TWI569087B - Image pickup device and light field image pickup lens - Google Patents
Image pickup device and light field image pickup lens Download PDFInfo
- Publication number
- TWI569087B TWI569087B TW103143493A TW103143493A TWI569087B TW I569087 B TWI569087 B TW I569087B TW 103143493 A TW103143493 A TW 103143493A TW 103143493 A TW103143493 A TW 103143493A TW I569087 B TWI569087 B TW I569087B
- Authority
- TW
- Taiwan
- Prior art keywords
- imaging lens
- image
- plane
- light field
- imaging
- Prior art date
Links
Landscapes
- Lenses (AREA)
Description
本發明是有關於一種光學裝置,且特別是有關於一種攝像裝置與光場攝像鏡頭。 The present invention relates to an optical device, and more particularly to an imaging device and a light field imaging lens.
一般的相機在取得空間中物體的資訊時,通常是藉由鏡頭對焦在某一物距上,以取得此物距上的物體的清晰影像。至於位於其他物距上的物體,若是在景深所涵蓋的範圍內,則尚能取得物體的清晰影像。然而,若是在景深所涵蓋的範圍之外,則就會取得模糊的物體影像。 When a general camera acquires information about an object in space, it usually focuses on a certain object distance by the lens to obtain a clear image of the object on the object distance. As for objects located at other object distances, if they are within the range covered by the depth of field, a clear image of the object can still be obtained. However, if it is outside the range covered by the depth of field, a blurred object image will be obtained.
此外,對於空間中的各物體分佈與配置,一般的相機只取得從某一視角看過去的二維影像資訊,其缺乏各物體在深度方向上的分佈資訊。因此,從一般的相機所取得的二維影像,並無法充分了解在三維空間中各物體的分佈情形。 In addition, for the distribution and configuration of objects in space, a general camera only obtains two-dimensional image information viewed from a certain perspective, which lacks information on the distribution of objects in the depth direction. Therefore, the two-dimensional image obtained from a general camera cannot fully understand the distribution of each object in the three-dimensional space.
有鑑於此,光場相機便被發展出來,其能夠更為充分地取得三維空間中各物體的分佈與配置資訊。然而,現行光場相機 中不論是利用透鏡陣列或鏡頭陣列的方法,其系統的像素利用率均因各子影像趨向串擾(crosstalk)最小化而較低,進而影響最終光場相機的輸出影像的像素數量。舉例來說,光場相機的可輸出像素數量目前約為所使用影像感測器像素數量的10%至65%。 In view of this, the light field camera has been developed, which can more fully obtain the distribution and configuration information of various objects in the three-dimensional space. However, current light field cameras Regardless of whether the lens array or the lens array is used, the pixel utilization rate of the system is low due to the minimization of crosstalk of each sub-image, thereby affecting the number of pixels of the output image of the final light field camera. For example, the number of output pixels of a light field camera is currently about 10% to 65% of the number of pixels used by the image sensor.
本發明提供一種攝像裝置,其可提升影像感測器的有效使用面積。 The invention provides an imaging device which can improve the effective use area of an image sensor.
本發明提供一種光場攝像鏡頭,其有助於提升其所形成的影像的有效使用面積。 The present invention provides a light field imaging lens that contributes to an effective use area of an image formed thereby.
本發明的一實施例提出一種攝像裝置,包括一成像鏡頭、一影像感測器及一多重光圈光學元件。多重光圈光學元件配置於成像鏡頭與影像感測器之間的光路徑上,且包括排成陣列的多個光圈元件。成像鏡頭的像側光圈數(f-number)除以成像鏡頭的物側光圈數所得到的比值是落在從0.25至2的範圍內,且攝像 裝置符合:,其中L為這些光圈元件的節距,D為 成像鏡頭的出瞳的直徑,P為成像鏡頭的出瞳至成像鏡頭的像平面的距離,a為成像鏡頭的像平面至多重光圈光學元件的前主平面(front principal plane)的距離值,且b為多重光圈光學元件的後主平面(back principal plane)至影像感測器的成像面的距離。此外,當成像鏡頭的像平面位於前主平面之遠離影像感測器的一側時,a的值為負值,且當成像鏡頭的像平面位於前主平面之靠近影 像感測器的一側時,a的值為正值。 An embodiment of the invention provides an imaging device including an imaging lens, an image sensor, and a multiple aperture optical component. The multiple aperture optical element is disposed on a light path between the imaging lens and the image sensor and includes a plurality of aperture elements arranged in an array. The ratio of the image side aperture number (f-number) of the imaging lens divided by the object side aperture number of the imaging lens falls within a range from 0.25 to 2, and the imaging device conforms to: Where L is the pitch of the aperture elements, D is the diameter of the exit pupil of the imaging lens, P is the distance from the exit pupil of the imaging lens to the image plane of the imaging lens, and a is the image plane of the imaging lens to the multiple aperture optical element The distance value of the front principal plane, and b is the distance from the back principal plane of the multiple aperture optical element to the imaging surface of the image sensor. In addition, when the image plane of the imaging lens is located on the side of the front main plane away from the image sensor, the value of a is a negative value, and when the image plane of the imaging lens is located on the side of the front main plane close to the image sensor When a is a positive value.
本發明之一實施例提出一種光場攝像鏡頭,包括一成像鏡頭及一多重光圈光學元件。成像鏡頭配置於光場攝像鏡頭的一物側與一成像面之間。多重光圈光學元件配置於成像鏡頭與光場攝像鏡頭的成像面之間,且包括排成陣列的多個光圈元件。成像鏡頭的像側光圈數除以成像鏡頭的物側光圈數所得到的比值是落 在從0.25至2的範圍內,且光場攝像鏡頭符合: 其中L為這些光圈元件的節距,D為成像鏡頭的出瞳的直徑,P為成像鏡頭的出瞳至成像鏡頭的像平面的距離,a為成像鏡頭的像平面至多重光圈光學元件的前主平面的距離值,且b為多重光圈光學元件的後主平面至光場攝像鏡頭的成像面的距離。此外,當成像鏡頭的像平面位於前主平面之遠離光場攝像鏡頭的成像面的一側時,a的值為負值,且當成像鏡頭的像平面位於前主平面之靠近光場攝像鏡頭的成像面的一側時,a的值為正值。 An embodiment of the present invention provides a light field imaging lens comprising an imaging lens and a multiple aperture optical element. The imaging lens is disposed between an object side of the light field imaging lens and an imaging surface. The multiple aperture optical element is disposed between the imaging lens and the imaging surface of the light field imaging lens, and includes a plurality of aperture elements arranged in an array. The ratio of the number of image side apertures of the imaging lens divided by the number of apertures on the object side of the imaging lens falls within a range from 0.25 to 2, and the light field imaging lens conforms to: Where L is the pitch of these aperture elements, D is the diameter of the exit pupil of the imaging lens, P is the distance from the exit pupil of the imaging lens to the image plane of the imaging lens, and a is the image plane of the imaging lens to the front of the multiple aperture optics The distance value of the principal plane, and b is the distance from the rear principal plane of the multiple aperture optical element to the imaging plane of the light field imaging lens. In addition, when the image plane of the imaging lens is located on a side of the front main plane away from the imaging plane of the light field imaging lens, the value of a is a negative value, and when the image plane of the imaging lens is located in the front main plane close to the light field imaging lens When one side of the image plane is formed, the value of a is a positive value.
由於本發明之實施例之攝像裝置及光場攝像鏡頭符合 ,因此多重光圈光學元件所形成的子影像較大而彼 此適度地部分重疊。如此一來,各子影像未部分重疊的部分便可更有效率地被使用作為所欲取得的影像資訊,進而提升影像的有效使用面積及提升影像感測器的有效使用面積。 The camera device and the light field camera lens according to the embodiment of the present invention are in accordance with Therefore, the sub-images formed by the multiple aperture optical elements are large and moderately partially overlap each other. In this way, the portions of the sub-images that are not partially overlapped can be more effectively used as the image information to be obtained, thereby improving the effective use area of the image and improving the effective use area of the image sensor.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100、100a、100b、100c、100d‧‧‧攝像裝置 100, 100a, 100b, 100c, 100d‧‧‧ camera
105‧‧‧光場攝像鏡頭 105‧‧‧Light field camera lens
110、110a‧‧‧成像鏡頭 110, 110a‧‧‧ imaging lens
112‧‧‧透鏡 112‧‧‧ lens
113‧‧‧出瞳 113‧‧‧ appear
114‧‧‧孔徑光闌 114‧‧‧ aperture diaphragm
115‧‧‧像平面 115‧‧‧ image plane
1122‧‧‧正彎月形透鏡 1122‧‧‧ positive meniscus lens
1124‧‧‧負彎月形透鏡 1124‧‧‧negative meniscus lens
1126‧‧‧負彎月形透鏡 1126‧‧‧negative meniscus lens
120‧‧‧影像感測器 120‧‧‧Image Sensor
122‧‧‧成像面 122‧‧‧ imaging surface
124‧‧‧保護玻璃 124‧‧‧protective glass
125、125”’‧‧‧有效利用面積 125, 125”’ ‧ ‧ effective use area
125’、125”‧‧‧內接正方形 125’, 125”‧‧‧ inscribed square
130、130d‧‧‧多重光圈光學元件 130, 130d‧‧‧Multiple aperture optics
132、132a、132d‧‧‧光圈元件 132, 132a, 132d‧‧‧ aperture components
1322‧‧‧前主平面 1322‧‧‧ front main plane
1324‧‧‧後主平面 1324‧‧‧ rear main plane
134‧‧‧透光片板 134‧‧‧Transparent sheet
135、135’‧‧‧子影像 135, 135’ ‧ ‧ sub-image
a‧‧‧距離值 A‧‧‧distance value
b、b’、P‧‧‧距離 b, b’, P‧‧‧ distance
D‧‧‧直徑 D‧‧‧diameter
L‧‧‧節距 L‧‧‧ pitch
M‧‧‧放大率 M‧‧‧ magnification
R‧‧‧半徑 R‧‧‧ Radius
r、t‧‧‧串擾比值 r, t‧‧‧ crosstalk ratio
S‧‧‧邊長 S‧‧‧Bianchang
W1、W2‧‧‧長度 W1, W2‧‧‧ length
圖1為本發明之一實施例之攝像裝置的剖面示意圖。 1 is a schematic cross-sectional view of an image pickup apparatus according to an embodiment of the present invention.
圖2為圖1之攝像裝置中的成像鏡頭的出瞳、多重光圈光學元件的前主平面與後主平面、影像感測器的成像面及光在這些面之間傳遞方式的示意圖。 2 is a schematic view showing the exit pupil of the imaging lens, the front main plane and the rear main plane of the multiple aperture optical element, the imaging surface of the image sensor, and the manner in which light is transmitted between the imaging lenses of the imaging device of FIG. 1.
圖3繪示了圖1之攝像裝置的一個具體實例。 FIG. 3 illustrates a specific example of the image pickup apparatus of FIG. 1.
圖4為圖1之攝像裝置中的光圈元件的節距、子影像與影像感測器對於一個子影像的有效使用面積的比較圖。 4 is a comparison diagram of the pitch of the aperture element, the sub-image, and the effective use area of the image sensor for one sub-image in the image pickup apparatus of FIG. 1.
圖5為採用子影像不重疊的方式時,光圈元件的節距、子影像與影像感測器對於一個子影像的有效使用面積的比較圖。 FIG. 5 is a comparison diagram of the pitch of the aperture element, the sub-image, and the effective use area of the image sensor for one sub-image when the sub-images are not overlapped.
圖6與圖7為圖1之攝像裝置中的光圈元件的節距、子影像、影像感測器對於一個子影像的有效使用面積及兩個子影像重疊的程度的兩種情況下的比較圖。 6 and FIG. 7 are comparison diagrams of the aperture of the aperture element, the sub-image, the effective use area of the image sensor for one sub-image, and the degree of overlap of the two sub-images in the image pickup apparatus of FIG. .
圖8為圖1之光圈元件放大率的絕對值相對於一個子影像中的視野數在不同的串擾比值下的曲線圖。 Figure 8 is a graph of the absolute value of the aperture of the aperture component of Figure 1 versus the number of fields of view in a sub-image at different crosstalk ratios.
圖9為繪示圖1之攝像裝置的另一種串擾比值的剖面示意圖。 FIG. 9 is a cross-sectional view showing another crosstalk ratio of the image pickup apparatus of FIG. 1. FIG.
圖10為圖1之攝像裝置的影像感測器所感測到的子影像的光強度灰階的分佈圖。 FIG. 10 is a distribution diagram of light intensity gray scales of sub-images sensed by an image sensor of the image pickup apparatus of FIG. 1. FIG.
圖11為本發明之另一實施例之攝像裝置的剖面示意圖。 Figure 11 is a cross-sectional view showing an image pickup apparatus according to another embodiment of the present invention.
圖12為本發明之又一實施例之攝像裝置的剖面示意圖。 Figure 12 is a cross-sectional view showing an image pickup apparatus according to still another embodiment of the present invention.
圖13為本發明之再一實施例之攝像裝置的剖面示意圖。 Figure 13 is a cross-sectional view showing an image pickup apparatus according to still another embodiment of the present invention.
圖1為本發明之一實施例之攝像裝置的剖面示意圖,圖2為圖1之攝像裝置中的成像鏡頭的出瞳、多重光圈光學元件的前主平面與後主平面、影像感測器的成像面及光在這些面的傳遞方式的示意圖,而圖3繪示了圖1之攝像裝置的一個具體實例。請先參照圖1與圖2,本實施例之攝像裝置100包括一光場攝像鏡頭105及一影像感測器120,其中光場攝像鏡頭105包括一成像鏡頭110及一多重光圈光學元件130。成像鏡頭110可包括至少一片透鏡112及一孔徑光闌(aperture stop)114。舉例而言,如圖3所繪示的一個實例,成像鏡頭110a可包括正彎月形透鏡(positive meniscus lens)1122、負彎月形透鏡(negative meniscus lens)1124及負彎月形透鏡1126,但本發明不以此為限。此外,若成像鏡頭110不包含遮光元件所形成的孔徑光闌114時,成像鏡頭110的出瞳(exit pupil)與入瞳(entrance pupil)仍可由透鏡的有效徑(clear aperture)來決定。 1 is a cross-sectional view of an image pickup apparatus according to an embodiment of the present invention, and FIG. 2 is a front view and a rear main plane of the imaging lens of the image pickup apparatus of FIG. 1 , and a front main plane and an image sensor of the multiple aperture optical element. FIG. 3 is a schematic diagram showing the transmission mode of the imaging surface and light on these surfaces, and FIG. 3 illustrates a specific example of the image pickup apparatus of FIG. 1. Referring to FIG. 1 and FIG. 2 , the image capturing apparatus 100 of the present embodiment includes a light field imaging lens 105 and an image sensor 120 . The light field imaging lens 105 includes an imaging lens 110 and a multiple aperture optical component 130 . . The imaging lens 110 can include at least one lens 112 and an aperture stop 114. For example, as shown in FIG. 3, the imaging lens 110a may include a positive meniscus lens 1122, a negative meniscus lens 1124, and a negative meniscus lens 1126. However, the invention is not limited thereto. Further, if the imaging lens 110 does not include the aperture stop 114 formed by the light shielding member, the exit pupil and the entrance pupil of the imaging lens 110 can still be determined by the clear aperture of the lens.
多重光圈光學元件130配置於成像鏡頭110與影像感測器120之間的光路徑上,且包括排成陣列的多個光圈元件132。在本實施例中,多重光圈光學元件130為一透鏡陣列,且這些光圈元件132為排成陣列的透鏡。在圖3中,是以繪示了透鏡陣列中的一個透鏡(即光圈元件132a為例),而光圈元件132a可形成於一透光片板134上。此外,攝像裝置100a更包括一保護玻璃(cover glass)124,覆蓋影像感測器120,以保護影像感測器120。 The multiple aperture optical element 130 is disposed on a light path between the imaging lens 110 and the image sensor 120 and includes a plurality of aperture elements 132 arranged in an array. In the present embodiment, the multiple aperture optical element 130 is a lens array, and the aperture elements 132 are arrayed lenses. In FIG. 3, one lens in the lens array (ie, the aperture element 132a is taken as an example) is illustrated, and the aperture element 132a may be formed on a light-transmissive sheet 134. In addition, the camera device 100a further includes a cover glass 124 covering the image sensor 120 to protect the image sensor 120.
在本實施例中,成像鏡頭110的像側光圈數(f-number)除以成像鏡頭110的物側光圈數所得到的比值是落在從0.25至2的範圍內。像側光圈數的定義是成像鏡頭110的焦距除以成像鏡頭110的出瞳的直徑後所得到的數值,而物側光圈數的定義是成像鏡頭110的焦距除以成像鏡頭110的入瞳的直徑後所得到的數值。 In the present embodiment, the ratio of the image side aperture number (f-number) of the imaging lens 110 divided by the object side aperture number of the imaging lens 110 falls within a range from 0.25 to 2. The definition of the number of side apertures is a value obtained by dividing the focal length of the imaging lens 110 by the diameter of the exit pupil of the imaging lens 110, and the definition of the number of apertures on the object side is the focal length of the imaging lens 110 divided by the entrance pupil of the imaging lens 110. The value obtained after the diameter.
此外,在本實施例中,攝像裝置100符合:
其中,L為這些光圈元件132的節距(pitch),D為成像鏡頭110的出瞳113的直徑,P為成像鏡頭110的出瞳113至成像鏡頭110的像平面115的距離。a為成像鏡頭110的像平面115至多重光圈光學元件130的前主平面1322的距離值(圖2中以其絕對值表示),其中當成像鏡頭110的像平面115位於前主平面1322之遠離影像感測器120的一側時(即圖中前主平面1322的左側),a的值為負值,且當成像鏡頭110的像平面115位於前主平面1322之靠近影像感測器120的一側時(即圖中前主平面1322的右側),a的值為正值。所以,在本實施例中,請參見圖2,a的值為負值。此外,且b為多重光圈光學元件130的後主平面1324至影像感測器120的成像面122的距離。也就是說,在本實施例中,前主平面1322位於成像鏡頭的像平面115與後主平面1324之間,且後主平面1324位於前主平面1322與影像感測器120的成像面122之間。此外,在本實施例中,影像感測器120的成像面122即為 光場攝像鏡頭105的成像面。 Where L is the pitch of the aperture elements 132, D is the diameter of the exit pupil 113 of the imaging lens 110, and P is the distance from the exit pupil 113 of the imaging lens 110 to the image plane 115 of the imaging lens 110. a is the distance value of the image plane 115 of the imaging lens 110 to the front principal plane 1322 of the multiple aperture optical element 130 (in absolute value in FIG. 2), wherein the image plane 115 of the imaging lens 110 is located far from the front main plane 1322 When one side of the image sensor 120 (ie, the left side of the front main plane 1322 in the drawing), the value of a is a negative value, and when the image plane 115 of the imaging lens 110 is located near the image sensor 120 of the front main plane 1322 On one side (ie, the right side of the front main plane 1322 in the figure), the value of a is a positive value. Therefore, in this embodiment, referring to FIG. 2, the value of a is a negative value. Moreover, b is the distance from the rear major plane 1324 of the multiple aperture optical element 130 to the imaging surface 122 of the image sensor 120. That is, in the present embodiment, the front main plane 1322 is located between the image plane 115 and the rear main plane 1324 of the imaging lens, and the rear main plane 1324 is located at the front main plane 1322 and the imaging surface 122 of the image sensor 120. between. In addition, in this embodiment, the imaging surface 122 of the image sensor 120 is The imaging surface of the light field imaging lens 105.
在本實施例中,這些光圈元件132分別將成像鏡頭110的出瞳113成像於影像感測器120的成像面122上,以形成多個子影像135(如圖6所繪示),其中這些相鄰子影像135彼此部分重疊。 In the present embodiment, the aperture elements 132 respectively image the exit pupils 113 of the imaging lens 110 onto the imaging surface 122 of the image sensor 120 to form a plurality of sub-images 135 (as shown in FIG. 6). The neighbor images 135 partially overlap each other.
由於本實施例之攝像裝置100及光場攝像鏡頭105符合 ,因此多重光圈光學元件130所形成的子影像135 較大而彼此適度地部分重疊。如此一來,各子影像135未部分重疊的部分便可更有效率地被使用作為所欲取得的影像資訊,進而提升影像的有效使用面積及提升影像感測器120的有效使用面積。以下將舉出一個實例來加以說明。 The imaging device 100 and the light field imaging lens 105 of the present embodiment are in accordance with Thus, the sub-images 135 formed by the multiple aperture optical elements 130 are larger and moderately partially overlap each other. In this way, the portions of the sub-images 135 that are not partially overlapped can be more effectively used as the image information to be obtained, thereby improving the effective use area of the image and improving the effective use area of the image sensor 120. An example will be given below to illustrate.
圖4為圖1之攝像裝置中的光圈元件的節距、子影像與影像感測器對於一個子影像的有效使用面積的比較圖,圖5為採用子影像不重疊的方式時,光圈元件的節距、子影像與影像感測器對於一個子影像的有效使用面積的比較圖,圖6為圖1之攝像裝置中的光圈元件的節距、子影像、影像感測器對於一個子影像的有效使用面積及兩個子影像重疊的程度的比較圖。請先參照圖4,在本實施例中,子影像135的寬度(例如直徑)是大於光圈元件的節距L,而影像感測器120中對於一個子影像135的有效利用面積125是落在子影像135的內接矩形(如正方形)所圍繞的範圍內。假設所取的有效利用面積125的寬度為L(1-r),其中r為串擾(crosstalk)比值。此外,若光圈元件132的放大率為M,則 L(1-r)≧NML,其中N為光場攝像鏡頭105的視野數(number of views),而不同的視野(view)137中可含有不同視角的影像資訊。 4 is a comparison diagram of the pitch of the aperture element, the sub-image and the image sensor's effective use area for one sub-image in the image pickup apparatus of FIG. 1, and FIG. 5 is a diagram of the aperture element when the sub-images are not overlapped. Comparison of the effective use area of the pitch, sub-image and image sensor for one sub-image, FIG. 6 is the pitch, sub-image, and image sensor of the aperture device of the image pickup device of FIG. A comparison map of the effective use area and the degree of overlap of the two sub-images. Referring to FIG. 4, in the embodiment, the width (eg, diameter) of the sub-image 135 is greater than the pitch L of the aperture element, and the effective utilization area 125 of the image sensor 120 for one sub-image 135 is The sub-image 135 is in the range surrounded by an inscribed rectangle such as a square. It is assumed that the width of the effective utilization area 125 taken is L(1-r), where r is the crosstalk ratio. Further, if the magnification of the aperture element 132 is M, then L(1-r)≧NML, where N is the number of views of the light field camera lens 105, and different views 137 may contain image information of different viewing angles.
如此一來,可得到M≦(1-r)/N的關係,因此,若欲使相鄰的子影像135有部分重疊,則可滿足M≦1/N。 In this way, the relationship of M≦(1-r)/N can be obtained. Therefore, if the adjacent sub-images 135 are to be partially overlapped, M≦1/N can be satisfied.
如圖5所繪示,當相鄰的子影像135’互不重疊時,則子影像135’的半徑R滿足0.5L≧R≧0。此時,子影像135’的內接正方形125’的邊長S為2×(0.707R)=1.414R。取R的最大值0.5L代入前式,則可得到此內接正方形125’的邊長S的最大值為1.414×0.5L=0.707L。 As shown in FIG. 5, when the adjacent sub-images 135' do not overlap each other, the radius R of the sub-image 135' satisfies 0.5 L ≧ R ≧ 0. At this time, the side length S of the inscribed square 125' of the sub-image 135' is 2 × (0.707R) = 1.414R. Taking the maximum value of 0.5 L of R into the former formula, the maximum value of the side length S of the inscribed square 125' is 1.414 × 0.5 L = 0.707 L.
另一方面,在本實施例中,當相鄰的子影像135有部分重疊時,假設子影像135的半徑為R,則,W1與W2分別為圖6中所繪示的兩段長度。 On the other hand, in the present embodiment, when the adjacent sub-images 135 partially overlap, assuming that the radius of the sub-image 135 is R, then , W1 and W2 are respectively two lengths as shown in FIG. 6.
如此一來,子影像135的半徑R滿足(2-1.414)L≧R≧0.5L,則子影像135的內接正方形125”的邊長S=2×(0.707R)=1.414R。因此,子影像135的內接正方形125”的邊長S的最大值為2×(1.414-1)L=0.828L。由此可知,相較於圖5的內接正方形125’,本實施例(即圖6)的內接正方形125”的面積可以較大,也就是本實施例之影像感測器120對於一個子影像135的有效利用面積125可以較大。 In this way, the radius R of the sub-image 135 satisfies (2-1.414) L ≧ R ≧ 0.5 L, and the side length S of the inscribed square 125 ′ of the sub-image 135 is S = 2 × (0.707 R) = 1.414 R. Therefore, the sub-image The maximum value of the side length S of the inscribed square 125" of the image 135 is 2 x (1.414-1) L = 0.828L. It can be seen that the area of the inscribed square 125" of the present embodiment (ie, FIG. 6) can be larger than that of the inscribed square 125' of FIG. 5, that is, the image sensor 120 of the embodiment is for one sub- The effective utilization area 125 of the image 135 can be large.
另一方面,當L≧R≧(2-1.414)L時,有效利用面積125”’的邊長S=2(L-R)。因此,有效利用面積125”’的邊長S的最大值為 2×(1.414-1)L=0.828L,而最小值為0。最小值時是不會採用的狀況,因為此時有效利用面積125”’為零,見圖7,也就是說,子影像135的部分重疊程度不可大到讓有效利用面積125”’為零。另外,在上述最大值的狀況下,有效利用面積125”’亦較圖5的內接正方形125’的面積大。由以上可證明,適度地使相鄰的子影像135部分重疊,的確可以有效提升影像感測器120對於每個子影像135的有效使用面積125,進而提升影像感測器120整體的有效使用面積。 On the other hand, when L ≧ R ≧ (2-1.414) L, the side length S = 2 (L - R) of the effective use area 125"'. Therefore, the maximum value of the side length S of the effective use area 125"' is 2 × (1.414-1) L = 0.828 L, and the minimum value is 0. The minimum value is not used because the effective utilization area 125"' is zero at this time, as shown in Fig. 7, that is, the partial overlap of the sub-image 135 is not so large that the effective utilization area 125"' is zero. Further, in the case of the above maximum value, the effective use area 125"' is also larger than the area of the inscribed square 125' of Fig. 5. From the above, it can be proved that the adjacent sub-images 135 are partially overlapped, which is effective. The effective use area 125 of the image sensor 120 for each sub-image 135 is increased, thereby increasing the effective use area of the image sensor 120 as a whole.
圖8為圖1之光圈元件(即透鏡陣列)放大率的絕對值相對於一個子影像中的視野數在不同的串擾比值下的曲線圖。由圖8可看出,當要求上述的串擾比值r的誤差容忍度越小時,則表示透鏡陣列於製造上與組裝上的誤差容忍度可以較大,而此時設計出的視野數也較少。 Figure 8 is a graph of the absolute value of the aperture of the aperture element (i.e., lens array) of Figure 1 versus the number of fields of view in a sub-image at different crosstalk ratios. It can be seen from FIG. 8 that when the error tolerance of the crosstalk ratio r is required to be small, it means that the error tolerance of the lens array in manufacturing and assembly can be large, and the number of visual fields designed at this time is also small. .
如圖2所繪示,上述的串擾比值r的產生原因,是因為光圈元件132除了會將成像鏡頭110在像平面115所成的影像再次成像於影像感測器120的成像面122之外,亦會將成像鏡頭110的出瞳113成像於成像面125,而形成直徑為L(1+r)的子影像135。根據相似三角形原理,可得到以下(2)式:
此外,會影響相鄰的子影像135的串擾的因素尚有另一個串擾比值t,如圖9所繪示,成像鏡頭110的出瞳113上的任一點經由光圈元件132而在影像感測器120的成像面122上所形成
的影像會略微散開,其散開的寬度為Lt。根據相似三角形原理,可得到以下(3)式:
其中,b’為成像鏡頭110的出瞳113經由光圈元件132的成像之成像面至光圈元件132的後主平面1324的距離。 Where b' is the distance of the exit pupil 113 of the imaging lens 110 via the imaged imaging surface of the aperture element 132 to the rear principal plane 1324 of the aperture element 132.
當綜合考量串擾比值r與串擾比值t時,影像感測器120對一個子影像135的有效利用面積125可設為L(1-r-t)。當r+t大於0時,L(1-r-t)≧NL| b/a |;而當r+t<0時,L(1+r+t)≧NL| b/a |,其中「| |」是指取數值的絕對值。將r與t以上述(2)式與(3)式的關係代入後,即可得到上述(1)式。 When the crosstalk ratio r and the crosstalk ratio t are comprehensively considered, the effective use area 125 of the image sensor 120 for one sub-image 135 can be set to L(1-r-t). When r+t is greater than 0, L(1-rt)≧NL| b/a |; and when r+t<0, L(1+r+t)≧NL| b/a |, where “| |" means the absolute value of the value. After substituting r and t with the relationship of the above formula (2) and formula (3), the above formula (1) can be obtained.
以下表(一)及表(二)舉出本實施例之攝像裝置100的一些實例的參數。 The parameters of some examples of the image pickup apparatus 100 of the present embodiment are shown in the following Tables (1) and (2).
在表一中,Fr是指像側光圈數除以物側光圈數後所得到 的比值,上表中的「(1)式中間式的值」是指的計算結果的數 值。此外,上表中其他參數的物理意義均於上文中解釋過了,請參照上文,在此不再重述。由表一與表二可知,在所有實例中,總串擾比值r+t都小於0.5。此外,從表一可看出,本實施例之攝 像裝置100適用於各種透鏡總長(從數毫米至數百毫米都適用)。另外,從表一可看出,Fr值遠離1的鏡頭也適用。再者,表二特舉出透鏡總長短的實例5的各種變形。當透鏡總長短時,可將攝像裝置100應用於可攜式電子裝置中。 In Table 1, Fr is the ratio obtained by dividing the number of image side apertures by the number of apertures on the object side. The value of "(1) intermediate formula" in the above table means The value of the calculated result. In addition, the physical meanings of other parameters in the above table are explained above, please refer to the above, and will not be repeated here. As can be seen from Tables 1 and 2, in all instances, the total crosstalk ratio r+t is less than 0.5. Further, as can be seen from Table 1, the image pickup apparatus 100 of the present embodiment is applicable to the total length of various lenses (applicable from several millimeters to several hundreds of millimeters). In addition, as can be seen from Table 1, the lens with the Fr value away from 1 is also applicable. Further, Table 2 exemplifies various modifications of the example 5 of the total length of the lens. When the total length of the lens is long, the camera device 100 can be applied to a portable electronic device.
在一實施例中,為了達到足夠的有效利用面積125,成像鏡頭的像側光圈數除以成像鏡頭的物側光圈數所得到的比值是落在從0.4至1.5的範圍內。此外,在一實施例中,為了達到足夠的 有效利用面積125,攝像裝置符合: In an embodiment, in order to achieve a sufficient effective use area 125, the ratio of the number of image side apertures of the imaging lens divided by the number of object side apertures of the imaging lens falls within a range from 0.4 to 1.5. Moreover, in an embodiment, in order to achieve a sufficient effective utilization area 125, the camera device conforms to:
圖10為圖1之攝像裝置的影像感測器所感測到的子影像的光強度灰階的分佈圖。請參照圖10,當光圈元件132的節距L為260微米時,在一實施例中,歸一化後的串擾比值於為30%。 FIG. 10 is a distribution diagram of light intensity gray scales of sub-images sensed by an image sensor of the image pickup apparatus of FIG. 1. FIG. Referring to FIG. 10, when the pitch L of the aperture member 132 is 260 micrometers, in one embodiment, the normalized crosstalk ratio is 30%.
圖11為本發明之另一實施例之攝像裝置的剖面示意圖。請參照圖11,本實施例之攝像裝置100b與圖1的攝像裝置100類似,而兩者的差異如下所述。在本實施例之攝像裝置100b中,成像鏡頭110的成像面是落在多重光圈光學元件130的前主平面1322(如圖2所繪示)之靠近影像感測器120的一側(也就是前主平面1322的右側),此時,a值為正值,但仍可符合上述(1)式或(4)式。圖1之攝像裝置100與本實施例之攝像裝置100b均屬於光場相機2.0版的架構。 Figure 11 is a cross-sectional view showing an image pickup apparatus according to another embodiment of the present invention. Referring to FIG. 11, the image pickup apparatus 100b of the present embodiment is similar to the image pickup apparatus 100 of FIG. 1, and the difference between the two is as follows. In the image capturing apparatus 100b of the present embodiment, the imaging surface of the imaging lens 110 is on the side of the front main plane 1322 (shown in FIG. 2) of the multiple aperture optical element 130 near the image sensor 120 (that is, The right side of the front main plane 1322), at this time, the value of a is a positive value, but can still conform to the above formula (1) or (4). Both the image pickup apparatus 100 of FIG. 1 and the image pickup apparatus 100b of the present embodiment belong to the architecture of the light field camera version 2.0.
圖12為本發明之又一實施例之攝像裝置的剖面示意圖。請參照圖12,本實施例之攝像裝置100c與圖1的攝像裝置100類似,而兩者的差異如下所述。在本實施例之攝像裝置100c中,成 像鏡頭110的成像面是落在多重光圈光學元件130的位置,此架構為光場相機1.0版的架構,但仍可符合上述(1)式或(4)式。 Figure 12 is a cross-sectional view showing an image pickup apparatus according to still another embodiment of the present invention. Referring to FIG. 12, the image pickup apparatus 100c of the present embodiment is similar to the image pickup apparatus 100 of FIG. 1, and the difference between the two is as follows. In the image pickup apparatus 100c of the present embodiment, The imaging surface of the lens 110 is at the position of the multiple aperture optical element 130. This architecture is the architecture of the light field camera version 1.0, but can still conform to the above formula (1) or (4).
圖13為本發明之再一實施例之攝像裝置的剖面示意圖。請參照圖13,本實施例之攝像裝置100d與圖1的攝像裝置100類似,而兩者的差異如下所述。在本實施例之攝條裝置100d中,多重光圈光學元件130d為一遮光片,而這些光圈元件132d為多個排成陣列的透光開孔(例如針孔),且遮光片的前主平面與後主平面實質上重合。換言之,對於多重光圈光學元件130d而言,其前主平面與後主平面均落在透光開孔所在的平面上。此時,攝像裝置100d仍可符合上述(1)式或(4)式。 Figure 13 is a cross-sectional view showing an image pickup apparatus according to still another embodiment of the present invention. Referring to FIG. 13, the image pickup apparatus 100d of the present embodiment is similar to the image pickup apparatus 100 of FIG. 1, and the difference between the two is as follows. In the strip device 100d of the present embodiment, the multiple aperture optical element 130d is a light shielding sheet, and the aperture elements 132d are a plurality of light-transmissive openings (such as pinholes) arranged in an array, and the front main plane of the light shielding sheet It substantially coincides with the rear main plane. In other words, for the multiple aperture optical element 130d, both the front main plane and the rear main plane fall on the plane in which the light transmission aperture is located. At this time, the image pickup apparatus 100d can still conform to the above formula (1) or (4).
綜上所述,由於本發明之實施例之攝像裝置及光場攝像 鏡頭符合,因此多重光圈光學元件所形成的子影像 較大而彼此適度地部分重疊。如此一來,各子影像未部分重疊的部分便可更有效率地被使用作為所欲取得的影像資訊,進而提升影像的有效使用面積及提升影像感測器的有效使用面積。 In summary, the camera device and the light field camera lens according to the embodiment of the present invention are in accordance with Therefore, the sub-images formed by the multiple aperture optical elements are large and moderately partially overlap each other. In this way, the portions of the sub-images that are not partially overlapped can be more effectively used as the image information to be obtained, thereby improving the effective use area of the image and improving the effective use area of the image sensor.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧攝像裝置 100‧‧‧ camera
105‧‧‧光場攝像鏡頭 105‧‧‧Light field camera lens
110‧‧‧成像鏡頭 110‧‧‧ imaging lens
112‧‧‧透鏡 112‧‧‧ lens
114‧‧‧孔徑光闌 114‧‧‧ aperture diaphragm
115‧‧‧像平面 115‧‧‧ image plane
120‧‧‧影像感測器 120‧‧‧Image Sensor
122‧‧‧成像面 122‧‧‧ imaging surface
130‧‧‧多重光圈光學元件 130‧‧‧Multiple aperture optics
132‧‧‧光圈元件 132‧‧‧ aperture components
L‧‧‧節距 L‧‧‧ pitch
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/583,785 US9438778B2 (en) | 2014-08-08 | 2014-12-29 | Image pickup device and light field image pickup lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462034795P | 2014-08-08 | 2014-08-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201606420A TW201606420A (en) | 2016-02-16 |
TWI569087B true TWI569087B (en) | 2017-02-01 |
Family
ID=55810032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103143493A TWI569087B (en) | 2014-08-08 | 2014-12-12 | Image pickup device and light field image pickup lens |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI569087B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200823595A (en) * | 2006-11-28 | 2008-06-01 | Univ Nat Taiwan | Image capture device using programmable aperture |
JP2012205111A (en) * | 2011-03-25 | 2012-10-22 | Casio Comput Co Ltd | Imaging apparatus |
US20130057749A1 (en) * | 2011-08-29 | 2013-03-07 | Canon Kabushiki Kaisha | Image pickup apparatus |
CN103119516A (en) * | 2011-09-20 | 2013-05-22 | 松下电器产业株式会社 | Light field imaging device and image processing device |
TW201426018A (en) * | 2012-12-19 | 2014-07-01 | Ind Tech Res Inst | Image processing apparatus and image refocusing method |
-
2014
- 2014-12-12 TW TW103143493A patent/TWI569087B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200823595A (en) * | 2006-11-28 | 2008-06-01 | Univ Nat Taiwan | Image capture device using programmable aperture |
JP2012205111A (en) * | 2011-03-25 | 2012-10-22 | Casio Comput Co Ltd | Imaging apparatus |
US20130057749A1 (en) * | 2011-08-29 | 2013-03-07 | Canon Kabushiki Kaisha | Image pickup apparatus |
CN103119516A (en) * | 2011-09-20 | 2013-05-22 | 松下电器产业株式会社 | Light field imaging device and image processing device |
TW201426018A (en) * | 2012-12-19 | 2014-07-01 | Ind Tech Res Inst | Image processing apparatus and image refocusing method |
Also Published As
Publication number | Publication date |
---|---|
TW201606420A (en) | 2016-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102620545B1 (en) | Optical Imaging System | |
TWI569036B (en) | Image capturing optical lens assembly, image capturing device and electronic device | |
TWI601994B (en) | Imaging optical lens assembly, image capturing apparatus and electronic device | |
US9001262B2 (en) | Image sensor and image capturing apparatus | |
JP5159986B2 (en) | Imaging apparatus and imaging method | |
US20180074291A1 (en) | Optical Image Capturing System | |
US10203485B2 (en) | Optical image capturing system | |
JP2022189938A (en) | Optical inspection device, method and program | |
EP3480648B1 (en) | Adaptive three-dimensional imaging system | |
JP2007158825A (en) | Image input device | |
US9438778B2 (en) | Image pickup device and light field image pickup lens | |
US11693162B2 (en) | Optical test apparatus and optical test method | |
CN109496316B (en) | Image recognition system | |
TWI566003B (en) | Photographing optical lens assembly, image capturing device and electronic device | |
US9571710B2 (en) | Microlens array imaging device and imaging method | |
JP4532968B2 (en) | Focus detection device | |
US20120147247A1 (en) | Optical system and imaging apparatus including the same | |
TWI569087B (en) | Image pickup device and light field image pickup lens | |
EP3104593A1 (en) | Light field imaging device | |
US9392179B2 (en) | Magnifying element with camera module and electronic device having magnifying element | |
JP2019066186A (en) | Imaging apparatus and method for calculating distance of imaging apparatus | |
JP5767907B2 (en) | Erecting equal-magnification lens array unit and image reading apparatus | |
TWI624681B (en) | Wild angle focus lens | |
KR20220078108A (en) | Lens assembly and electronic device including the same | |
JP6218138B2 (en) | Imaging device |