TWI570428B - A geological data surveying system - Google Patents

A geological data surveying system Download PDF

Info

Publication number
TWI570428B
TWI570428B TW103125042A TW103125042A TWI570428B TW I570428 B TWI570428 B TW I570428B TW 103125042 A TW103125042 A TW 103125042A TW 103125042 A TW103125042 A TW 103125042A TW I570428 B TWI570428 B TW I570428B
Authority
TW
Taiwan
Prior art keywords
geological
signal
data
detection
source
Prior art date
Application number
TW103125042A
Other languages
Chinese (zh)
Other versions
TW201604573A (en
Inventor
陳建志
李俊延
李守祥
張漢忠
李奕亨
張文彥
Original Assignee
仕弘技術工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 仕弘技術工程有限公司 filed Critical 仕弘技術工程有限公司
Priority to TW103125042A priority Critical patent/TWI570428B/en
Publication of TW201604573A publication Critical patent/TW201604573A/en
Application granted granted Critical
Publication of TWI570428B publication Critical patent/TWI570428B/en

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

一種地質數據探測系統 Geological data detection system

本發明提供一種地質數據探測系統,特別係指得同時且長時間連續進行採集至少兩種地質探測技術之數據,並將前述至少兩種地質探測技術之數據混合為一個混合訊號輸出的地質數據探測系統。 The invention provides a geological data detecting system, in particular to continuously and continuously collect data of at least two kinds of geological detecting technologies at the same time and mix the data of the at least two kinds of geological detecting technologies into a geological data detecting of a mixed signal output. system.

地電探查(Geo-electrical Survey)是地球物理探勘(Geophysical Prospecting)技術中調查地下電阻率(Electrical Resistivity)或相關電性構造的一支,其中包含有主動源(Active Source)的地電阻影像掃描(Electrical Resistivity Tomography,簡稱ERT)法與被動源(Passive Source)的自然電位(Self-Potential,簡稱SP)法。此謂主動源與被動源,是指探查過程中是否以人工方式提供訊號源之意。因此被動源之SP法接收的是自然界地面以下地球本體就存在的電壓差,而主動源之ERT法則是在地表向地面下通入電流,另行製造出一人工電場,並據此收集地表各處因該人工電場而反應出之人造場電壓差資料。 Geo-electrical survey is a survey of underground electrical resistivity (Electrical Resistivity) or related electrical structures in Geophysical Prospecting technology, which includes active source image scanning of the ground source. (Electrical Resistivity Tomography, ERT for short) and Passive Source (Self-Potential, SP for short). This is called active source and passive source. It refers to whether the source of the signal is manually provided during the exploration process. Therefore, the SP method of the passive source receives the voltage difference existing in the earth's body below the natural ground, and the ERT rule of the active source is to pass the current to the ground below the surface, and separately create an artificial electric field, and collect the ground surface accordingly. The artificial field voltage difference data reflected by the artificial electric field.

目前既有的電探儀器,在收集主動源之ERT數據與被動源之SP數據皆獨立行之,不能做到同時採集兩類探查技術之數據。再者,現有之儀器所提供之電壓差資料,也都為短時間數小時內之單次施測結果,尚未提供長時間達數天之連續監測數據。 At present, existing electrical detection instruments are independent of the collection of active source ERT data and passive source SP data, and cannot simultaneously collect data of two types of exploration techniques. Furthermore, the voltage difference data provided by the existing instruments are also the results of a single test in a short period of time, and continuous monitoring data for several days has not been provided.

因應上述問題,本發明提供了一種地質數據探測系統,得同時且長時間的利用二種地質探測方法進行數據之收集,並將根據二種地質探測方法所收集之數據訊號混合為一個混合訊號輸出,再將混合訊號分離成一主動源之地質探測訊號以及一被動源之地質探測訊號,藉以供一使用者於後續進行分析。本發明之地質數據探測系統包含有一數據探測模組、一訊號分解模組、一主動源訊號處理模組以及一被動源訊號處理模組。 In view of the above problems, the present invention provides a geological data detection system capable of simultaneously and long-term use of two geological detection methods for data collection, and mixing data signals collected according to two geological detection methods into one mixed signal output. Then, the mixed signal is separated into an active source geological detection signal and a passive source geological detection signal for later analysis by a user. The geological data detection system of the present invention comprises a data detection module, a signal decomposition module, an active source signal processing module and a passive source signal processing module.

數據探測模組用以接收一使用者的輸入指令,並利用一主動源之地質探測方法以及一被動源之地質探測方法於一預定時間範圍內進行地質數據的探測與收集,並輸出一混合了前述二種數據的混合訊號。其中數據探測模組得為定置在一探測地點以進行長時間連續探測,並由使用者經由網路於遠端進行控制以及隨時監測。訊號分解模組將混合訊號依照地質探測方法將混合訊號分解成一主動源之地質探測訊號以及一被動源之地質探測訊號,以供使用者分別於一主動源訊號處理模組以及一被動源訊號處理模組來進行後續資料分析。 The data detection module is configured to receive an input instruction of a user, and utilize an active source geological detection method and a passive source geological detection method to detect and collect geological data within a predetermined time range, and output a mixture. The mixed signal of the above two kinds of data. The data detection module is fixed at a detection location for continuous detection for a long time, and is controlled by the user at the remote end via the network and monitored at any time. The signal decomposition module divides the mixed signal into a geological detection signal of an active source and a geological detection signal of a passive source according to the geological detection method, so that the user can separately process the active source signal processing module and a passive source signal. Module for subsequent data analysis.

相較於習知技術,本發明因為提供了主動源之地質探測方法,與被動源之地質探測方法之數據採集的同時性,得以具體地提高了野外現場所調查資料的數量,可以有效率且同時地擁有兩種數據之約束,提高電性模型的可信度。此外,本發明並可藉由長時間的觀測,以了解地表下的電阻率構造變化,密集地監視地表下目標物物理狀態(如含水量、汙染物濃度等)的連續改變。 Compared with the prior art, the present invention provides an active source geological detection method, and the simultaneity of the data collection of the passive source geological detection method, can specifically improve the number of data surveyed in the field, and can be efficient and At the same time, there are two kinds of data constraints to improve the credibility of the electrical model. In addition, the present invention can closely monitor the continuous changes in the physical state of the target object (such as water content, pollutant concentration, etc.) by observing changes in the resistivity under the surface by long-term observation.

1‧‧‧地質數據探測系統 1‧‧‧Geological data detection system

10‧‧‧數據探測模組 10‧‧‧Data Detection Module

101‧‧‧參數設定裝置 101‧‧‧ parameter setting device

102‧‧‧地質探測裝置 102‧‧‧Geological detection device

1021‧‧‧主動源地質數據探勘器 1021‧‧‧Active source geological data finder

1022‧‧‧被動源地質數據探勘器 1022‧‧‧ Passive source geological data finder

12‧‧‧訊號分解模組 12‧‧‧ Signal Decomposition Module

121‧‧‧訊號格式轉換整理裝置 121‧‧‧Signal format conversion finishing device

14‧‧‧主動源訊號處理模組 14‧‧‧Active source signal processing module

16‧‧‧被動源訊號處理模組 16‧‧‧ Passive source signal processing module

S0‧‧‧參數指令 S0‧‧‧ parameter instruction

S1‧‧‧參數控制訊號 S1‧‧‧ parameter control signal

S2‧‧‧混合訊號 S2‧‧‧ mixed signal

S3‧‧‧主動源之地質探測訊號 S3‧‧‧ active source geological detection signal

S4‧‧‧被動源之地質探測訊號 S4‧‧‧ Passive source geological detection signal

圖一繪製了根據本案之一具體實施例的功能方塊圖。 Figure 1 depicts a functional block diagram in accordance with one embodiment of the present invention.

圖二繪製了根據本案之一具體實施例的數據探測模組與訊號分解模組的細節功能方塊圖。 FIG. 2 is a detailed functional block diagram of a data detection module and a signal decomposition module according to an embodiment of the present invention.

圖三繪製了根據本案之一具體實施例的地質探測裝置的細節功能方塊圖。 Figure 3 depicts a detailed functional block diagram of a geological detection device in accordance with one embodiment of the present invention.

圖四A繪製了根據本案之一具體實施例於二日內所收集之混合訊號示意圖。 Figure 4A depicts a schematic diagram of a mixed signal collected over two days in accordance with one embodiment of the present invention.

圖四B繪製了根據本案之一具體實施例於二日內所收集之混合訊號分解成僅有主動源之地質探測訊號(ERT)的示意圖。 Figure 4B is a schematic diagram showing the decomposition of the mixed signal collected in two days according to one embodiment of the present invention into an active source only geological sounding signal (ERT).

圖四C繪製了根據本案之一具體實施例於二日內所收集之混合訊號分解成僅有被動源之地質探測訊號(SP)的示意圖。 Figure 4C is a schematic diagram showing the decomposition of the mixed signal collected in two days according to a specific embodiment of the present invention into a passive source only geological sounding signal (SP).

圖五A繪製了根據本案之一具體實施例於220秒內所收集之混合訊號示意圖。 Figure 5A depicts a schematic diagram of a mixed signal collected in 220 seconds in accordance with one embodiment of the present invention.

圖五B繪製了根據本案之一具體實施例於220秒內所收集之混合訊號分解成僅有主動源之地質探測訊號(ERT)的示意圖。 Figure 5B is a schematic diagram showing the decomposition of the mixed signal collected in 220 seconds into an active source only geological sounding signal (ERT) according to one embodiment of the present invention.

圖五C繪製了根據本案之一具體實施例於220秒內所收集之混合訊號分解成僅有被動源之地質探測訊號(SP)的示意圖。 Figure 5C is a schematic diagram showing the decomposition of the mixed signal collected in 220 seconds into a passive source only geological sounding signal (SP) according to one embodiment of the present invention.

以下將詳述本發明之較佳具體實施例,藉以充分說明本發明之特徵、精神及優點。 The preferred embodiments of the present invention will be described in detail in the following description.

首先請參閱圖一,圖一繪製了根據本案之一具體實施例的功能方塊圖。如圖一所示,本發明提供了一種地質數據探測系統1,其包含:一數據探測模組10、一訊號分解模組12、一主動源訊號處理模組14以及一 被動源訊號處理模組16。 Referring first to Figure 1, Figure 1 depicts a functional block diagram in accordance with one embodiment of the present invention. As shown in FIG. 1 , the present invention provides a geological data detection system 1 including: a data detection module 10 , a signal decomposition module 12 , an active source signal processing module 14 , and a Passive source signal processing module 16.

其中,數據探測模組10自一使用者接收一輸入指令S0,在一預定時間內同時進行一主動源的地質探測數據以及一被動源的地質探測數據的探測收集,並輸出包含了前述二種地質數據的一混合訊號S2。其中,主動源的地質探測數據包含一地電阻影像掃描(Electrical Resistivity Tomography,ERT)數據;被動源的地質探測數據包含一自然電位(Self-Potential,SP)數據;其中,混合訊號S2之頻率範圍係為0至1000赫茲以內。此處所指的主動源與被動源,係以探測過程中是否以人工方式提供訊號源來判別,以人工方式提供的訊號源被稱為主動源;而以非人工,亦即天然提供的訊號源被稱為被動源。 The data detecting module 10 receives an input command S0 from a user, simultaneously performs an active source geological detecting data and a passive source geological detecting data detection and collection in a predetermined time, and outputs the foregoing two types. A mixed signal S2 of geological data. The geological detection data of the active source includes an electrical electrical resonance imaging (ERT) data; the geological detection data of the passive source includes a natural potential (Self-Potential, SP) data; wherein, the frequency range of the mixed signal S2 It is within 0 to 1000 Hz. The active source and passive source referred to here are discriminated by whether the signal source is manually provided during the detection process, and the manually provided signal source is called the active source; and the non-manual, that is, the naturally provided signal source. It is called a passive source.

數據探測模組10得為定置在一探測地點以進行長時間連續探測,並由該使用者經由網路於遠端進行控制以及隨時監測。而在定置地點設置數據探測模組10之前,需在定置地點先進行用於數據探測模組10的測線位置規劃與非極化電極埋設工作,包括銲接隔離線及電極防水包覆等作業。 The data detection module 10 is positioned at a detection location for continuous detection for a long time, and is controlled by the user remotely via the network and monitored at any time. Before the data detection module 10 is set at the fixed location, the line position planning and the non-polarized electrode embedding work for the data detection module 10 are first performed at the fixed location, including the welding isolation line and the electrode waterproof coating.

訊號分離模組12用以接收混合訊號S2,並將混合訊號S2分解成一主動源之地質探測訊號S3以及一被動源之地質探測訊號S4。其中於本實施例中,主動源之地質探測訊號S3包含一地電阻影像掃描(Electrical Resistivity Tomography,ERT)訊號;被動源之地質探測訊號S4包含一自然電位(Self-Potential,SP)訊號。主動源訊號處理模組14以及被動源訊號處理模組16分別接收主動源之地質探測訊號S3以及被動源之地質探測訊號S4,以進行訊號處理。 The signal separation module 12 is configured to receive the mixed signal S2 and decompose the mixed signal S2 into an active source geological detection signal S3 and a passive source geological detection signal S4. In this embodiment, the active source geological detection signal S3 includes an electrical resistivity scan (ERT) signal; the passive source geological detection signal S4 includes a natural potential (Self-Potential, SP) signal. The active source signal processing module 14 and the passive source signal processing module 16 respectively receive the geological detection signal S3 of the active source and the geological detection signal S4 of the passive source for signal processing.

數據探測模組10用以連接並輸出混合訊號S2至訊號分解模組12,主動源訊號處理模組14以及被動源訊號處理模組16分別連接於訊號分解模組12,並分別接收主動源之地質探測訊號S3以及被動源之地質探測訊號S4,藉以形成本發明地質數據探測系統1。 The data detection module 10 is configured to connect and output the mixed signal S2 to the signal decomposition module 12, and the active source signal processing module 14 and the passive source signal processing module 16 are respectively connected to the signal decomposition module 12, and respectively receive the active source. The geological detection signal S3 and the geological detection signal S4 of the passive source form the geological data detection system 1 of the present invention.

接著請參閱圖二,圖二繪製了根據本案之一具體實施例的數據探測模組與訊號分解模組的細節功能方塊圖。 Referring to FIG. 2, FIG. 2 is a detailed functional block diagram of the data detection module and the signal decomposition module according to an embodiment of the present invention.

於本實施例中,數據探測模組10包含一參數設定裝置101以及一地質探測裝置102。參數設定裝置101接收使用者所輸入之一參數指令S0,並根據使用者所輸入的參數指令S0以輸出有一相對應之參數控制訊號S1,地質探測裝置102連接參數設定裝置101,用以根據參數設定裝置101輸出之參數控制訊號S1,以同時收集該主動源之地質探測數據,以及該被動源之地質探測數據後輸出該混合訊號S2。其中,參數設定裝置101根據參數指令S0所設定的參數包含地質探測裝置102的電極放電排列順序、電極放電時間序列排程、混合訊號S2的壓縮方式以及回傳至該使用者的時間排程。 In the embodiment, the data detecting module 10 includes a parameter setting device 101 and a geological detecting device 102. The parameter setting device 101 receives one of the parameter commands S0 input by the user, and outputs a corresponding parameter control signal S1 according to the parameter command S0 input by the user, and the geological detecting device 102 is connected to the parameter setting device 101 for The parameter control signal S1 output by the setting device 101 is configured to simultaneously collect the geological detection data of the active source and the geological detection data of the passive source, and output the mixed signal S2. The parameters set by the parameter setting device 101 according to the parameter command S0 include the electrode discharge arrangement order of the geological detection device 102, the electrode discharge time series scheduling, the compression mode of the mixed signal S2, and the time schedule returned to the user.

請繼續參閱圖二,於本實施例中,訊號分解模組12包含一訊號格式轉換整理裝置121,混合訊號S2輸入訊號分解模組12之後,藉由訊號格式轉換整理裝置121,將混合訊號S2分解成主動源之地質探測訊號S3以及被動源之地質探測訊號S4。其中,由於主動源之地質訊號S3中輸入的訊號源波形以及其量測出來的訊號波形係為已知,訊號格式轉換整理裝置121係藉由將混合訊號S2中屬於已知輸入輸出的主動源之地質探測訊號S3,自混合訊號S2中分離,而原來的混合訊號S2中將剩下輸入的訊號源模式未知的被動源之地質探測訊號S4。 Please continue to refer to FIG. 2. In this embodiment, the signal decomposition module 12 includes a signal format conversion device 121. After the mixed signal S2 is input to the signal decomposition module 12, the mixed signal S2 is mixed by the signal format conversion device 121. The geological detection signal S3 decomposed into an active source and the geological detection signal S4 of the passive source. The signal format conversion device 121 is an active source belonging to the known input and output of the mixed signal S2, because the signal source waveform input in the active source geological signal S3 and the measured signal waveform are known. The geological detection signal S3 is separated from the mixed signal S2, and the original mixed signal S2 will have a geological detection signal S4 of the passive source whose input signal source mode is unknown.

請參閱圖三,圖三繪製了根據本案之一具體實施例的地質探測裝置的細節功能方塊圖。於本實施例中,地質探測裝置102包含一主動源地質數據探勘器1021以及一被動源地質數據探勘器1022。主動源地質數據探勘器1021與被動源地質數據探勘器1022分別與參數設定裝置連接,參數控制訊號S1輸入地質探測裝置102之後,主動源地質數據探勘器1021以及被動源地質數據探勘器1022即根據參數控制訊號S1,分別且同時進行該主動源之地質探測數據以及該被動源之地質探測數據之收集,並由地質探測裝置102輸出包含了前述二種地質數據的混合訊號S2。 Referring to FIG. 3, FIG. 3 is a detailed functional block diagram of a geological detecting device according to an embodiment of the present invention. In the present embodiment, the geological detection device 102 includes an active source geological data finder 1021 and a passive source geological data finder 1022. The active source geological data finder 1021 and the passive source geological data finder 1022 are respectively connected to the parameter setting device. After the parameter control signal S1 is input to the geological detecting device 102, the active source geological data finder 1021 and the passive source geological data finder 1022 are based on The parameter control signal S1 separately and simultaneously collects the geological detection data of the active source and the geological detection data of the passive source, and the geological detecting device 102 outputs the mixed signal S2 including the two kinds of geological data.

接著請參閱圖四A至圖四C,圖四A至圖四C係本案發明之一實施例所收集的探測數據。 Referring to FIG. 4A to FIG. 4C, FIG. 4A to FIG. 4C are probe data collected by an embodiment of the present invention.

請先參閱圖四A,圖四A繪製了根據本案之一具體實施例於二日內所收集之混合訊號示意圖。其中縱軸之單位為伏特,橫軸是以二小時為單位的時間軸。如圖四A所示,藉由本案發明之一實施例所收集之混合了主動源之地質探測訊號S3,以及被動源之地質探測訊號S4的混合訊號S2。也因為混合訊號S2係為一混合訊號,為了進行主動源之地質探測訊號S3,以及被動源之地質探測訊號S4的個別訊號處理,首先要經由訊號分離模組12進行訊號分離。 Please refer to FIG. 4A first. FIG. 4A is a schematic diagram of the mixed signal collected in two days according to a specific embodiment of the present invention. The unit of the vertical axis is volts, and the horizontal axis is the time axis of two hours. As shown in FIG. 4A, the geological detection signal S3 mixed with the active source and the mixed signal S2 of the geological detection signal S4 of the passive source are collected by an embodiment of the present invention. Also, because the mixed signal S2 is a mixed signal, in order to perform the geological detection signal S3 of the active source and the individual signal processing of the geological detection signal S4 of the passive source, the signal separation is first performed by the signal separation module 12.

藉由訊號分離模組12進行訊號分離後,接著請參閱圖四B至圖四C,圖四B繪製了根據本案之一具體實施例於二日內所收集之混合訊號分解成僅有主動源之地質探測訊號(ERT)的示意圖。圖四C繪製了根據本案之一具體實施例於二日內所收集之混合訊號分解成僅有被動源之地質探測訊號(SP)的示意圖。 After the signal separation by the signal separation module 12, please refer to FIG. 4B to FIG. 4C. FIG. 4B shows that the mixed signal collected in two days according to a specific embodiment of the present invention is decomposed into only active sources. Schematic diagram of the Geological Detection Signal (ERT). Figure 4C is a schematic diagram showing the decomposition of the mixed signal collected in two days according to a specific embodiment of the present invention into a passive source only geological sounding signal (SP).

由於主動源之地質訊號S3的訊號源波形以及其量測出來的訊號波形係為已知,訊號分離模組12所包含的訊號格式轉換整理裝置121係藉由將混合訊號S2中屬於已知輸入輸出的主動源之地質探測訊號S3,自混合訊號S2中分離,而原來的混合訊號S2中將剩下訊號源模式未知的被動源之地質探測訊號S4。 Since the signal source waveform of the active source geological signal S3 and the measured signal waveform are known, the signal separation unit 121 included in the signal separation module 12 is based on the known input of the mixed signal S2. The output of the active source geological detection signal S3 is separated from the mixed signal S2, and the original mixed signal S2 will have a geological detection signal S4 of the passive source whose signal source mode is unknown.

於本實施例中,分離後的主動源之地質探測訊號S3再經後續處理後可完成地電阻(ERT)影像剖面,分離後的被動源之地質探測訊號S4可再經後續處理成各電極每小時變化以及鄰近電極每小時變化之剖面等,並進一步進行不同時間之地電阻(ERT)影像剖面結果分析比較,可以得到地下電阻率隨時間或雨量、溫度等因素影響所造成的變化;而自然電位(SP)數據則可據以分析地下電性介質隨時間之變化。 In this embodiment, the geoelectric detection signal S3 of the separated active source can be subjected to subsequent processing to complete the ground resistance (ERT) image profile, and the separated passive source geological detection signal S4 can be further processed into each electrode. The hourly change and the profile of the adjacent electrode change every hour, and further analysis and comparison of the ground resistance (ERT) image profile results at different times, can be obtained by the influence of the underground resistivity with time, rainfall, temperature and other factors; Potential (SP) data can be used to analyze changes in the underground electrical medium over time.

請接著參閱圖五A至圖五C,圖五A至圖五C係本案發明之一實施例所收集的另一組探測數據。請先參閱圖五A,圖五A繪製了根據本案之一具體實施例於220秒內所收集之混合訊號示意圖。其中縱軸之單位為伏特,橫軸是以一秒為單位的時間軸。而圖五B繪製了根據本案之一具體實施例於220秒內所收集之混合訊號分解成僅有主動源之地質探測訊號(ERT)的示意圖。圖五C繪製了根據本案之一具體實施例於220秒內所收集之混合訊號分解成僅有被動源之地質探測訊號(SP)的示意圖。 Please refer to FIG. 5A to FIG. 5C. FIG. 5A to FIG. 5C are another set of detection data collected by an embodiment of the present invention. Please refer to FIG. 5A first. FIG. 5A is a schematic diagram of the mixed signal collected in 220 seconds according to a specific embodiment of the present invention. The vertical axis is in volts and the horizontal axis is the time axis in one second. FIG. 5B is a schematic diagram showing the decomposition of the mixed signal collected in 220 seconds into an active source only geological sounding signal (ERT) according to a specific embodiment of the present invention. Figure 5C is a schematic diagram showing the decomposition of the mixed signal collected in 220 seconds into a passive source only geological sounding signal (SP) according to one embodiment of the present invention.

由於圖五A至圖五C的訊號分離以及後續的訊號處理與圖四A至圖四C的處理方式相同,故於此不多作贅述。 Since the signal separation and the subsequent signal processing in FIG. 5A to FIG. 5C are the same as those in FIG. 4A to FIG. 4C, the details are not described herein.

綜上所述,本發明提供了一種地質數據探測系統,包含一數據探測模組、一訊號分解模組、一主動源訊號處理模組以及一被動源訊號 處理模組。數據探測模組可定置於待測地點,藉由主動源之地質探測方法,以及被動源之地質探測方法在一預定時間範圍內連續探測與收集地質數據,並輸出一混合了前述二種數據的混合訊號;訊號分解模組將混合訊號依照地質探測方法來將混合訊號分解成一主動源之地質探測訊號,以及一被動源之地質探測訊號,以供使用者進行後續資料分析。 In summary, the present invention provides a geological data detection system including a data detection module, a signal decomposition module, an active source signal processing module, and a passive source signal. Processing module. The data detection module can be placed at the location to be tested, and the geological data of the active source and the geological detection method of the passive source continuously detect and collect the geological data in a predetermined time range, and output a mixed data of the foregoing two kinds of data. The mixed signal; the signal decomposition module divides the mixed signal into a geological detection signal of an active source according to a geological detection method, and a geological detection signal of a passive source for the user to perform subsequent data analysis.

相較於習知技術,本發明之主要目的在於提供了主動源之地質探測方法(ERT),與被動源之地質探測方法(SP)之數據採集的同時性,結合兩項地下電性構造探查技術在同一時間所採集的數據,具體地提高了野外現場所調查資料的數量,以至於後續地下電性構造之解算,可以有效率且同時地擁有兩種數據之約束,提高電性模型的可信度。而本發明之另一目的在於提供一種主動源之地質探測方法(ERT)、被動源之地質探測方法(SP)或前述二種方法同時進行的密集連續監測概念。在被動源之地質探測方法(SP)的連續監測上,藉由數據探測模組具備0至1000赫茲以內的採樣頻率,並透過網路即時傳輸功能,可讓使用者隨時隨地監看受測場址的天然電場變化;在主動源之地質探測方法(ERT)的連續監測功能上,只要控制地質探測裝置的電極放電排列順序、電極放電時間序列排程等參數,透過本發明即可有效分離出訊號中人工電場部分的資訊,視測線施測時間而定,可固定時段頻繁地採集主動源之地質探測方法(ERT)資料,藉之解算地表下的電阻率構造變化,密集地監視地表下目標物物理狀態(如含水量、汙染物濃度等)的連續改變。 Compared with the prior art, the main object of the present invention is to provide an active source geological detection method (ERT), and a simultaneous source geological detection method (SP) data acquisition simultaneity, combined with two underground electrical structure exploration The data collected by the technology at the same time specifically increases the amount of data surveyed in the field, so that the subsequent calculation of the underground electrical structure can efficiently and simultaneously have the constraints of the two types of data, and improve the electrical model. Credibility. Another object of the present invention is to provide an active source geological detection method (ERT), a passive source geological detection method (SP), or a dense continuous monitoring concept simultaneously performed by the foregoing two methods. In the continuous monitoring of the passive source geological detection method (SP), the data detection module has a sampling frequency of 0 to 1000 Hz and transmits the function through the network, allowing the user to monitor the field at any time and any place. Natural electric field change at the site; in the continuous monitoring function of the active source geological detection method (ERT), as long as the parameters such as the electrode discharge arrangement order and the electrode discharge time series scheduling of the geological detection device are controlled, the present invention can effectively separate the parameters. The information of the artificial electric field in the signal depends on the time of the measurement line. The geological detection method (ERT) data of the active source can be frequently collected during the fixed period, and the resistivity structural changes under the surface can be solved to intensively monitor the subsurface. Continuous changes in the physical state of the target (eg, water content, contaminant concentration, etc.).

以上較佳具體實施例之詳述,俾利清楚描述本發明之特徵與精神,而並非以上述所揭露之較佳具體實施例來對本發明之範疇加以限 制。雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,而本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The features and spirit of the present invention are clearly described in the above detailed description of the preferred embodiments, and the scope of the present invention is not limited by the preferred embodiments disclosed herein. system. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and it is to be understood that the invention may be modified and modified without departing from the spirit and scope of the invention. The scope is subject to the definition of the scope of the patent application attached.

1‧‧‧地質數據探測系統 1‧‧‧Geological data detection system

10‧‧‧數據探測模組 10‧‧‧Data Detection Module

12‧‧‧訊號分解模組 12‧‧‧ Signal Decomposition Module

14‧‧‧主動源訊號處理模組 14‧‧‧Active source signal processing module

16‧‧‧被動源訊號處理模組 16‧‧‧ Passive source signal processing module

S0‧‧‧參數指令 S0‧‧‧ parameter instruction

S2‧‧‧混合訊號 S2‧‧‧ mixed signal

S3‧‧‧主動源之地質探測訊號 S3‧‧‧ active source geological detection signal

S4‧‧‧被動源之地質探測訊號 S4‧‧‧ Passive source geological detection signal

Claims (10)

一種地質數據探測系統,包含:一數據探測模組,用以在一預定時間內同時收集一主動源之地質探測數據以及一被動源之地質探測數據後輸出一混合訊號;以及一訊號分解模組,連接於該數據探測模組,用以接收該混合訊號並將該混合訊號分解成一主動源之地質探測訊號以及一被動源之地質探測訊號。 A geological data detection system includes: a data detection module configured to simultaneously collect an active source geological detection data and a passive source geological detection data to output a mixed signal; and a signal decomposition module Connected to the data detection module for receiving the mixed signal and decomposing the mixed signal into an active source geological detection signal and a passive source geological detection signal. 如申請專利範圍第1項所述之地質數據探測系統,其中該被動源之地質探測數據包含一自然電位(Self-Potential,SP)數據以及該主動源之地質探測數據包含一地電阻影像掃描(Electrical Resistivity Tomography,ERT)數據。 The geological data detection system of claim 1, wherein the passive source geological detection data comprises a natural potential (Self-Potential, SP) data and the active source geological detection data comprises a ground resistance image scan ( Electrical Resistivity Tomography, ERT) data. 如申請專利範圍第1項所述之地質數據探測系統,其中該被動源之地質探測訊號包含一自然電位(Self-Potential,SP)訊號以及該主動源之地質探測訊號包含一地電阻影像掃描(Electrical Resistivity Tomography,ERT)訊號。 The geological data detection system of claim 1, wherein the passive source geological detection signal comprises a Self-Potential (SP) signal and the active source geological detection signal comprises a ground resistance image scan ( Electrical Resistivity Tomography, ERT) signal. 如申請專利範圍第1項所述之地質數據探測系統,其中該訊號分解模組包含一訊號格式轉換整理裝置,藉由該訊號格式轉換整理裝置將該混合訊號中屬於該主動源之地質探測訊號分離後,藉以取得該被動源之地質探測訊號。 The geological data detection system of claim 1, wherein the signal decomposition module comprises a signal format conversion device, wherein the signal format conversion device comprises the geological detection signal belonging to the active source in the mixed signal After separation, the geological detection signal of the passive source is obtained. 如申請專利範圍第1項所述之地質數據探測系統,其中該混合訊號之頻率範圍係為0至1000赫茲以內。 The geological data detecting system of claim 1, wherein the mixed signal has a frequency range of 0 to 1000 Hz. 如申請專利範圍第1項所述之地質數據探測系統,進一步包含: 一主動源訊號處理模組;以及一被動源訊號處理模組;其中該主動源訊號處理模組以及該被動源訊號處理模組分別與該訊號分離模組連接,並分別接收該主動源之地質探測訊號以及該被動源之地質探測訊號,以進行訊號處理。 The geological data detection system described in claim 1 further comprises: An active source signal processing module; and a passive source signal processing module; wherein the active source signal processing module and the passive source signal processing module are respectively connected to the signal separation module, and respectively receive the geological of the active source The detection signal and the geological detection signal of the passive source are used for signal processing. 如申請專利範圍第1項所述之地質數據探測系統,其中該數據探測模組包含:一參數設定裝置,用以根據一使用者輸入一參數指令以輸出有一相對應之參數控制訊號;以及一地質探測裝置,連接於該參數設定裝置,用以根據該參數控制訊號以同時收集該主動源之地質探測數據以及該被動源之地質探測數據後輸出該混合訊號。 The geological data detecting system of claim 1, wherein the data detecting module comprises: a parameter setting device for inputting a parameter command according to a user to output a corresponding parameter control signal; and The geological detection device is connected to the parameter setting device for controlling the signal according to the parameter to simultaneously collect the geological detection data of the active source and the geological detection data of the passive source, and output the mixed signal. 如申請專利範圍第7項所述之地質數據探測系統,其中該數據探測模組得為定置在一探測地點以進行長時間連續探測,並由該使用者經由網路於遠端進行控制以及隨時監測。 The geological data detecting system of claim 7, wherein the data detecting module is disposed at a detecting location for continuous detection for a long time, and is controlled by the user remotely via the network and at any time. monitor. 如申請專利範圍第7項所述之地質數據探測系統,其中該參數設定裝置所設定之參數包含該地質探測裝置的電極放電排列順序、電極放電時間序列排程、訊號壓縮方式以及該混合訊號回傳至該使用者的時間排程。 The geological data detecting system of claim 7, wherein the parameter set by the parameter setting device comprises an electrode discharge sequence of the geological detecting device, an electrode discharge time series scheduling, a signal compression mode, and the mixed signal back. The time schedule passed to the user. 如申請專利範圍第7項所述之地質數據探測系統,其中該地質探測裝置包含:一主動源地質數據探勘器;以及一被動源地質數據探勘器; 其中,該主動源地質數據探勘器與該被動源地質數據探勘器分別且同時進行該主動源之地質探測數據以及該被動源之地質探測數據之收集。 The geological data detecting system of claim 7, wherein the geological detecting device comprises: an active source geological data finder; and a passive source geological data finder; The active source geological data finder and the passive source geological data finder separately and simultaneously perform geological detection data of the active source and collection of geological detection data of the passive source.
TW103125042A 2014-07-22 2014-07-22 A geological data surveying system TWI570428B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103125042A TWI570428B (en) 2014-07-22 2014-07-22 A geological data surveying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103125042A TWI570428B (en) 2014-07-22 2014-07-22 A geological data surveying system

Publications (2)

Publication Number Publication Date
TW201604573A TW201604573A (en) 2016-02-01
TWI570428B true TWI570428B (en) 2017-02-11

Family

ID=55809626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103125042A TWI570428B (en) 2014-07-22 2014-07-22 A geological data surveying system

Country Status (1)

Country Link
TW (1) TWI570428B (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Choon B. Park, Richard D. Miller, Jianghai Xia, and Julian Ivanov, "Multichannel analysis of surface waves (MASW)—active and passive methods," The Leading Edge, January 2007. *
Tanguy Robert, Alain Dassargues, Serge Brouyère, Olivier Kaufmann, Vincent Hallet, Frédéric Nguyen, "Assessing the contribution of electrical resistivity tomography (ERT) and self-potential (SP) methods for a water well drilling program in fractured/karstified limestones," Journal of Applied Geophysics, vol. 75, 42–53, June 22, 2011. *

Also Published As

Publication number Publication date
TW201604573A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US6914433B2 (en) Detection of subsurface resistivity contrasts with application to location of fluids
DK1488554T3 (en) PROCEDURE AND APPARATUS FOR SEA SOURCE DIAGNOSTICS AND GUI FOR OPERATION OF SAME
CA2639947C (en) Source monitoring for electromagnetic surveying
US5514963A (en) Method for monitoring an area of the surface of the earth
WO2010101490A1 (en) Method for marine electrical exploration of oil and gas deposits
Martin et al. Evaluation of spectral induced polarization field measurements in time and frequency domain
AU2016203396B2 (en) Magnetometer signal sampling within time-domain EM transmitters and method
CN107085240A (en) A kind of side slope magnetic fluid detection system and method
Persico et al. A microwave tomographic imaging approach for multibistatic configuration: The choice of the frequency step
Boyle Geophysical applications of electrical impedance tomography
TWI570428B (en) A geological data surveying system
CN103837533A (en) Method for concrete temperature monitoring and simulation back analysis based on thermal imager
Abraham et al. Use of a handheld broadband EM induction system for deriving resistivity depth images
Kilic et al. Performance evaluation of the neural networks for moisture detection using GPR
Matzel et al. Imaging the Newberry EGS site using seismic interferometry
CN105277988B (en) A kind of geologic data detection system
de Berc et al. A complete characterization of 27 OSOP Raspberryshakes performed at EOST Seismic Instrumentation Facility
RU2642967C2 (en) Method of geoelectrical prospecting
CA2915231C (en) Seismic sensing with optical fiber
Malo-Lalande et al. Getting a better control of IP acquisitions with GDD’s new IP Post-Processing software
Liu et al. Data acquisition and processing of distributed full-waveform induced polarization exploration
Kislov et al. On the metrological support of the long-period seismology
Cruz Júnior et al. Design and construction of an automated and programmable resistivity meter for shallow subsurface investigation
RU76467U1 (en) TECHNOLOGICAL COMPLEX FOR SEARCH AND EXPLORATION OF OIL AND GAS DEPOSITS BY RESULTS OF MEASUREMENTS OF Caused POLARIZATION WITH FORECAST OF HYDROCARBON SATURATION
RU2574861C2 (en) Method of measuring and processing transient processes with grounded line during pulse field excitation with electric dipole to construct geoelectric sections and apparatus for carrying out said method using hardware-software electrical logging system (apek "mars")