TWI569314B - A vertical vacuum sealed carbon nanotube transistor and method for preparing the same - Google Patents

A vertical vacuum sealed carbon nanotube transistor and method for preparing the same Download PDF

Info

Publication number
TWI569314B
TWI569314B TW105118033A TW105118033A TWI569314B TW I569314 B TWI569314 B TW I569314B TW 105118033 A TW105118033 A TW 105118033A TW 105118033 A TW105118033 A TW 105118033A TW I569314 B TWI569314 B TW I569314B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
field effect
effect transistor
conductive layer
Prior art date
Application number
TW105118033A
Other languages
Chinese (zh)
Other versions
TW201724222A (en
Inventor
肖德元
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Application granted granted Critical
Publication of TWI569314B publication Critical patent/TWI569314B/en
Publication of TW201724222A publication Critical patent/TW201724222A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

垂直真空密封奈米碳管場效電晶體及其製造方法 Vertical vacuum sealed nano carbon tube field effect transistor and manufacturing method thereof

本發明涉及半導體製造領域,尤其涉及一種垂直真空密封奈米碳管場效電晶體及其製造方法。 The present invention relates to the field of semiconductor manufacturing, and in particular to a vertical vacuum sealed carbon nanotube field effect transistor and a method of fabricating the same.

傳統金氧半場效電晶體(MOSFET)將元件製作在單晶矽基板材料上。在不斷追逐摩爾定律(Moore’s Law)的推動作用下,傳統電晶體MOSFET的通道長度不斷縮減,元件尺寸縮小。這種微縮增加了電晶體密度,提高了晶片的集成度,以及其他的固定因素和開關速度等,同時降低了功耗,使晶片性能不斷提升。在未來,隨著技術要求不斷提高,而矽晶片已經不能被製造得更小,於是必須尋找新的晶片製造材料,奈米碳管電晶體是很好的選擇。通過採用單個奈米碳管或者奈米碳管陣列代替傳統體MOSFET結構的通道材料,可以在一定程度上克服限制並且進一步縮小元件尺度。 Conventional gold oxide half field effect transistors (MOSFETs) fabricate components on a single crystal germanium substrate material. Under the urging of Moore’s Law, the channel length of conventional transistor MOSFETs is shrinking and component size is shrinking. This miniaturization increases transistor density, increases wafer integration, and other fixed factors and switching speeds, while reducing power consumption and increasing wafer performance. In the future, as the technical requirements continue to increase, and the germanium wafers can no longer be made smaller, it is necessary to find new wafer fabrication materials, and carbon nanotube transistors are a good choice. By replacing the channel material of a conventional bulk MOSFET structure with a single carbon nanotube or carbon nanotube array, the limitations can be overcome to some extent and the component dimensions can be further reduced.

在理想的全包圍閘極結構中,具有自動對準閘極的奈米碳管場效電晶體(Carbon Nano Tube Field Effect Transistor,CNTFET)尺寸已經降到了20nm。包圍奈米碳管通道的閘極的均勻性得到了鞏固,並且這樣的製 程也沒有造成對碳奈米碳管的損害。 In an ideal fully enclosed gate structure, the size of the Carbon Nano Tube Field Effect Transistor (CNTFET) with auto-aligned gate has been reduced to 20 nm. The uniformity of the gate surrounding the carbon nanotube channel has been consolidated, and such a system Cheng also did not cause damage to the carbon nanotubes.

奈米碳管晶片可以大大提高高性能電腦的能力,使大資料分析速度更快,增加移動設備和物聯網的功率和電池壽命,並允許雲端資料中心提供更有效和更經濟的服務。 Nanotube wafers can greatly enhance the capabilities of high-performance computers, enable faster data analysis, increase power and battery life for mobile devices and the Internet of Things, and allow cloud data centers to provide more efficient and cost-effective services.

然而,隨著元件尺寸的持續變小,隨之增加的接觸電阻成為了奈米碳管場效電晶體提高性能的最大阻礙。對於任何先進的電晶體技術,由於電晶體的尺寸減小而增加的接觸電阻成為一個主要的性能瓶頸。到現在為止,元件尺寸的減少,導致接觸電阻不斷增大,從而導致元件性能存在與接觸電阻對應的下降,此點是基於矽和奈米碳管場效電晶體技術所面臨的挑戰。 However, as the size of the component continues to decrease, the increased contact resistance becomes the biggest obstacle to the performance improvement of the nanotube field effect transistor. For any advanced transistor technology, the increased contact resistance due to the reduced size of the transistor becomes a major performance bottleneck. Up to now, the reduction in component size has led to an increase in contact resistance, resulting in a decrease in component performance corresponding to contact resistance, which is based on the challenges faced by tantalum and carbon nanotube field effect transistor technology.

本發明的目的在於提供一種垂直真空密封奈米碳管場效電晶體及其製造方法,能夠克服上述問題。 It is an object of the present invention to provide a vertical vacuum sealed carbon nanotube field effect transistor and a method of manufacturing the same that overcome the above problems.

為了實現上述目的,本發明提出了一種垂直真空密封奈米碳管場效電晶體的製造方法,包括步驟:提供半導體基板,在所述半導體基板上形成有第一單嵌鑲結構,所述第一單嵌鑲結構包括介電層和導電層,所述導電層形成在所述介電層內,所述介電層暴露出所述導電層;在所述導電層表面形成奈米顆粒;在所述導電層上形成多個間隔排列的奈米碳管;在所述介電層、導電層及奈米碳管表面形成閘介電層; 在所述閘介電層表面形成金屬閘極,所述奈米碳管的部分頂部伸出所述金屬閘極的表面;在所述金屬閘極表面形成第二單嵌鑲結構,所述奈米碳管的頂部與所述第二單嵌鑲結構內的導電層相連。 In order to achieve the above object, the present invention provides a method for fabricating a vertical vacuum sealed carbon nanotube field effect transistor, comprising the steps of: providing a semiconductor substrate on which a first single damascene structure is formed, A single damascene structure includes a dielectric layer formed in the dielectric layer, the dielectric layer exposing the conductive layer; forming nanoparticle on a surface of the conductive layer; Forming a plurality of spaced carbon nanotubes on the conductive layer; forming a gate dielectric layer on the surface of the dielectric layer, the conductive layer and the carbon nanotube; Forming a metal gate on a surface of the gate dielectric layer, a portion of the portion of the carbon nanotube protruding from a surface of the metal gate; forming a second single mosaic structure on the surface of the metal gate The top of the carbon nanotube is connected to the conductive layer in the second single inlay structure.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述第一單嵌鑲結構的形成步驟包括:在所述半導體基板上依次形成氮化矽層和介電層;蝕刻所述介電層,形成凹槽,蝕刻停止於所述氮化矽層;在所述凹槽內填充所述導電層。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the forming step of the first single damascene structure comprises: sequentially forming a tantalum nitride layer and a dielectric layer on the semiconductor substrate An electrical layer; etching the dielectric layer to form a recess, etching stops at the tantalum nitride layer; filling the conductive layer in the recess.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,在所述凹槽內形成所述導電層之前,在所述凹槽內先形成一層阻擋層,所述導電層形成在所述阻擋層表面。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, a barrier layer is formed in the groove before forming the conductive layer in the groove. A conductive layer is formed on the surface of the barrier layer.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述阻擋層為TaN或Ta。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the barrier layer is TaN or Ta.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述第二單嵌鑲結構的形成步驟包括:在所述金屬閘極表面依次形成氮化矽層和介電層,所述氮化矽層的表面與伸出的奈米碳管的頂部齊平;蝕刻所述介電層,形成凹槽,蝕刻停止於所述氮化矽層,所述凹槽暴露出所述奈米碳管的頂部;在所述凹槽內填充導電層,所述導電層與所述奈米碳管的頂部相連。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the forming step of the second single mosaic structure includes: sequentially forming a tantalum nitride layer on the surface of the metal gate and a dielectric layer, a surface of the tantalum nitride layer being flush with a top of the protruding carbon nanotube; etching the dielectric layer to form a recess, and etching stops at the tantalum nitride layer, the recess The top of the carbon nanotube is exposed; a conductive layer is filled in the recess, the conductive layer being connected to the top of the carbon nanotube.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,在所述凹槽內形成所述導電層之前,在所述凹槽內先形成一層阻擋層,所述阻擋層在真空條件下形成,所述導電層形成在所述阻擋層表面。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, a barrier layer is formed in the groove before forming the conductive layer in the groove. The barrier layer is formed under vacuum, and the conductive layer is formed on the surface of the barrier layer.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述阻擋層為TaN、Mo或Ta。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the barrier layer is TaN, Mo or Ta.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述介電層為二氧化矽。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the dielectric layer is cerium oxide.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,在所述導電層上形成奈米顆粒和奈米碳管的步驟包括:在所述介電層表面形成幕罩層,暴露出所述導電層;以所述幕罩層為幕罩,在所述導電層表面形成奈米顆粒;在形成所述奈米顆粒之後,在所述導電層表面形成奈米碳管;採用剝離技術,去除所述幕罩層。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the step of forming nano particles and a carbon nanotube on the conductive layer includes: forming a surface of the dielectric layer a mask layer exposing the conductive layer; forming a nanoparticle on the surface of the conductive layer with the mask layer as a mask; forming a nano surface on the surface of the conductive layer after forming the nanoparticle Carbon tube; using a stripping technique to remove the mask layer.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述幕罩層的材質為BARC或不定形碳。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the material of the mask layer is BARC or amorphous carbon.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述奈米顆粒材質為Co或Mo。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the nano particle material is Co or Mo.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述閘介電層材質為HfO2或Al2O3Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the gate dielectric layer is made of HfO 2 or Al 2 O 3 .

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製 造方法中,所述金屬閘極的形成步驟包括:在所述閘介電層表面形成金屬閘極,所述金屬閘極覆蓋所述奈米碳管的頂部;採用化學機械研磨製程對所述金屬閘極進行研磨,暴露出所述奈米碳管的頂部;採用回蝕刻製程對所述金屬閘極進行回蝕刻處理,使所述奈米碳管的部分頂部伸出所述金屬閘極的表面。 Further, in the vertical vacuum sealing of the carbon nanotube field effect transistor In the manufacturing method, the step of forming the metal gate includes: forming a metal gate on a surface of the gate dielectric layer, the metal gate covering a top portion of the carbon nanotube; using a chemical mechanical polishing process The metal gate is ground to expose the top of the carbon nanotube; the metal gate is etched back by an etch back process to extend a portion of the carbon nanotube from the top of the metal gate surface.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,在形成第二單嵌鑲結構之後,在H2或N2環境下進行高溫退火處理,使所述奈米碳管兩端的導電層具有弧形突出部。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, after forming the second single mosaic structure, high temperature annealing treatment is performed in an H 2 or N 2 environment to make the nano The conductive layers at both ends of the carbon nanotube have arcuate projections.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述高溫退火的溫度範圍是攝氏600度至1200度。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the high temperature annealing temperature ranges from 600 degrees Celsius to 1200 degrees Celsius.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述高溫退火的時間範圍是10秒~120分鐘。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the time range of the high temperature annealing is 10 seconds to 120 minutes.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述奈米碳管內的真空度範圍是0.01Torr~50Torr。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the degree of vacuum in the carbon nanotube is 0.01 Torr to 50 Torr.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述奈米碳管的長度範圍是2nm~100nm,所述奈米碳管橫截面的尺寸範圍是1nm~5nm。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the length of the carbon nanotube is in the range of 2 nm to 100 nm, and the size of the carbon nanotube cross section is 1 nm. ~5nm.

進一步的,在所述的垂直真空密封奈米碳管場效電晶體的製造方法中,所述導電層的材質包括Zr,V,Nb,Ta,Cr,Mo,W,Fe,Co,Pd,Cu,Al,Ga,In,Ti,TiN,TaN,金剛石或以上材質的結合。 Further, in the manufacturing method of the vertical vacuum sealed carbon nanotube field effect transistor, the material of the conductive layer includes Zr, V, Nb, Ta, Cr, Mo, W, Fe, Co, Pd, Cu, Al, Ga, In, Ti, TiN, TaN, diamond or a combination of the above materials.

在本發明中,還提出了一種垂直真空密封奈米碳管場效電晶體,採用如上文所述的垂直真空密封奈米碳管場效電晶體的製造方法製備而成,包括:半導體基板、第一單嵌鑲結構、奈米碳管、閘介電層、金屬閘極及第二單嵌鑲結構,其中,所述第一單嵌鑲結構形成在所述半導體基板上,所述第一單嵌鑲結構中的導電層表面形成有奈米顆粒,所述奈米碳管的兩端分別連接所述第一單嵌鑲結構中的導電層和第二單嵌鑲結構中的導電層,所述閘介電層形成在所述奈米碳管及介電層的表面,所述金屬閘極形成在所述閘介電層的表面,並位於所述第一單嵌鑲結構和第二單嵌鑲結構之間。 In the present invention, a vertical vacuum sealed carbon nanotube field effect transistor is also proposed, which is prepared by the method for manufacturing a vertical vacuum sealed carbon nanotube field effect transistor as described above, including: a semiconductor substrate, a first single damascene structure, a carbon nanotube, a gate dielectric layer, a metal gate, and a second single damascene structure, wherein the first single damascene structure is formed on the semiconductor substrate, the first The surface of the conductive layer in the single mosaic structure is formed with nano particles, and the two ends of the carbon nanotube are respectively connected to the conductive layer in the first single mosaic structure and the conductive layer in the second single mosaic structure. The gate dielectric layer is formed on a surface of the carbon nanotube and the dielectric layer, the metal gate is formed on a surface of the gate dielectric layer, and is located in the first single mosaic structure and the second Between single mosaic structures.

與現有技術相比,本發明的有益效果主要體現在:在導電層表面形成奈米顆粒作為觸媒,接著形成奈米碳管,閘介電層與源汲極接觸,將奈米碳管密封在真空環境,從而在後續形成奈米碳管場效電晶體之後能夠降低元件工作電壓,提高元件使用壽命及其它性能。 Compared with the prior art, the beneficial effects of the present invention are mainly embodied in: forming nano particles as a catalyst on the surface of the conductive layer, and then forming a carbon nanotube, the gate dielectric layer is in contact with the source drain, and the carbon nanotube is sealed. In a vacuum environment, the subsequent operation of the carbon nanotube field effect transistor can reduce the component operating voltage, improve component life and other properties.

10‧‧‧半導體基板 10‧‧‧Semiconductor substrate

20‧‧‧氮化矽層 20‧‧‧矽 nitride layer

30‧‧‧介電層 30‧‧‧Dielectric layer

40‧‧‧阻擋層 40‧‧‧Block

41‧‧‧導電層 41‧‧‧ Conductive layer

42‧‧‧奈米顆粒 42‧‧‧Nano granules

50‧‧‧幕罩層 50‧‧‧ mask layer

60‧‧‧奈米碳管 60‧‧‧Nano Carbon Tube

70‧‧‧閘介電層 70‧‧‧gate dielectric layer

80‧‧‧金屬閘極 80‧‧‧Metal gate

第1圖為本發明一實施例中垂直真空密封奈米碳管場效電晶體的製造方法的流程圖;第2圖至第14圖為本發明一實施例中垂直真空密封奈米碳管場效電晶體的製造過程的剖面示意圖;第15圖為本發明一實施例中沿著通道方向的剖面示意圖;第16圖為本發明一實施例中沿垂直於通道方向的剖面示意圖;第17圖為本發明一實施例中垂直真空密封奈米碳管場效電 晶體的能帶示意圖。 1 is a flow chart showing a method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to an embodiment of the present invention; and FIGS. 2 to 14 are vertical vacuum sealing carbon nanotube fields according to an embodiment of the present invention; FIG. 15 is a cross-sectional view along the channel direction according to an embodiment of the present invention; and FIG. 16 is a cross-sectional view perpendicular to the channel direction according to an embodiment of the present invention; Vertical vacuum sealed carbon nanotube field effect electric power according to an embodiment of the invention Schematic diagram of the energy band of the crystal.

下面將結合示意圖對本發明的垂直真空密封奈米碳管場效電晶體及其製造方法進行更詳細的描述,其中表示了本發明的優選實施例,應該理解本領域技術人員可以修改在此描述的本發明,而仍然實現本發明的有利效果。因此,下列描述應當被理解為對於本領域技術人員的廣泛知道,而並不作為對本發明的限制。 The vertical vacuum sealed carbon nanotube field effect transistor of the present invention and its manufacturing method will be described in more detail below with reference to the schematic drawings, wherein a preferred embodiment of the present invention is shown, and it should be understood that those skilled in the art can modify the description herein. The present invention, while still achieving the advantageous effects of the present invention. Therefore, the following description is to be understood as a broad understanding of the invention.

為了清楚,不描述實際實施例的全部特徵。在下列描述中,不詳細描述公知的功能和結構,因為它們會使本發明由於不必要的細節而混亂。應當認為在任何實際實施例的開發中,必須做出大量實施細節以實現開發者的特定目標,例如按照有關系統或有關商業的限制,由一個實施例改變為另一個實施例。另外,應當認為這種開發工作可能是複雜和耗費時間的,但是對於本領域技術人員來說僅僅是常規工作。 In the interest of clarity, not all features of the actual embodiments are described. In the following description, well-known functions and structures are not described in detail, as they may obscure the invention in unnecessary detail. It should be understood that in the development of any actual embodiment, a large number of implementation details must be made to achieve a particular goal of the developer, such as changing from one embodiment to another in accordance with the limitations of the system or related business. Additionally, such development work should be considered complex and time consuming, but is only routine work for those skilled in the art.

在下列段落中參照附圖以舉例方式更具體地描述本發明。根據下面說明和權利要求書,本發明的優點和特徵將更清楚。需說明的是,附圖均採用非常簡化的形式且均使用非精準的比例,僅用以方便、清晰地輔助說明本發明實施例的目的。 The invention is more specifically described in the following paragraphs by way of example with reference to the accompanying drawings. Advantages and features of the present invention will be apparent from the description and appended claims. It should be noted that the drawings are in a very simplified form and both use non-precise proportions, and are only for convenience and clarity to assist the purpose of the embodiments of the present invention.

請參考第1圖,在本實施例中,提出了一種垂直真空密封奈米碳管場效電晶體的製造方法,包括步驟:S100:提供半導體基板,在所述半導體基板上形成有第一單嵌鑲結構,所述第一單嵌鑲結構包括介電層和導電層,所述導電層形成在所述介電層內,所述介電層暴露出所述導電層; S200:在所述導電層表面形成奈米顆粒;S300:在所述導電層上形成多個間隔排列的奈米碳管;S400:在所述介電層、導電層及奈米碳管表面形成閘介電層;S500:在所述閘介電層表面形成金屬閘極,所述奈米碳管的部分頂部伸出所述金屬閘極的表面;S600:在所述金屬閘極表面形成第二單嵌鑲結構,所述奈米碳管的頂部與所述第二單嵌鑲結構內的導電層相連。 Referring to FIG. 1 , in the embodiment, a method for manufacturing a vertical vacuum sealed carbon nanotube field effect transistor is provided, comprising the steps of: S100: providing a semiconductor substrate, and forming a first single on the semiconductor substrate a mosaic structure, the first single damascene structure comprising a dielectric layer and a conductive layer, the conductive layer being formed in the dielectric layer, the dielectric layer exposing the conductive layer; S200: forming nano particles on the surface of the conductive layer; S300: forming a plurality of spaced carbon nanotubes on the conductive layer; S400: forming on the surface of the dielectric layer, the conductive layer, and the carbon nanotube a gate dielectric layer; S500: forming a metal gate on a surface of the gate dielectric layer, a portion of the portion of the carbon nanotube protruding from a surface of the metal gate; S600: forming a surface on the surface of the metal gate The second single mosaic structure has a top portion of the carbon nanotube connected to the conductive layer in the second single mosaic structure.

具體的,請參考第2圖至第3圖,所述第一單嵌鑲結構的形成步驟包括:在所述半導體基板10上依次形成氮化矽層20和介電層30;蝕刻所述介電層30,形成凹槽,蝕刻停止於所述氮化矽層20;在所述凹槽內填充所述導電層41。 Specifically, referring to FIG. 2 to FIG. 3, the step of forming the first single damascene structure comprises: sequentially forming a tantalum nitride layer 20 and a dielectric layer 30 on the semiconductor substrate 10; etching the dielectric layer The electrical layer 30 is formed with a recess, and etching stops at the tantalum nitride layer 20; the conductive layer 41 is filled in the recess.

在所述凹槽內形成所述導電層41之前,在所述凹槽內先形成一層阻擋層40,所述導電層41形成在所述阻擋層40表面,其中,所述導電層41的材質可以為銅,介電層30的材質可以為二氧化矽,為了防止銅擴散至介電層30內,通常需要在兩者之間形成導電的阻擋層40,其中阻擋層40可以為Ta、TaN或兩者結合。 Before forming the conductive layer 41 in the recess, a barrier layer 40 is formed in the recess, and the conductive layer 41 is formed on the surface of the barrier layer 40, wherein the material of the conductive layer 41 The material of the dielectric layer 30 may be cerium oxide. To prevent copper from diffusing into the dielectric layer 30, it is generally required to form a conductive barrier layer 40 between the two, wherein the barrier layer 40 may be Ta or TaN. Or a combination of both.

請參考第4圖至第7圖,在所述導電層41上形成奈米顆粒42和奈米碳管60的步驟包括:在所述介電層30表面形成幕罩層50,暴露出所述導電層41;以所述幕罩層50為幕罩,在所述導電層41表面形成奈米顆粒 42;在形成所述奈米顆粒42之後,在所述導電層41表面形成奈米碳管60;採用剝離技術(lift-off),去除所述幕罩層50。 Referring to FIGS. 4-7, the step of forming the nanoparticle 42 and the carbon nanotube 60 on the conductive layer 41 includes: forming a mask layer 50 on the surface of the dielectric layer 30 to expose the a conductive layer 41; forming a nano particle on the surface of the conductive layer 41 with the mask layer 50 as a mask After forming the nanoparticle 42, a carbon nanotube 60 is formed on the surface of the conductive layer 41; the mask layer 50 is removed by lift-off.

其中,所述幕罩層50的材質為底部抗反射層(BARC)或不定形碳等材質,所述奈米顆粒42材質為Co或Mo,形成的奈米顆粒42能夠作為觸媒,降低接觸電阻。所述奈米碳管60的長度範圍是2nm~100nm,所述奈米碳管60橫截面的尺寸範圍是1nm~5nm。 The mask layer 50 is made of a material such as a bottom anti-reflective layer (BARC) or an amorphous carbon. The nano-particles 42 are made of Co or Mo, and the formed nano-particles 42 can act as a catalyst to reduce contact. resistance. The carbon nanotubes 60 have a length ranging from 2 nm to 100 nm, and the carbon nanotubes 60 have a cross-sectional dimension ranging from 1 nm to 5 nm.

請參考第8圖,在所述介電層30、導電層41及奈米碳管60表面形成閘介電層70,所述閘介電層70材質為HfO2或Al2O3Referring to FIG. 8, a gate dielectric layer 70 is formed on the surface of the dielectric layer 30, the conductive layer 41, and the carbon nanotube 60. The gate dielectric layer 70 is made of HfO 2 or Al 2 O 3 .

請參考第9圖至第11圖,所述金屬閘極80的形成步驟包括:在所述閘介電層70表面形成金屬閘極80,所述金屬閘極80覆蓋所述奈米碳管60的頂部,如第9圖所示;採用化學機械研磨製程對所述金屬閘極80進行研磨,暴露出所述奈米碳管60的頂部,如第10圖所示;採用回蝕刻製程對所述金屬閘極80進行回蝕刻處理,使所述奈米碳管60的部分頂部伸出所述金屬閘極80的表面,如第11圖所示。 Referring to FIGS. 9-11, the step of forming the metal gate 80 includes forming a metal gate 80 on the surface of the gate dielectric layer 70, and the metal gate 80 covers the carbon nanotube 60. The top, as shown in Fig. 9; the metal gate 80 is ground by a chemical mechanical polishing process to expose the top of the carbon nanotube 60, as shown in Fig. 10; using an etch back process The metal gate 80 is etched back so that a portion of the top of the carbon nanotube 60 protrudes beyond the surface of the metal gate 80 as shown in FIG.

接著,請參考第12圖至第14圖,所述第二單嵌鑲結構的形成步驟包括:在所述金屬閘極80表面依次形成氮化矽層20和介電層30,所述氮化矽層20的表面與伸出的奈米碳管60的頂部齊平;蝕刻所述介電層30,形成凹槽,蝕刻停止於所述氮化矽層 20,所述凹槽暴露出所述奈米碳管60的頂部,可以對所述奈米碳管60的頂部進行清洗;在所述凹槽內填充導電層41,所述導電層41與所述奈米碳管60的頂部相連。 Next, referring to FIG. 12 to FIG. 14, the forming process of the second single damascene structure includes: sequentially forming a tantalum nitride layer 20 and a dielectric layer 30 on the surface of the metal gate 80, the nitriding The surface of the germanium layer 20 is flush with the top of the protruding carbon nanotubes 60; the dielectric layer 30 is etched to form a recess, and etching stops at the tantalum nitride layer 20, the groove exposes the top of the carbon nanotube 60, and the top of the carbon nanotube 60 may be cleaned; the conductive layer 41 is filled in the groove, and the conductive layer 41 is The tops of the carbon nanotubes 60 are connected.

同樣的,由於導電層41的材質為銅,介電層30的材質為二氧化矽,為了防止銅的擴散,需要在導電層41與介電層30之間形成阻擋層40,其中,阻擋層40的材質可以為TaN或Ta,摻雜有Co或Mo,在第二單嵌鑲結構的阻擋層40中包含摻雜有Co或Mo也能夠降低接觸電阻。其中,所述阻擋層40在真空條件下形成,使所述奈米碳管60內的真空度範圍是0.01Torr~50Torr。 Similarly, since the material of the conductive layer 41 is copper and the material of the dielectric layer 30 is ceria, in order to prevent the diffusion of copper, it is necessary to form a barrier layer 40 between the conductive layer 41 and the dielectric layer 30, wherein the barrier layer The material of 40 may be TaN or Ta, doped with Co or Mo, and the inclusion of Co or Mo in the barrier layer 40 of the second single damascene structure can also reduce the contact resistance. The barrier layer 40 is formed under vacuum conditions such that the degree of vacuum in the carbon nanotubes 60 ranges from 0.01 Torr to 50 Torr.

所述導電層41的材質包括Zr,V,Nb,Ta,Cr,Mo,W,Fe,Co,Pd,Cu,Al,Ga,In,Ti,TiN,TaN,金剛石或以上材質的結合。其中,第一單嵌鑲結構和第二單嵌鑲結構可以作為元件的源汲極。 The material of the conductive layer 41 includes Zr, V, Nb, Ta, Cr, Mo, W, Fe, Co, Pd, Cu, Al, Ga, In, Ti, TiN, TaN, diamond or a combination of the above materials. Wherein, the first single mosaic structure and the second single mosaic structure can be used as the source drain of the component.

在形成第二單嵌鑲結構之後,在H2或N2環境下進行高溫退火處理,使所述奈米碳管60兩端的導電層41或者阻擋層41具有弧形突出部,所述高溫退火的溫度範圍是攝氏600度至1200度,高溫退火的時間範圍是10秒~120分鐘,請參考第15圖,在高溫退火之後,導電層41或者阻擋層41在奈米碳管60兩端能夠形成弧形突出部,從而能夠提高通道的開啟速度。其中,奈米碳管60內部的橫截面結構可以參考第16圖。 After forming the second single damascene structure, high temperature annealing treatment is performed in an H 2 or N 2 environment, so that the conductive layer 41 or the barrier layer 41 at both ends of the carbon nanotubes 60 has curved protrusions, and the high temperature annealing The temperature range is from 600 to 1200 degrees Celsius, and the annealing time range is from 10 seconds to 120 minutes. Please refer to Figure 15. After high temperature annealing, the conductive layer 41 or the barrier layer 41 can be on both ends of the carbon nanotube 60. An arcuate projection is formed so that the opening speed of the passage can be increased. The cross-sectional structure inside the carbon nanotube 60 can be referred to FIG.

在本實施例的另一方面,還提出了一種垂直真空密封奈米碳管場效電晶體,採用如上文所述的垂直真空密封奈米碳管場效電晶體的製造方法製備而成,包括:半導體基板、第一單嵌鑲結構、奈米碳管、閘介 電層、金屬閘極及第二單嵌鑲結構,其中,所述第一單嵌鑲結構形成在所述半導體基板上,所述第一單嵌鑲結構中的導電層表面形成有奈米顆粒,所述奈米碳管的兩端分別連接所述第一單嵌鑲結構中的導電層和第二單嵌鑲結構中的導電層,所述閘介電層形成在所述奈米碳管及介電層的表面,所述金屬閘極形成在所述閘介電層的表面,並位於所述第一單嵌鑲結構和第二單嵌鑲結構之間。 In another aspect of the embodiment, a vertical vacuum sealed carbon nanotube field effect transistor is also proposed, which is prepared by the method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor as described above, including :Semiconductor substrate, first single inlay structure, carbon nanotube, thyristor An electric layer, a metal gate, and a second single inlay structure, wherein the first single damascene structure is formed on the semiconductor substrate, and a surface of the conductive layer in the first single inlay structure is formed with nano particles The two ends of the carbon nanotube are respectively connected to the conductive layer in the first single mosaic structure and the conductive layer in the second single mosaic structure, and the gate dielectric layer is formed on the carbon nanotube And a surface of the dielectric layer, the metal gate is formed on a surface of the gate dielectric layer and located between the first single mosaic structure and the second single mosaic structure.

此外,形成的垂直真空密封奈米碳管場效電晶體工作時的能帶示意圖可以參考第17圖,可見,形成的垂直真空密封奈米碳管場效電晶體在開啟時電子或電洞從源極遷移到汲極的能帶遷移距離較短,使整個元件的性能更佳。 In addition, the energy band diagram of the formed vertical vacuum-sealed carbon nanotube field-effect transistor can be referred to FIG. 17, and it can be seen that the formed vertical vacuum-sealed carbon nanotube field-effect transistor has an electron or a hole from the opening. The energy migration distance from the source to the drain is shorter, which makes the performance of the entire component better.

綜上,在本發明實施例提供的垂直真空密封奈米碳管場效電晶體及其製造方法中,在導電層表面形成奈米顆粒作為觸媒,接著形成奈米碳管,閘介電層與源汲極接觸,將奈米碳管密封在真空環境,從而在後續形成奈米碳管場效電晶體之後能夠降低元件工作電壓,提高元件使用壽命及其它性能。 In summary, in the vertical vacuum sealed carbon nanotube field effect transistor and the manufacturing method thereof provided by the embodiments of the present invention, nano particles are formed on the surface of the conductive layer as a catalyst, and then a carbon nanotube, a gate dielectric layer is formed. In contact with the source bungee, the carbon nanotubes are sealed in a vacuum environment, which can reduce the operating voltage of the components and improve the service life and other properties of the components after the subsequent formation of the carbon nanotube field effect transistors.

上述僅為本發明的優選實施例而已,並不對本發明起到任何限制作用。任何所屬技術領域的技術人員,在不脫離本發明的技術方案的範圍內,對本發明揭露的技術方案和技術內容做任何形式的等同替換或修改等變動,均屬未脫離本發明的技術方案的內容,仍屬於本發明的保護範圍之內。 The above is only a preferred embodiment of the present invention and does not impose any limitation on the present invention. Any changes in the technical solutions and technical contents disclosed in the present invention may be made by those skilled in the art without departing from the technical scope of the present invention. The content is still within the scope of protection of the present invention.

S100~S600‧‧‧步驟 S100~S600‧‧‧Steps

Claims (20)

一種垂直真空密封奈米碳管場效電晶體的製造方法,包括步驟:提供半導體基板,在所述半導體基板上形成有第一單嵌鑲結構,所述第一單嵌鑲結構包括介電層和導電層,所述導電層形成在所述介電層內,所述介電層暴露出所述導電層;在所述導電層表面形成奈米顆粒;在所述導電層上形成多個間隔排列的奈米碳管;在所述介電層、導電層及奈米碳管表面形成閘介電層;在所述閘介電層表面形成金屬閘極,所述奈米碳管的部分頂部伸出所述金屬閘極的表面;在所述金屬閘極表面形成第二單嵌鑲結構,所述奈米碳管的頂部與所述第二單嵌鑲結構內的導電層相連。 A method for manufacturing a vertical vacuum sealed carbon nanotube field effect transistor, comprising the steps of: providing a semiconductor substrate on which a first single damascene structure is formed, the first single damascene structure comprising a dielectric layer And a conductive layer formed in the dielectric layer, the dielectric layer exposing the conductive layer; forming nano particles on a surface of the conductive layer; forming a plurality of spaces on the conductive layer Arranging carbon nanotubes; forming a gate dielectric layer on the surface of the dielectric layer, the conductive layer and the carbon nanotube; forming a metal gate on the surface of the gate dielectric layer, a portion of the top of the carbon nanotube Extending the surface of the metal gate; forming a second single mosaic structure on the surface of the metal gate, the top of the carbon nanotube being connected to the conductive layer in the second single mosaic structure. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述第一單嵌鑲結構的形成步驟包括:在所述半導體基板上依次形成氮化矽層和介電層;蝕刻所述介電層,形成凹槽,蝕刻停止於所述氮化矽層;在所述凹槽內填充所述導電層。 The method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein the forming of the first single damascene structure comprises: sequentially forming a tantalum nitride layer and a dielectric layer on the semiconductor substrate An electrical layer; etching the dielectric layer to form a recess, etching stops at the tantalum nitride layer; filling the conductive layer in the recess. 如權利要求2所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中在所述凹槽內形成所述導電層之前,在所述凹槽內先形成一層阻擋層,所述導電層形成在所述阻擋層表面。 A method of fabricating a vertical vacuum sealed carbon nanotube field effect transistor according to claim 2, wherein a barrier layer is formed in said recess before said conductive layer is formed in said recess. A conductive layer is formed on the surface of the barrier layer. 如權利要求3所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述阻擋層為TaN或Ta。 A method of fabricating a vertical vacuum sealed carbon nanotube field effect transistor according to claim 3, wherein said barrier layer is TaN or Ta. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述第二單嵌鑲結構的形成步驟包括:在所述金屬閘極表面依次形成氮化矽層和介電層,所述氮化矽層的表面與伸出的奈米碳管的頂部齊平;蝕刻所述介電層,形成凹槽,蝕刻停止於所述氮化矽層,所述凹槽暴露出所述奈米碳管的頂部;在所述凹槽內填充導電層,所述導電層與所述奈米碳管的頂部相連。 The method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein the forming of the second single damascene structure comprises: sequentially forming a tantalum nitride layer on the surface of the metal gate and a dielectric layer, a surface of the tantalum nitride layer being flush with a top of the protruding carbon nanotube; etching the dielectric layer to form a recess, and etching stops at the tantalum nitride layer, the recess The top of the carbon nanotube is exposed; a conductive layer is filled in the recess, the conductive layer being connected to the top of the carbon nanotube. 如權利要求5所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中在所述凹槽內形成所述導電層之前,在所述凹槽內先形成一層阻擋層,所述阻擋層在真空條件下形成,所述導電層形成在所述阻擋層表面。 A method of fabricating a vertical vacuum sealed carbon nanotube field effect transistor according to claim 5, wherein a barrier layer is formed in said recess before said conductive layer is formed in said recess. The barrier layer is formed under vacuum, and the conductive layer is formed on the surface of the barrier layer. 如權利要求6所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述阻擋層為TaN或Ta,摻雜有Co或Mo。 A method of fabricating a vertical vacuum sealed carbon nanotube field effect transistor according to claim 6, wherein said barrier layer is TaN or Ta, doped with Co or Mo. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述介電層為二氧化矽。 A method of fabricating a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein said dielectric layer is hafnium oxide. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中在所述導電層上形成奈米顆粒和奈米碳管的步驟包括:在所述介電層表面形成幕罩層,暴露出所述導電層;以所述幕罩層為幕罩,在所述導電層表面形成奈米顆粒;在形成所述奈米顆粒之後,在所述導電層表面形成奈米碳管;採用剝離技術,去除所述幕罩層。 A method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein the step of forming nanoparticle and carbon nanotubes on said conductive layer comprises: forming a surface of said dielectric layer a mask layer exposing the conductive layer; forming a nanoparticle on the surface of the conductive layer with the mask layer as a mask; forming a nano surface on the surface of the conductive layer after forming the nanoparticle Carbon tube; using a stripping technique to remove the mask layer. 如權利要求9所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述幕罩層的材質為底部抗反射層(BARC)或不定形碳。 The method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 9, wherein the mask layer is made of a bottom anti-reflective layer (BARC) or amorphous carbon. 如權利要求9所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述奈米顆粒材質為Co或Mo。 The method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 9, wherein the nanoparticle material is Co or Mo. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述閘介電層材質為HfO2或Al2O3The method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein the gate dielectric layer is made of HfO 2 or Al 2 O 3 . 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述金屬閘極的形成步驟包括:在所述閘介電層表面形成金屬閘極,所述金屬閘極覆蓋所述奈米碳管的頂部;採用化學機械研磨製程對所述金屬閘極進行研磨,暴露出所述奈米碳管的頂部;採用回蝕刻製程對所述金屬閘極進行回蝕刻處理,使所述奈米碳管的部分頂部伸出所述金屬閘極的表面。 A method of fabricating a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein said step of forming said metal gate comprises: forming a metal gate on a surface of said gate dielectric layer, said metal gate The top of the carbon nanotube is covered by a pole; the metal gate is ground by a chemical mechanical polishing process to expose the top of the carbon nanotube; and the metal gate is etched back by an etch back process a portion of the carbon nanotube is projected over the surface of the metal gate. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中在形成第二單嵌鑲結構之後,在H2或N2環境下進行高溫退火處理,使所述奈米碳管兩端的導電層具有弧形突出部。 The method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein after forming the second single mosaic structure, high temperature annealing treatment is performed in an H 2 or N 2 environment to cause the nano The conductive layers at both ends of the carbon nanotube have arcuate projections. 如權利要求14所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述高溫退火的溫度範圍是攝氏600度至1200度。 A method of fabricating a vertical vacuum sealed carbon nanotube field effect transistor according to claim 14, wherein said high temperature annealing has a temperature in the range of 600 to 1200 degrees Celsius. 如權利要求14所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述高溫退火的時間範圍是10秒~120分鐘。 A method of fabricating a vertical vacuum sealed carbon nanotube field effect transistor according to claim 14, wherein said high temperature annealing has a time range of from 10 seconds to 120 minutes. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述奈米碳管內的真空度範圍是0.01Torr~50Torr。 A method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein the degree of vacuum in said carbon nanotube ranges from 0.01 Torr to 50 Torr. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方 法,其中所述奈米碳管的長度範圍是2nm~100nm,所述奈米碳管橫截面的尺寸範圍是1nm~5nm。 The manufacturer of the vertical vacuum sealed carbon nanotube field effect transistor according to claim 1 The method wherein the carbon nanotubes have a length ranging from 2 nm to 100 nm, and the carbon nanotube cross-section has a size ranging from 1 nm to 5 nm. 如權利要求1所述的垂直真空密封奈米碳管場效電晶體的製造方法,其中所述導電層的材質包括Zr,V,Nb,Ta,Cr,Mo,W,Fe,Co,Pd,Cu,Al,Ga,In,Ti,TiN,TaN,金剛石或以上材質的結合。 The method of manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to claim 1, wherein the material of the conductive layer comprises Zr, V, Nb, Ta, Cr, Mo, W, Fe, Co, Pd, Cu, Al, Ga, In, Ti, TiN, TaN, diamond or a combination of the above materials. 一種垂直真空密封奈米碳管場效電晶體,採用如權利要求1至19中任一種所述的垂直真空密封奈米碳管場效電晶體的製造方法製備而成,包括:半導體基板、第一單嵌鑲結構、奈米碳管、閘介電層、金屬閘極及第二單嵌鑲結構,其中,所述第一單嵌鑲結構形成在所述半導體基板上,所述第一單嵌鑲結構中的導電層表面形成有奈米顆粒,所述奈米碳管的兩端分別連接所述第一單嵌鑲結構中的導電層和第二單嵌鑲結構中的導電層,所述閘介電層形成在所述奈米碳管及介電層的表面,所述金屬閘極形成在所述閘介電層的表面,並位於所述第一單嵌鑲結構和第二單嵌鑲結構之間。 A vertical vacuum sealed carbon nanotube field effect transistor prepared by the method for manufacturing a vertical vacuum sealed carbon nanotube field effect transistor according to any one of claims 1 to 19, comprising: a semiconductor substrate, a single damascene structure, a carbon nanotube, a gate dielectric layer, a metal gate, and a second single damascene structure, wherein the first single damascene structure is formed on the semiconductor substrate, the first single The surface of the conductive layer in the mosaic structure is formed with nano particles, and the two ends of the carbon nanotube are respectively connected to the conductive layer in the first single mosaic structure and the conductive layer in the second single mosaic structure. a gate dielectric layer is formed on a surface of the carbon nanotube and the dielectric layer, the metal gate is formed on a surface of the gate dielectric layer, and is located in the first single mosaic structure and the second single Between mosaic structures.
TW105118033A 2015-12-23 2016-06-07 A vertical vacuum sealed carbon nanotube transistor and method for preparing the same TWI569314B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510981315.3A CN106910687B (en) 2015-12-23 2015-12-23 Vertical vacuum sealing carbon nanotube field-effect transistor and its manufacturing method

Publications (2)

Publication Number Publication Date
TWI569314B true TWI569314B (en) 2017-02-01
TW201724222A TW201724222A (en) 2017-07-01

Family

ID=58608366

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105118033A TWI569314B (en) 2015-12-23 2016-06-07 A vertical vacuum sealed carbon nanotube transistor and method for preparing the same

Country Status (2)

Country Link
CN (1) CN106910687B (en)
TW (1) TWI569314B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258044B (en) * 2016-12-28 2020-12-15 上海新昇半导体科技有限公司 Neuron transistor structure and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201538340A (en) * 2014-04-10 2015-10-16 Univ Nat Taiwan Flexible and stretchable graphene composite film and preparing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683188B2 (en) * 2002-11-29 2011-05-11 日本電気株式会社 Semiconductor device and manufacturing method thereof
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US20050145838A1 (en) * 2004-01-07 2005-07-07 International Business Machines Corporation Vertical Carbon Nanotube Field Effect Transistor
US7135773B2 (en) * 2004-02-26 2006-11-14 International Business Machines Corporation Integrated circuit chip utilizing carbon nanotube composite interconnection vias
US20130047348A1 (en) * 2011-08-31 2013-02-28 Charles Robert Smith Method and Kit For Depilation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201538340A (en) * 2014-04-10 2015-10-16 Univ Nat Taiwan Flexible and stretchable graphene composite film and preparing method of the same

Also Published As

Publication number Publication date
TW201724222A (en) 2017-07-01
CN106910687B (en) 2019-11-26
CN106910687A (en) 2017-06-30

Similar Documents

Publication Publication Date Title
US9153657B2 (en) Semiconductor devices comprising a fin
US10741646B2 (en) Field-effect transistors having contacts to 2D material active region
US8692229B2 (en) Replacement contacts for all-around contacts
TW201543676A (en) Techniques for integration of Ge-rich P-MOS source/drain contacts
KR20180018506A (en) Reduced resistance in transistors with epitaxially grown source / drain regions
US9716178B2 (en) Fin field effect transistor and fabricating method thereof
WO2012146019A1 (en) Preparation method of nano mos device and nano mos device
TW201724274A (en) Resistance reduction under transistor spacers
CN113380628B (en) Fin field effect transistor device and forming method thereof
US20140001542A1 (en) Passivation of carbon nanotubes with molecular layers
TWI569314B (en) A vertical vacuum sealed carbon nanotube transistor and method for preparing the same
TWI588944B (en) High voltage junctionless device with drift regions and manufacturing thereof
TW201735363A (en) Nanowire semiconductor device and method for preparing the same
TWI518782B (en) Vertical transistor and manufacturing method thereof
US20230008496A1 (en) Contact structure for semiconductor device
TWI594307B (en) Fully vacuum sealed carbon nanotube transistor and method for preparing the same
US11930696B2 (en) Fabrication method of a double-gate carbon nanotube transistor
WO2012146018A1 (en) Preparation method of nano mos device and nano mos device
US20230386920A1 (en) Metal gate process and related structure
CN109148299B (en) Semiconductor device and method for manufacturing the same
TW202335264A (en) Semiconductor device and method of forming the same
CN112838164A (en) Self-aligned patterning method for source-drain contact metal
TW202312353A (en) Method of forming semiconductor device
CN115394721A (en) Method for manufacturing integrated circuit
CN116130511A (en) Transistor and preparation process and application thereof