一位元線電壓的數個第二末端。 In one embodiment, the first stack of strips of semiconductor material has a plurality of first ends coupled to a source line voltage and a plurality of second ends coupled to a one-bit line voltage.

技術的另一概念為操作三維記憶體的方法,包括: 藉由提供數個偏壓安排至數個閘材料條紋的第二堆疊,以在三維記憶體陣列的數個面中的一特定面選擇數個記憶胞。該些面建立在數個第一字元線與數個半導體材料條紋的第一堆疊之間的交叉點處。該些第一字元線正交在該半導體材料條紋的第一堆疊上,並具有表面共形於該些半導體材料條紋的第一堆疊條。該些閘材料條紋的第二堆疊於基底上交錯且共平面於該些第一堆疊。 Another concept of technology is a method of operating three-dimensional memory, including: A plurality of memory cells are selected in a particular one of the plurality of faces of the three-dimensional memory array by providing a plurality of biases arranged to a second stack of stripes of gate material. The faces are established at intersections between a plurality of first word lines and a first stack of stripes of semiconductor material. The first word lines are orthogonal to the first stack of strips of semiconductor material and have a first stacked strip of surface conformal to the strips of semiconductor material. A second stack of the sluice material strips is staggered on the substrate and coplanar with the first stacks.

以下揭露多種實施例。 Various embodiments are disclosed below.

技術的又另一概念為製造方法,其包括:形成數個半導體材料條紋的第一堆疊;形成數個第一字元線,其正交在該些第一堆疊上,並具有表面共形於該些第一堆疊,使得數個三維陣列記憶體元件建立在該些第一堆疊的表面與該些字元線之間的交叉點處;以及形成數個閘材料條紋的第二堆疊,其與該些第一堆疊交錯,並與該些第一堆疊共平面,該些第二堆疊配置為該些第 一堆疊的數個閘極。 Yet another concept of technology is a fabrication method comprising: forming a first stack of stripes of semiconductor material; forming a plurality of first word lines orthogonal to the first stack and having surface conformalities The first stacks are such that a plurality of three-dimensional array memory elements are established at intersections between the surfaces of the first stacks and the word lines; and a second stack forming a plurality of gate material stripes, The first stacks are interlaced and coplanar with the first stacks, and the second stacks are configured as the first A stack of several gates.

本發明的其他概念與優點可參見以下的圖示、詳細說明、與申請專利範圍。 Other concepts and advantages of the present invention can be seen in the following drawings, detailed description, and claims.

ML1、ML2、ML3‧‧‧金屬層 ML1, ML2, ML3‧‧‧ metal layer

172、173、174、175‧‧‧介層連接體 172, 173, 174, 175‧‧ ‧ interlayer connectors

102、103、104、105、102B、103B、104B、105B‧‧‧連接元件 102, 103, 104, 105, 102B, 103B, 104B, 105B‧‧‧ connection elements

109‧‧‧閘極結構 109‧‧‧ gate structure

112、113、114、115、112A、113A、114A、115A‧‧‧連接元件 112, 113, 114, 115, 112A, 113A, 114A, 115A‧‧‧ connection elements

119‧‧‧閘極結構 119‧‧ ‧ gate structure

125-1、125-N‧‧‧字元線 125-1, 125-N‧‧‧ character line

126‧‧‧接地選擇線 126‧‧‧ Grounding selection line

127‧‧‧接地選擇線 127‧‧‧ Grounding selection line

128‧‧‧源極線 128‧‧‧ source line

202、402‧‧‧位元線接觸 202, 402‧‧‧ bit line contact

203、403‧‧‧位元線接觸 203, 403‧‧‧ bit line contact

P#204、P#404‧‧‧第二長度 P#204, P#404‧‧‧Second length

P#205、P#405‧‧‧長度 P#205, P#405‧‧‧ Length

P#505‧‧‧電晶體 P#505‧‧‧Optoelectronics

206、406‧‧‧字元線 206, 406‧‧‧ character line

207、407、507‧‧‧字元線 207, 407, 507‧‧ ‧ character lines

208、408‧‧‧接地選擇線 208, 408‧‧‧ Grounding selection line

209、409、509‧‧‧接地選擇線 209, 409, 509‧‧‧ Grounding selection line

210、410‧‧‧共用的源極線接觸 210, 410‧‧‧shared source line contact

211、411、511‧‧‧共用的源極線接觸 211, 411, 511‧‧ ‧ shared source line contact

212、412‧‧‧半導體材料條紋堆疊 212, 412‧‧‧Semiconductor material stripe stacking

213、413、513‧‧‧半導體材料條紋堆疊 213, 413, 513‧‧ ‧ semiconductor material stripe stacking

214、414‧‧‧閘材料條紋堆疊 214, 414‧‧‧ brake material stripe stacking

215、415‧‧‧閘材料條紋堆疊 215, 415‧‧ ‧ brake material stripe stacking

220、420‧‧‧橫向閘材料條紋堆疊 220, 420‧‧‧ transverse gate material stripe stacking

225、425‧‧‧梯狀結構 225, 425‧‧‧ ladder structure

228‧‧‧側壁 228‧‧‧ side wall

428‧‧‧側壁 428‧‧‧ side wall

303‧‧‧位元線 303‧‧‧ bit line

P#305‧‧‧電晶體 P#305‧‧‧Optoelectronics

307‧‧‧字元線 307‧‧‧ character line

309‧‧‧接地選擇線 309‧‧‧ Grounding selection line

311‧‧‧接地選擇線 311‧‧‧ Grounding selection line

710、712、714‧‧‧絕緣層 710, 712, 714‧‧‧ insulation

711、713‧‧‧導電層 711, 713‧‧‧ conductive layer

750‧‧‧導電條紋的堆疊 750‧‧‧Stacking of conductive stripes

958‧‧‧面解碼器 958‧‧‧ Face Decoder

959‧‧‧串列選擇線 959‧‧‧Sequence selection line

960‧‧‧記憶體陣列 960‧‧‧Memory array

961‧‧‧列解碼器 961‧‧‧ column decoder

962‧‧‧字元線 962‧‧‧ character line

963‧‧‧行解碼器 963‧‧‧ row decoder

964‧‧‧位元線 964‧‧‧ bit line

965‧‧‧匯流排 965‧‧ ‧ busbar

966‧‧‧方塊 966‧‧‧

967‧‧‧資料匯流排 967‧‧‧ data bus

968‧‧‧方塊 968‧‧‧ squares

969‧‧‧控制器 969‧‧‧ Controller

971‧‧‧資料輸入線 971‧‧‧ data input line

972‧‧‧資料輸出線 972‧‧‧ data output line

974‧‧‧其他電路 974‧‧‧Other circuits

975‧‧‧積體電路 975‧‧‧ integrated circuit

1115‧‧‧記憶體材料層 1115‧‧‧ memory material layer

1116‧‧‧字元線 1116‧‧‧ character line

1117‧‧‧字元線 1117‧‧‧ character line

1197‧‧‧穿隧介電層 1197‧‧‧Tunnel dielectric layer

1198‧‧‧電荷儲存層 1198‧‧‧Charge storage layer

1199‧‧‧阻擋介電層 1199‧‧‧Blocking dielectric layer

1120‧‧‧溝槽 1120‧‧‧ trench

1230‧‧‧開口 1230‧‧‧ openings

2130‧‧‧開口 2130‧‧‧ openings

第1圖為三維記憶體結構的立體圖。 Figure 1 is a perspective view of a three-dimensional memory structure.

第2圖為具有半導體材料條紋堆疊之三維記憶體結構的上視圖,半導體材料條紋堆疊具有記憶體元件,其與閘材料條紋堆疊交錯,其中具有記憶體元件的半導體材料條紋堆疊共用位元線至源極線的方位。 2 is a top view of a three-dimensional memory structure having stripe stacks of semiconductor material, the stripe stack of semiconductor material having memory elements interleaved with strips of gate material, wherein strips of semiconductor material with memory elements are stacked to share bit lines to The orientation of the source line.

第3圖為第2圖中三維記憶體結構之半導體材料條紋堆疊其中一個的電路示意圖。 Figure 3 is a circuit diagram showing one of the semiconductor material stripe stacks of the three-dimensional memory structure in Figure 2.

第4圖為具有半導體材料條紋堆疊的三維記憶體結構的上視圖,半導體材料條紋堆疊具有記憶體元件,並與閘材料條紋堆疊交錯,其中具有記憶體元件的半導體材料條紋堆疊具有位元線至源極線的方位與源極線至位元線的方位。 Figure 4 is a top view of a three-dimensional memory structure having a stripe stack of semiconductor material having a memory element interleaved with a strip of gate material, wherein the stripe stack of semiconductor material with memory elements has bit lines to The orientation of the source line and the orientation of the source line to the bit line.

第5圖為第4圖中三維記憶體結構的半導體材料條紋堆疊其中一個的電路表示圖。 Figure 5 is a circuit diagram of one of the semiconductor material stripe stacks of the three-dimensional memory structure of Figure 4.

第6至14圖為第2圖中三維記憶體結構於一實施例中的製造流程。 6 to 14 are manufacturing processes of the three-dimensional memory structure in Fig. 2 in an embodiment.

第15至23圖為第4圖中三維記憶體結構於一實施例中的製造流程。 15 to 23 are manufacturing processes of the three-dimensional memory structure in Fig. 4 in an embodiment.

第24圖為一實施例中第4圖之三維記憶體結構的尺寸組。 Figure 24 is a set of dimensions of the three-dimensional memory structure of Figure 4 in an embodiment.

第25圖為積體電路的示意圖,其包括三維記憶體陣列,具有交錯的條紋堆疊,及列、行與面解碼電路。 Figure 25 is a schematic diagram of an integrated circuit including a three-dimensional memory array with staggered stripe stacks, and column, row and plane decoding circuits.

以下參照圖示詳述實施例。 The embodiments are described in detail below with reference to the drawings.

第2圖為三維記憶體結構的上視圖,其具有半導體材料條紋堆疊,半導體材料條紋堆疊具有記憶體元件,交錯閘材料條紋堆疊,其中具有記憶體元件的半導體材料條紋堆疊共用位元線至源極線(bit line-to-source line)的共用方位。 2 is a top view of a three-dimensional memory structure having a stripe stack of semiconductor materials, a stripe stack of semiconductor material having a memory element, a stripe stack of staggered gate materials, wherein a strip of semiconductor material with memory elements is stacked to share a bit line to the source The common orientation of the bit line-to-source line.

第2圖包括一頂陣列與一底陣列。以下說明頂陣列。半導體材料條紋堆疊212包括16個半導體材料條紋的堆疊。在各個堆疊中,半導體材料條紋與介電條紋交錯。半導體材料條紋堆疊212相互平行。 Figure 2 includes a top array and a bottom array. The top array is explained below. The semiconductor material stripe stack 212 includes a stack of 16 strips of semiconductor material. In each stack, the stripes of semiconductor material are interlaced with the dielectric stripes. The semiconductor material stripe stacks 212 are parallel to each other.

數個字元線206包括8個字元線,正交在半導體材料條紋堆疊212上方,並具有與半導體材料條紋堆疊212共形的表面。字元線206相互平行並往相同的方向延伸。其他實施例可包括其他數目的字元線。記憶體元件的三維陣列建立在半導體材料條紋堆疊212與字元線206之表面之間的交叉點。選擇沿著半導體材料條紋堆疊212的一特定位置處的記憶體元件的方法為,提供一設定電壓至字元線206,其將一個字元線區別其他字元線。字元線因為它們在半導體材料條紋堆疊212側的上下延伸的垂直方位,故可稱作垂直閘。 The plurality of word lines 206 include eight word lines orthogonal to the semiconductor material stripe stack 212 and have a surface that is conformal to the semiconductor material stripe stack 212. The word lines 206 are parallel to each other and extend in the same direction. Other embodiments may include other numbers of word lines. The three dimensional array of memory elements is established at the intersection between the stripe stack 212 of semiconductor material and the surface of the word line 206. The method of selecting memory elements at a particular location along the stripe stack 212 of semiconductor material is to provide a set voltage to word line 206 that distinguishes one word line from the other. The word lines can be referred to as vertical gates because of their vertical orientation extending up and down the side of the stripe stack 212 of semiconductor material.

接地選擇線208也正交在半導體材料條紋堆疊212 上,並具有與半導體材料條紋堆疊212共形的表面。 Ground select line 208 is also orthogonal to semiconductor material stripe stack 212 And having a surface conformal to the stripe stack 212 of semiconductor material.

半導體材料條紋堆疊212具有相反的第一與第二末端。第一末端具有共用源極線接觸210,用以不同堆疊中所有的半導體材料條紋。第二末端具有位元線接觸202,用以不同堆疊中所有的半導體材料條紋。選擇半導體材料條紋堆疊212之一特定堆疊上的數個記憶體元件的方法為,提供一設定電壓至位元線接觸202,其將半導體材料條紋堆疊212的一個堆疊區別於其他半導體材料條紋堆疊212。 The semiconductor material stripe stack 212 has opposite first and second ends. The first end has a common source line contact 210 for striping all of the semiconductor material in different stacks. The second end has bit line contacts 202 for striping all of the semiconductor material in different stacks. The method of selecting a plurality of memory elements on a particular stack of semiconductor material stripe stacks 212 is to provide a set voltage to bit line contact 202 that distinguishes one stack of semiconductor material stripe stacks 212 from other semiconductor material stripe stacks 212. .

半導體材料條紋堆疊212具有一第一長度,其中字元線206沿著第一長度正交於上方。半導體材料條紋堆疊的此第一長度具有一第一寬度。半導體材料條紋堆疊212具有一第二長度,鄰近於第一長度。沒有字元線配置在半導體材料條紋堆疊212的第二長度上。半導體材料條紋堆疊212的第二長度結尾於位元線接觸202。第二長度具有一第二寬度,第二寬度窄於第一長度的第一寬度。半導體材料條紋堆疊212各自的第二長度係以圓虛線表示。所有半導體材料條紋堆疊的第二長度係以P# 204標記全體,並以矩形虛線表示全體。標號P#表示出多數的面,並可參照第3圖說明。 The semiconductor material stripe stack 212 has a first length with the word lines 206 being orthogonal to the first along the first length. This first length of the strip of semiconductor material stripes has a first width. The semiconductor material stripe stack 212 has a second length adjacent to the first length. No word lines are disposed on the second length of the stripe stack 212 of semiconductor material. The second length of the stripe stack 212 of semiconductor material ends at bit line contact 202. The second length has a second width that is narrower than the first width of the first length. The second length of each of the strips of semiconductor material stripes 212 is indicated by a dashed dotted line. The second length of all semiconductor material stripe stacks is labeled P# 204 and is indicated by a rectangular dashed line. Reference numeral P# denotes a plurality of faces, and can be explained with reference to FIG.

閘材料條紋堆疊214與半導體材料條紋堆疊212彼此交錯。閘材料條紋堆疊214交互平行,並沿著垂直於字元線延伸方向的方向延伸。一些實施例中,閘材料條紋堆疊214具有與半導體材料條紋堆疊212相同的材料,如此可簡化製程。或者, 閘材料可為導體,例如高摻雜的半導體如多晶矽,或金屬。閘材料條紋堆疊214垂直於橫向閘材料條紋堆疊220,並延伸自橫向閘材料條紋堆疊220。閘材料條紋堆疊214沿著半導體材料條紋堆疊212的長度部分交錯,阻止字元線206的短接。閘材料條紋堆疊214與半導體材料條紋堆疊212共平面,如此閘材料條紋堆疊214中的堆疊與半導體材料條紋堆疊212中的堆疊實質上具有相同的垂直位置。一些實施例中,閘材料條紋堆疊214與橫向閘材料條紋堆疊220係以與介電條紋交錯的半導體材料條紋形成,如同半導體材料條紋堆疊212。此實施例中,相同面上的閘材料條紋堆疊214係藉由相同面中的橫向閘材料堆疊220的閘材料條紋電性互連接。 The gate material stripe stack 214 and the semiconductor material stripe stack 212 are staggered with each other. The gate material stripe stacks 214 are alternately parallel and extend in a direction perpendicular to the direction in which the word lines extend. In some embodiments, the gate material stripe stack 214 has the same material as the semiconductor material stripe stack 212, which simplifies the process. or, The gate material can be a conductor such as a highly doped semiconductor such as polysilicon or a metal. The gate material stripe stack 214 is perpendicular to the lateral gate material stripe stack 220 and extends from the lateral gate material stripe stack 220. The gate material stripe stacks 214 are staggered along the length of the semiconductor material stripe stack 212, preventing shorting of the word lines 206. The gate material stripe stack 214 is coplanar with the semiconductor material stripe stack 212 such that the stack in the gate material stripe stack 214 has substantially the same vertical position as the stack in the semiconductor material stripe stack 212. In some embodiments, the gate material stripe stack 214 and the lateral gate material stripe stack 220 are formed with stripes of semiconductor material staggered with dielectric stripes, like the semiconductor material stripe stack 212. In this embodiment, the gate material stripe stack 214 on the same side is electrically interconnected by the gate material strips of the lateral gate material stack 220 in the same plane.

無論沿著在一特定面的半導體材料條紋堆疊212的第二長度P# 204係導電或非導電的,其係藉由相同面上的閘材料條紋堆疊214受到控制。閘材料條紋堆疊214產生一場效應,其控制半導體材料條紋堆疊212中第二長度P# 204中的導電性。場效應可包括累積(accumulation)、空乏(depletion)、或反轉。因此,根據閘極材料條紋堆疊214產生用以開啟及關閉沿著半導體材料條紋堆疊212的第二長度P# 204的場效應,沿著半導體材料條紋堆疊212的第二長度P# 204可根據加強(enhancement)或空乏模式摻雜為n型或p型。假設半導體材料條紋堆疊212一面上的第二長度P# 204係摻雜為加強模式,當相同面上的閘材料條紋堆疊214提供的偏壓大於或等於摻雜為n型的第二長度P# 204的臨 界電壓,或小於或等於摻雜為p型的第二長度P# 204的臨界電壓時,第二長度P# 204會傳導。假設半導體材料條紋堆疊212之一面上的第二長度P# 204係摻雜為加強模式,當相同面上的閘材料條紋堆疊214提供的偏壓係大於或等於摻雜為n型的第二長度P# 204的臨界電壓,或小於或等於摻雜為p型的第二長度P# 204的臨界電壓時,第二長度P# 204會傳導。假設半導體材料條紋堆疊212之一面上的第二長度P# 204係摻雜為空乏模式,當相同面上的閘材料條紋堆疊214提供的偏壓為零伏時,第二長度P# 204會傳導;當相同面上的閘材料條紋堆疊214提供的偏壓小於摻雜為n型的第二長度P# 204的臨界電壓,或大於摻雜為p型的第二長度的臨界電壓時,第二長度P# 204停止傳導。 Regardless of whether the second length P# 204 of the stripe stack 212 of semiconductor material along a particular face is electrically or non-conductive, it is controlled by the stripe stack 214 of gate material on the same side. The gate material stripe stack 214 produces a field effect that controls the conductivity in the second length P# 204 in the semiconductor material stripe stack 212. Field effects can include accumulation, depletion, or inversion. Thus, a field effect is generated in accordance with the gate material stripe stack 214 to open and close the second length P# 204 along the stripe stack 212 of semiconductor material, along which the second length P# 204 of the stripe stack 212 of semiconductor material can be strengthened (enhancement) or depletion mode doping is n-type or p-type. It is assumed that the second length P# 204 on one side of the stripe stack 212 of semiconductor material is doped to the enhancement mode, when the bias of the gate material stripe stack 214 on the same side is greater than or equal to the second length of the doped n-type P# 204 Pro The second length P# 204 is conducted when the boundary voltage is less than or equal to the threshold voltage of the second length P# 204 doped to the p-type. It is assumed that the second length P# 204 on one side of the stripe stack 212 of semiconductor material is doped to the enhancement mode, when the bias strips provided by the gate material stripe stack 214 on the same side are greater than or equal to the second length doped to the n-type. When the threshold voltage of P# 204 is less than or equal to the threshold voltage of the second length P# 204 doped to the p-type, the second length P# 204 is conducted. Assuming that the second length P# 204 on one side of the stripe stack 212 of semiconductor material is doped to a depletion mode, the second length P# 204 conducts when the bias provided by the gate material stripe stack 214 on the same side is zero volts. When the bias voltage provided by the gate material stripe stack 214 on the same side is less than the threshold voltage of the second length P# 204 doped to the n-type, or greater than the threshold voltage of the second length doped to the p-type, the second Length P# 204 stops conduction.

對於半導體材料條紋堆疊212中任何單一個堆疊中的任何單一個半導體材料條紋,閘材料條紋堆疊214中的一對閘材料條紋係共平面單一個半導體材料條紋的兩側,並沿著單一個半導體材料條紋的兩側平行延伸。該對閘材料條紋係配置為半導體材料條紋部分的閘極。 For any single semiconductor material stripe in any single stack in the semiconductor material stripe stack 212, a pair of gate material strips in the gate material stripe stack 214 are coplanar on either side of a single strip of semiconductor material and along a single semiconductor The sides of the material strip extend in parallel. The pair of gate material stripes are configured as gates of the stripe portion of the semiconductor material.

閘材料條紋堆疊214的各個不需要沿著整個鄰近的第二長度P#204交錯,第二長度P#204沿著半導體材料條紋堆疊212。即使閘材料條紋堆疊214係沿著整個鄰近的第二長度P#204部分地延伸,而不是完全地延伸,因為電場邊緣(fringe)且分佈(spread),各閘材料條紋堆疊214仍可控制沿半導體材料條紋堆疊212的鄰近第二長度P#204。 Each of the gate material stripe stacks 214 need not be staggered along the entire adjacent second length P#204, and the second length P#204 is along the semiconductor material stripe stack 212. Even though the gate material stripe stack 214 extends partially along the entire adjacent second length P#204, rather than extending completely, the gate material stripe stack 214 can still be controlled along the edges due to the electric field fringe and spread. The semiconductor material stripe stack 212 is adjacent to the second length P#204.

選擇半導體材料條紋堆疊212一特定面上的記憶體元件的方法係提供一設定電壓至閘材料條紋堆疊214。結果,閘材料條紋堆疊214控制沿半導體材料條紋堆疊212的第二長度P#204中的導電性,其使得半導體材料條紋堆疊212的一個面區分於半導體材料條紋堆疊212的其他面。半導體材料條紋堆疊212的一面的選擇可由於閘材料條紋堆疊214提供一場效應至被選擇面上的鄰近第二長度P#204,且所述場效應沒有發生在其他面上的鄰近第二長度P#204,反之亦然。 The method of selecting memory elements on a particular side of the semiconductor material stripe stack 212 provides a set voltage to the gate material stripe stack 214. As a result, the gate material stripe stack 214 controls the conductivity along the second length P#204 of the semiconductor material stripe stack 212, which causes one face of the semiconductor material stripe stack 212 to be differentiated from other faces of the semiconductor material stripe stack 212. The selection of one side of the semiconductor material stripe stack 212 may be due to the gate material stripe stack 214 providing a field effect to the adjacent second length P#204 on the selected surface, and the field effect does not occur on the other side adjacent the second length P #204, and vice versa.

梯狀結構225傳送串列選擇訊號,其中串列選擇訊號選擇半導體材料條紋堆疊212的一特定面。一實施例中,梯狀結構可類似第1圖的連接元件112A、113A、114A與115A,及連接元件102B、103B、104B與105B。其他實施例可改變連接元件的順序、形狀與配置。 The ladder structure 225 transmits a serial selection signal, wherein the serial selection signal selects a particular face of the semiconductor material stripe stack 212. In one embodiment, the ladder structure can be similar to the connecting elements 112A, 113A, 114A and 115A of Figure 1, and the connecting elements 102B, 103B, 104B and 105B. Other embodiments may change the order, shape and configuration of the connecting elements.

串列選擇訊號傳送至閘材料條紋堆疊214的不同面。如前所述,閘材料條紋堆疊214的不同面控制沿半導體材料條紋堆疊212的第二長度P#204的導電性,其將半導體材料條紋堆疊212一個面上的記憶體元件區分半導體材料條紋堆疊212其他面上的記憶體元件。 The serial selection signals are transmitted to different faces of the gate material stripe stack 214. As previously discussed, the different faces of the gate material stripe stack 214 control the conductivity along the second length P#204 of the semiconductor material stripe stack 212, which separates the semiconductor material stripe stack from the memory elements on one side of the stripe stack 212 of semiconductor material. 212 memory components on other faces.

組合起來,字元線訊號、位元線訊號與串列選擇線訊號係足以識別三維記憶體陣列中各別的記憶胞。 In combination, the word line signal, the bit line signal, and the serial selection line signal are sufficient to identify individual memory cells in the three-dimensional memory array.

除了剛說明的頂陣列,第2圖也顯示以下將說明的底陣列。底陣列包括數個半導體材料條紋堆疊213,其包括16個 與介電條紋交錯的半導體材料條紋堆疊。字元線207包括8個字元線,其正交於半導體材料條紋堆疊213上,並具有與半導體材料條紋堆疊213共形的表面。三維陣列的記憶體元件建立在半導體材料條紋堆疊213的表面與字元線207的表面之間的交叉點。接地選擇線209也配置正交於半導體材料條紋堆疊213上,並具有共形於半導體材料條紋堆疊213的表面。 In addition to the top array just described, Fig. 2 also shows the bottom array which will be described below. The bottom array includes a plurality of semiconductor material stripe stacks 213 including 16 A strip of semiconductor material staggered with dielectric stripes. The word line 207 includes eight word lines that are orthogonal to the stripe stack 213 of semiconductor material and have a surface that is conformal to the stripe stack 213 of semiconductor material. The memory elements of the three dimensional array are established at the intersection between the surface of the stripe stack 213 of semiconductor material and the surface of the word line 207. Ground select line 209 is also disposed orthogonal to semiconductor material stripe stack 213 and has a conformal surface to semiconductor material stripe stack 213.

半導體材料條紋堆疊213具有相反的第一與第二末端。第一末端具有共用的源極線接觸211,用於個別堆疊中所有的半導體材料條紋。第二末端具有位元線接觸203,用於個別堆疊中所有的半導體材料條紋。 The semiconductor material stripe stack 213 has opposite first and second ends. The first end has a common source line contact 211 for all of the semiconductor material stripes in the individual stack. The second end has a bit line contact 203 for all of the semiconductor material stripes in the individual stack.

閘材料條紋堆疊215與半導體材料條紋堆疊213交錯。閘材料條紋堆疊215垂直於橫向閘材料條紋堆疊220,並從橫向閘材料條紋堆疊220延伸。 The gate material stripe stack 215 is interleaved with the semiconductor material stripe stack 213. The gate material stripe stack 215 is perpendicular to the lateral gate material stripe stack 220 and extends from the lateral gate material stripe stack 220.

底陣列也可類似頂陣列的配置、操作、與變化。 The bottom array can also be similar to the configuration, operation, and variations of the top array.

第3圖為第2圖的三維記憶體結構其中一個半導體材料條紋堆疊的電路表示圖。 Figure 3 is a circuit diagram of a stripe stack of semiconductor materials in the three-dimensional memory structure of Figure 2.

所有的半導體材料條紋堆疊212與213包括被絕緣材料分開的半導體材料條紋的數個面。為求簡潔,係顯示出單一個半導體材料條紋的堆疊。 All of the semiconductor material stripe stacks 212 and 213 include a plurality of faces of strips of semiconductor material separated by an insulating material. For simplicity, a single stack of semiconductor material stripes is shown.

在單一個堆疊中,半導體材料條紋的8個面被絕緣材料分開。其他實施例包括不同數目的面或半導體材料條紋。在堆疊中的各個面中,一NAND串列包括串連的電晶體CSL 311、 GSL 309、字元線(WL)307(其包括WL0、WL1至WL N-1)、P# 305、與位元線(BL)303。其他實施例可使用不同於電晶體的開關。第3圖中的電晶體P1至P8整體標號為P# 305,其為特定面或半導體材料條紋上的選擇記憶體元件。如參照第2圖所述的內容,提供至電壓組將特定半導體材料條紋的堆疊的記憶體元件區別於其他半導體材料條紋的堆疊,且提供至WL 307的電壓組將由特定字元線存取的記憶體元件區別由其他字元線存取的記憶胞。 In a single stack, the eight faces of the strip of semiconductor material are separated by an insulating material. Other embodiments include a different number of face or strips of semiconductor material. In each of the faces in the stack, a NAND string includes a series of transistor CSLs 311, GSL 309, word line (WL) 307 (which includes WL0, WL1 to WL N-1), P# 305, and bit line (BL) 303. Other embodiments may use switches other than transistors. The transistors P1 to P8 in Fig. 3 are generally designated P# 305, which is a selective memory element on a particular face or strip of semiconductor material. As described with reference to FIG. 2, a stacked memory component that provides a stack of specific semiconductor material stripes to a voltage group is distinguished from a stack of other semiconductor material stripes, and the voltage set provided to WL 307 will be accessed by a particular word line. Memory elements distinguish memory cells accessed by other word lines.

如參照第2圖所述的內容,相同面上的閘材料條紋堆疊214藉由相同面中橫向閘極材料堆疊220的閘材料條紋彼此電性連接。第3圖電晶體P1至P8其中單一個選擇所有半導體材料條紋堆疊212中的電晶體的特定面。第3圖電晶體P1至P8中單一個的閘極對應至相同面上的所有閘材料條紋堆疊214。第3圖電晶體P1至P8中單一個的主體對應至半導體材料條紋堆疊212中相同面上的所有第二長度P# 204。 As described with reference to FIG. 2, the gate material stripe stack 214 on the same side is electrically connected to each other by the gate material strips of the lateral gate material stack 220 in the same plane. FIG. 3 shows the specific faces of the transistors in the stripe stack 212 of all semiconductor materials in a single one of the transistors P1 to P8. The gates of the single one of the transistors P1 to P8 of Fig. 3 correspond to all of the gate material stripe stacks 214 on the same side. The body of the single one of the transistors P1 to P8 of FIG. 3 corresponds to all of the second lengths P# 204 on the same face in the stripe stack 212 of semiconductor material.

其他半導體條紋堆疊具有第3圖繪示的相同電路。所有的閘材料條紋堆疊214使用相同的CSL 311、GSL 309、WL 307與P#305。然而,由於提供至不同BL 303的電壓組將閘材料條紋堆疊214之特定堆疊中的記憶胞區別閘材料條紋堆疊214的其他堆疊,BL 303係相異於不同的閘材料條紋堆疊214。 Other semiconductor stripe stacks have the same circuitry as shown in FIG. All of the gate material stripe stacks 214 use the same CSL 311, GSL 309, WL 307, and P#305. However, since the voltage sets provided to the different BLs 303 distinguish the other stacks of memory cell distinguishing gate material stripe stacks 214 in a particular stack of gate material stripe stacks 214, the BLs 303 are different from the different gate material stripe stacks 214.

第4圖為具有半導體材料條紋堆疊的三維記憶體結構的上視圖。半導體材料條紋堆疊具有記憶體元件,其與閘材料條紋交錯堆疊,其中具有記憶體元件的半導體材料條紋堆疊具有 位元線至源極線(bit line-to-source line)與源極線至位元線(source line-to-bit line)的交錯方位。 Figure 4 is a top view of a three-dimensional memory structure with stripe stacks of semiconductor material. The semiconductor material stripe stack has a memory element that is interleaved with the gate material stripes, wherein the semiconductor material stripe stack with the memory elements has The bit line-to-source line and the source line-to-bit line are interleaved.

第4圖的配置、操作與變化大致上與第2圖相似,除了以下說明的上半頂陣列與下半底陣列,其其他的差異處。第2圖包括頂陣列完整的位元線至源極線半導體材料條紋堆疊,以及底陣列完整的位元線至源極線半導體材料條紋堆疊。第4圖包括上半頂陣列與下半底陣列。完整的位元線至源極線半導體材料條紋堆疊係由合併數個第4圖的例子形成,例如第4圖第一例中的上半頂陣列合併第4圖第二例中的下半底陣列。 The configuration, operation, and variation of Fig. 4 are substantially similar to Fig. 2 except for the difference between the upper half array and the lower half array described below. Figure 2 includes a top array of complete bit line to source line semiconductor material stripe stacks, and a bottom array of complete bit line to source line semiconductor material stripe stacks. Figure 4 includes an upper half array and a lower half array. The complete bit line to source line semiconductor material fringe stack is formed by combining several examples of FIG. 4, for example, the upper half top array in the first example of FIG. 4 merges with the lower half bottom in the second example of FIG. Array.

半導體材料條紋堆疊412包括8個半導體材料條紋堆疊,其包括其他可能的半導體材料條紋的堆疊。第2圖中,鄰近堆疊中的記憶體串列共用相同的位元線末端至源極線末端的方位。第4圖中,鄰近堆疊中的記憶胞串列交替在位元線末端至源極線末端的方位與源極線末端至位元線末端的方位之間。半導體材料條紋堆疊412包括具有位元線末端的堆疊,位元線末端與閘材料條紋堆疊414交替排列。半導體材料條紋堆疊412並不包括具有源極線末端的堆疊,其中源極線末端並未與閘材料條紋堆疊414呈交替排列。 The semiconductor material stripe stack 412 includes eight strips of semiconductor material stripes that include other possible stacks of semiconductor material stripes. In Figure 2, the memory strings in adjacent stacks share the same bit line end to the end of the source line. In Figure 4, the memory cell strings in adjacent stacks alternate between the orientation of the end of the bit line to the end of the source line and the end of the source line to the end of the bit line. The semiconductor material stripe stack 412 includes a stack having end portions of bit lines that are alternately arranged with the gate material stripe stack 414. The semiconductor material stripe stack 412 does not include a stack having source line ends, wherein the source line ends are not alternately arranged with the gate material stripe stack 414.

半導體材料條紋堆疊412具有相反的第一與第二末端。第一末端具有位元線接觸402,用以個別堆疊中所有的半導體材料條紋。第二末端具有共用的源極線接觸,用以各別堆疊中所有的半導體材料條紋。 The strip of semiconductor material stripes 412 has opposite first and second ends. The first end has a bit line contact 402 for individually striping all of the semiconductor material strips. The second end has a common source line contact for stripping all of the semiconductor material in each stack.

第4圖的記憶體構造例子係以瓦管形式(tile fashion)合併,以形成完整的半導體材料條紋堆疊,其具有位元線末端與共用的源極線末端。第4圖的第一例中,在上半頂陣列中,半導體材料條紋堆疊412包括堆疊,堆疊具有位元線接觸402,但不具有共用的源極線接觸。第4圖的第二例係以瓦管形式配置在鄰近鄰近第4圖之第一例的頂邊。第4圖的第二例中,下半底陣列包括半導體材料條紋堆疊,其包括共用的源極線接觸411,但不包括位元線接觸。包括第4圖第一例之上半頂陣列中的位元線接觸402的半導體材料條紋堆疊412複製係結束在第4圖第一例的頂邊,然後再繼續進入第4圖第二例的底邊,以連接半導體材料條紋堆疊,其中半導體材料條紋堆疊包括第4圖第二例之下半底陣列中的共用的源極線接觸411。因此,具有位元線末端與共用的源極線末端的完整的半導體材料條紋堆疊係以合併數個第4圖的例子形成。 The memory construction examples of Figure 4 are combined in a tile fashion to form a complete stripe stack of semiconductor material with bit line ends and a common source line end. In the first example of FIG. 4, in the upper half top array, the semiconductor material stripe stack 412 includes a stack having bit line contacts 402 but no shared source line contacts. The second example of Fig. 4 is disposed in the form of a tile in the vicinity of the top edge adjacent to the first example of Fig. 4. In the second example of FIG. 4, the lower half bottom array includes a stripe stack of semiconductor material that includes a common source line contact 411 but does not include bit line contacts. The stripe stack 412 of semiconductor material including the bit line contact 402 in the upper half array of the first example of FIG. 4 ends at the top edge of the first example of FIG. 4, and then proceeds to the second example of FIG. The bottom edge is connected to the semiconductor material stripe stack, wherein the semiconductor material stripe stack comprises the common source line contact 411 in the lower half bottom array of the second example of FIG. Thus, a complete strip of semiconductor material stripe having a terminal line end and a common source line end is formed by combining several examples of FIG.

類似地,第4圖之上半頂陣列中其他的半導體材料條紋堆疊包括堆疊,堆疊具有共用的源極線接觸410,而不具有位元線接觸。如上所述,第4圖第二例係複製並以瓦管形式配置在鄰近第4圖的頂邊。第4圖的第二例中,下半底陣列包括半導體材料條紋堆疊,半導體材料條紋堆疊包括位元線接觸403,但不包括共用的源極線接觸。包括第4圖第一例之上半頂陣列中的共用的源極線接觸410的半導體材料條紋堆疊結束在第4圖第一例的頂邊,然後繼續進入第4圖第二例的底邊,以連接半導體材 料條紋堆疊,其中半導體材料條紋堆疊包括第4圖第二例之下半底陣列中的位元線接觸403。再一次地,位元線末端與共用的源極線末端的完整的半導體材料條紋堆疊係以合併數個第4圖的例子形成。 Similarly, the other semiconductor material stripe stacks in the upper half-array array of Figure 4 include a stack having a common source line contact 410 without bit line contact. As described above, the second example of Fig. 4 is reproduced and arranged in the form of a tile in the vicinity of the top side of Fig. 4. In the second example of FIG. 4, the lower half bottom array includes a stripe stack of semiconductor material, and the stripe stack of semiconductor material includes bit line contacts 403, but does not include a common source line contact. The stripe stack of semiconductor material including the common source line contact 410 in the upper half-top array of the first example of FIG. 4 ends at the top edge of the first example of FIG. 4, and then proceeds to the bottom edge of the second example of FIG. To connect semiconductor materials The fringe stack is stacked, wherein the stripe stack of semiconductor material includes the bit line contact 403 in the lower half-bottom array of the second example of FIG. Again, the complete semiconductor material stripe stack at the end of the bit line and the end of the common source line is formed by combining several examples of FIG.

字元線406包括4的字元線正交於上半頂陣列中的半導體材料條紋堆疊,且具有與上半頂陣列中的半導體材料條紋堆疊共形的表面。記憶體元件的三維陣列係建立在上半頂陣列中半導體材料條紋堆疊的表面與字元線406之間的交叉點。 The word line 406 includes a word line of 4 that is orthogonal to the strip of semiconductor material stripes in the top half of the top array and has a surface that is conformal to the stripe stack of semiconductor material in the top half of the top array. The three dimensional array of memory elements is established at the intersection between the surface of the stripe stack of semiconductor material and the word line 406 in the top half of the array.

字元線407包括4個字元線正交於下半底陣列中的半導體材料條紋堆疊,且具有與下半底陣列中的半導體材料條紋堆疊共形的表面。記憶體元件的三維陣列係建立在下半底陣列中半導體材料條紋堆疊的表面與字元線407之間的交叉點。 Word line 407 includes four word lines that are orthogonal to the strip of semiconductor material stripes in the lower half of the bottom array and that have surfaces that are conformal to the stripe stack of semiconductor material in the lower half of the bottom array. The three dimensional array of memory elements establishes the intersection between the surface of the stripe stack of semiconductor material and the word line 407 in the lower half of the array.

藉由如上所述合併數個第4圖例子的方法,字元線406與字元線407整體形成字元線組以存取完全的記憶體陣列。 By combining the methods of the four fourth example examples as described above, word line 406 and word line 407 form a group of word lines as a whole to access a complete memory array.

GSL/SSL 408正交於上半頂陣列中半導體材料條紋堆疊上,並具有表面共形於上半頂陣列中半導體材料條紋堆疊。GSL/SSL 409正交於下半底陣列中的半導體材料條紋堆疊上,並具有表面共形於下半底陣列中的半導體材料條紋堆疊。在GSL/SSL 408或GSL/SSL 409近似特定條紋堆疊的共用的源極線接觸的例子中,GSL/SSL 408或GSL/SSL 409作用為接地選擇線。在GSL/SSL 408或GSL/SSL 409近似特定條紋堆疊的位元線接觸的例子中,GSL/SSL 408或GSL/SSL 409作用為串列選擇線。 The GSL/SSL 408 is orthogonal to the stripe stack of semiconductor material in the top half of the array and has a surface conformal to the stripe stack of semiconductor material in the top half of the array. The GSL/SSL 409 is orthogonal to the strip of semiconductor material stripes in the lower half of the bottom array and has a stripe of semiconductor material that is surface conformal to the lower half of the bottom array. In the example where GSL/SSL 408 or GSL/SSL 409 approximates a common source line contact for a particular stripe stack, GSL/SSL 408 or GSL/SSL 409 acts as a ground select line. In the case of GSL/SSL 408 or GSL/SSL 409 approximating bit line contact of a particular stripe stack, GSL/SSL 408 or GSL/SSL 409 acts as a tandem select line.

半導體材料條紋堆疊412具有沿字元線206的第一長度,字元線206正交地配置在半導體材料條紋堆疊412上。如上所述,因為數個第4圖的例子合併以形成完整的半導體條紋堆疊,其具有位元線末端、源極線末端、與中間的字元線。半導體材料條紋堆疊412的第一長度具有第一寬度。半導體材料條紋堆疊412具有鄰近第一長度的第二長度。沒有字元線(沒有GSL/SSL線)配置在半導體材料條紋堆疊412的第二長度上。半導體材料條紋堆疊的第二長度終止在位元線接觸402。第二長度具有第二寬度,窄於第一長度的第一寬度。半導體材料條紋堆疊412各個的第二長度係以橢圓虛線標示。所有半導體材料條紋堆疊的第二長度以標號P#404及矩形虛線全體性地標示。P#標號表示多數個面,並參照第5圖說明。 The semiconductor material stripe stack 412 has a first length along the word line 206, and the word lines 206 are orthogonally disposed on the semiconductor material stripe stack 412. As described above, because several examples of FIG. 4 are combined to form a complete semiconductor stripe stack having bit line ends, source line ends, and intermediate word lines. The first length of the stripe stack 412 of semiconductor material has a first width. The semiconductor material stripe stack 412 has a second length adjacent the first length. No word lines (without GSL/SSL lines) are disposed on the second length of the stripe stack 412 of semiconductor material. The second length of the strip of semiconductor material stripes terminates at bit line contact 402. The second length has a second width that is narrower than the first width of the first length. The second length of each of the strips 412 of semiconductor material is indicated by an elliptical dashed line. The second length of all semiconductor material stripe stacks is collectively indicated by the reference P#404 and the rectangular dashed line. The P# number indicates a plurality of faces and is described with reference to FIG.

閘材料條紋堆疊414與半導體材料條紋堆疊412彼此交錯配置。閘材料條紋堆疊414垂直於橫向閘材料條紋堆疊420,並自橫向閘材料條紋堆疊420。閘材料條紋堆疊414沿著半導體材料條紋堆疊412的長度部分交錯,阻止字元線406(與GSL/SSL 408)之間的短接。如上所述,第4圖的操作大致上類似第2圖,包括控制沿半導體材料條紋堆疊412的第二長度P#404在特定面的導電與否,相同面上的閘材料條紋堆疊414。 The gate material stripe stack 414 and the semiconductor material stripe stack 412 are staggered with each other. The gate material stripe stack 414 is perpendicular to the lateral gate material stripe stack 420 and is stacked 420 from the lateral gate material stripe. The gate material stripe stack 414 is partially staggered along the length of the semiconductor material stripe stack 412, preventing shorting between the word line 406 (and GSL/SSL 408). As noted above, the operation of FIG. 4 is generally similar to FIG. 2, including controlling the conduction or non-conductivity of the second length P# 404 along the stripe stack 412 of semiconductor material on a particular side, the sluice material stripe stack 414 on the same side.

第4圖中,鄰近堆疊中的記憶胞串列交錯排列在位元線末端至源極線末端的方位與源極線末端至位元線末端的方位之間。具有上述方位其中之一的堆疊係包括在半導體材料條紋 堆疊412中,且具有其他方位的堆疊並不包括在半導體材料條紋堆疊412中。不同的說明在於,閘材料條紋堆疊414能控制與閘材料條紋堆疊414交錯之其他堆疊的導電性。 In Fig. 4, the memory cell strings in the adjacent stack are staggered between the end of the bit line to the end of the source line and the end of the source line to the end of the bit line. A stack having one of the above orientations includes stripes in a semiconductor material Stacks in stack 412 and having other orientations are not included in stripe stack 412 of semiconductor material. The different illustration is that the gate material stripe stack 414 can control the conductivity of other stacks that are interleaved with the gate material stripe stack 414.

梯狀結構425傳送選擇半導體材料條紋堆疊412之特定面的串列選擇訊號。 The ladder structure 425 carries a serial selection signal that selects a particular face of the stripe stack 412 of semiconductor material.

除了剛說明合併多個第4圖例子的內容中所述的上半頂陣列,第4圖也顯示以下說明的底陣列。底陣列包括半導體材料條紋堆疊413,其包括8個與介電條紋交錯的半導體材料條紋堆疊。字元線407包括8個字元線正交地配置在半導體材料條紋堆疊413上,並具有表面共形於半導體材料條紋堆疊413。記憶體元件的三維陣列建立在半導體材料條紋堆疊413與字元線407之表面之間的交叉點。 In addition to the upper half array described in the context of merging a plurality of examples of Fig. 4, Fig. 4 also shows the bottom array explained below. The bottom array includes a stripe stack 413 of semiconductor material that includes eight strips of semiconductor material staggered with dielectric stripes. The word line 407 includes eight word lines orthogonally disposed on the semiconductor material stripe stack 413 and having a surface conformal to the semiconductor material stripe stack 413. The three dimensional array of memory elements is established at the intersection between the stripe stack 413 of semiconductor material and the surface of word line 407.

閘材料條紋堆疊415交錯半導體材料條紋堆疊413。閘材料條紋堆疊415垂直於橫向閘材料條紋堆疊420,並延伸自橫向閘材料條紋堆疊420。 The gate material stripe stack 415 is staggered across the semiconductor material stripe stack 413. The gate material stripe stack 415 is perpendicular to the lateral gate material stripe stack 420 and extends from the lateral gate material stripe stack 420.

下半底陣列的配置、操作、與變化可類似上半頂陣列。 The configuration, operation, and variations of the lower half of the array can be similar to the upper half of the array.

第5圖為第4圖中三維記憶體結構的半導體材料條紋其中一個堆疊的電路示意圖。 Fig. 5 is a circuit diagram showing one of the stacked semiconductor material stripes of the three-dimensional memory structure in Fig. 4.

第5圖的配置、操作、與變化係大致類似於第3圖,其中差異說明如下。 The configuration, operation, and variation of Figure 5 are generally similar to Figure 3, with the differences illustrated below.

所有半導體材料條紋堆疊412與413包括藉由絕緣 材料分開的半導體材料條紋的數個面。為求簡潔,第5圖顯示單一個半導體材料條紋的堆疊。完整的半導體材料條紋的堆疊係藉由合併數個第4圖的例子而形成,如此使得半導體材料條紋的堆疊包括一位元線末端與一共用的源極線末端。 All semiconductor material stripe stacks 412 and 413 include insulation The faces of the strips of semiconductor material separated by materials. For the sake of simplicity, Figure 5 shows a stack of stripes of a single semiconductor material. The complete stacking of strips of semiconductor material is formed by combining several examples of Figure 4 such that the stack of strips of semiconductor material includes a one-bit end and a common source line end.

在單一個堆疊中,半導體材料條紋的8個面係藉由絕緣材料分開。在堆疊的各個面中,NAND串列包括串連的電晶體CSL 511、GSL 509、WL 507(包括WL0、WL1至WL N-1)、P#505與BL 503。電晶體P1至P8整體標號為P#505,選擇特定面或半導體材料條紋上的記憶體元件。 In a single stack, the eight faces of the strip of semiconductor material are separated by an insulating material. Among the various faces of the stack, the NAND string includes series transistors CSL 511, GSL 509, WL 507 (including WL0, WL1 to WL N-1), P#505 and BL 503. The transistors P1 to P8 are generally designated P#505, and a memory element on a particular face or strip of semiconductor material is selected.

如參照第4圖所述的內容,相同面上的閘材料條紋堆疊414藉由相同面中橫向閘極材料堆疊420的材料條紋彼此電性連接。第5圖電晶體P1至P8中的單一個選擇所有半導體材料條紋堆疊412中電晶體的特定面。第5圖電晶體P1至P8其中單一個的閘極對應相同面上所有的閘材料條紋堆疊414。第5圖電晶體P1至P8其中單一個的主體對應至半導體材料條紋堆疊412中相同面上的所有第二長度P#404。 As described with reference to FIG. 4, the gate material stripe stack 414 on the same side is electrically connected to each other by the strips of material of the lateral gate material stack 420 in the same plane. The single one of the transistors P1 to P8 of Fig. 5 selects a particular face of the transistor in the stripe stack 412 of all semiconductor materials. Figure 5 of the transistors P1 to P8 in which the gates of a single one correspond to all of the gate material stripe stacks 414 on the same side. Figure 5 of the transistors P1 to P8 wherein the bodies of the single one correspond to all of the second lengths P# 404 on the same side of the stripe stack 412 of semiconductor material.

如上參照第4圖所述的,鄰近堆疊中的記憶胞串列交錯在位元線末端至源極線末端的方位與源極線末端至位元線末端的方位之間。半導體材料條紋(其包括被5圖中電晶體P1至P8其中相同一個所控制的第二長度)係全部共用相同的方位,位元線末端至源極線末端的方位與源極線末端至位元線末端的方位其中任一。 As described above with reference to Figure 4, the memory cell strings in adjacent stacks are interleaved between the end of the bit line end to the end of the source line and the end of the source line end to the end of the bit line. The strip of semiconductor material (which includes the second length controlled by the same one of transistors P1 to P8 in Figure 5) all share the same orientation, the orientation of the end of the bit line to the end of the source line and the end of the source line in place. The orientation of the end of the line is either.

對於具有相反方位的記憶胞串列,第5圖其他例子中的額外一組電晶體P1至P8提供將特定面上的記憶體元件區別於其他面上之其他記憶體元件的控制。如參照第4圖所述的內容,完整的位元線至源極線半導體材料條紋堆疊係合併數個第4圖的例子形成。如第5圖之額外的例子中額外組的電晶體P1至P8係在第4圖額外的例子中。 For memory cell arrays having opposite orientations, the additional set of transistors P1 through P8 in the other examples of Figure 5 provide control for distinguishing memory elements on a particular face from other memory elements on other faces. As described with reference to FIG. 4, the complete bit line-to-source line semiconductor material stripe stack is formed by combining several examples of FIG. Additional sets of transistors P1 through P8 in the additional example of Figure 5 are in the additional example of Figure 4.

第6至14圖為一實施例中第2圖三維記憶體結構的製造流程。 6 to 14 are manufacturing processes of the three-dimensional memory structure of Fig. 2 in an embodiment.

第6圖為半導體材料層的堆疊的上視圖。半導體層與介電層彼此交錯。 Figure 6 is a top view of the stack of layers of semiconductor material. The semiconductor layer and the dielectric layer are interdigitated with each other.

導電插塞與其他介層連接體形成穿過半導體材料層的堆疊。導電插塞接著變成部分位元線接觸202、位元線接觸203、共用的源極線接觸210、與共用的源極線接觸211。 The conductive plug and other via connectors form a stack through the layer of semiconductor material. The conductive plug then becomes part of the bit line contact 202, the bit line contact 203, the shared source line contact 210, and the common source line contact 211.

第6圖包括具有箭頭示線A-A的虛線矩形,其標示第7圖三維立體圖中的平面部分。 Fig. 6 includes a dotted rectangle having an arrow line A-A indicating a plane portion in the three-dimensional view of Fig. 7.

第7圖為第6圖部分的三維立體圖,其顯示交替沉積絕緣層710、712、714與導電層、711、713所形成的結構,導電層、711、713使用摻雜的半導體形成,例如係毯覆性地沉積在晶片的陣列區域中。雖然顯示出2層導電層,但也可形成8層以造成記憶體元件的8個面,或使用其他數目的導電層。箭頭示線A-A對應至第6圖中的箭頭示線。 Figure 7 is a three-dimensional view of the portion of Figure 6, showing the structure formed by alternately depositing insulating layers 710, 712, 714 and conductive layers, 711, 713. The conductive layers, 711, 713 are formed using doped semiconductors, such as Blankly deposited in the array area of the wafer. Although two conductive layers are shown, eight layers may be formed to cause eight faces of the memory element, or other numbers of conductive layers may be used. The arrow line A-A corresponds to the arrow line in Fig. 6.

半導體材料層可以多種摻雜型態的半導體形成,例 如p型或n型矽;多種摻雜型態例如p型或n型的單晶半導體形成;或多種摻雜型態例如p型或n型的多晶半導體形成。 The semiconductor material layer can be formed by a plurality of doped semiconductors, for example For example, p-type or n-type germanium; a plurality of doped forms such as p-type or n-type single crystal semiconductors; or a plurality of doped forms such as p-type or n-type polycrystalline semiconductors.

一代表實施例具有n型半導體條紋的摻雜濃度可約為1018/cm3,可實施的範圍為1017/cm3至1019/cm3。使用n型半導體條紋特別有益於無接面(junction-free)實施例,以提升沿著NAND串列的導電性,且藉此允許較高的讀取電流。 A representative embodiment having a doping concentration of n-type semiconductor stripes may be about 1018/cm3, and may be implemented in the range of 1017/cm3 to 1019/cm3. The use of n-type semiconductor stripes is particularly beneficial for junction-free embodiments to enhance conductivity along the NAND string and thereby allow for higher read currents.

絕緣層710、712、714可擇自由聚甲基半矽氧烷(polymethylsilsesquioxane;P-MSQ)、SiLK、氟摻雜的氧化物、碳摻雜的氧化物、多孔氧化物、及旋轉塗佈有機聚合介電質所構成之群組中的一或更多個物質,其中氟摻雜的氧化物包括氟化矽酸鹽玻璃(fluorinated silicate glass;SiOF),碳摻雜的氧化物包括碳化矽酸鹽玻璃(carbonated silicate glass;SiOC)、黑鑽石、coral、及aurora。這些材料層可以多種方式形成,包括技術中可使用的低壓化學氣相沉積(LPCVD)製程。 The insulating layers 710, 712, and 714 may be selected from polymethylsilsesquioxane (P-MSQ), SiLK, fluorine-doped oxides, carbon-doped oxides, porous oxides, and spin-coated organic One or more substances in the group consisting of polymeric dielectrics, wherein the fluorine-doped oxide comprises fluorinated silicate glass (SiOF), and the carbon-doped oxide comprises tantalum silicate Carbonated silicate glass (SiOC), black diamond, coral, and aurora. These material layers can be formed in a variety of ways, including low pressure chemical vapor deposition (LPCVD) processes that can be used in the art.

第8圖半導體材料條紋堆疊的上視圖。半導體材料條紋堆疊212與半導體材料條紋堆疊213具有相反的方位。半導體材料條紋堆疊212與半導體材料條紋堆疊213的較外末端為個別的共用源極線插塞。半導體材料條紋堆疊212與半導體材料條紋堆疊213的較內末端阻止個別的位元線插塞之間的短接。 Figure 8 is a top view of a stripe stack of semiconductor material. The semiconductor material stripe stack 212 has an opposite orientation to the semiconductor material stripe stack 213. The outer ends of the semiconductor material stripe stack 212 and the semiconductor material stripe stack 213 are individual common source line plugs. The semiconductor material stripe stack 212 and the inner end of the strip of semiconductor material stripe 213 prevent shorting between individual bit line plugs.

第8圖包括具有箭頭示線B-B的虛線矩形,其標示第9圖之三維立體圖的平面部分,並表示出第9圖立體圖係取自第8圖的部分結構。 Fig. 8 includes a dotted rectangle having an arrow line B-B indicating a plane portion of the three-dimensional view of Fig. 9, and showing a partial view of Fig. 9 taken from Fig. 8.

第9圖為第8圖部分的三維立體圖,其顯示進行黃光微影圖案化步驟之後的結果,黃光微影圖案化步驟用以定義數個隆起形狀的導電條紋的堆疊750,其中導電條紋係使用導電層711、713的材料,並藉由絕緣層712、714彼此分開。可以應用碳硬遮罩與反應性離子蝕刻製程的微影製程形成高深寬比的溝槽可在堆疊中,支持許多材料層。箭頭示線B-B對應至第8圖的箭頭示線B-B。 Figure 9 is a three-dimensional view of the portion of Figure 8, showing the results after the yellow lithography patterning step, the yellow lithography patterning step is used to define a stack 750 of conductive stripes of a plurality of raised shapes, wherein the conductive stripes are made of a conductive layer The materials of 711, 713 are separated from each other by insulating layers 712, 714. A high aspect ratio trench can be formed using a carbon hard mask and a reactive ion etching process to form a high aspect ratio trench in the stack, supporting many material layers. The arrow line B-B corresponds to the arrow line B-B of Fig. 8.

第10圖顯示半導體材料條紋堆疊上之字元線的上視圖。字元線206覆蓋較上陣列中半導體材料條紋堆疊的中間長度。接地選擇線208覆蓋半導體材料條紋堆疊介於字元線206與共用的源極線接觸之間的部分。字元線207覆蓋較下陣列中半導體材料條紋堆疊的中間長度。接地選擇線209覆蓋半導體材料條紋堆疊介於字元線207與共用的源極線接觸之間的部分中。 Figure 10 shows a top view of the word lines on the stripe stack of semiconductor materials. The word line 206 covers the intermediate length of the stripe stack of semiconductor material in the upper array. The ground select line 208 covers the portion of the semiconductor material stripe stack that is between the word line 206 and the common source line contact. Word line 207 covers the intermediate length of the stripe stack of semiconductor material in the lower array. The ground select line 209 covers the semiconductor material stripe stack in a portion between the word line 207 and the common source line contact.

第10圖包括具有箭頭示線C-C的虛線矩形,其標示出第11圖三維立體圖的平面部分,並表示出第11圖立體圖係取自第10圖的部分結構。 Fig. 10 includes a broken line rectangle having an arrow line C-C, which indicates a plane portion of the three-dimensional view of Fig. 11, and shows a partial structure of Fig. 11 taken from Fig. 10.

第11圖為第10圖部分的三維立體圖,顯示記憶體材料上的字元線與半導體材料條紋堆疊。 Figure 11 is a three-dimensional view of the portion of Figure 10 showing the word lines on the memory material stacked with the stripes of semiconductor material.

此例中,記憶體材料層1115,例如介電電荷捕捉結構,覆蓋數個半導體條紋堆疊。數個字元線1116、1117正交於數個半導體條紋堆疊。字元線1116、1117的表面共形於半導體條紋堆疊,填入由堆疊定義出的溝槽(例如溝槽1120),並在堆疊上之 半導體條紋711至714的側表面與字元線1116、1117之間的交叉點處界面區定義出多層陣列。字元線1116、1117可為與半導體材料條紋相同或不同導電型的半導體材料。例如半導體條紋可以p型多晶矽、或p型磊晶單晶矽形成,而字元線1116、1117可以相當重摻雜的p+型多晶矽形成。 In this example, the memory material layer 1115, such as a dielectric charge trapping structure, covers a plurality of semiconductor stripe stacks. A plurality of word lines 1116, 1117 are orthogonal to a plurality of semiconductor stripe stacks. The surfaces of the word lines 1116, 1117 are conformal to the semiconductor stripe stack, filled with trenches defined by the stack (eg, trenches 1120), and stacked on the stack The interface region at the intersection between the side surfaces of the semiconductor stripes 711 to 714 and the word lines 1116, 1117 defines a multi-layer array. The word lines 1116, 1117 can be semiconductor materials that are the same or different conductivity types as the semiconductor material stripes. For example, the semiconductor stripes may be formed of a p-type polycrystalline germanium or a p-type epitaxial single crystal germanium, and the word lines 1116, 1117 may be formed of a relatively heavily doped p+ type polycrystalline germanium.

然後,矽化物層(例如矽化鎢、矽化鈷、矽化鈦)可形成在字元線1116、1117的頂表面上。 A telluride layer (e.g., tungsten telluride, cobalt telluride, titanium telluride) may then be formed on the top surface of the word lines 1116, 1117.

結果,形成了建構在NAND快閃陣列中的三維陣列。源極、汲極、與通道形成在矽半導體條紋711至714,記憶體材料層1115包括穿隧介電層1197,其可以氧化矽(O)形成;電荷儲存層1198,其可以氮化矽(N)形成;阻擋介電層1199,其可以氧化矽形成;以及閘極,其可包括字元線1116、1117的多晶矽(S)。 As a result, a three-dimensional array constructed in a NAND flash array is formed. A source, a drain, and a channel are formed on the germanium semiconductor stripes 711 to 714, the memory material layer 1115 includes a tunneling dielectric layer 1197, which may be formed by yttrium oxide (O), and a charge storage layer 1198, which may be nitrided ( N) forming; blocking dielectric layer 1199, which may be formed of yttrium oxide; and gates, which may include polysilicon (S) of word lines 1116, 1117.

因此,包括具有電荷儲存結構之場效電晶體的記憶胞形成在交叉點三維陣列中。尺寸上半導體條紋與字元線的寬度使用25奈米等級,隆起狀堆疊之間的間距為25奈米等級,單一晶片中具有數十層(例如32層)的裝置可達到兆位元容量(1012)。 Therefore, a memory cell including a field effect transistor having a charge storage structure is formed in a three-dimensional array of intersections. The size of the semiconductor stripe and the word line is 25 nm, the pitch between the bumps is 25 nm, and the tens of layers (for example, 32 layers) in a single wafer can reach megabit capacity ( 1012).

記憶體材料層1115可包括其他電荷儲存結構。例如可使用能隙工程(bandgap engineered)SONOS(BE-SONOS)電荷儲存結構,其包括介電穿隧層1197,介電穿隧層119包括在零偏壓下形成反向”U”形的價帶的複合的材料。一實施例中,複合的穿隧介電層包括稱作電洞穿隧層的第一層、稱作能帶補償層(band offset layer)的第二層、以及稱作隔離層第三層。此實施例中電洞穿隧層1115包括在半導體條紋側表面上的二氧化矽,形成方法例如原址蒸汽產生(in-situ steam generation;ISSG)法,可藉由後沉積NO退火或藉由沉積過程額外的通入環境的NO進行任意選擇的氮化步驟。第一層二氧化矽的厚度小於20埃,較佳為15埃或更小。代表實施例厚度可為10埃或12埃。 The memory material layer 1115 can include other charge storage structures. For example, a bandgap engineered SONOS (BE-SONOS) charge storage structure can be used that includes a dielectric tunneling layer 1197 that includes a reverse "U" shape at zero bias. The composite material of the belt. In one embodiment, the composite tunneling dielectric layer includes a first layer called a tunneling layer called a band compensation layer (band) The second layer of the offset layer) and the third layer of the isolation layer. In this embodiment, the tunnel tunneling layer 1115 includes ruthenium dioxide on the side surface of the semiconductor stripe, and the formation method is, for example, an in-situ steam generation (ISSG) method, which can be performed by post-deposited NO annealing or by a deposition process. An additional pass-through environment NO performs an arbitrarily selected nitridation step. The first layer of cerium oxide has a thickness of less than 20 angstroms, preferably 15 angstroms or less. Representative embodiments may have a thickness of 10 angstroms or 12 angstroms.

此實施例中能帶補償層包括在電洞穿隧層上的氮化矽,例如以使用二氯矽烷(dichlorosilane;DCS)與NH3前驅物、680℃的低壓化學氣相沉積法(low-pressure chemical vapor deposition;LPCVD)形成。在其他製程中,能帶補償層包括氮氧化矽,以具有N2O前驅物類似的方法形成。氮化矽能帶補償層的厚度小於30埃,且較佳25埃或更小。 In this embodiment, the band compensation layer includes tantalum nitride on the tunnel tunnel layer, for example, using dichlorosilane (DCS) and NH3 precursor, 680 ° C low pressure chemical vapor deposition (low-pressure chemical) Vapor deposition; LPCVD) formation. In other processes, the bandgap compensation layer, including bismuth oxynitride, is formed in a similar manner to the N2O precursor. The tantalum nitride band compensation layer has a thickness of less than 30 angstroms, and preferably 25 angstroms or less.

此實施例中的隔離層包括二氧化矽,在氮化矽能帶補償層上,形成方法例如使用LPCVD高溫氧化物(HTO)沉積法。二氧化矽隔離層的厚度小於35埃,較佳埃或更小。此三層穿隧層造成反向U形的價帶能階。 The spacer layer in this embodiment includes ruthenium dioxide on the tantalum nitride band compensation layer, and the formation method is, for example, a LPCVD high temperature oxide (HTO) deposition method. The thickness of the ceria barrier layer is less than 35 angstroms, preferably angstroms or less. The three-layer tunneling layer causes a reverse U-shaped valence band energy level.

第一位置的價帶能階為足以引發電洞穿隧過半導體主體與第一位置界面之間的薄區域的電場,其也足以將價帶能階抬起至第一位置後的階層,其有效率地消滅複合的穿隧介電質第一位置後的電洞穿隧阻障。此結構在三層的穿隧介電層中建立反向U形的價帶能階,並使得高速的電場輔助的電洞穿隧成為可能,同時有效率地避免複合的穿隧介電質在沒有電場或為了其他 目的操作引發產生的較小電場而發生的漏電荷問題,上述其他操作例如從單元胞讀取資料或程式化鄰近的單元胞。 The valence band energy level of the first location is an electric field sufficient to cause a hole to tunnel through a thin region between the semiconductor body and the first position interface, which is also sufficient to lift the valence band energy level to a level after the first position, which has The hole tunneling barrier after the composite tunneling dielectric first position is efficiently eliminated. This structure establishes a reverse U-shaped valence band energy level in the three-layer tunneling dielectric layer, and enables high-speed electric field-assisted hole tunneling, while efficiently avoiding the composite tunneling dielectric in the absence of Electric field or for other The purpose of the operation is to cause a leakage charge problem that occurs when a small electric field is generated, such as reading data from a unit cell or stylizing adjacent unit cells.

在代表的裝置中,記憶體材料層1115包括能隙工程的複合穿隧介電層,其包括厚度小於2nm的二氧化矽層、厚度小於3nm的氮化矽層、及厚度小於4nm的二氧化矽層。一實施例中,複合的穿隧介電層構自超薄氧化矽層O1(例如<=15埃)、超薄氮化矽層N1(例如<=30埃)、及超薄氧化矽層O2(例如<=35埃),其在與半導體主體的界面補償15埃或更薄處造成提升價帶能階約2.6eV。O2層在第二補償(例如從界面約30埃至45埃)處,藉由較低價帶能階(較高的電洞穿隧阻障)與較高傳導帶能階區域,將N1層分開自電荷捕捉層。足以引發電洞穿隧的電場抬起第二位置後的價帶能階至一階層,其有效率地消滅電洞穿隧阻障,這是因為第二位置位在較遠離界面的位置。因此,O2層並未明顯干擾電場輔助的電洞穿隧,而同時改善低電場過程中工程化穿隧介電質阻止漏電的能力。 In the representative device, the memory material layer 1115 includes a band gap engineered composite tunneling dielectric layer comprising a ceria layer having a thickness of less than 2 nm, a tantalum nitride layer having a thickness of less than 3 nm, and a dioxide having a thickness of less than 4 nm.矽 layer. In one embodiment, the composite tunneling dielectric layer is formed from an ultra-thin yttrium oxide layer O1 (eg, <=15 angstroms), an ultra-thin tantalum nitride layer N1 (eg, <=30 angstroms), and an ultra-thin yttrium oxide layer O2. (e.g., <= 35 angstroms), which compensates the interface of the semiconductor body by 15 angstroms or less, resulting in an elevated valence band energy of about 2.6 eV. The O2 layer separates the N1 layer at a second compensation (eg, from about 30 angstroms to 45 angstroms from the interface) by a lower valence band energy level (higher tunnel tunneling barrier) and a higher conduction band energy level region. Self-charge trapping layer. An electric field sufficient to cause tunneling of the hole raises the valence band energy level after the second position to a level, which effectively eliminates the hole tunneling barrier because the second position is located farther from the interface. Therefore, the O2 layer does not significantly interfere with the electric field-assisted hole tunneling, while at the same time improving the ability of the engineered tunneling dielectric to prevent leakage during low electric field.

此實施例中記憶體材料層1115A中的電荷捕捉層包括厚度大於50埃的氮化矽,厚度例如約70埃,形成方法例如LPCVD。也可使用其他電荷捕捉材料與結構,例如包括氮氧化矽(SixOyNz)、富矽的氮化物、富矽的氧化物、包括埋奈米顆粒的捕捉層等。 The charge trapping layer in the memory material layer 1115A in this embodiment comprises tantalum nitride having a thickness greater than 50 angstroms and a thickness of, for example, about 70 angstroms, formed by a method such as LPCVD. Other charge trapping materials and structures can also be used, including, for example, cerium oxynitride (SixOyNz), cerium-rich nitrides, cerium-rich oxides, capture layers including buried nanoparticles, and the like.

此實施例中,記憶體材料層1115中的阻擋介電層包括二氧化矽層,厚度大於50埃,例如為約90埃,可藉由濕式爐 管氧化製程形成氮化物的濕式轉化形成。其他實施例可使用高溫氧化物(HTO)或LPCVD SiO2。其他阻擋介電質可包括high-κ材料例如氧化鋁。 In this embodiment, the barrier dielectric layer in the memory material layer 1115 comprises a ruthenium dioxide layer having a thickness greater than 50 angstroms, for example about 90 angstroms, by means of a wet furnace. The tube oxidation process forms a wet conversion of the nitride. Other embodiments may use high temperature oxide (HTO) or LPCVD SiO2. Other barrier dielectrics can include high-k materials such as alumina.

一代表實施例中,電洞穿隧層可為厚度13埃的二氧化矽;能帶補償層可為厚度20埃的氮化矽;隔離層可為厚度25埃的二氧化矽;電荷捕捉層可為厚度70埃的氮化矽;阻擋介電層可為厚度90埃的氧化矽。閘材料可為p+多晶矽(功函數約5.1eV),用於字元線1116、1117中。 In a representative embodiment, the tunnel tunneling layer may be a cerium oxide having a thickness of 13 angstroms; the energy compensation layer may be a tantalum nitride having a thickness of 20 angstroms; the insulating layer may be a cerium oxide having a thickness of 25 angstroms; and the charge trapping layer may be It is a tantalum nitride having a thickness of 70 angstroms; the barrier dielectric layer may be yttrium oxide having a thickness of 90 angstroms. The gate material can be p+ polysilicon (work function about 5.1 eV) for use in word lines 1116, 1117.

第12圖上視圖另外顯示額外的半導體材料條紋堆疊。 The top view of Figure 12 additionally shows an additional strip of semiconductor material stripes.

橫向閘材料條紋堆疊220的延伸方向平行字元線。在頂陣列中,閘材料條紋堆疊214延伸方向垂直橫向閘材料條紋堆疊220,通過位元線接觸,但未與字元線短接(short)。形成半導體材料條紋堆疊212的長度P# 204。長度P# 204的寬度窄於剩餘的半導體材料條紋堆疊212。在接著進行的步驟中,介電填充物例如氧化物填充在半導體材料條紋堆疊212與閘材料條紋堆疊214之間的間隙中。 The direction of extension of the lateral gate material stripe stack 220 is parallel to the word line. In the top array, the gate material stripe stack 214 extends in a direction perpendicular to the vertical gate material stripe stack 220, contacted by the bit lines, but not shorted to the word lines. A length P# 204 of the stripe stack 212 of semiconductor material is formed. The length P# 204 is narrower than the remaining semiconductor material stripe stack 212. In a subsequent step, a dielectric fill such as an oxide is filled in the gap between the semiconductor material stripe stack 212 and the gate material stripe stack 214.

在底陣列中,閘材料條紋堆疊215延伸方向垂直橫向閘材料條紋堆疊220,通過位元線接觸,而未與字元線形成短接。形成半導體材料條紋堆疊的長度P#205。長度P#205的寬度窄於剩餘的半導體材料條紋堆疊213。在接著進行的步驟中,介電填充物例如氧化物形成在半導體材料條紋堆疊213與閘材料條 紋堆疊215之間的間隙中。 In the bottom array, the gate material stripe stack 215 extends in a direction perpendicular to the vertical gate material stripe stack 220, which is contacted by the bit lines without shorting the word lines. A length P#205 of the stripe stack of semiconductor material is formed. The length of the length P# 205 is narrower than the remaining semiconductor material stripe stack 213. In a subsequent step, a dielectric filler such as an oxide is formed on the semiconductor material stripe stack 213 and the gate material strip The gap between the stacks 215 is in the gap.

高深寬比的溝槽可以利用碳硬遮罩與反應性離子蝕刻的黃光微影製程形成在堆疊中,支撐許多材料。 High aspect ratio trenches can be formed in a stack using a carbon hard mask and a reactive ion etched yellow light lithography process to support many materials.

形成開口1230至頂陣列與底陣列側,與橫向閘材料條紋堆疊220的中間部分。如參照第3圖所述的內容,電晶體P1至P8其中單一個的電晶體閘極係形成自所有閘材料條紋堆疊214、所有閘材料條紋堆疊215、與橫向閘材料條紋堆疊220之相同面中的閘材料。藉由形成開口1230,可以減少任何特定層中閘材料的體積。而減少閘材料的體積能使電晶體P1至P8降低RC延遲並提高開關的速率。 Openings 1230 are formed to the top array and bottom array sides, and intermediate portions of the lateral gate material stripe stack 220. As described with reference to FIG. 3, the transistor gates of the transistors P1 to P8 are formed from all of the gate material stripe stacks 214, all of the gate material stripe stacks 215, and the same side of the lateral gate material stripe stack 220. The brake material in the middle. By forming the opening 1230, the volume of the gate material in any particular layer can be reduced. Reducing the volume of the thyristor material can cause the transistors P1 to P8 to reduce the RC delay and increase the rate of the switch.

第13圖為上視圖,其更顯示出三維記憶體陣列的製程。形成梯狀結構225,其傳送串列選擇訊號,串列選擇訊號從控制電路選擇半導體材料條紋堆疊212的特定面至閘材料條紋堆疊214、閘材料條紋堆疊215、與橫向閘材料條紋堆疊220的不同面。 Figure 13 is a top view showing the process of a three-dimensional memory array. Forming a ladder structure 225 that transmits a series selection signal that selects a particular face of the semiconductor material stripe stack 212 from the control circuit to the gate material stripe stack 214, the gate material stripe stack 215, and the lateral gate material stripe stack 220 Different faces.

形成側壁228在開口1230中。側壁矽化形成物可為矽化鈷(cobalt silicide;CoSix)、矽化鈦(titanium silicide;TiSix)、或其他矽化物化合物,方法例如在字元線組之側壁上進行的自對準矽化製程(self-aligned silicide;SAlicide)。矽化物的形成可在側壁上沉積薄的矽化物前驅物,例如過渡金屬層。然後退火結構,造成矽化物前驅物與導電材料反應而形成低電阻的側壁矽化形成物。移除掉剩餘或過多的過渡金屬。 Sidewall 228 is formed in opening 1230. The sidewall deuteration formation may be cobalt silicide (CoSix), titanium silicide (TiSix), or other telluride compound, such as a self-aligned deuteration process on the sidewalls of the word line group (self- Aligned silicide;SAlicide). The formation of a telluride can deposit a thin telluride precursor, such as a transition metal layer, on the sidewalls. The structure is then annealed to cause the telluride precursor to react with the conductive material to form a low resistance sidewall deuterated formation. Remove any excess or excess transition metal.

第14圖為上視圖,更顯示三維記憶體陣列的製程。形成接觸於插塞上,其包括位元線202、位元線203、字元線206、字元線207、接地選擇線208、接地選擇線209、共用源極線接觸210、與共用的源極線接觸211。 Figure 14 is a top view showing the process of a three-dimensional memory array. Formed in contact with the plug, including bit line 202, bit line 203, word line 206, word line 207, ground select line 208, ground select line 209, common source line contact 210, and a common source Polar line contact 211.

第15至23圖繪示根據一實施例中第4圖之三維記憶體結構的製造流程。第15至23圖大致上對應第6至14圖的配置、操作與變化。 15 to 23 are views showing a manufacturing process of the three-dimensional memory structure according to FIG. 4 in an embodiment. Figures 15 through 23 generally correspond to the configurations, operations, and variations of Figures 6 through 14.

第15圖繪示半導體材料層的堆疊的上視圖,且大致上類似第6圖。導電插塞與其他介層連接體形成穿過半導體材料層的堆疊。導電插塞接著變成位元線接觸402、位元線接觸403、共用源極線接觸410、與共用的源極線接觸411的部分。 Figure 15 depicts a top view of a stack of layers of semiconductor material, and is substantially similar to Figure 6. The conductive plug and other via connectors form a stack through the layer of semiconductor material. The conductive plug then becomes part of the bit line contact 402, the bit line contact 403, the common source line contact 410, and the common source line contact 411.

第15圖包括具有箭頭示線D-D的虛線矩形,其標示出第16圖三維立體圖在第15圖中所在的區域。 Fig. 15 includes a dotted rectangle having an arrow line D-D indicating the area in which the three-dimensional view of Fig. 16 is located in Fig. 15.

第16圖為第15圖中一部分的三維立體圖,且大致上相似於第7圖。箭頭示線D-D對應至第15圖中的箭頭示線D-D。 Fig. 16 is a three-dimensional view of a portion of Fig. 15 and is substantially similar to Fig. 7. The arrow line D-D corresponds to the arrow line D-D in Fig. 15.

第17圖為半導體材料條紋堆疊的上視圖,且大致上類似於第8圖。半導體材料條紋堆疊412與半導體材料條紋堆疊413具有相反的方位。半導體材料條紋堆疊412與半導體材料條紋堆疊413延伸穿過個別的共用源極線插塞。另一實施例中,半導體材料條紋堆疊412與半導體材料條紋堆疊413未與共用源極線插塞形成短接。 Figure 17 is a top view of a stripe stack of semiconductor material and is generally similar to Figure 8. The semiconductor material stripe stack 412 has an opposite orientation to the semiconductor material stripe stack 413. The semiconductor material stripe stack 412 and the semiconductor material stripe stack 413 extend through individual common source line plugs. In another embodiment, the stripe stack 412 of semiconductor material and the stripe stack 413 of semiconductor material are not shorted to the common source line plug.

第17圖包括虛線矩形與箭頭示線E-E,其標示出第 18圖三維立體圖在第17圖中所在位置的平面部分。 Figure 17 includes a dotted rectangle and an arrow line E-E, which indicates Figure 18 is a plan view of the position of the three-dimensional view in Figure 17.

第18圖為第17圖中一部分的三維立體圖,其顯示出利用黃光微影圖案化步驟定義出數個導電條紋之隆起狀堆疊的結果,且大致上相似於第9圖。箭頭示線E-E對應至第17圖中的箭頭示線E-E。 Figure 18 is a three-dimensional view of a portion of Figure 17, showing the result of defining a raised stack of conductive stripes using a yellow lithography patterning step, and is substantially similar to Figure 9. The arrow line E-E corresponds to the arrow line E-E in Fig. 17.

第19圖為半導體材料條紋上具有字元線的上視圖,且大致上相似於第10圖。字元線406覆蓋較上陣列中半導體材料條紋堆疊的中間長度。GSL/SSL 408覆蓋字元線406與共用的源極線接觸之間的半導體材料條紋堆疊部分中。字元線407覆蓋較下陣列中半導體材料條紋堆疊的中間長度。GSL/SSL 409覆蓋字元線407與共用的源極線接觸之間的半導體材料條紋堆疊。 Figure 19 is a top view of a strip of semiconductor material having word lines and is substantially similar to Figure 10. The word line 406 covers the intermediate length of the stripe stack of semiconductor material in the upper array. GSL/SSL 408 covers the strip of semiconductor material between the word line 406 and the common source line contact. The word line 407 covers the intermediate length of the stripe stack of semiconductor material in the lower array. GSL/SSL 409 covers the stack of semiconductor material stripes between word line 407 and the common source line contact.

第19圖包括虛線矩形與箭頭示線F-F,其標示出第20圖三維立體圖在第19圖中所在位置的平面部分。 Fig. 19 includes a dotted rectangle and an arrow line F-F indicating the plane portion of the position of the three-dimensional view of Fig. 20 in Fig. 19.

第20圖為第19圖部分的三維立體圖,其顯示記憶體材料與半導體材料條紋堆疊,及其上方的字元線,且大致上相似於第11圖。 Figure 20 is a three-dimensional view of the portion of Figure 19 showing the memory material and semiconductor material stripes stacked, and the word lines above them, and are substantially similar to Figure 11.

第21圖為上視圖,其更顯示出其他的半導體材料條紋堆疊,且大致上相似於第12圖。 Figure 21 is a top view which further shows other semiconductor material stripe stacks and is substantially similar to Figure 12.

橫向閘材料條紋堆疊420的延伸方向平行於字元線。在上半頂陣列中,閘材料條紋堆疊414的延伸方向垂直於橫向閘材料條紋堆疊420,穿過位元線接觸,但未與字元線(及 GSL/SSL線)之間形成短接。形成半導體材料條紋堆疊412的長度P#404。長度P#404的寬度相同於剩餘的半導體材料條紋堆疊412,而在另一實施例中其亦可寬於或窄於剩餘的半導體材料條紋堆疊412。在接著進行的步驟中,介電填充物例如氧化物係形成在半導體材料條紋堆疊412與閘極材料條紋堆疊414之間的間隙中。 The direction of extension of the lateral gate material stripe stack 420 is parallel to the word line. In the upper half of the top array, the strip material stack 414 extends in a direction perpendicular to the lateral gate material stripe stack 420, which is in contact with the bit line but not with the word line (and Short-circuited between GSL/SSL lines). A length P#404 of the stripe stack 412 of semiconductor material is formed. The length P# 404 has the same width as the remaining semiconductor material stripe stack 412, while in another embodiment it may also be wider or narrower than the remaining semiconductor material stripe stack 412. In a subsequent step, a dielectric fill such as an oxide is formed in the gap between the semiconductor material stripe stack 412 and the gate material stripe stack 414.

在下半底陣列中,閘材料條紋堆疊415延伸方向垂直於橫向閘材料條紋堆疊420,穿過位元線接觸,而未與字元線(及GSL/SSL線)形成短接。形成半導體材料條紋堆疊413的長度P#405。長度P#405的寬度相同於剩餘的半導體材料條紋堆疊413,然另一實施例中,其亦可寬於或窄於剩餘的半導體材料條紋堆疊413。在接著進行的步驟中,介電填充物例如氧化物形成在半導體材料條紋堆疊413與閘極材料條紋堆疊415之間的間隙中。 In the lower half bottom array, the gate material stripe stack 415 extends in a direction perpendicular to the lateral gate material stripe stack 420, through the bit line contacts, without forming a shorting with the word lines (and the GSL/SSL lines). A length P#405 of the semiconductor material stripe stack 413 is formed. The length P#405 is the same width as the remaining semiconductor material stripe stack 413, but in another embodiment it may be wider or narrower than the remaining semiconductor material stripe stack 413. In a subsequent step, a dielectric fill such as an oxide is formed in the gap between the semiconductor material stripe stack 413 and the gate material stripe stack 415.

可使用基於碳硬遮罩與反應性離子蝕刻的黃光微影在堆疊中形成溝槽,支撐許多材料層。 Yellow light lithography based on carbon hard masking and reactive ion etching can be used to form trenches in the stack, supporting many layers of material.

形成開口2130至上半頂陣列與下半底陣列側,與橫向閘材料條紋堆疊420的中間部分中。如參照第5圖所述的內容,電晶體P1至P8其中單一個的電晶體閘極係形成自所有閘材料條紋堆疊414、所有閘材料條紋堆疊415、與橫向閘材料條紋堆疊420相同面中的閘材料。 An opening 2130 is formed to the upper half top array and the lower half bottom array side, and to the intermediate portion of the lateral gate material stripe stack 420. As described with reference to FIG. 5, the transistor gates of the transistors P1 to P8 are formed from all of the gate material stripe stacks 414, all of the gate material stripe stacks 415, and the same side of the lateral gate material stripe stack 420. Brake material.

第22圖為上視圖,其顯示形成三維記憶體陣列的另 一步驟,且大致上相似於第13圖。形成梯狀結構425。形成側壁428於開口1230中。 Figure 22 is a top view showing another form of a three-dimensional memory array One step, and is substantially similar to Figure 13. A ladder structure 425 is formed. A sidewall 428 is formed in the opening 1230.

第23圖為上視圖,其顯示形成三維記憶體陣列的另一步驟,且大致上相似於第14圖。形成接觸在插塞上,其包括位元線402、位元線403、字元線406、字元線407、接地選擇線408、接地選擇線409、共用的源極線接觸410、與共用的源極線接觸411。 Figure 23 is a top view showing another step of forming a three-dimensional memory array and is substantially similar to Figure 14. Forming a contact on the plug, including bit line 402, bit line 403, word line 406, word line 407, ground select line 408, ground select line 409, shared source line contact 410, and common Source line contact 411.

第24圖顯示第4圖之三維記憶體結構於一實施例中的尺寸組。基於半導體材料條紋的窄度為56nm至20nm,X軸方向上的臨界尺寸係20nm。基於半導體材料條紋的寬於20nm,與半導體材料條紋至氧化物之間的距離18nm,Y軸方向上的臨界尺寸係38nm。陣列效率係從69.2%提升至74.2%。 Fig. 24 is a view showing the size group of the three-dimensional memory structure of Fig. 4 in an embodiment. The narrowness of the stripe based on the semiconductor material is 56 nm to 20 nm, and the critical dimension in the X-axis direction is 20 nm. The critical dimension in the Y-axis direction is 38 nm, which is wider than 20 nm based on the stripe of the semiconductor material and 18 nm from the stripe to oxide of the semiconductor material. The array efficiency increased from 69.2% to 74.2%.

面積效率等於:(陣列胞面積)/(陣列胞面積+上部分面積),其中所述的上部分包括串列選擇線面積、接地選擇線面積、接觸著落面積、與其他未被陣列胞佔據的面積。 The area efficiency is equal to: (array cell area) / (array cell area + upper part area), wherein the upper portion includes the tandem selection line area, the ground selection line area, the contact landing area, and other non-array cells. area.

第24圖中,以氧化物填充空白區域,包括在Y方向上具有長度130nm之接觸上的蜿蜒空白區域,Y方向上具有長度100nm之接觸下的空白區域與。空白區域係在不同的步驟中被蝕刻掉。 In Fig. 24, the blank region is filled with oxide, and includes a blank region on the contact having a length of 130 nm in the Y direction, and a blank region at the contact of 100 nm in the Y direction. Blank areas are etched away in different steps.

第25圖為根據一實施例之簡化的電路方塊圖。積體電路線975包括三維NAND快閃記憶體陣列960,如以下所述的,位在具有交錯的控制結構的半導體基底上。一短組(short set)的閘 材料堆疊提供場效應以開啟並關閉一部分長組的半導體材料堆疊。列解碼器961耦接至數個字元線962,且沿著記憶體陣列960中的數個列配置。行解碼器耦接至數個位元線964,沿著對應記憶體陣列960中的堆疊的數個行配置,用以讀取與程式化來自陣列960中記憶胞的資料。面解碼器958透過串列選擇線959耦接至記憶體陣列960中數個面。位址在匯流排965供應至行解碼器963、列解碼器961、與面解碼器958。此例中,方塊966中的感測放大器與資料輸入結構透過資料匯流排967耦接至行解碼器963。資料透過資料輸入線971,從積體電路975上的輸入/輸出埠、或積體電路975內部或外部的其他資料來源,至方塊966中的資料輸入結構。在此說明的實施例中,其他電路974係包括在積體電路上,例如一般目的的處理器,或其他特別目的的應用電路,或NAND快閃記憶胞陣列支持的晶片上系統功能的程式單元組合。資料透過資料輸出線972從方塊966中的感測放大器,提供至積體電路975上的輸入/輸出埠,或至積體電路975內部或外部的其他資料目的地。 Figure 25 is a simplified circuit block diagram in accordance with an embodiment. Integrated circuit line 975 includes a three dimensional NAND flash memory array 960, as described below, on a semiconductor substrate having a staggered control structure. a short set of gates The material stack provides a field effect to turn on and off a portion of the long set of semiconductor material stacks. Column decoder 961 is coupled to a plurality of word lines 962 and is arranged along a number of columns in memory array 960. The row decoder is coupled to a plurality of bit lines 964 along a plurality of rows of the stack in the corresponding memory array 960 for reading and stylizing data from the memory cells in the array 960. The face decoder 958 is coupled to the plurality of faces in the memory array 960 through the serial select line 959. The address is supplied to the row decoder 963, the column decoder 961, and the area decoder 958 in the bus 965. In this example, the sense amplifier and data input structure in block 966 is coupled to row decoder 963 via data bus 967. The data is passed through data entry line 971, from input/output ports on integrated circuit 975, or other sources of data internal or external to integrated circuit 975, to the data input structure in block 966. In the embodiments described herein, other circuits 974 are included on integrated circuits, such as general purpose processors, or other special purpose application circuits, or program elements of on-chip system functions supported by NAND flash memory cell arrays. combination. Data is provided from the sense amplifiers in block 966 through data sense line 972 to input/output ports on integrated circuit 975, or to other data destinations internal or external to integrated circuit 975.

此例中使用偏壓安排狀態機器的控制器969控制通過方塊968中的電壓供應產生或提供的偏壓安排提供電壓應用,例如讀取、抹除、程式化、抹除驗證、與程式化驗證電壓。控制器傳送訊號至面解碼器958,其傳送一組設定電壓至串列選擇線959,而至短組閘材料堆疊,例如提供場效應以開啟或關閉長組半導體材料堆疊的部分,以作用為長組半導體材料堆疊部分的閘 極。 The controller 969, in this example, uses a bias-arranged state machine to control the biasing arrangement generated or provided by the voltage supply in block 968 to provide voltage applications, such as read, erase, stylize, erase verify, and stylized verification. Voltage. The controller transmits a signal to plane decoder 958 that transmits a set of set voltages to the tandem select line 959 to a short stack of gate material stacks, such as providing field effects to turn on or off portions of the long stack of semiconductor material stacks to act as Long group of semiconductor material stacking parts pole.

對於任單一個半導體材料條紋堆疊中的任單一個半導體材料條紋,閘材料條紋堆疊中的一對閘材料條紋係與單一個半導體材料條紋的兩側共平面,並沿著單一個半導體材料條紋的兩側延伸。該對閘材料條紋係配置為半導體材料條紋部分的閘極,且控制器提供偏壓安排至該對閘材料條紋,以使其作用為半導體材料條紋部分的閘極。控制器可使用已知的特別目的的邏輯電路。其他實施例中,控制器包括一般目的的處理器,其可實施在相同的積體電路上,其執行電腦程式以控制裝置的操作。又另一實施例中,控制器可合併特別目的的邏輯電路與一般目的的處理器。 For any single semiconductor material stripe in a single semiconductor material stripe stack, a pair of gate material strips in the gate material stripe stack are coplanar with both sides of a single semiconductor material stripe and are striped along a single semiconductor material strip. Extending on both sides. The pair of gate material stripes are configured as gates of the stripe portion of the semiconductor material, and the controller provides a biasing arrangement to the gate material strips to act as gates for the stripe portions of the semiconductor material. The controller can use known special purpose logic circuits. In other embodiments, the controller includes a general purpose processor that can be implemented on the same integrated circuit that executes a computer program to control the operation of the device. In still another embodiment, the controller can incorporate a special purpose logic circuit with a general purpose processor.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

202‧‧‧位元線接觸(BL) 202‧‧‧ bit line contact (BL)

203‧‧‧位元線接觸(BL) 203‧‧‧ bit line contact (BL)

P#204‧‧‧第二長度 P#204‧‧‧Second length

P#205‧‧‧長度 P#205‧‧‧ Length

206‧‧‧字元線(WL) 206‧‧‧ character line (WL)

207‧‧‧字元線(WL) 207‧‧‧ character line (WL)

208‧‧‧接地選擇線(GSL) 208‧‧‧Ground selection line (GSL)

209‧‧‧接地選擇線(GSL) 209‧‧‧ Grounding Selection Line (GSL)

210‧‧‧共用的源極線接觸(CSL) 210‧‧‧Shared source line contact (CSL)

211‧‧‧共用的源極線接觸(CSL) 211‧‧‧Shared source line contact (CSL)

212‧‧‧半導體材料條紋堆疊 212‧‧‧Semiconductor material stripe stacking

213‧‧‧半導體材料條紋堆疊 213‧‧‧Semiconductor material stripe stacking

214‧‧‧半導體材料條紋堆疊 214‧‧‧Semiconductor material stripe stacking

215‧‧‧半導體材料條紋堆疊 215‧‧‧Semiconductor material stripe stacking

220‧‧‧橫向半導體材料條紋堆疊 220‧‧‧Horizontal semiconductor material stripe stacking

225‧‧‧梯狀結構 225‧‧‧ ladder structure

Claims (20)

一記憶體裝置,包括:一三維垂直閘NAND陣列,包括數個階層,該些階層各包括數個NAND串列,該些NAND串列於一個末端上具有一第一開關,並於一相反末端上具與一第二開關,該第一開關連接該串列至一共用的源極結構,該第二開關連接該串列至一對應的位元線;數個階層選擇閘線,獨立分開設置於該NAND陣列的數個分別階層中,其中該些階層選擇閘線中的該些階層選擇閘線連接至該NAND陣列的該些分別階層中該些NAND串列的該些第二開關;以及一區塊選擇閘線,連接至該些階層中該些NAND串列的該些第一開關。 A memory device comprising: a three-dimensional vertical gate NAND array comprising a plurality of levels, each of the levels comprising a plurality of NAND strings, the NAND strings having a first switch at one end and an opposite end The first switch is connected to the serial switch to a common source structure, the second switch is connected to the serial to a corresponding bit line; the plurality of levels select the gate line, and are separately set separately And in the plurality of different levels of the NAND array, wherein the hierarchical selection gates of the plurality of hierarchical selection gates are connected to the second switches of the NAND strings of the respective layers of the NAND array; A block select gate line is connected to the first switches of the NAND strings in the levels. 如申請專利範圍第1項所述之記憶體裝置,其中該三維垂直閘NAND陣列包括數個半導體材料條紋的第一堆疊,該些階層選擇閘線包括數個閘材料條紋的第二堆疊,該些第一堆疊係交錯且共平面該些第二堆疊。 The memory device of claim 1, wherein the three-dimensional vertical gate NAND array comprises a first stack of stripes of semiconductor material, the hierarchical selection gate lines comprising a second stack of stripes of gate material, The first stacks are staggered and coplanar with the second stacks. 如申請專利範圍第1項所述之記憶體裝置,其中該三維垂直閘NAND陣列具有數個記憶胞,位於數個堆疊中之半導體條紋與數個字元線的數個交叉點中。 The memory device of claim 1, wherein the three-dimensional vertical gate NAND array has a plurality of memory cells located in a plurality of intersections of semiconductor stripes and a plurality of word lines in the plurality of stacks. 一種記憶體裝置,包括:一NAND串列,於一半導體材料條紋中; 數個第一字元線,配置在該NAND串列上,該些第一字元線沿一第一方向延伸;及一對閘材料條紋,與該NAND串列共平面,並沿一第二方向在該NAND串列的兩側延伸,該第二方向垂直於該第一方向,該對閘材料條紋配置為用以僅單一階層之該半導體材料條紋部分的一閘極。 A memory device comprising: a NAND string in a strip of semiconductor material; a plurality of first word lines disposed on the NAND string, the first word lines extending along a first direction; and a pair of gate material stripes coplanar with the NAND string and along a second The direction extends on both sides of the NAND string, the second direction being perpendicular to the first direction, the pair of gate material strips being configured as a gate for the stripe portion of the semiconductor material of only a single level. 如申請專利範圍第4項所述之記憶體裝置,更包括控制電路,其提供一偏壓安排至該對閘材料條紋以作用為用以該半導體材料條紋的該部分的該閘極。 The memory device of claim 4, further comprising a control circuit that provides a biasing arrangement to the pair of gate material strips to act as the gate for the portion of the strip of semiconductor material. 一種記憶體裝置,包括:數個半導體材料條紋的第一堆疊;數個第一字元線,正交在該些第一堆疊上,且具有共形於該些第一堆疊的數個表面,使得一記憶體元件的三維陣列建立在該些第一堆疊的數個表面與該些第一字元線之間的數個交叉點;以及數個閘材料條紋的第二堆疊,交錯並共平面於該些第一堆疊,該些第二堆疊配置為用以該些第一堆疊的數個閘極。 A memory device includes: a first stack of stripes of a plurality of semiconductor materials; a plurality of first word lines orthogonal to the first stacks and having a plurality of surfaces conformal to the first stacks, Forming a three-dimensional array of memory elements at a plurality of intersections between the plurality of surfaces of the first stack and the first word lines; and a second stack of a plurality of gate material stripes, staggered and coplanar In the first stacks, the second stacks are configured as a plurality of gates for the first stacks. 如申請專利範圍第6項所述之記憶體裝置,更包括:控制電路,提供數個偏壓安排,以控制該些第二堆疊用作該些第一堆疊的數個閘極。 The memory device of claim 6, further comprising: a control circuit, providing a plurality of bias arrangements for controlling the second stacks to serve as the plurality of gates of the first stack. 如申請專利範圍第6項所述之記憶體裝置,其中該些半導體材料條紋的第一堆疊包括: 一第一長度,其中該些字元線係沿著該第一長度正交於其上;以及一第二長度,鄰近該第一長度,該第二長度上沒有配置正交該第二長度的字元線;且其中該些第二堆疊沿著至少部分該第二長度,而未沿著該第一長度,交錯於該些第一堆疊。 The memory device of claim 6, wherein the first stack of strips of semiconductor material comprises: a first length, wherein the word lines are orthogonal to the first length; and a second length adjacent to the first length, the second length is not disposed orthogonal to the second length a word line; and wherein the second stacks are staggered along the first stack along at least a portion of the second length, and not along the first length. 如申請專利範圍第6項所述之記憶體裝置,更包括:數個閘材料條紋的一橫向堆疊,該橫向堆疊垂直於該些第二堆疊,該些第二堆疊延伸自該些閘材料條紋的該橫向堆疊。 The memory device of claim 6, further comprising: a lateral stack of a plurality of sluice material strips perpendicular to the second stacks, the second stacks extending from the sluice material strips The lateral stacking. 如申請專利範圍第9項所述之記憶體裝置,其中藉由絕緣材料互相分開的數個閘材料條紋的面(plane)係包括在其中:(i)該些閘材料條紋的第二堆疊,以及(ii)該閘材料條紋的橫向堆疊中,並且位於不同個該些第二堆疊中,且位於該些面中一相同面的數個閘材料條紋係藉由該相同面處的該橫向堆疊的一閘材料條紋彼此電性連接。 The memory device of claim 9, wherein a plurality of planes of strips of thyristor separated by an insulating material are included therein: (i) a second stack of strips of the damper materials, And (ii) the lateral stack of strips of the gate material, and located in different ones of the second stacks, and the plurality of gate material stripes on the same side of the faces are by the lateral stack at the same face The gate material strips are electrically connected to each other. 如申請專利範圍第9項所述之記憶體裝置,其中該閘材料條紋的橫向堆疊具有一較外部分與一較內部分,該較外部分鄰近該些第二堆疊,該較內部分藉由該較外部分分開自該些第二堆疊,該較外部分包括由絕緣材料分開的數個閘材料條紋的面,該較內部分被該絕緣材料所填充。 The memory device of claim 9, wherein the lateral stack of strips of the gate material has an outer portion and an inner portion, the outer portion being adjacent to the second stack, the inner portion being The outer portion is separated from the second stack, the outer portion comprising a plurality of slat material strip faces separated by an insulating material, the inner portion being filled with the insulating material. 如申請專利範圍第9項所述之記憶體裝置,更包括: 數個半導體材料條紋的第三堆疊;數個第二字元線,正交在該些第三堆疊上,並具有共形於該些第三堆疊的數個表面,藉此使另一記憶體元件的三維陣列建立於該些第三堆疊的數個表面與該些第二字元線的交叉點處;數個閘材料條紋的第四堆疊,其與該些第三堆疊交錯,該些第四堆疊藉由至少一介電質配置為該些第四堆疊的數個閘極,其中該橫向堆疊具有相對的一第一側與一第二側,其中該橫向堆疊的該第一側面向該些第一堆疊、該些第二堆疊、該些第一字元線,其中該些第二堆疊延伸自該閘材料條紋的橫向堆疊的該第一側,其中該橫向堆疊的該第二側面向該些第三堆疊、該些第四堆疊、該些第二字元線,其中該些第四堆疊延伸自該閘材料條紋的橫向堆疊的該第二側。 The memory device according to claim 9 of the patent application, further comprising: a third stack of stripes of semiconductor material; a plurality of second word lines orthogonal to the third stack and having a plurality of surfaces conformal to the third stack, thereby causing another memory a three-dimensional array of elements is formed at intersections of the plurality of surfaces of the third stack and the second word lines; a fourth stack of strips of thyristor material interleaved with the third stacks, the The four stacks are configured by the at least one dielectric as the plurality of gates of the fourth stack, wherein the lateral stack has an opposite first side and a second side, wherein the first side of the lateral stack faces a first stack, the second stack, the first word lines, wherein the second stacks extend from the first side of the lateral stack of the gate material strips, wherein the second side of the lateral stack The third stack, the fourth stacks, and the second word lines, wherein the fourth stacks extend from the second side of the lateral stack of the gate material strips. 如申請專利範圍第12項所述之記憶體裝置,其中該些第二堆疊位在沿著該橫向堆疊之一長度的數個第一位置處,且該些第四堆疊位在沿著該橫向堆疊之該長度的該些第一位置處。 The memory device of claim 12, wherein the second stacking positions are at a plurality of first positions along a length of the lateral stack, and the fourth stacked positions are along the lateral direction The first positions of the length of the stack are stacked. 如申請專利範圍第12項所述之記憶體裝置,其中該些第二堆疊位在沿著該橫向堆疊之一長度的數個第一位 置處,該些第四堆疊位在沿著該橫向堆疊之該長度的數個第二位置處,且該些第一位置與該些第二位置交錯。 The memory device of claim 12, wherein the second stacked bits are in a plurality of first positions along a length of the lateral stack Positioning, the fourth stacking positions are at a plurality of second positions along the length of the lateral stack, and the first positions are staggered with the second positions. 如申請專利範圍第6項所述之記憶體裝置,其中藉由絕緣材料互相分開的數個閘材料條紋的面係包括在:(i)該些閘材料條紋的第二堆疊,以及(ii)該閘材料條紋的橫向堆疊中,並更包括:控制電路,其提供該些偏壓安排中的一第一個至該些第二堆疊中的一特定面,與該些偏壓安排中的一第二個至該些第二堆疊中的另一面,以在該些第一堆疊中該些面中選擇該特定面的數個記憶胞。 The memory device of claim 6, wherein the surface of the plurality of gate material strips separated from each other by the insulating material is included in: (i) a second stack of strips of the gate material, and (ii) a lateral stack of strips of gate material, and further comprising: a control circuit providing a first one of the biasing arrangements to a particular one of the second stacks, and one of the biasing arrangements The second to the other of the second stacks to select a plurality of memory cells of the particular face in the plurality of faces in the first stack. 如申請專利範圍第6項所述之記憶體裝置,其中該些第二堆疊交錯該些第一堆疊,使得該些第二堆疊其中一個係位於該些第一堆疊中鄰近的兩個之間。 The memory device of claim 6, wherein the second stacks interlace the first stacks such that one of the second stacks is located between two adjacent ones of the first stacks. 如申請專利範圍第6項所述之記憶體裝置,其中該些第一堆疊中的鄰近堆疊具有相反的堆疊方位,包括一位元線接觸至源極線接觸(bit line contact-to-source line contact)的第一堆疊方位,及一源極線接觸至位元線接觸(source line contact-to-bit line contact)的第二堆疊方位。 The memory device of claim 6, wherein the adjacent stacks in the first stack have opposite stacking orientations, including one bit line contact-to-source line Contact a first stack orientation, and a second stack orientation of a source line contact-to-bit line contact. 如申請專利範圍第17項所述之記憶體裝置,其中該些第二堆疊交錯該些第一堆疊,使得該些第二堆疊其 中一個位於該些第一堆疊中具有相同堆疊方位的鄰近兩個之間,並位於該第一堆疊方位與該第二堆疊方位之外。 The memory device of claim 17, wherein the second stacks interlace the first stacks such that the second stacks One of the two adjacent ones of the first stack having the same stacking orientation is located outside the first stacking orientation and the second stacking orientation. 如申請專利範圍第6項所述之記憶體裝置,其中該些第一堆疊中鄰近的堆疊具有一相同的堆疊方位,包括一位元線接觸至源極線接觸的第一堆疊方位,與一源極線接觸至位元線接觸的第二堆疊方位其中一個。 The memory device of claim 6, wherein adjacent stacks of the first stacks have a same stack orientation, including a first stack orientation of one-bit line contact to source line contact, and a The source line contacts one of the second stack orientations of the bit line contact. 如申請專利範圍第6項所述之記憶體裝置,其中該些半導體材料條紋的第一堆疊具有耦接至一源極線電壓的數個第一末端,以及耦接至一位元線電壓的數個第二末端。 The memory device of claim 6, wherein the first stack of strips of semiconductor material has a plurality of first ends coupled to a source line voltage and coupled to a bit line voltage Several second ends.
TW103126694A 2014-08-05 2014-08-05 Memory architecture of 3d array with interleaved control structures TWI570893B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103126694A TWI570893B (en) 2014-08-05 2014-08-05 Memory architecture of 3d array with interleaved control structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103126694A TWI570893B (en) 2014-08-05 2014-08-05 Memory architecture of 3d array with interleaved control structures

Publications (2)

Publication Number Publication Date
TW201606993A TW201606993A (en) 2016-02-16
TWI570893B true TWI570893B (en) 2017-02-11

Family

ID=55810149

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103126694A TWI570893B (en) 2014-08-05 2014-08-05 Memory architecture of 3d array with interleaved control structures

Country Status (1)

Country Link
TW (1) TWI570893B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683424B (en) * 2019-04-12 2020-01-21 大陸商長江存儲科技有限責任公司 A three-dimensional memory device having a deposited semiconductor plug and a method of forming the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10497437B1 (en) * 2018-07-24 2019-12-03 Macronix International Co., Ltd. Decoding scheme for 3D cross-point memory array
US11024644B2 (en) * 2019-08-22 2021-06-01 Micron Technology, Inc. Integrated assemblies having vertically-spaced channel material segments, and methods of forming integrated assemblies
CN112768461B (en) * 2019-09-20 2023-10-20 长江存储科技有限责任公司 Three-dimensional memory device and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201327787A (en) * 2011-12-23 2013-07-01 Macronix Int Co Ltd NAND flash with non-trapping switch transistors
TW201431049A (en) * 2013-01-29 2014-08-01 Macronix Int Co Ltd NAND flash and hot carrier generation and programming method for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201327787A (en) * 2011-12-23 2013-07-01 Macronix Int Co Ltd NAND flash with non-trapping switch transistors
TW201431049A (en) * 2013-01-29 2014-08-01 Macronix Int Co Ltd NAND flash and hot carrier generation and programming method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683424B (en) * 2019-04-12 2020-01-21 大陸商長江存儲科技有限責任公司 A three-dimensional memory device having a deposited semiconductor plug and a method of forming the same

Also Published As

Publication number Publication date
TW201606993A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
US10211218B2 (en) U-shaped vertical thin-channel memory
US9401371B1 (en) Sacrificial spin-on glass for air gap formation after bl isolation process in single gate vertical channel 3D NAND flash
TWI713203B (en) Memory device and method for fabricating the same
US9412752B1 (en) Reference line and bit line structure for 3D memory
TWI652805B (en) Method for manufacturing 3d memory and resulting structures
TWI570895B (en) U-shaped vertical thin-channel memory
TWI582964B (en) A memory device and method for fabricating the same
US8811077B2 (en) Memory architecture of 3D array with improved uniformity of bit line capacitances
US9520485B2 (en) 3D independent double gate flash memory on bounded conductor layer
US8437192B2 (en) 3D two bit-per-cell NAND flash memory
US8951862B2 (en) Damascene word line
TWI572018B (en) Memory device and fabricating method thereof
US8987098B2 (en) Damascene word line
US9356037B2 (en) Memory architecture of 3D array with interleaved control structures
US9741569B2 (en) Forming memory using doped oxide
TWI570893B (en) Memory architecture of 3d array with interleaved control structures
TW201943059A (en) Low resistance vertical channel 3D memory
US9397113B2 (en) Memory architecture of array with single gate memory devices
CN103295966B (en) Form the method for three-dimensional nonvolatile storage cell array
CN105448922B (en) Cubical array memory device with control structure staggeredly
TWI532148B (en) Semiconductor device and method for manufacturing the same
EP2631947B1 (en) Damascene word line
KR20130097496A (en) Damascene word line