TWI566745B - Headset apparatus and associated simulating system and method - Google Patents

Headset apparatus and associated simulating system and method Download PDF

Info

Publication number
TWI566745B
TWI566745B TW103122241A TW103122241A TWI566745B TW I566745 B TWI566745 B TW I566745B TW 103122241 A TW103122241 A TW 103122241A TW 103122241 A TW103122241 A TW 103122241A TW I566745 B TWI566745 B TW I566745B
Authority
TW
Taiwan
Prior art keywords
sensing
parameter
physiological
user
signal
Prior art date
Application number
TW103122241A
Other languages
Chinese (zh)
Other versions
TW201524467A (en
Inventor
蔡淑慧
廖憲正
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW103122241A priority Critical patent/TWI566745B/en
Publication of TW201524467A publication Critical patent/TW201524467A/en
Application granted granted Critical
Publication of TWI566745B publication Critical patent/TWI566745B/en

Links

Description

頭戴式裝置及其相關的模擬系統、模擬方法 Head mounted device and related simulation system, simulation method

本發明是有關於一種頭戴式裝置及其相關的模擬系統、模擬方法,且特別是有關於一種感測生理信號之頭戴式裝置及其相關的模擬系統、模擬方法。 The present invention relates to a head mounted device and related analog system and simulation method, and more particularly to a head mounted device for sensing physiological signals and related analog systems and simulation methods.

現代人的平均壽命越來越長,隨著年紀增長,各種退化現象逐漸產生。如何在年紀漸長的同時,延遲退化的產生,也成為一個必須面對的課題。其中,老年人容易因為神經傳導(neural wiring)產生退化的緣故,導致腦部認知功能受到損害。神經傳導的退化,讓老年人的判斷能力及反應力受到影響,並產生失去平衡而跌倒的風險。 The average life expectancy of modern people is getting longer and longer, and as the age increases, various degradation phenomena gradually emerge. How to delay the occurrence of degradation at the same time as it grows older has become a subject that must be faced. Among them, the elderly are prone to degeneration due to neural wiring, which causes damage to brain cognitive function. The deterioration of nerve conduction affects the judgment and responsiveness of the elderly and creates the risk of falling out of balance and falling.

老年人跌倒時,由於老人常有高盛行率的共存疾病(comorbiddiseases),例如:骨質疏鬆症、器官功能退化,即使輕微的跌倒也可能造成很大的危險。甚至,跌倒已經成為65歲以上老人意外死亡的主要原因。 When the elderly fall, because the elderly often have high-community comorbiddiseases, such as osteoporosis, organ function deterioration, even a slight fall may pose a great danger. Even the fall has become the main cause of accidental death among the elderly over 65 years old.

為了預防老年人跌倒,手扶裝置與拐杖是經常使用作為輔具。但是,輔具僅能提供被動式預防的效果。針對延緩老年人的神經傳導退化現象,現有的各類輔具均未能提供有效的預防。 In order to prevent the elderly from falling, the walking device and the walking stick are often used as an aid. However, the aids only provide passive prevention. In view of delaying the deterioration of nerve conduction in the elderly, the existing types of accessories have failed to provide effective prevention.

本發明之一實施例係為一種模擬系統,包含:一頭戴式裝置,具有多個感測點,其係感測多個生理信號;一轉換器, 電連接於該等感測點,其係分析該等生理信號並產生至少一參數;以及,一情境模擬器,電連接於該轉換器,其係顯示一虛擬環境,並根據該至少一參數而調整該虛擬環境的情境。 An embodiment of the present invention is an analog system comprising: a head mounted device having a plurality of sensing points for sensing a plurality of physiological signals; a converter, Electrically connected to the sensing points, which analyze the physiological signals and generate at least one parameter; and a context simulator electrically connected to the converter, which displays a virtual environment and according to the at least one parameter Adjust the context of the virtual environment.

本發明之另一實施例係為一種模擬方法,應用於一模擬系統,該模擬方法係包含以下步驟:感測多個生理信號;分析該等生理信號並產生至少一參數;顯示一虛擬環境;以及,根據該至少一參數而調整該虛擬環境的情境。 Another embodiment of the present invention is a simulation method applied to a simulation system, the simulation method comprising the steps of: sensing a plurality of physiological signals; analyzing the physiological signals and generating at least one parameter; displaying a virtual environment; And adjusting the context of the virtual environment according to the at least one parameter.

本發明之再一實施例係為一種頭戴式裝置,信號連接於一轉換器與一情境模擬器,包含:多個感測點,其係感測多個生理信號;以及,一傳送模組,其係傳送該等生理信號至該轉換器,其中該轉換器係分析該等生理信號並產生至少一參數,且該情境模擬器根據該至少一參數而調整一虛擬環境的情境。 A further embodiment of the present invention is a head mounted device, the signal being connected to a converter and a context simulator, comprising: a plurality of sensing points for sensing a plurality of physiological signals; and a transmitting module Transmitting the physiological signals to the converter, wherein the converter analyzes the physiological signals and generates at least one parameter, and the context simulator adjusts a context of a virtual environment according to the at least one parameter.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

1‧‧‧模擬系統 1‧‧‧simulation system

11、21‧‧‧頭戴式裝置 11, 21‧‧‧ head mounted devices

13、23‧‧‧轉換器 13, 23‧‧‧ converter

15、25‧‧‧情境模擬器 15, 25‧‧‧ Situation Simulator

17、27‧‧‧觸發器 17, 27‧‧‧ trigger

12‧‧‧座椅 12‧‧‧ seats

13a‧‧‧第一IIR帶通濾波器 13a‧‧‧First IIR bandpass filter

13b‧‧‧第二IIR帶通濾波器 13b‧‧‧Second IIR bandpass filter

13c‧‧‧第三IIR帶通濾波器 13c‧‧‧Third IIR bandpass filter

131、231‧‧‧信號處理模組 131, 231‧‧‧ Signal Processing Module

133、233‧‧‧信號分析模組 133, 233‧‧‧Signal Analysis Module

113、213‧‧‧傳送模組 113, 213‧‧‧Transmission module

135、235‧‧‧接收模組 135, 235‧‧‧ receiving module

111a-111n、211a-211n‧‧‧感測點 111a-111n, 211a-211n‧‧‧ Sensing points

第1圖,其係本發明實施例之模擬系統的示意圖。 Figure 1 is a schematic illustration of an analog system in accordance with an embodiment of the present invention.

第2圖,其係本發明之模擬方法的流程圖。 Figure 2 is a flow chart of the simulation method of the present invention.

第3圖,其係使用者將頭戴式裝置戴在頭上之示意圖。 Figure 3 is a schematic view of the user wearing the head mounted device on the head.

第4圖,其係本發明之頭戴式裝置的俯視圖。 Figure 4 is a plan view of the head mounted device of the present invention.

第5圖,其係本發明之頭戴式裝置的感測點形成之相對電位與對應參數之示意圖。 Figure 5 is a schematic diagram showing the relative potentials and corresponding parameters of the sensing points formed by the head mounted device of the present invention.

第6圖,其係本發明感測生理信號後,產生參數之示意圖。 Figure 6 is a schematic diagram showing the generation of parameters after sensing physiological signals of the present invention.

第7圖,其係根據感覺運動節律能量狀態開啟觸發器的流程圖。 Figure 7, which is a flow chart for opening a trigger based on the sensory motion rhythm energy state.

第8A圖,其係感覺運動節律能量處於一般狀態的示意圖。 Fig. 8A is a schematic diagram showing the state of the sensory motor rhythm energy in a general state.

第8B圖,其係感覺運動節律能量搭配觸發器使用的示意圖。 Figure 8B is a schematic diagram of the use of a sensory motion rhythm energy matching trigger.

第9圖,其係因應觸發器產生觸發信號與否,感覺運動節律能量相對於時間改變的示意圖。 Fig. 9 is a schematic diagram showing the change of the energy of the rhythm of the motion with respect to time in response to whether the trigger generates a trigger signal or not.

第10圖,其係因應觸發器產生觸發信號與否,感覺運動節律能 量相對於頻率改變的示意圖。 Figure 10, which is based on the trigger signal generated by the trigger, the sensory motor rhythm A schematic diagram of the amount versus frequency change.

第11圖,其係利用眼動波感測點感測眼動波生理信號之示意圖。 Fig. 11 is a schematic diagram of sensing an physiological signal of an eye movement using an eye movement sensing point.

第12A圖,其係使用者朝右看時,眼動波生理信號之示意圖。 Figure 12A is a schematic diagram of the physiological signal of the eye movement when the user looks to the right.

第12B圖,其係使用者朝左看時,眼動波生理信號之示意圖。 Figure 12B is a schematic diagram of the physiological signal of the eye movement wave when the user looks to the left.

第13圖,其係根據眼動波生理信號,判斷使用者視線方向的流程圖。 Figure 13 is a flow chart for determining the direction of the user's line of sight based on the physiological signal of the eye movement.

第14圖,其係本發明模擬系統之內部構造的一種方塊圖。 Figure 14, which is a block diagram of the internal construction of the simulation system of the present invention.

第15圖,其係本發明模擬系統之內部構造的另一種方塊圖。 Figure 15 is another block diagram of the internal construction of the simulation system of the present invention.

針對人類的腦神經開發,本發明提供一種模擬系統、模擬方法與頭戴式裝置。本發明利用各種生理信號提供互動情境遊戲的構想,其用途相當廣泛。除了應用於防止老年人腦部退化的用途外,還能用於幼兒感覺統合及平衡訓練等。再者,本發明還能因應生理信號的感測結果,提供擴增情境式產品的挑選、匹配功能,或者根據未來腦波而提供選擇服務、決定消費定價、提供心靈開發等用途。 The present invention provides a simulation system, a simulation method, and a head mounted device for human brain development. The present invention utilizes various physiological signals to provide an idea of an interactive situational game, and its use is quite extensive. In addition to its use to prevent degeneration of the elderly's brain, it can also be used for infants' sensory integration and balance training. Furthermore, the present invention can also provide the selection and matching function of the augmented context product according to the sensing result of the physiological signal, or provide the selection service according to the future brain wave, determine the consumer pricing, and provide the mind development.

請參見第1圖,其係本發明實施例之模擬系統的示意圖。此實施例的模擬系統1包含:頭戴式裝置11、轉換器13、情境模擬器15與觸發器17。 Please refer to FIG. 1 , which is a schematic diagram of a simulation system according to an embodiment of the present invention. The simulation system 1 of this embodiment includes a head mounted device 11, a converter 13, a situation simulator 15, and a flip-flop 17.

頭戴式裝置11具有多個感測點(未繪式),用於感測生理信號。轉換器13用於分析生理信號並產生參數。情境模擬器15用於顯示虛擬環境。使用者觀看虛擬環境時,彷彿置身於虛擬環境中,並且,可以根據使用者的意念,在虛擬環境中移動位置。例如,情境模擬器15可搭配應用軟體,讓使用者感覺自己正在駕車。其中,假設車子的速度與方向等參數,對應於使用者本身的生理參數。即,讓使用者根據本身的意念與注意力而改變車子(或物件載體)的移動速度與方向。 The head mounted device 11 has a plurality of sensing points (not depicted) for sensing physiological signals. Converter 13 is used to analyze physiological signals and generate parameters. The context simulator 15 is used to display a virtual environment. When the user views the virtual environment, it seems to be in the virtual environment, and the location can be moved in the virtual environment according to the user's idea. For example, the situation simulator 15 can be used with the application software to let the user feel that he is driving. Among them, it is assumed that the parameters such as the speed and direction of the car correspond to the physiological parameters of the user. That is, let the user change the moving speed and direction of the car (or object carrier) according to its own idea and attention.

使用者使用情境模擬器15的同時,頭戴式裝置11透過感測點持續感測使用者的生理信號。這些生理信號透過轉換 器13的轉換,形成較為能夠理解的參數。參數可包含:即時性動能參數、即時性平衡參數、即時性方向參數、興趣程度參數等。其中,即時性動能參數可對應於移動速度的控制、即時性方向參數可對應於方向的控制、興趣程度參數可對應於使用者對於各類事務的喜好程度。 While the user uses the context simulator 15, the head mounted device 11 continuously senses the physiological signals of the user through the sensing points. These physiological signals are transmitted through The conversion of the device 13 forms a more understandable parameter. The parameters may include: an instantaneous kinetic energy parameter, an instantaneous balance parameter, an instantaneous direction parameter, an interest degree parameter, and the like. The instantaneous kinetic energy parameter may correspond to the control of the moving speed, the instantaneous direction parameter may correspond to the direction control, and the interest degree parameter may correspond to the user's preference for various types of transactions.

這些參數提供給情境模擬器15後,情境模擬器15即可根據參數而調整虛擬環境的情境。例如:當即時性動能參數的數值越大時,情境模擬器15透過應用軟體控制顯示畫面,讓使用者產生正在加速的感覺。或者,當即時性方向參數對應於左轉時,情境模擬器15透過應用軟體控制顯示畫面,讓使用者產生目前在前行的同時並左轉的感覺。 After these parameters are provided to the context simulator 15, the context simulator 15 can adjust the context of the virtual environment based on the parameters. For example, when the value of the instantaneous kinetic energy parameter is larger, the context simulator 15 controls the display screen through the application software, so that the user feels that the acceleration is being accelerated. Alternatively, when the immediacy direction parameter corresponds to the left turn, the context simulator 15 controls the display screen through the application software, so that the user can generate the feeling of being currently moving forward and turning left.

當使用者使用模擬系統時,使用者坐在座椅12上。其中,座椅的下方設置觸發器17。觸發器17產生的觸發信號,可透過座椅12而刺激使用者。連帶的,使用者的精神狀態與意念將因而被刺激與觸發。據此,參數將因應該觸發信號的產生而產生變化。 The user sits on the seat 12 when the user uses the simulation system. Among them, a trigger 17 is provided below the seat. The trigger signal generated by the trigger 17 can stimulate the user through the seat 12. In conjunction, the user's mental state and mind will be stimulated and triggered. Accordingly, the parameters will change as a result of the trigger signal being generated.

請參見第2圖,其係本發明之模擬方法的流程圖。本發明的模擬方法包含以下步驟:感測多個生理信號(步驟S1);分析生理信號並將生理信號轉換為即時性動能參數、即時性平衡參數、即時性方向參數、興趣程度參數等(步驟S3);顯示虛擬環境,並根據參數而調整虛擬環境的情境(步驟S5)。在一般的情況下,步驟S1、S3、S5為模擬系統循環進行的流程。此外,本發明的模擬方法還可進一步產生觸發信號並進行迴授(步驟S7)。透過觸發信號的產生,本發明的模擬方法進一步形成一循環流程。 Please refer to Fig. 2, which is a flow chart of the simulation method of the present invention. The simulation method of the present invention comprises the steps of: sensing a plurality of physiological signals (step S1); analyzing the physiological signals and converting the physiological signals into immediate kinetic energy parameters, instantaneous balance parameters, instantaneous direction parameters, interest degree parameters, etc. (steps S3); displaying the virtual environment, and adjusting the context of the virtual environment according to the parameters (step S5). In the general case, steps S1, S3, and S5 are processes performed by the analog system cycle. Furthermore, the simulation method of the present invention can further generate a trigger signal and perform feedback (step S7). The simulation method of the present invention further forms a loop process by the generation of the trigger signal.

請參見第3圖,其係使用者將頭戴式裝置戴在頭上之示意圖。如前所述,頭戴式裝置上有多個感測點(Fz、G、Fp1、Fp2、E1、E2、A1、A2)。當然,實際應用時,感測點的個數與位置並不以此為限。 Please refer to FIG. 3, which is a schematic diagram of the user wearing the head mounted device on the head. As mentioned above, there are multiple sensing points (Fz, G, Fp1, Fp2, E1, E2, A1, A2) on the head mounted device. Of course, in actual applications, the number and location of sensing points are not limited to this.

當使用者戴上頭戴式裝置11時,感測點將貼附於使 用者的頭部。根據感測位置的不同,感測點可分為:腦電波感測點(Fz、Fp1、Fp2)、眼動波感測點(E1、E2)、接地感測點(G)等類型。其中,腦電波感測點(Fz、Fp1、Fp2)用於感測腦電波(electroencephalogram,簡稱為EEG)生理信號。眼動波感測點(E1、E2)用於感測眼動波(electrooculography,簡稱為EOG)生理信號。 When the user puts on the head mounted device 11, the sensing point will be attached to User's head. Depending on the sensing position, the sensing points can be classified into: brain wave sensing points (Fz, Fp1, Fp2), eye wave sensing points (E1, E2), and grounding sensing points (G). Among them, brain wave sensing points (Fz, Fp1, Fp2) are used to sense physiological signals of electroencephalogram (EEG). The eye movement sensing points (E1, E2) are used to sense physiological signals of electrooculography (EOG).

在第3圖中,腦電波感測點包含:中心腦電波感測點Fz、左側腦電波感測點Fp1、右側腦電波感測點Fp2。中心腦電波感測點Fz貼附於使用者的頭部之中心線前半部的位置,並用於感測中心腦電波生理信號。左側腦電波感測點Fp1貼附於使用者的額頭左上方,用於感測左側腦電波生理信號。右側腦電波感測點Fp2貼附於使用者的額頭右上方,用於感測右側腦電波生理信號。 In Fig. 3, the electroencephalogram sensing point includes a central electroencephalogram sensing point Fz, a left electroencephalogram sensing point Fp1, and a right electroencephalogram sensing point Fp2. The central brain wave sensing point Fz is attached to the front half of the center line of the user's head and is used to sense the central brain wave physiological signal. The left brain wave sensing point Fp1 is attached to the upper left of the user's forehead and is used to sense the physiological signal of the left brain wave. The right brain wave sensing point Fp2 is attached to the upper right side of the user's forehead and is used to sense the right brain wave physiological signal.

承上所述,頭戴式裝置11感測得出的腦電波生理信號包含:中心腦電波生理信號、左側腦電波生理信號,以及,右側腦電波生理信號。本發明可根據中心腦電波生理信號計算得出感覺運動節律(sensorimotor rhythm,簡稱為SMR)能量。 As described above, the brainwave physiological signals sensed by the head mounted device 11 include: a central brain wave physiological signal, a left brain wave physiological signal, and a right brain wave physiological signal. The invention can calculate the sensorimotor rhythm (SMR) energy according to the central brain wave physiological signal.

在一實施例中,感覺運動節律能量可定義/代表顯示虛擬環境時的即時性動能參數。並且,本發明將情境模擬器轉換虛擬環境的速度,設定為與感覺運動節律能量的高低呈現正相關。另一方面,利用左側腦電波生理信號與右側腦電波生理信號得出α、β、θ、δ波能量。其中,α、β、θ、δ波能量對應於顯示虛擬環境時的即時性平衡參數。 In an embodiment, the sensory motor rhythm energy may define/represent the immediacy kinetic energy parameter when the virtual environment is displayed. Moreover, the present invention sets the speed at which the context simulator converts the virtual environment to a positive correlation with the level of the sensory motion rhythm energy. On the other hand, the α, β, θ, and δ wave energies are obtained by using the left brain wave physiological signal and the right brain wave physiological signal. The α, β, θ, and δ wave energies correspond to the instantaneous balance parameters when the virtual environment is displayed.

在另一實施例中,利用左側腦電波生理信號與右側腦電波生理信號得出γ波能量。並且,將感測得出的感覺運動節律能量與γ波能量轉換為興趣程度參數。當興趣程度參數被感測得出後,虛擬環境可進一步參考興趣程度參數而判斷使用者的喜好。並且,虛擬環境將根據興趣程度參數而調整顯示的畫面。例如:先將感測得出的感覺運動節律能量與γ波能量轉換 為興趣程度參數後,對興趣程度參數進行辨識與判讀。當興趣程度參數代表使用者喜歡山林時,讓使用者看到山林的顯示畫面;以及,當興趣程度參數代表使用者喜歡海底世界時,讓使用者看到海底世界的顯示畫面等。 In another embodiment, the gamma wave energy is derived using the left brainwave physiological signal and the right brainwave physiological signal. And, the sensed sensory motor rhythm energy and the gamma wave energy are converted into an interest degree parameter. After the interest level parameter is sensed, the virtual environment may further determine the user's preference with reference to the interest level parameter. Also, the virtual environment will adjust the displayed screen according to the interest level parameter. For example: firstly sense the sensed motion rhythm energy and gamma wave energy conversion After the interest level parameter, the interest degree parameter is identified and interpreted. When the interest degree parameter indicates that the user likes the mountain forest, the user is allowed to see the display screen of the mountain forest; and when the interest degree parameter represents that the user likes the underwater world, the user is allowed to see the display screen of the underwater world.

在第3圖中,眼動波感測點包含:左側眼動波感測點E1、右側眼動波感測點E2。左側眼動波感測點E1貼附於使用者的左眼左方約一公分處,用於感測左側眼動波生理信號。右側眼動波感測點E2貼附於使用者的右眼右方約一公分處,用於感測右側眼動波生理信號。其中,利用左側眼動波生理信號與右側眼動波生理信號取得差值後,將差值定義為差動眼動波生理信號。並且,將差動眼動波生理信號對應於顯示虛擬環境時的即時性方向參數。其中,即時性方向參數用於決定情境模擬器轉換虛擬環境的方向。 In FIG. 3, the eye movement sensing point includes: a left eye movement sensing point E1 and a right eye movement sensing point E2. The left eye movement sensing point E1 is attached to the left side of the left eye of the user by about one centimeter for sensing the physiological signal of the left eye movement. The right eye movement sensing point E2 is attached to the right side of the user's right eye about one centimeter for sensing the physiological signal of the right eye movement wave. Wherein, after taking the difference between the physiological signal of the left eye movement and the physiological signal of the right eye movement, the difference is defined as the physiological signal of the differential eye movement. And, the differential eye wave physiological signal corresponds to an instantaneous direction parameter when the virtual environment is displayed. The instantaneous direction parameter is used to determine the direction in which the context simulator converts the virtual environment.

請參見第4圖,其係本發明之頭戴式裝置的俯視圖。頭戴式裝置的每一個感測點可利用電極傳導生理信號。電極的材料不需要被限定,舉凡傳導性材料皆可搭配使用。根據感測生理信號所需之電極的個數,電極感測的做法可區分為:雙極式(bipolar)電極或單極式(unipolar)電極。使用雙極式電極時,將接地感測點G的電極係貼附於使用者的頭部之中心線前半部的位置,並與其餘感測點形成電位差。使用單極式電極時,只需連接個別的感測點,即可擷取相對應的生理信號。以下,進一步搭配第5圖說明使用雙極式電極的連接方式。 Please refer to Fig. 4, which is a plan view of the head mounted device of the present invention. Each sensing point of the head mounted device can utilize electrodes to conduct physiological signals. The material of the electrode need not be limited, and any conductive material can be used in combination. Depending on the number of electrodes required to sense the physiological signal, the electrode sensing approach can be distinguished as: a bipolar electrode or a unipolar electrode. When the bipolar electrode is used, the electrode system of the ground sensing point G is attached to the front half of the center line of the user's head, and a potential difference is formed with the remaining sensing points. When using a single-pole electrode, simply connect the individual sensing points to capture the corresponding physiological signal. Hereinafter, the connection method using the bipolar electrodes will be described with reference to Fig. 5.

請參見第5圖,其係本發明之頭戴式裝置的感測點形成之相對電位與對應參數之示意圖。此表格進一步整理對各感測點量測得出的相對電位,如何被用來作為虛擬環境的判斷依據。 Please refer to FIG. 5, which is a schematic diagram showing the relative potentials and corresponding parameters of the sensing points formed by the head mounted device of the present invention. This table further clarifies how the relative potential measured at each sensing point is used as a basis for judging the virtual environment.

利用左側眼動波感測點E1與接地感測點G的電位差(E1-G),作為第一頻道CH1。並且,將第一頻道CH1量測得出的生理信號定義為左側眼動波生理信號。同理,利用右側眼動波 感測點E2與接地感測點G的電位差(E2-G),作為第二頻道CH2。並且,將第二頻道CH2量測得出的生理信號定義為右側眼動波生理信號。此處,利用右側眼動波生理信號與左側眼動波生理信號取得兩者的差值,將其定義為差動眼動波生理信號。 The potential difference (E1-G) between the left eye movement sensing point E1 and the ground sensing point G is used as the first channel CH1. And, the physiological signal measured by the first channel CH1 is defined as a left eye motion wave physiological signal. Similarly, using the right eye movement A potential difference (E2-G) between the sensing point E2 and the ground sensing point G is used as the second channel CH2. And, the physiological signal measured by the second channel CH2 is defined as a right eye motion wave physiological signal. Here, the difference between the right eye movement physiological signal and the left eye motion physiological signal is used to define the differential eye movement physiological signal.

利用中心腦電波感測點Fz與接地感測點G的電位差(Fz-G),作為第三頻道CH3。並且,利用第三頻道CH3量測中心腦電波生理信號。中心腦電波生理信號可用於計算得出SMR能量。並且,以SMR能量對應於虛擬環境的即時性動能參數,相當於虛擬環境的速度。 The potential difference (Fz-G) between the central brain wave sensing point Fz and the ground sensing point G is used as the third channel CH3. And, the central brainwave physiological signal is measured by the third channel CH3. The central brainwave physiological signal can be used to calculate the SMR energy. Moreover, the SMR energy corresponds to the instantaneous kinetic energy parameter of the virtual environment, which is equivalent to the speed of the virtual environment.

利用左側腦電波感測點Fp1與接地感測點G的電位差(Fp1-G),作為第四頻道CH4。並且,利用第四頻道CH4量測左側腦電波生理信號。左側腦電波生理信號可用於判斷左腦的平衡狀態。因此,將左側腦電波生理信號對應於虛擬環境的即時性平衡參數,相當於虛擬環境的平衡感測功能。 The potential difference (Fp1-G) between the left electroencephalogram sensing point Fp1 and the ground sensing point G is used as the fourth channel CH4. And, the left brain wave physiological signal is measured by the fourth channel CH4. The left brain wave physiological signal can be used to determine the balance state of the left brain. Therefore, the left brain wave physiological signal corresponds to the instantaneous balance parameter of the virtual environment, which is equivalent to the balance sensing function of the virtual environment.

利用右側腦電波感測點Fp2與接地感測點G的電位差(Fp2-G),作為第五頻道CH5。並且,利用第五頻道CH5量測右側腦電波生理信號。右側腦電波生理信號可用於判斷右腦的平衡狀態。因此,將右側腦電波生理信號對應於虛擬環境的即時性平衡參數,相當於虛擬環境的平衡感測功能。 The potential difference (Fp2-G) between the right brain wave sensing point Fp2 and the ground sensing point G is used as the fifth channel CH5. And, the right brain wave physiological signal is measured by the fifth channel CH5. The right brainwave physiological signal can be used to determine the balance of the right brain. Therefore, the right brain wave physiological signal corresponds to the instantaneous balance parameter of the virtual environment, which is equivalent to the balance sensing function of the virtual environment.

此外,中心腦電波生理信號、左側腦電波生理信號、右側腦電波生理信號還可對應於興趣程度參數。除了前述的腦電波感測點、眼動波感測點外,頭戴式裝置11還可包含更多感測點。例如:此處列出之感測點A1、A2,可透過參考電極量測其他類型的肌電信號。當然,各類型的肌電信號與對應之生理特徵,亦可被用來作為調整虛擬環境的參考。 In addition, the central brain wave physiological signal, the left brain wave physiological signal, and the right brain wave physiological signal may also correspond to the interest level parameter. In addition to the aforementioned electroencephalogram sensing points and eye movement sensing points, the head mounted device 11 may also include more sensing points. For example, the sensing points A1, A2 listed here can measure other types of EMG signals through the reference electrode. Of course, various types of EMG signals and corresponding physiological features can also be used as a reference for adjusting the virtual environment.

請參見第6圖,其係本發明感測生理信號後,產生參數之示意圖。此圖式進一步說明第2圖的步驟S1、S3。 Please refer to FIG. 6 , which is a schematic diagram of parameters generated after the physiological signal is sensed by the present invention. This figure further illustrates steps S1 and S3 of Fig. 2.

在前述流程中,步驟S1可進一步包含偵測各個生理信號的子步驟,例如:利用中心腦電波感測點與接地感測點(CH3) 感測中心腦電波生理信號;利用左側腦電波感測點與接地感測點(CH4)感測左側腦電波生理信號;利用右側腦電波感測點與接地感測點(CH5)感測右側腦電波生理信號;利用左側眼動波感測點與接地感測點(CH2)感測左側眼動波生理信號;以及,利用右側眼動波感測點與接地感測點(CH1)感測右側眼動波生理信號等。 In the foregoing process, step S1 may further include sub-steps of detecting each physiological signal, for example, using a central brain wave sensing point and a ground sensing point (CH3) Sensing the central brain wave physiological signal; using the left brain wave sensing point and the grounding sensing point (CH4) to sense the left brain wave physiological signal; using the right brain wave sensing point and the grounding sensing point (CH5) to sense the right brain Radio wave physiological signal; sensing the left eye movement wave physiological signal by using the left eye movement wave sensing point and the ground sensing point (CH2); and sensing the right side by using the right eye movement wave sensing point and the ground sensing point (CH1) Eye movement physiological signals, etc.

此外,步驟S3可進一步包含以下步驟:在接收生理信號後,對生理信號進行放大(步驟S31);對放大後的生理信號去除、過濾雜訊(步驟S22)與濾波處理(步驟S35)。 Furthermore, step S3 may further include the steps of: amplifying the physiological signal after receiving the physiological signal (step S31); removing the filtered physiological signal, filtering the noise (step S22), and filtering processing (step S35).

針對不同類型的生理信號,步驟S35可搭配使用不同類型的濾波器。例如:對右側眼動波生理信號與左側眼動波生理信號,使用頻率為1-5Hz的第一IIR帶通濾波器13a;對中心腦電波生理信號,使用頻率為12-15Hz的第二IIR帶通濾波器13b;以及,對右側腦電波生理信號與左側腦電波生理信號,使用第三IIR帶通濾波器13c濾得α、β、θ、δ、γ波。 For different types of physiological signals, step S35 can be used with different types of filters. For example: for the right eye movement physiological signal and the left eye movement physiological signal, the first IIR bandpass filter 13a with a frequency of 1-5 Hz is used; for the central brain wave physiological signal, the second IIR with a frequency of 12-15 Hz is used. The band pass filter 13b; and the right side brain wave physiological signal and the left brain wave physiological signal are filtered by the third IIR band pass filter 13c to obtain α, β, θ, δ, γ waves.

之後,將濾波後的生理信號由類比格式轉換成數位格式(步驟S37);以及,分析數位格式之生理信號,進而產生參數(步驟S39)。 Thereafter, the filtered physiological signal is converted from the analog format to the digital format (step S37); and the physiological signal of the digital format is analyzed to generate a parameter (step S39).

請參見第7圖,其係根據SMR能量狀態開啟觸發器的流程圖。首先判斷SMR能量是否低於能量下限門檻(步驟S71)。若步驟S71的判斷結果為否定,代表觸發器17並不需要啟動,因此流程結束。若步驟S71的判斷結果為肯定,則開啟觸發器17,由觸發器17產生觸發信號(舒曼共振波)(步驟S73)。其後,再量測生理信號時,即可發現SMR能量提升(步驟S75)。再者,判斷SMR能量是否高於能量上限門檻(步驟S77)。若步驟S77的判斷結果為肯定,便關閉觸發器17(步驟S79)。反之,若步驟S77的判斷結果為否定,則持續開啟觸發器17(步驟S73)。關於觸發器17開啟對於SMR能量的影響,可進一步參看第8A、8B、9、10圖的說明。 See Figure 7, which is a flow chart for turning on the trigger based on the SMR energy state. First, it is judged whether or not the SMR energy is lower than the energy lower limit threshold (step S71). If the result of the determination in the step S71 is negative, the representative trigger 17 does not need to be activated, so the flow ends. If the result of the determination in the step S71 is affirmative, the trigger 17 is turned on, and the trigger signal (Schumann resonance wave) is generated by the flip-flop 17 (step S73). Thereafter, when the physiological signal is measured again, the SMR energy is increased (step S75). Furthermore, it is judged whether or not the SMR energy is higher than the energy upper limit threshold (step S77). If the decision result in the step S77 is affirmative, the trigger 17 is turned off (step S79). On the other hand, if the decision result in the step S77 is negative, the trigger 17 is continuously turned on (step S73). Regarding the effect of the trigger 17 on the SMR energy, reference is made to the description of Figures 8A, 8B, 9, and 10.

請參見第8A圖,其係SMR能量處於一般狀態的示 意圖。此圖式代表使用者在一般情況下使用時的SMR能量參數的改變。當SMR能量參數在此區間時,使用者感覺自己在虛擬環境的移動速度大致穩定,並不會過快或過慢。 Please refer to Figure 8A, which shows the SMR energy in a general state. intention. This figure represents a change in the SMR energy parameter when the user is in general use. When the SMR energy parameter is in this interval, the user feels that his movement speed in the virtual environment is substantially stable and is not too fast or too slow.

請參見第8B圖,其係SMR能量搭配觸發器使用的示意圖。當使用者的注意力較不集中或較弱時,根據生理信號轉換得出的SMR能量參數之數值也較低。第8B圖假設在第一時點t1以前,根據生理信號轉換得出的SMR能量參數始終低於能量下限門檻。此時,使用者感覺自己在虛擬環境的移動速度非常緩慢,甚至可能產生停滯現象。 See Figure 8B for a schematic representation of the SMR energy matching trigger. When the user's attention is less concentrated or weaker, the value of the SMR energy parameter converted from the physiological signal is also lower. Figure 8B assumes that the SMR energy parameter converted from the physiological signal is always below the energy lower threshold before the first time point t1. At this point, the user feels that the movement speed in the virtual environment is very slow, and may even cause stagnation.

此處假設觸發器17在第一時點t1產生觸發信號。根據本發明的實施例,觸發器17為舒曼共振波產生器,且觸發信號為頻率介於12-15Hz之間。例如:觸發信號為舒曼共振波(14Hz)。舒曼共振波的產生,對使用者產生回饋共振的效果。進一步的,對使用者感測得出的生理信號也因應此回饋共振而產生變化。據此,轉換得出的SMR能量將於第一時點t1開始提升。此時,使用者感覺自己在虛擬環境的移動速度大幅提升,形成類似踩油門加速的現象。 It is assumed here that the flip-flop 17 generates a trigger signal at the first time point t1. According to an embodiment of the invention, the trigger 17 is a Schumann resonance generator and the trigger signal is between 12-15 Hz. For example, the trigger signal is a Schumann resonance wave (14 Hz). The generation of the Schumann resonance wave has an effect of giving feedback to the user. Further, the physiological signal sensed by the user also changes in response to the feedback resonance. According to this, the converted SMR energy will start to increase at the first time point t1. At this point, the user feels that his movement speed in the virtual environment is greatly increased, which is similar to the phenomenon of stepping on the accelerator.

當SMR能量高於能量上限門檻時,觸發器17可於第二時點t2停止產生觸發信號。觸發器17在第二時點t2剛停止產生觸發信號時,使用者的SMR能量仍可維持一段高於能量上限門檻的期間。 When the SMR energy is above the energy upper threshold, the trigger 17 can stop generating the trigger signal at the second time point t2. When the trigger 17 just stops generating the trigger signal at the second time point t2, the user's SMR energy can still be maintained for a period higher than the energy upper threshold.

之後,SMR能量在第三時點t3開始降低。此處假設在第三時點t3之後的SMR能量均維持在能量上限門檻與能量下限門檻間。是故,觸發器17便不需要再度啟動。由此可見,觸發器17的使用,可以達到提升腦電波的即時SMR能量的效果。 Thereafter, the SMR energy begins to decrease at the third time point t3. It is assumed here that the SMR energy after the third time point t3 is maintained between the energy upper limit threshold and the energy lower limit threshold. Therefore, the trigger 17 does not need to be restarted. It can be seen that the use of the trigger 17 can achieve the effect of improving the instantaneous SMR energy of the brain wave.

請參見第9圖,其係因應觸發器產生觸發信號與否,SMR能量相對於時間改變的示意圖。在此圖式中,縱軸代表SMR能量的振幅,橫軸代表時間。其中,以虛線代表的線段L1,對應於觸發器17未開啟時,SMR能量相對於時間改變的情形。 以實線代表的線段L1',對應於觸發器17開啟並產生舒曼共振波時,SMR能量相對於時間改變的情形。根據此圖式可以看出,觸發器17開啟並產生舒曼共振波時,SMR能量較高。 See Figure 9, which is a schematic diagram of SMR energy versus time, depending on whether the trigger generates a trigger signal or not. In this figure, the vertical axis represents the amplitude of the SMR energy and the horizontal axis represents the time. Here, the line segment L1 represented by a broken line corresponds to a case where the SMR energy is changed with respect to time when the trigger 17 is not turned on. The line segment L1' represented by a solid line corresponds to a case where the SMR energy is changed with respect to time when the trigger 17 is turned on and a Schumann resonance wave is generated. According to this figure, it can be seen that when the trigger 17 is turned on and the Schumann resonance wave is generated, the SMR energy is high.

請參見第10圖,其係因應觸發器產生觸發信號與否,SMR能量相對於頻率改變的示意圖。在此圖式中,縱軸代表SMR能量,橫軸代表時間。其中,以虛線代表的線段L1,對應於觸發器未開啟時,SMR能量相對於頻率改變的情形。以實線代表的線段L1',對應於觸發器17開啟並產生舒曼共振波時,SMR能量相對於頻率改變的情形。根據此圖式可以看出,觸發器17開啟並產生舒曼共振波時,對應於SMR頻段(12~15Hz)的能量較高。 See Figure 10, which is a schematic diagram of SMR energy versus frequency change in response to a trigger signal generated by a trigger. In this figure, the vertical axis represents SMR energy and the horizontal axis represents time. Wherein, the line segment L1 represented by a broken line corresponds to a case where the SMR energy changes with respect to the frequency when the trigger is not turned on. The line segment L1' represented by a solid line corresponds to a case where the SMR energy is changed with respect to frequency when the flip-flop 17 is turned on and a Schumann resonance wave is generated. According to this figure, it can be seen that when the flip-flop 17 is turned on and the Schumann resonance wave is generated, the energy corresponding to the SMR band (12 to 15 Hz) is high.

請參見第11圖,其係利用眼動波感測點感測眼動波生理信號之示意圖。人類在左右轉時,通常眼球會先往欲前往的方向轉動。連帶的,當眼球轉動時,角膜和視網膜就會產生較大的電位變化。因此,轉換器可以根據眼動波的波形可以判斷出眼球轉動的方向。在此圖式中,接地感測點連接於使用者的眉心位置。左側眼動波感測點E1設置於左眼左方約一公分處,大約為使用者的左眼與左側太陽穴間的位置、右側眼動波感測點E2設置於右眼右方約一公分處,大約為使用者的右眼與右側太陽穴間的位置。 Please refer to Fig. 11, which is a schematic diagram of sensing the physiological signals of the eye waves by using the eye movement sensing points. When humans turn left and right, usually the eyeball will first turn in the direction of going. In conjunction, when the eyeball rotates, the cornea and retina produce a large potential change. Therefore, the converter can determine the direction of the eyeball rotation based on the waveform of the eye movement wave. In this figure, the ground sensing point is connected to the user's eyebrow position. The left eye movement sensing point E1 is set to about one centimeter to the left of the left eye, about the position between the user's left eye and the left temple, and the right eye movement sensing point E2 is set to about one centimeter to the right of the right eye. At about the position between the user's right eye and the right temple.

請參見第12A圖,其係使用者朝右看時,差動眼動波生理信號之示意圖。當眼球向右移動時,差動眼動波生理信號將呈現負電位偏移。由此圖式可以看出,差動眼動波生理信號會先被急速拉低後,再往上拉高,之後再回復。 Please refer to Fig. 12A, which is a schematic diagram of the differential eye movement physiological signal when the user looks to the right. When the eyeball moves to the right, the differential eyewave physiological signal will exhibit a negative potential shift. It can be seen from this figure that the physiological signal of the differential eye movement wave will be pulled down quickly, then pulled up, and then resumed.

請參見第12B圖,其係使用者朝左看時,差動眼動波生理信號之示意圖。當眼球向左移動時,差動眼動波生理信號將呈現正電位偏移。由此圖式可以看出,差動眼動波生理信號會先被急速拉高後,再往下拉低,之後再回復。 Please refer to Fig. 12B, which is a schematic diagram of the differential eye movement physiological signal when the user looks to the left. When the eyeball moves to the left, the differential eyewave physiological signal will exhibit a positive potential shift. It can be seen from this figure that the physiological signal of the differential eye movement wave will be pulled up quickly, then pulled down and then restored.

請參見第13圖,其係根據差動眼動波生理信號,判 斷使用者視線方向的流程圖。首先接收左側眼動波生理信號與右側眼動波生理信號(步驟S301),並進行IIR帶通濾波(步驟S303)。之後,計算得出差動眼動波生理信號,並且,判斷差動眼動波生理信號的斜率是否產生改變且振幅超過80μV(步驟S305)。 Please refer to Figure 13, which is based on the physiological signal of differential eye movement. A flow chart that breaks the direction of the user's line of sight. First, the left eye movement physiological signal and the right eye motion physiological signal are received (step S301), and IIR band pass filtering is performed (step S303). Thereafter, the differential eye wave physiological signal is calculated, and it is judged whether or not the slope of the differential eye wave physiological signal is changed and the amplitude exceeds 80 μV (step S305).

若步驟S305的判斷結果為否定,判斷使用者的眼球並未移動(步驟S309)。若步驟S305的判斷結果為肯定,代表使用者的眼球產生移動。此時,將進一步判斷使用者的眼球移動方向為何。 If the result of the determination in step S305 is negative, it is determined that the user's eyeball has not moved (step S309). If the result of the determination in step S305 is affirmative, the eyeball representing the user is moved. At this time, it is further determined why the user's eyeball moves in the direction.

接著,判斷差動眼動波生理信號的斜率是否由正變負(步驟S307)。若步驟S307的判斷結果為肯定,代表眼球向右移動(步驟S311,參看第12A圖)。若步驟S307的判斷結果為否定,代表眼球向左移動(步驟S313,參看第12B圖)。 Next, it is judged whether or not the slope of the differential eye wave physiological signal is negative from positive (step S307). If the result of the determination in step S307 is affirmative, the eyeball is moved to the right (step S311, see Fig. 12A). If the result of the determination in step S307 is negative, it means that the eyeball is moved to the left (step S313, see Fig. 12B).

以下說明兩種模擬系統可能之方塊圖。其中,裝置間的虛線代表信號連接,即,實際上可採用各種類型的有線(如:USB資料線、網路線等)或無線傳輸(如:藍芽、無線網路、近場通訊等)方式。 The following is a block diagram of the possible two analog systems. The dotted line between the devices represents the signal connection, that is, various types of wired (such as: USB data lines, network routes, etc.) or wireless transmission (such as: Bluetooth, wireless network, near field communication, etc.) can be used. .

請參見第14圖,其係本發明模擬系統之內部構造的方塊圖。頭戴式裝置11包含多個感測點111a-111n與傳送模組113。感測點111a-111n與傳送模組113彼此地連接。傳送模組113可透過各種有線或無線方式,將感測點111a-111n感測得到的生理信號傳送至轉換器13的接收模組135。 Please refer to Fig. 14, which is a block diagram showing the internal construction of the simulation system of the present invention. The head mounted device 11 includes a plurality of sensing points 111a-111n and a transfer module 113. The sensing points 111a-111n and the transfer module 113 are connected to each other. The transmitting module 113 can transmit the physiological signals sensed by the sensing points 111a-111n to the receiving module 135 of the converter 13 through various wired or wireless methods.

轉換器13包含:接收模組135、信號處理模組131、信號分析模組133。信號處理模組131電連接於接收模組135,其係於接收生理信號後,對生理信號進行放大、去除雜訊與濾波處理,進而使生理信號由類比格式轉換成數位格式。信號分析模組133分析數位格式之生理信號後,產生參數。轉換器13可以透過資料傳輸線而電連接於情境模擬器15;或者,轉換器13可以透過有線網路或無線網路將參數傳送至情境模擬器15,作為調整虛擬環境之畫面內容使用。此外,觸發器17用於因應情境模 擬器15與參數,產生觸發信號。 The converter 13 includes a receiving module 135, a signal processing module 131, and a signal analyzing module 133. The signal processing module 131 is electrically connected to the receiving module 135. After receiving the physiological signal, the signal processing module 131 amplifies the physiological signal, removes the noise and the filtering process, and then converts the physiological signal into an analog format. The signal analysis module 133 analyzes the physiological signals in the digital format to generate parameters. The converter 13 can be electrically connected to the context simulator 15 via a data transmission line; or the converter 13 can transmit parameters to the context simulator 15 via a wired network or a wireless network for use as a screen content for adjusting the virtual environment. In addition, the trigger 17 is used to respond to the situational mode. The simulator 15 and the parameters generate a trigger signal.

根據本發明的構想,觸發器17並非直接控制頭戴式裝置11。首先,利用觸發器17刺激使用者,進而導致感測點111a-111n量測得到的生理信號將產生變化。此時,情境模擬器15將改變虛擬環境的畫面內容。據此,經由頭戴式裝置11感測得出之使用者的生理信號,將因為看到被改變的畫面內容而連帶產生改變。 According to the concept of the invention, the trigger 17 does not directly control the head mounted device 11. First, the user is stimulated by the trigger 17, which in turn causes the physiological signals measured by the sensing points 111a-111n to change. At this time, the context simulator 15 will change the screen content of the virtual environment. Accordingly, the physiological signal of the user sensed via the head mounted device 11 will be changed by seeing the changed picture content.

實際應用時,轉換器13的外觀與型態並不需要被限定。轉換器13可一部分被內嵌於頭戴式裝置11、一部份則整合於情境模擬器15。第15圖為另一種實現模擬系統的方塊圖。當然,模擬系統的實際應用與實現態樣,也可再採用其他類型的架構。 In actual application, the appearance and form of the converter 13 need not be limited. The converter 13 may be partially embedded in the head mounted device 11 and partially integrated into the context simulator 15. Figure 15 is a block diagram of another implementation of the simulation system. Of course, the actual application and implementation of the analog system can also be used in other types of architecture.

請參見第15圖,其係本發明模擬系統之內部構造的另一種方塊圖。第14圖與第15圖之模擬系統的內部構造大致相似。兩者的差異為,轉換器23的內部分別被整合於頭戴式裝置21與情境模擬器25。 Please refer to Fig. 15, which is another block diagram of the internal construction of the simulation system of the present invention. The internal structure of the simulation system of Fig. 14 and Fig. 15 is substantially similar. The difference between the two is that the interior of the converter 23 is integrated into the head mounted device 21 and the context simulator 25, respectively.

頭戴式裝置21透過感測點211a-211n量測得出的生理信號,經由信號處理模組231的放大、濾除雜訊、IIR濾波處理、類比數位轉換後,透過傳送模組213傳送至接收模組235。接收模組235再進一步將數位格式的生理信號,傳送至彼此電連接的信號分析模組233。信號分析模組233分析數位格式之生理信號後,產生參數,作為情境模擬器25顯示虛擬環境的參考依據。此外,觸發器27用於因應情境模擬器25與參數,產生觸發信號。觸發器27並非直接控制頭戴式裝置11,而是藉由對使用者產生影像後,讓感測點211a-211n量測得到的生理信號產生變化。 The physiological signals measured by the head-mounted device 21 through the sensing points 211a-211n are amplified by the signal processing module 231, filtered, filtered, IIR filtered, analog-digital converted, and transmitted to the transmitting module 213 to The receiving module 235. The receiving module 235 further transmits the physiological signals of the digital format to the signal analysis module 233 that is electrically connected to each other. After analyzing the physiological signal of the digital format, the signal analysis module 233 generates parameters as a reference basis for the context simulator 25 to display the virtual environment. In addition, the trigger 27 is used to generate a trigger signal in response to the context simulator 25 and parameters. The trigger 27 does not directly control the head mounted device 11, but changes the physiological signal measured by the sensing points 211a-211n by generating an image to the user.

本發明的一實施例,採用Google Earth公開在網路上的Monster Milktruck。使用者可以控制汽車在Google Earth上移動。其中,利用SMR能量的大小來控制汽車前進或停止;以 眼球的移動控制汽車左、右轉。讓使用者可以以直覺的方式遨遊在Google Earth中。本發明的實施例進一步,測試在Google Earth的虛擬環境中,三名受測者由巴黎市中心抵達巴黎鐵塔所需花費的時間。此外,對每一個受測者,重複進行三次測試。 In one embodiment of the invention, Monster Milktruck is disclosed on the Internet using Google Earth. Users can control the car to move on Google Earth. Where, the size of the SMR energy is used to control the car to advance or stop; The movement of the eyeball controls the car to turn left and right. Allow users to navigate in Google Earth in an intuitive way. Embodiments of the present invention further test the time it takes for three subjects to arrive at the Eiffel Tower from the center of Paris in the virtual environment of Google Earth. In addition, three tests were repeated for each subject.

對第一名受測者而言,進行三次測試所花費的時間分別為:213秒、167秒、128秒。對第二名受測者而言,進行三次測試所花費的時間分別為:122秒、55秒、34秒。對第三名受測者而言,進行三次測試所花費的時間分別為:184秒、114秒、93秒。 For the first subject, the time taken to perform three tests was 213 seconds, 167 seconds, and 128 seconds. For the second subject, the time taken to perform three tests was: 122 seconds, 55 seconds, and 34 seconds. For the third subject, the time spent performing three tests was 184 seconds, 114 seconds, and 93 seconds.

由實驗結果可以看出,每位受測者在第一次測試時,都需要花較多的時間抵達目的地。但在熟悉操控介面以及學習如何調控自己的平衡覺與感覺運動節律後,受測者均可以在較短的時間內完成測試。據此,本發明的模擬系統可讓受測者透過練習,掌握各項控制的要領,進行左右方向的微調與平衡,並且維持在一定的速度,縮短到達的時間。此種練習的過程可以促進使用者的腦部平衡能力,達到刺激腦部運作的效果。 It can be seen from the experimental results that each subject needs to spend more time to reach the destination during the first test. However, after being familiar with the manipulation interface and learning how to regulate their own balance and sensory motion rhythms, the subject can complete the test in a short period of time. Accordingly, the simulation system of the present invention allows the subject to grasp the essentials of each control through practice, fine-tuning and balancing the left and right directions, and maintaining a certain speed and shortening the arrival time. The process of this kind of exercise can promote the balance of the brain of the user and achieve the effect of stimulating the operation of the brain.

根據本發明的一實施例,結合腦波的反應與情境模擬器,提供可產生仿如遨遊天地效果的模擬系統。情境模擬器可搭配谷歌地球(Google Earth)資料庫使用,讓使用者可以透過意念的控制,任意選擇要到地球上的位置後,觀看地圖、地形圖、3D建築物等。或者,情境模擬器可搭配谷歌天際(Google Sky)的資料庫,讓使用者選擇到天際中探索星系、探索豐富的地理內容。情境模擬器所顯示的虛擬環境可透過顯示面板、虛擬實境眼鏡、投影設備顯示。且,虛擬環境可使用平面顯示模式、立體顯示模式顯示。 In accordance with an embodiment of the present invention, in conjunction with a brainwave response and context simulator, an analog system is provided that produces an effect that mimics the world. The Situation Simulator can be used with the Google Earth database to allow users to view the map, topographic maps, 3D buildings, etc., by arbitrarily selecting the location to be on the Earth. Alternatively, the Situation Simulator can be paired with Google Sky's database to allow users to explore the galaxy and explore rich geographic content in the sky. The virtual environment displayed by the situation simulator can be displayed through the display panel, the virtual reality glasses, and the projection device. Moreover, the virtual environment can be displayed using a flat display mode or a stereoscopic display mode.

除了資料庫的選用可以相當彈性外,本發明的情境模擬器還可以改變虛擬環境的複雜度。即,對應於使用者的反應程度,調整所呈現之虛擬環境。 In addition to the flexibility of the selection of the database, the context simulator of the present invention can also change the complexity of the virtual environment. That is, the presented virtual environment is adjusted corresponding to the degree of response of the user.

例如:針對初階程度的使用者,假設情境模擬器顯 示的虛擬環境為內華達沙漠。在此虛擬環境中,僅存在極少數的虛擬障礙物,此時模擬系統以訓練基礎平衡感知為主。 For example: for users of the initial level, assume the situation simulator The virtual environment shown is the Nevada desert. In this virtual environment, there are only a few virtual obstacles, and the simulation system is based on training basic balance perception.

其次,針對中階程度的使用者,假設情境模擬器顯示的虛擬環境為埃及、雪梨等地區,這些地區雖然存在建物但仍相對開闊。此時模擬系統以訓練高度反應及平衡感知為主。 Secondly, for users of intermediate level, it is assumed that the virtual environment displayed by the situation simulator is Egypt, Sydney, etc., although these areas are still relatively open despite the existence of construction. At this time, the simulation system is mainly based on training high response and balance perception.

再者,針對高階程度的使用者級訓練者,情境模擬器可顯示台北、東京等繁華的都市地區。在這些虛擬環境中,使用者必須避開眾多的車輛、行人等虛擬障礙物。此類型的虛擬環境適合用於訓練高度反應、平衡以及感覺統合。 Furthermore, for high-level user-level trainers, the situation simulator can display bustling metropolitan areas such as Taipei and Tokyo. In these virtual environments, users must avoid virtual obstacles such as vehicles and pedestrians. This type of virtual environment is suitable for training highly responsive, balanced, and sensory integration.

根據本發明的另一實施例,模擬系統可結合商品化網站而使用。例如,先透過頭戴式裝置感測受測者的生理信號,根據生理信號得出的興趣程度參數後,據以判斷受測者對於各類事務或物品的喜好程度。其後,再根據感測得出的興趣程度參數,搭配情境模擬器顯示對應於受測者之個人化影像畫面。例如:針對喜歡戶外活動的受測者,顯示進行戶外活動所需之裝備的相關資訊等。此實施例可進一步結合提供商品或服務的各類網站使用,進而提供更符合使用者所需的商品或服務類型。 According to another embodiment of the invention, the simulation system can be used in conjunction with a commercial website. For example, the physiological signal of the subject is sensed through the head-mounted device, and the degree of interest parameter obtained from the physiological signal is used to determine the degree of preference of the subject for various transactions or items. Then, according to the sensed interest degree parameter, the context simulator is used to display the personalized image corresponding to the subject. For example, for a subject who likes outdoor activities, information about equipment required for outdoor activities is displayed. This embodiment can be further utilized in conjunction with a variety of websites that provide goods or services, thereby providing a more versatile type of goods or services that the user desires.

透過本發明的頭戴裝置、模擬方法、模擬系統,使用者可以透過虛擬環境而刺激腦神經的發展。對老人而言,藉由此套模擬系統,並不需要耗費太大體力,即可維持對腦神經的刺激,達到避免廢用症候群發生的效果。利用模擬系統作為復健的低風險練習,具有高度安全性,並能降低實地訓練的風險。因此,本發明的頭戴裝置、模擬方法、模擬系統也可被應用於肢體障礙或自閉症、憂鬱症等遊戲輔具上。 Through the headset, the simulation method, and the simulation system of the present invention, the user can stimulate the development of the cranial nerve through the virtual environment. For the elderly, the simulation system can maintain the stimulation of the cranial nerves without the need for too much physical strength, so as to avoid the effects of the disuse syndrome. The use of simulation systems as a low-risk exercise for rehabilitation is highly secure and reduces the risk of field training. Therefore, the headgear, the simulation method, and the simulation system of the present invention can also be applied to a limb assist or a game aid such as autism or depression.

當然,本發明的模擬系統也可以讓一般人使用,作為訓練注意力、練習控制意念等用途。例如,本發明的頭戴式裝置、模擬方法、模擬系統亦可透過虛擬環境,讓幼兒進行感覺統合及平衡訓練。或者,在感測得出受測者的感興趣程度後,因應使用者的感興趣模式而提供擴增情境式產品挑選的功能,以及作 為心靈開發等用途。 Of course, the simulation system of the present invention can also be used by ordinary people as a training attention, exercise control idea, and the like. For example, the head mounted device, the simulation method, and the simulation system of the present invention can also allow children to perform sensory integration and balance training through a virtual environment. Or, after sensing the degree of interest of the subject, providing the function of augmenting the situational product selection according to the mode of interest of the user, and For the purpose of spiritual development.

在本領域中的習知技藝者均可瞭解:在上述的說明中,作為舉例之各種邏輯方塊、模組、電路及方法步驟皆可利用電子硬體、電腦軟體,或二者之組合來實現,且該些實現方式間的連線方式,無論上述說明所採用的是信號連結、連接、耦接、電連接或其他類型之替代作法等用語,其目的僅為了說明在實現邏輯方塊、模組、電路及方法步驟時,可以透過不同的手段,達到信號、資料、控制資訊的交換與傳遞之目的。因此說明書所採的用語並不會形成本案在實現連線關係時的限制,更不會因其連線方式的不同而脫離本案之範疇。 It will be apparent to those skilled in the art that, in the foregoing description, various logical blocks, modules, circuits, and method steps may be implemented by electronic hardware, computer software, or a combination of both. And the manner of connection between the implementations, whether the above description uses signal connection, connection, coupling, electrical connection or other types of alternatives, the purpose is only to illustrate the implementation of logic blocks, modules In the circuit, method and method steps, the exchange and transmission of signals, data and control information can be achieved through different means. Therefore, the terms used in the specification will not form a limitation in the case of the connection between the case, and will not deviate from the scope of the case due to the difference in the way of connection.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

1‧‧‧模擬系統 1‧‧‧simulation system

11‧‧‧頭戴式裝置 11‧‧‧ head mounted device

13‧‧‧轉換器 13‧‧‧ converter

15‧‧‧情境模擬器 15‧‧‧Scenario Simulator

17‧‧‧觸發器 17‧‧‧ Trigger

12‧‧‧座椅 12‧‧‧ seats

Claims (22)

一種模擬系統,包含:一頭戴式裝置,具有多個感測點,其係感測多個生理信號;一轉換器,電連接於該等感測點,其係分析該等生理信號並產生至少一參數,其中該至少一參數係為一即時性動能參數、一即時性平衡參數、一即時性方向參數及一興趣程度參數;以及,一情境模擬器,電連接於該轉換器,其係顯示一虛擬環境,並根據該至少一參數而調整該虛擬環境的情境。 An analog system comprising: a head mounted device having a plurality of sensing points for sensing a plurality of physiological signals; a converter electrically coupled to the sensing points for analyzing the physiological signals and generating At least one parameter, wherein the at least one parameter is an immediate kinetic energy parameter, an immediate balance parameter, an instantaneous direction parameter, and an interest degree parameter; and a context simulator electrically connected to the converter Displaying a virtual environment and adjusting the context of the virtual environment according to the at least one parameter. 如申請專利範圍第1項所述之模擬系統,其中該等感測點係包含:一中心腦電波感測點,其係貼附於該使用者的頭部之中心線前半部的位置,並用於感測一中心腦電波生理信號;一左側腦電波感測點,其係貼附於該使用者的左額葉上方,並用於感測一左側腦電波生理信號;一右側腦電波感測點,其係貼附於該使用者的右額葉上方,並用於感測一右側腦電波生理信號;一左側眼動波感測點,其係貼附於該使用者的左眼左方,並用於感測一左側眼動波生理信號;以及一右側眼動波感測點,其係貼附於該使用者的右眼右方,並用於感測一右側眼動波生理信號。 The simulation system of claim 1, wherein the sensing points comprise: a central brain wave sensing point attached to a front half of a center line of the user's head, and used Sensing a central brainwave physiological signal; a left brainwave sensing point attached to the left frontal lobe of the user and used to sense a left brainwave physiological signal; a right brainwave sensing point Attached to the right frontal lobe of the user and used to sense a right brain wave physiological signal; a left eye movement wave sensing point attached to the left eye of the user and used The first eye movement wave physiological signal is sensed; and a right eye movement wave sensing point is attached to the right eye of the user and used to sense a right eye motion wave physiological signal. 如申請專利範圍第2項所述之模擬系統,其中該等感測點更包含:一接地感測點,其係貼附於該使用者的頭部之中心線前半部的位置,並與其餘感測點形成電位差。 The simulation system of claim 2, wherein the sensing points further comprise: a grounding sensing point attached to a front half of a center line of the user's head, and the rest The sensing points form a potential difference. 如申請專利範圍第2項所述之模擬系統,其中該中心腦電波生理信號係對應於一即時性動能參數。 The simulation system of claim 2, wherein the central brainwave physiological signal corresponds to an instantaneous kinetic energy parameter. 如申請專利範圍第1項所述之模擬系統,其中更包含:一觸發器,電連接於該轉換器,其係產生一觸發信號,其中該至少一參數係因應該觸發信號的產生而產生變化。 The analog system of claim 1, further comprising: a trigger electrically connected to the converter, which generates a trigger signal, wherein the at least one parameter is changed due to the generation of the trigger signal . 如申請專利範圍第5項所述之模擬系統,其中該觸發器係為一舒曼共振波產生器,且該觸發信號係為頻率介於12-15Hz之一舒曼共振波。 The simulation system of claim 5, wherein the trigger is a Schumann resonance wave generator, and the trigger signal is a Schumann resonance wave having a frequency between 12-15 Hz. 如申請專利範圍第5項所述之模擬系統,其中該觸發信號係為頻率介於12-15Hz之一舒曼共振波。 The simulation system of claim 5, wherein the trigger signal is a Schumann resonance wave having a frequency between 12 and 15 Hz. 如申請專利範圍第1項所述之模擬系統,其中該虛擬環境係為一谷歌地球(Google Earth)、一谷歌天際(Google Sky)。 The simulation system of claim 1, wherein the virtual environment is a Google Earth or a Google Sky. 如申請專利範圍第1項所述之模擬系統,其中當一使用者戴上該頭戴式裝置時,該等感測點係貼附於該使用者的頭部。 The simulation system of claim 1, wherein when a user wears the head mounted device, the sensing points are attached to the user's head. 如申請專利範圍第1項所述之模擬系統,其中該轉換器係包含:一信號處理模組,電連接於該等感測點,其係於接收該等生理信號後,對該等生理信號進行放大、去除雜訊與濾波處理,進而使該等生理信號由一類比格式轉換成一數位格式;以及一信號分析模組,其係分析該數位格式之該等生理信號,並進而產生該至少一參數。 The analog system of claim 1, wherein the converter comprises: a signal processing module electrically connected to the sensing points, after receiving the physiological signals, the physiological signals Amplifying, removing noise and filtering, thereby converting the physiological signals into a digital format; and a signal analysis module analyzing the physiological signals of the digital format and generating the at least one parameter. 一種模擬方法,應用於包含一頭戴式裝置之一模擬系統,該模擬方法係包含以下步驟:透過該頭戴式裝置感測多個生理信號;分析該等生理信號並產生至少一參數,其中該至少一參數係為一即時性動能參數、一即時性平衡參數、一即時性方向參數及一興趣程度參數;顯示一虛擬環境;以及根據該至少一參數而調整該虛擬環境的情境。 A simulation method for an analog system including a head mounted device, the simulation method comprising the steps of: sensing a plurality of physiological signals through the head mounted device; analyzing the physiological signals and generating at least one parameter, wherein The at least one parameter is an instantaneous kinetic energy parameter, an instantaneous balance parameter, an immediate direction parameter, and an interest degree parameter; displaying a virtual environment; and adjusting a context of the virtual environment according to the at least one parameter. 如申請專利範圍第11項所述之模擬方法,其中感測該等生理信號之步驟係包含以下步驟:在頭部之中心線前半部的位置感測一中心腦電波生理信號。 The simulation method of claim 11, wherein the step of sensing the physiological signals comprises the step of sensing a central brainwave physiological signal at a position in the front half of the centerline of the head. 如申請專利範圍第11項所述之模擬方法,其中感測該等生理信號之步驟係包含以下步驟:在左前額葉的位置感測一左側腦電波生理信號;以及 在右前額葉的位置感測一右側腦電波生理信號。 The simulation method of claim 11, wherein the step of sensing the physiological signals comprises the steps of: sensing a left brain wave physiological signal at a position of the left prefrontal lobe; A right brain wave physiological signal is sensed at the position of the right prefrontal lobe. 如申請專利範圍第11項所述之模擬方法,其中感測該等生理信號之步驟係包含以下步驟:在左眼左方感測一左側眼動波生理信號;以及在右眼右方感測一右側眼動波生理信號。 The simulation method of claim 11, wherein the step of sensing the physiological signals comprises the steps of: sensing a left-eye eye wave physiological signal on the left side of the left eye; and sensing on the right eye right side A right eye movement wave physiological signal. 如申請專利範圍第11項所述之模擬方法,其中更包含以下步驟:產生一觸發信號,其中觸發信號係使一即時性動能參數產生變化。 The simulation method of claim 11, further comprising the step of generating a trigger signal, wherein the trigger signal causes a change in the instantaneous kinetic energy parameter. 如申請專利範圍第15項所述之模擬方法,其中產生該觸發信號之步驟係包含以下步驟:當該即時性動能參數低於一能量下限門檻時,產生該觸發信號;以及當該即時性動能參數高於該能量上限門檻時,停止產生該觸發信號。 The simulation method of claim 15, wherein the step of generating the trigger signal comprises the steps of: generating the trigger signal when the instantaneous kinetic energy parameter is lower than an energy lower threshold; and when the instantaneous kinetic energy When the parameter is higher than the energy upper threshold, the trigger signal is stopped. 如申請專利範圍第11項所述之模擬方法,其中分析該等生理信號並產生該至少一參數之步驟係包含以下步驟:接收該等生理信號;對該等生理信號進行放大、去除雜訊與濾波處理,進而使該等生理信號由一類比格式轉換成一數位格式;以及分析該數位格式之該等生理信號,進而產生該至少一參數。 The simulation method of claim 11, wherein the step of analyzing the physiological signals and generating the at least one parameter comprises the steps of: receiving the physiological signals; amplifying the physiological signals, removing noise and Filtering, wherein the physiological signals are converted from an analog format to a digital format; and the physiological signals of the digital format are analyzed to generate the at least one parameter. 一種頭戴式裝置,係連接於一轉換器與一情境模擬器,包含:多個感測點,其係感測多個生理信號;以及,一傳送模組,其係傳送該等生理信號至該轉換器,其中該轉換器係分析該等生理信號並產生至少一參數,且該情境模擬器根據該至少一參數而調整一虛擬環境的情境,其中該至少一參數係為一即時性動能參數、一即時性平衡參數、一即時性方向參數及一興趣程度參數。 A head mounted device is coupled to a converter and a context simulator, comprising: a plurality of sensing points that sense a plurality of physiological signals; and a transmitting module that transmits the physiological signals to The converter, wherein the converter analyzes the physiological signals and generates at least one parameter, and the context simulator adjusts a context of a virtual environment according to the at least one parameter, wherein the at least one parameter is an instantaneous kinetic energy parameter , an instantaneous balance parameter, an instantaneous direction parameter, and an interest degree parameter. 如申請專利範圍第18項所述之頭戴式裝置,其中該等感測點係包含:一中心腦電波感測點,其係貼附於該使用者的頭部之中心線前半部的位置,並用於感測一中心腦電波生理信號。 The head mounted device of claim 18, wherein the sensing points comprise: a central brain wave sensing point attached to a front half of a center line of the user's head. And used to sense a central brainwave physiological signal. 如申請專利範圍第18項所述之頭戴式裝置,其中該等感測點係包含:一左側腦電波感測點,其係貼附於該使用者的左額葉上方的位置,並用於感測一左側腦電波生理信號;以及一右側腦電波感測點,其係貼附於該使用者的右額葉上方的位置,並用於感測一右側腦電波生理信號。 The head-mounted device of claim 18, wherein the sensing points comprise: a left brain wave sensing point attached to a position above the left frontal lobe of the user and used for Sensing a left brain wave physiological signal; and a right brain wave sensing point attached to the position of the user's right frontal lobe and for sensing a right brain wave physiological signal. 如申請專利範圍第18項所述之頭戴式裝置,其中該等感測點係包含:一左側眼動波感測點,其係貼附於該使用者的左眼左方,並用於感測一左側眼動波生理信號;以及一右側眼動波感測點,其係貼附於該使用者的右眼右方,並用於感測一右側眼動波生理信號。 The head-mounted device of claim 18, wherein the sensing points comprise: a left-eye eye wave sensing point attached to the left side of the user's left eye and used for sensing A left-eye eye wave physiological signal is measured; and a right-eye eye wave sensing point is attached to the right eye of the user and used to sense a right eye motion wave physiological signal. 如申請專利範圍第18項所述之頭戴式裝置,其中該頭戴式裝置更包含:一接地感測點,其係貼附於該使用者的頭部之中心線前半部的位置,並與其餘感測點形成電位差。 The head mounted device of claim 18, wherein the head mounted device further comprises: a grounding sensing point attached to a front half of a center line of the user's head, and A potential difference is formed with the remaining sensing points.
TW103122241A 2013-12-26 2014-06-27 Headset apparatus and associated simulating system and method TWI566745B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103122241A TWI566745B (en) 2013-12-26 2014-06-27 Headset apparatus and associated simulating system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102148461 2013-12-26
TW103122241A TWI566745B (en) 2013-12-26 2014-06-27 Headset apparatus and associated simulating system and method

Publications (2)

Publication Number Publication Date
TW201524467A TW201524467A (en) 2015-07-01
TWI566745B true TWI566745B (en) 2017-01-21

Family

ID=53590069

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103122241A TWI566745B (en) 2013-12-26 2014-06-27 Headset apparatus and associated simulating system and method

Country Status (2)

Country Link
CN (1) CN104750241B (en)
TW (1) TWI566745B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563970B (en) * 2015-09-16 2017-01-01 國立交通大學 Visual line detection device and method for the same
US20170259167A1 (en) * 2016-03-14 2017-09-14 Nathan Sterling Cook Brainwave virtual reality apparatus and method
CN106560765A (en) * 2016-06-14 2017-04-12 深圳创达云睿智能科技有限公司 Method and device for content interaction in virtual reality
CN106373172A (en) * 2016-08-31 2017-02-01 南京意斯伽生态科技有限公司 Psychotherapy simulation system based on virtual reality technology
CN107773254A (en) * 2017-12-05 2018-03-09 苏州创捷传媒展览股份有限公司 A kind of method and device for testing Consumer's Experience
CN110448783A (en) * 2019-06-28 2019-11-15 佛山八小时智能科技有限公司 A kind of easypro pressure device of E.E.G induction of adjustable resonant frequency

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM298980U (en) * 2006-05-03 2006-10-11 Taidoc Technology Corp Portable physiology monitoring device and system
TW200844797A (en) * 2007-03-05 2008-11-16 Emotiv Systems Pty Ltd Interface to convert mental states and facial expressions to application input
TW201306565A (en) * 2011-06-20 2013-02-01 Microsoft Corp Video selection based on environmental sensing
TWM451114U (en) * 2012-08-31 2013-04-21 Alchemy Technology Co Ltd Glasses type brainwave detecting device
WO2013070545A1 (en) * 2011-11-07 2013-05-16 Landy Toth Metabolic and cardiopulmonary monitor
TWM459885U (en) * 2013-05-07 2013-08-21 Univ Southern Taiwan Sci & Tec Spatial information system and smart sensors integrated device
TWM466695U (en) * 2013-07-12 2013-12-01 Univ Southern Taiwan Sci & Tec Interactive integration system of space information system and wearing type intelligent device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM298980U (en) * 2006-05-03 2006-10-11 Taidoc Technology Corp Portable physiology monitoring device and system
TW200844797A (en) * 2007-03-05 2008-11-16 Emotiv Systems Pty Ltd Interface to convert mental states and facial expressions to application input
TW201306565A (en) * 2011-06-20 2013-02-01 Microsoft Corp Video selection based on environmental sensing
WO2013070545A1 (en) * 2011-11-07 2013-05-16 Landy Toth Metabolic and cardiopulmonary monitor
TWM451114U (en) * 2012-08-31 2013-04-21 Alchemy Technology Co Ltd Glasses type brainwave detecting device
TWM459885U (en) * 2013-05-07 2013-08-21 Univ Southern Taiwan Sci & Tec Spatial information system and smart sensors integrated device
TWM466695U (en) * 2013-07-12 2013-12-01 Univ Southern Taiwan Sci & Tec Interactive integration system of space information system and wearing type intelligent device

Also Published As

Publication number Publication date
CN104750241B (en) 2018-10-02
TW201524467A (en) 2015-07-01
CN104750241A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
TWI566745B (en) Headset apparatus and associated simulating system and method
US20230381059A1 (en) Wearable Devices, Systems, Methods and Architectures for Sensory Stimulation and Manipulation and Physiological Data Acquisition
US20230214022A1 (en) Wearable Electronic Haptic Feedback System for VR and Gaming Systems
US20180081439A1 (en) Wearable Electronic, Multi-Sensory, Human/Machine, Human/Human Interfaces
Sra et al. Adding proprioceptive feedback to virtual reality experiences using galvanic vestibular stimulation
US20200379572A1 (en) Method and wearable apparatus for synchronizing a user with a virtual environment
US10589087B2 (en) Systems and methods for altering brain and body functions and for treating conditions and diseases of the same
Dong et al. Control of a virtual vehicle influences postural activity and motion sickness.
Cevette et al. Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness
US10258259B1 (en) Multimodal sensory feedback system and method for treatment and assessment of disequilibrium, balance and motion disorders
CN112119367A (en) Method, apparatus and system for generating haptic stimulus and tracking user motion
US20080228239A1 (en) Systems And Methods For Altering Vestibular Biology
US20060241718A1 (en) Systems and methods for altering brain and body functions and for treating conditions and diseases of the same
WO2008052166A2 (en) Systems and methods for altering brain and body functions an treating conditions and diseases
US10835707B2 (en) Physiological response
WO2008043029A2 (en) Method of developing a visual processing profile based on a retino-geniculo-cortical pathway
CN111258428A (en) Electroencephalogram control system and method
CN107479696A (en) Based on P300 normal form virtual reality brain machine interface systems and implementation method
JP6653500B2 (en) Vestibular electrical stimulator and virtual reality sensation device
Ko et al. Vibrotactile perception assessment for a haptic interface on an antigravity suit
Carrere et al. Motor imagery BCI system with visual feedback: Design and preliminary evaluation
Gallagher Cybersickness: A Visuo-Vestibular Multisensory Integration Approach
Chivukula et al. Measurement of Perceived Motion In a Fixed Base Simulator
CN117707342A (en) Virtual reality tourism experience system
JP2022027186A (en) Display device, display method, and program