TWI566461B - Coatings for sofc metallic interconnects - Google Patents

Coatings for sofc metallic interconnects Download PDF

Info

Publication number
TWI566461B
TWI566461B TW102107116A TW102107116A TWI566461B TW I566461 B TWI566461 B TW I566461B TW 102107116 A TW102107116 A TW 102107116A TW 102107116 A TW102107116 A TW 102107116A TW I566461 B TWI566461 B TW I566461B
Authority
TW
Taiwan
Prior art keywords
interconnect
coating
spinel
layer
oxide
Prior art date
Application number
TW102107116A
Other languages
Chinese (zh)
Other versions
TW201345034A (en
Inventor
泰德 阿姆斯壯
詹姆士 威爾森
哈洛 賀誠
丹尼爾 達葛
馬諾 皮拉
Original Assignee
博隆能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/409,629 external-priority patent/US10431833B2/en
Application filed by 博隆能源股份有限公司 filed Critical 博隆能源股份有限公司
Publication of TW201345034A publication Critical patent/TW201345034A/en
Application granted granted Critical
Publication of TWI566461B publication Critical patent/TWI566461B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

用於固態氧化物燃料電池(SOFC)金屬互連體之塗層 Coating for solid oxide fuel cell (SOFC) metal interconnects 相關申請案Related application

本申請案主張2012年3月1日申請之美國申請案第13/409,629號、2012年3月1日申請之美國臨時申請案第61/605,309號及2012年9月18日申請之美國臨時申請案第61/702,397號之權益,該等案均藉此以全文引用的方式併入。 The present application claims US Provisional Application No. 13/409,629, filed on March 1, 2012, US Provisional Application No. 61/605,309, filed on March 1, 2012, and US Provisional Application, filed on September 18, 2012 The rights of Case No. 61/702,397, which are hereby incorporated by reference in their entirety.

本發明係有關燃料電池堆疊組件,特定言之有關互連體及製造用於燃料電池堆疊之互連體之方法。 The present invention relates to fuel cell stack assemblies, and more particularly to interconnects and methods of making interconnects for fuel cell stacks.

典型固態氧化物燃料電池堆疊包括多個由金屬互連體(IC)隔開之燃料電池,該等金屬互連體在堆疊中之相鄰電池與用於傳遞及移除燃料及氧化劑之通道之間提供電連接。金屬互連體通常由基於Cr之合金構成,諸如稱為CrF(組成為95重量% Cr-5重量% Fe)或Cr-Fe-Y(組成為94重量% Cr-5重量% Fe-1重量% Y)之合金。CrF及CrFeY合金在典型固態氧化物燃料電池(SOFC)工作條件(例如在空氣與濕燃料氛圍兩者中700-900℃)下保持其強度且在尺寸上穩定。然而,在SOFC工作期間,CrF或CrFeY合金中之鉻與氧氣反應且形成氧化鉻,導致SOFC堆疊降級。 A typical solid oxide fuel cell stack includes a plurality of fuel cells separated by metal interconnects (ICs) that are adjacent to the cells in the stack and channels for transferring and removing fuel and oxidant. An electrical connection is provided. The metal interconnects are usually composed of a Cr-based alloy, such as CrF (95% by weight Cr-5 wt% Fe) or Cr-Fe-Y (composition 94 wt% Cr-5 wt% Fe-1 weight) % Y) alloy. CrF and CrFeY alloys maintain their strength and are dimensionally stable under typical solid oxide fuel cell (SOFC) operating conditions, such as 700-900 ° C in both air and wet fuel atmospheres. However, during operation of the SOFC, chromium in the CrF or CrFeY alloy reacts with oxygen and forms chromium oxide, resulting in degradation of the SOFC stack.

影響SOFC堆疊之主要降級機制中之兩者與金屬互連體組件之氧化鉻形成直接相關:i)由於互連體上形成天然鉻氧化物(氧化鉻, Cr2O3)而使堆疊歐姆電阻較高,及ii)SOFC陰極鉻中毒。 Two of the major degradation mechanisms affecting the SOFC stack are directly related to the formation of chromium oxide in the metal interconnect component: i) Stacked ohmic resistors due to the formation of natural chromium oxide (chromium oxide, Cr 2 O 3 ) on the interconnect Higher, and ii) SOFC cathode chromium poisoning.

儘管Cr2O3為電子導體,但此材料在SOFC工作溫度(700-900℃)下之傳導率極低,在850℃下之值為約0.01 S/cm(相對於Cr金屬之7.9×104 Scm-1)。互連體表面上之氧化鉻層的厚度隨時間而增加,且因此互連體及從而SOFC堆疊上由此氧化物層產生之歐姆電阻隨時間而增加。 Although Cr 2 O 3 is an electron conductor, the conductivity of this material at the SOFC operating temperature (700-900 ° C) is extremely low, and the value at 850 ° C is about 0.01 S/cm (7.9 × 10 relative to Cr metal). 4 Scm -1 ). The thickness of the chromium oxide layer on the surface of the interconnect increases with time, and thus the ohmic resistance of the interconnect and thus the oxide layer produced by the oxide layer on the SOFC stack increases over time.

與氧化鉻形成金屬互連體有關之第二降級機制稱為陰極鉻中毒。在SOFC工作溫度下,鉻蒸氣穿過塗層中之裂縫或孔隙擴散,且鉻離子可經由固態擴散而穿過互連體塗層材料之晶格擴散至SOFC陰極中。此外,在燃料電池工作期間,環境空氣(濕空氣)流過互連體之空氣(陰極)側且濕燃料流過互連體之燃料(陽極)側。在SOFC工作溫度下及在濕空氣存在下(陰極側),互連體上Cr2O3層表面上之鉻與水反應且以氣態物質氫氧化氧化鉻(chromium oxide hydroxide)CrO2(OH)2形式蒸發。氫氧化氧化鉻物質以蒸氣形式自互連體表面輸運至燃料電池之陰極電極,在此處其可以固態形式Cr2O3沈積。Cr2O3沈積於SOFC陰極上或SOFC陰極中(例如經由晶界擴散)及/或與陰極反應(例如形成Cr-Mn尖晶石),導致陰極電極之效能顯著降級。典型SOFC陰極材料(諸如鈣鈦礦材料,例如LSM、LSC、LSCF及LSF)尤其易受氧化鉻降級影響。 The second degradation mechanism associated with the formation of metal interconnects with chromium oxide is known as cathode chromium poisoning. At the SOFC operating temperature, the chromium vapor diffuses through the cracks or pores in the coating, and the chromium ions can diffuse through the lattice of the interconnect coating material into the SOFC cathode via solid state diffusion. In addition, during operation of the fuel cell, ambient air (wet air) flows through the air (cathode) side of the interconnect and wet fuel flows through the fuel (anode) side of the interconnect. At the operating temperature of the SOFC and in the presence of humid air (cathode side), the chromium on the surface of the Cr 2 O 3 layer on the interconnect reacts with water and the chromium oxide hydroxide CrO 2 (OH) 2 forms of evaporation. The chromium oxide hydroxide material is transported in vapor form from the surface of the interconnect to the cathode electrode of the fuel cell where it can be deposited in solid form Cr 2 O 3 . The deposition of Cr 2 O 3 on the SOFC cathode or in the SOFC cathode (eg, via grain boundary diffusion) and/or reaction with the cathode (eg, formation of Cr-Mn spinel) results in a significant degradation in the performance of the cathode electrode. Typical SOFC cathode materials, such as perovskite materials such as LSM, LSC, LSCF, and LSF, are particularly susceptible to degradation by chromium oxide.

一個實施例係關於一種用於固態氧化物燃料電池之經塗覆互連體,其包括包含鐵及鉻之互連體基板及在互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,以及其製造及處理方法。氧化錳鈷尖晶石塗層包含在最終組成Co3O4與Mn3O4之間的(Mn,Co)3O4家族之組成。 One embodiment relates to a coated interconnect for a solid oxide fuel cell comprising an interconnect substrate comprising iron and chromium and a manganese oxide cobalt spinel formed on the air side of the interconnect substrate Coating, as well as its manufacturing and processing methods. The manganese oxide cobalt spinel coating comprises a composition of the (Mn,Co) 3 O 4 family between the final composition of Co 3 O 4 and Mn 3 O 4 .

一個實施例係關於一種塗覆用於固態氧化物燃料電池之互連體之方法,其包含提供包含Cr及Fe之互連體基板,及使用電漿噴射製程 以氧化錳鈷尖晶石塗層塗覆互連體基板之空氣側。 One embodiment relates to a method of coating an interconnect for a solid oxide fuel cell, comprising providing an interconnect substrate comprising Cr and Fe, and using a plasma jet process The air side of the interconnect substrate is coated with a manganese oxide cobalt spinel coating.

另一實施例係關於一種用於固態氧化物燃料電池之經塗覆互連體,其包含含有至少70重量%鉻之互連體基板及在互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,其中尖晶石之Co:Mn原子比為至少1:3。 Another embodiment relates to a coated interconnect for a solid oxide fuel cell comprising an interconnect substrate comprising at least 70% by weight chromium and manganese oxide cobalt formed on the air side of the interconnect substrate A spinel coating wherein the spinel has a Co:Mn atomic ratio of at least 1:3.

另一實施例係關於一種用於固態氧化物燃料電池之經塗覆互連體,其包含含有鐵及鉻之互連體基板、在互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層、位於尖晶石塗層與互連體基板之空氣側之間的錳-鈷-鉻中間尖晶石層,及位於尖晶石塗層上之鈣鈦礦層。 Another embodiment relates to a coated interconnect for a solid oxide fuel cell comprising an interconnect substrate comprising iron and chromium, and a manganese oxide cobalt spinel formed on the air side of the interconnect substrate A stone coating, a manganese-cobalt-chromium intermediate spinel layer between the spinel coating and the air side of the interconnect substrate, and a perovskite layer on the spinel coating.

另一實施例係關於一種用於固態氧化物燃料電池之經塗覆互連體。該互連體包括包含鐵及鉻之互連體基板及在互連體基板之空氣側上形成之複合尖晶石與鈣鈦礦塗層。在一個態樣中,尖晶石相包含氧化錳鈷尖晶石且鈣鈦礦相包含錳酸鑭鍶。 Another embodiment is directed to a coated interconnect for a solid oxide fuel cell. The interconnect includes an interconnect substrate comprising iron and chromium and a composite spinel and perovskite coating formed on the air side of the interconnect substrate. In one aspect, the spinel phase comprises manganese oxide cobalt spinel and the perovskite phase comprises barium manganate.

另一實施例係關於一種製造用於固態氧化物燃料電池之互連體之方法,其包括在互連體之空氣側上形成氧化錳鈷尖晶石塗層,但互連體之空氣側上之至少一個密封區除外。 Another embodiment is directed to a method of fabricating an interconnect for a solid oxide fuel cell, comprising forming a manganese oxide cobalt spinel coating on the air side of the interconnect, but on the air side of the interconnect Except for at least one sealing zone.

另一實施例係關於一種製造用於固態氧化物燃料電池之互連體之方法,其包括用陶瓷層塗覆Cr-Fe互連體之空氣側以在互連體之燃料側上形成天然氧化鉻層,在天然氧化鉻層上沈積含有鎳之材料,及使鎳擴散至天然氧化鉻層中以形成鎳金屬-氧化鉻複合層。 Another embodiment is directed to a method of fabricating an interconnect for a solid oxide fuel cell, comprising coating a silicon side of a Cr-Fe interconnect with a ceramic layer to form a native oxidation on the fuel side of the interconnect The chromium layer deposits a material containing nickel on the natural chromium oxide layer and diffuses the nickel into the natural chromium oxide layer to form a nickel metal-chromium oxide composite layer.

另一實施例係關於一種製造用於固態氧化物燃料電池之互連體之方法,其包括用陶瓷層塗覆互連體之空氣側以在互連體之燃料側上形成天然氧化鉻,及在至少900℃之溫度下在氧分壓為10-16至10-24 atm之氛圍中使互連體退火以減少或除去天然氧化鉻層。 Another embodiment is directed to a method of fabricating an interconnect for a solid oxide fuel cell, comprising coating a gas side of an interconnect with a ceramic layer to form natural chromium oxide on a fuel side of the interconnect, and The interconnect is annealed at a temperature of at least 900 ° C in an atmosphere having an oxygen partial pressure of 10 -16 to 10 -24 atm to reduce or remove the native chromium oxide layer.

另一實施例係關於一種製造用於固態氧化物燃料電池之互連體之方法,其包括提供包含Cr粉末與Fe粉末之壓坯混合物的互連體,用 包含陶瓷粉末之材料層塗覆互連體之空氣側,及在相同燒結步驟中燒結Cr粉末與Fe粉末之生坯混合物及陶瓷粉末層。 Another embodiment is directed to a method of making an interconnect for a solid oxide fuel cell, comprising providing an interconnect comprising a compact mixture of Cr powder and Fe powder, The material layer comprising the ceramic powder coats the air side of the interconnect and the green mixture of the Cr powder and the Fe powder and the ceramic powder layer are sintered in the same sintering step.

另一實施例係關於一種製造用於固態氧化物燃料電池之互連體之方法,其包括提供包含Cr及Fe之互連體,用包含MnO、CoO、Mn金屬、Co金屬及其組合中之一或多者的氧化錳鈷前驅物塗覆互連體,及燒結氧化錳鈷前驅物以形成氧化錳鈷尖晶石塗層。 Another embodiment is directed to a method of fabricating an interconnect for a solid oxide fuel cell, comprising providing an interconnect comprising Cr and Fe, comprising MnO, CoO, Mn metal, Co metal, and combinations thereof One or more of the manganese oxide cobalt precursors coat the interconnect and sinter the manganese oxide cobalt precursor to form a manganese oxide cobalt spinel coating.

另一實施例係關於一種用於固態氧化物燃料電池之經塗覆互連體,其包括包含鐵及鉻之互連體基板,及在互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層。氧化錳鈷尖晶石塗層包含在最終組成Co3O4與Mn3O4之間的(Mn,Co)3O4家族之組成,其中Mn;Co之原子比5:1。 Another embodiment relates to a coated interconnect for a solid oxide fuel cell comprising an interconnect substrate comprising iron and chromium, and a manganese oxide cobalt tip formed on the air side of the interconnect substrate Spar coating. The manganese oxide cobalt spinel coating comprises a composition of the (Mn,Co) 3 O 4 family between the final composition of Co 3 O 4 and Mn 3 O 4 , wherein Mn; atomic ratio of Co 5:1.

另一實施例係關於一種用於固態氧化物燃料電池之經塗覆互連體,其包括包含鐵及鉻之互連體基板,及在互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層。氧化錳鈷尖晶石塗層另外包含鐵、鈦、釩、鉻、鋁、錳、鈣、矽及/或鈰中之至少一者。 Another embodiment relates to a coated interconnect for a solid oxide fuel cell comprising an interconnect substrate comprising iron and chromium, and a manganese oxide cobalt tip formed on the air side of the interconnect substrate Spar coating. The manganese oxide cobalt spinel coating additionally comprises at least one of iron, titanium, vanadium, chromium, aluminum, manganese, calcium, strontium, and/or cerium.

另一實施例係關於一種用於固態氧化物燃料電池之經塗覆互連體,其包括包含鐵及鉻之互連體基板、在互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,及在互連體基板與氧化錳鈷尖晶石塗層之間的障壁層。 Another embodiment relates to a coated interconnect for a solid oxide fuel cell comprising an interconnect substrate comprising iron and chromium, manganese oxide cobalt spinel formed on the air side of the interconnect substrate A stone coating, and a barrier layer between the interconnect substrate and the manganese oxide cobalt spinel coating.

另一實施例係關於一種製造用於固態氧化物燃料電池之經塗覆互連體之方法,其包括在互連體上形成反應層及氧化錳鈷尖晶石層,及使摻雜劑自反應層擴散至氧化錳鈷尖晶石層中。 Another embodiment is directed to a method of fabricating a coated interconnect for a solid oxide fuel cell, comprising forming a reactive layer and a cobalt manganese cobalt spinel layer on the interconnect, and allowing the dopant to self The reaction layer diffuses into the manganese oxide cobalt spinel layer.

另一實施例係關於一種製造用於固態氧化物燃料電池之經塗覆互連體之方法,其包括形成包含Fe、Cr及摻雜劑之互連體,用氧化錳鈷尖晶石層塗覆互連體,及使摻雜劑自互連體擴散至氧化錳鈷尖晶石層中。 Another embodiment is directed to a method of fabricating a coated interconnect for a solid oxide fuel cell, comprising forming an interconnect comprising Fe, Cr, and a dopant, coated with a layer of manganese oxide cobalt spinel The interconnect is covered and the dopant is diffused from the interconnect into the manganese oxide cobalt spinel layer.

另一實施例係關於一種製造用於固態氧化物燃料電池之經塗覆互連體之方法,其包括提供包含鉻鐵合金之互連體,自互連體之空氣側而非燃料側移除第一天然氧化鉻,用氧化錳鈷尖晶石層塗覆互連體之空氣側,及在互連體之燃料側上形成第二天然氧化鉻,及自互連體之燃料側移除第二天然氧化物。 Another embodiment is directed to a method of fabricating a coated interconnect for a solid oxide fuel cell, comprising providing an interconnect comprising a ferrochrome alloy, removing the air side rather than the fuel side of the interconnect a natural chromium oxide, coating the air side of the interconnect with a layer of manganese oxide cobalt spinel, and forming a second natural chromium oxide on the fuel side of the interconnect and removing the second from the fuel side of the interconnect Natural oxides.

另一實施例係關於一種製造用於固態氧化物燃料電池之互連體之方法,其包括提供包含Cr及Fe之互連體,及使用空氣電漿噴射製程以陶瓷層塗覆互連體。陶瓷層包括燒結助劑。 Another embodiment is directed to a method of fabricating an interconnect for a solid oxide fuel cell, comprising providing an interconnect comprising Cr and Fe, and coating the interconnect with a ceramic layer using an air plasma spray process. The ceramic layer includes a sintering aid.

另一實施例係關於一種製造用於固態氧化物燃料電池堆疊之互連體之方法,其包括在模穴中提供包含Cr及Fe之第一金屬粉末粒子,在模穴中提供包含Sr、La、Mn及Co氧化物中之一或多者的第二粉末粒子,及壓實第一粉末粒子及第二粉末粒子以形成互連體。 Another embodiment is directed to a method of fabricating an interconnect for a stack of solid oxide fuel cells, comprising providing a first metal powder particle comprising Cr and Fe in a cavity, and providing Sr, La in a cavity a second powder particle of one or more of Mn and Co oxides, and compacting the first powder particles and the second powder particles to form an interconnect.

另一實施例係關於一種用於固態氧化物燃料電池之經塗覆互連體,其包括包含鐵及鉻之互連體基板;在互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,其中該氧化錳鈷尖晶石塗層另外包含鎳及銅中之至少一者;位於氧化錳鈷尖晶石塗層與互連體基板之空氣側之間的含有錳及鉻之氧化物中間尖晶石層;及位於氧化錳鈷尖晶石塗層上之鈣鈦礦層。 Another embodiment relates to a coated interconnect for a solid oxide fuel cell comprising an interconnect substrate comprising iron and chromium; manganese oxide cobalt spinel formed on the air side of the interconnect substrate a stone coating, wherein the manganese oxide cobalt spinel coating further comprises at least one of nickel and copper; and manganese and chromium between the manganese oxide cobalt spinel coating and the air side of the interconnect substrate An oxide intermediate spinel layer; and a perovskite layer on the manganese oxide cobalt spinel coating.

1‧‧‧電池 1‧‧‧Battery

3‧‧‧陽極電極/陽極/燃料電極 3‧‧‧Anode electrode/anode/fuel electrode

5‧‧‧固態氧化物電解質 5‧‧‧Solid oxide electrolyte

7‧‧‧陰極電極/陰極/空氣電極 7‧‧‧Cathode/Cathode/Air Electrode

8‧‧‧氣流通路或通道/燃料通道/空氣通道 8‧‧‧Air passage or passage/fuel passage/air passage

9‧‧‧互連體 9‧‧‧Interconnects

10‧‧‧翼肋 10‧‧‧ ribs

11‧‧‧LSM塗層/金屬氧化物層/層 11‧‧‧LSM Coating/Metal Oxide Layer/Layer

13‧‧‧互連體之一側 13‧‧‧One side of the interconnect

14‧‧‧互連體之對側 14‧‧‧ opposite sides of the interconnect

15‧‧‧密封部分/環形密封部分/玻璃密封部分 15‧‧‧ Sealing part / ring seal part / glass seal part

16A‧‧‧燃料入口開口/孔/升流管開口/開口 16A‧‧‧Fuel inlet opening/hole/lift tube opening/opening

16B‧‧‧燃料出口開口/孔/升流管開口/開口 16B‧‧‧Fuel outlet opening/hole/lift tube opening/opening

17‧‧‧平坦區/燃料分配充氣部/區 17‧‧‧ Flat Zone/Fuel Dispensing Inflator/District

18‧‧‧窗形密封部分 18‧‧‧Window seal

19‧‧‧條形密封部分/密封部分/玻璃密封部分 19‧‧‧Strip seal/seal/glass seal

25‧‧‧綠色Cr2O3氧化物薄層/Cr2O3氧化物層/氧化物層/層 25‧‧‧Green Cr 2 O 3 oxide thin layer / Cr 2 O 3 oxide layer / oxide layer / layer

36‧‧‧燃料入口升流管 36‧‧‧Fuel inlet riser

100‧‧‧互連體 100‧‧‧Interconnects

101‧‧‧中間氧化物層/中間層/層/中間尖晶石層/界面尖晶石層 101‧‧‧Intermediate oxide layer/intermediate layer/layer/intermediate spinel layer/interface spinel layer

102‧‧‧MCO尖晶石層/MCO尖晶石塗層/MCO塗層/塗層 102‧‧‧MCO spinel layer/MCO spinel coating/MCO coating/coating

103‧‧‧裂縫/微裂縫 103‧‧‧ crack / micro crack

104‧‧‧LSM互連體塗層/LSM IC塗層/LSM塗層/鈣鈦礦層/第二鈣鈦礦障壁層/層/複合塗層 104‧‧‧LSM Interconnect Coating/LSM IC Coating/LSM Coating/Perovskite Layer/Second Perovskite Barrier Layer/Layer/Composite Coating

105‧‧‧尖晶石相/鉻晶體 105‧‧‧ Spinel phase/chromium crystal

110‧‧‧複合LSM/MCO塗層/複合塗層 110‧‧‧Composite LSM/MCO coating/composite coating

112‧‧‧亮相/LSM相矩陣/鈣鈦礦相 112‧‧‧Debut/LSM phase matrix/perovskite phase

114‧‧‧暗相/尖晶石相/板狀或扁平狀結構 114‧‧‧Dark phase/spinel phase/plate or flat structure

200‧‧‧模穴 200‧‧‧ cavity

202‧‧‧Cr/Fe粉末/粉末 202‧‧‧Cr/Fe powder/powder

204‧‧‧塗層材料粉末/粉末/塗層粉末/塗層材料 204‧‧‧Coating material powder/powder/coated powder/coating material

206‧‧‧第二柱腳 206‧‧‧Second column foot

208‧‧‧衝頭 208‧‧‧ punch

圖1A為展示基於LSM之陰極之孔隙內部之Mn-Cr尖晶石相的顯微照片。 Figure 1A is a photomicrograph showing the Mn-Cr spinel phase inside the pores of a LSM based cathode.

圖1B為展示藉由空氣電漿噴射沈積之LSM互連體塗層之裂縫中含有Cr之相的顯微照片。SOFC堆疊在850℃下工作2000小時。 Figure 1B is a photomicrograph showing the phase of Cr in the crack of the LSM interconnect coating deposited by air plasma spray. The SOFC stack was operated at 850 ° C for 2000 hours.

圖2A為具有尖晶石MCO塗層及下層界面氧化物之互連體之實施例的側視圖解說明。圖2B說明根據一個實施例之沈積態APSMn1.5Co1.5O4塗層的顯微照片。 2A is a side view illustration of an embodiment of an interconnect having a spinel MCO coating and a lower interfacial oxide. 2B illustrates a photomicrograph of a as-deposited APSMn 1.5 Co 1.5 O 4 coating, in accordance with one embodiment.

圖2C說明在乾空氣中測試之SOFC堆疊之電壓對於時間之曲線,其比較具有LSM之重複元件與具有Mn1.5Co1.5O4尖晶石互連體塗層之重複元件之降級速率。 Figure 2C illustrates the voltage vs. time curve of a SOFC stack tested in dry air comparing the rate of degradation of repeating elements with LSM and repeating elements with Mn 1.5 Co 1.5 O 4 spinel interconnect coating.

圖2D說明在濕空氣中測試之SOFC堆疊之電壓對於時間之曲線,其比較具有LSM、Mn1.5Co1.5O4尖晶石及雙層LSM-Mn1.5Co1.5O4互連體塗層之重複元件之降級速率。 Figure 2D illustrates the voltage versus time curve for a SOFC stack tested in wet air comparing duplicates of LSM, Mn 1.5 Co 1.5 O 4 spinel and double layer LSM-Mn 1.5 Co 1.5 O 4 interconnect coatings The rate of degradation of the component.

圖2E及圖2F分別說明SOFC堆疊工作1000小時後,Mn1.5Co1.5O4尖晶石塗層及LSM鈣鈦礦塗層之顯微照片。 2E and 2F respectively show photomicrographs of Mn 1.5 Co 1.5 O 4 spinel coating and LSM perovskite coating after 1000 hours of SOFC stacking operation.

圖3A-3C為根據一個實施例製造互連體之方法中之步驟的圖解說明。 3A-3C are illustrations of steps in a method of fabricating an interconnect in accordance with one embodiment.

圖4為根據一個實施例製造互連體之方法的另一圖解說明。 4 is another illustration of a method of fabricating an interconnect in accordance with one embodiment.

圖5為說明經摻雜塗覆及未經摻雜塗覆之互連體之面比電阻(ASR)隨時間增加之曲線。 Figure 5 is a graph showing the increase in surface specific resistance (ASR) over time for doped and undoped interconnects.

圖6A為具有雙層複合塗層之互連體之一個實施例的側視圖解說明。圖6B為固態氧化物燃料電池堆疊之一個實施例的側視圖解說明,該堆疊包括在翼肋上具有雙層塗層之互連體。 Figure 6A is a side elevational illustration of one embodiment of an interconnect having a two-layer composite coating. 6B is a side view illustration of one embodiment of a solid oxide fuel cell stack including interconnects having a double layer coating on the ribs.

圖7A-7C為說明以下之圖解說明:(A)根據一個實施例之互連體之空氣側,(B)互連體之空氣側之密封部分之近視圖,及(C)互連體之燃料側。 Figures 7A-7C are diagrams illustrating the following: (A) an air side of an interconnect according to one embodiment, (B) a close-up view of the air-side sealing portion of the interconnect, and (C) an interconnect Fuel side.

圖8為說明在還原燒結步驟之後互連體之燃料側(未經塗覆側)上之氧化鉻的顯微照片。 Figure 8 is a photomicrograph illustrating chromium oxide on the fuel side (uncoated side) of the interconnect after the reduction sintering step.

圖9為SOFC堆疊之一部分的顯微照片,其說明塗層/IC界面處因燃料穿過多孔IC擴散引起之MCO塗層(條形密封區域中)之還原。 Figure 9 is a photomicrograph of a portion of a SOFC stack illustrating the reduction of the MCO coating (in the strip seal region) at the coating/IC interface due to diffusion of fuel through the porous IC.

圖10為說明Mn3O4-Co3O4系統之相圖。 Figure 10 is a phase diagram illustrating the Mn 3 O 4 -Co 3 O 4 system.

圖11為習知燃料電池堆疊中之燃料入口升流管之圖解說明。 Figure 11 is a graphical illustration of a fuel inlet riser tube in a conventional fuel cell stack.

圖12為說明電解質腐蝕理論之SOFC的圖解說明。 Figure 12 is a graphical illustration of a SOFC illustrating the theory of electrolyte corrosion.

圖13為說明具有複合LSM-MCO塗層之互連體之一個實施例的顯微照片。 Figure 13 is a photomicrograph illustrating one embodiment of an interconnect having a composite LSM-MCO coating.

為限制鉻離子(例如Cr3+)穿過互連體塗層材料擴散至SOFC陰極,可選擇具有極少陽離子空位且因此具有低鉻擴散率之材料。具有低陽離子擴散率之一系列材料在鈣鈦礦家族中,諸如氧化鑭鍶,例如La1-xSrxMnO3(LSM),其中0.1x0.3,諸如0.1x0.2。此等材料已用作互連體塗層材料。在LSM之情況下,材料具有高電子傳導率而具有低陰離子及陽離子擴散。 To limit the diffusion of chromium ions (e.g., Cr3 + ) through the interconnect coating material to the SOFC cathode, materials having very few cationic vacancies and therefore low chromium diffusivity can be selected. A series of materials with low cation diffusivity in the perovskite family, such as cerium oxide, such as La 1-x Sr x MnO 3 (LSM), of which 0.1 x 0.3, such as 0.1 x 0.2. These materials have been used as interconnect coating materials. In the case of LSM, the material has high electron conductivity with low anion and cation diffusion.

互連體塗層之第二作用在於抑制互連體表面上形成天然氧化物。當氧氣與互連體合金中之鉻反應形成相對高電阻之Cr2O3層時,形成天然氧化物。若互連體塗層可抑制氧氣及水蒸氣自空氣輸運至互連體表面,則可降低氧化物生長動力學。 The second function of the interconnect coating is to inhibit the formation of natural oxides on the surface of the interconnect. A natural oxide is formed when oxygen reacts with chromium in the interconnect alloy to form a relatively high resistance Cr 2 O 3 layer. Oxide growth kinetics can be reduced if the interconnect coating inhibits the transport of oxygen and water vapor from the air to the interconnect surface.

與鉻類似,氧(例如O2-離子)可經由固態擴散或藉由氣體穿過塗層中之孔隙及裂縫輸運來穿過塗層輸運。此機制亦可用於空運水蒸氣,其為Cr蒸發及可能發生之氧化物生長的促進劑。如上文所論述,在濕空氣環境中,鉻以氣體分子CrO2(OH)2形式自Cr2O3表面蒸發,隨後可穿過塗層中之缺陷(諸如孔隙及裂縫)擴散。在氧氣及水蒸氣之情況下,視缺陷或孔隙之尺寸而定,分子藉由體擴散或藉由努森擴散(Knudsen diffusion)過程而穿過缺陷擴散。 Similar to chromium, oxygen (e.g., O2 - ion) can be transported through the coating via solid state diffusion or by gas transport through pores and cracks in the coating. This mechanism can also be used to transport water vapor by air, which is an accelerator for the evaporation of Cr and the possible growth of oxides. As discussed above, in a humid air environment, chromium evaporates from the surface of Cr 2 O 3 in the form of gas molecules CrO 2 (OH) 2 and can subsequently diffuse through defects (such as pores and cracks) in the coating. In the case of oxygen and water vapor, depending on the size of the defect or pore, the molecule diffuses through the defect by bulk diffusion or by a Knudsen diffusion process.

若CrO2(OH)2分子接觸塗層表面,則其可反應形成晶體,接著再蒸發以繼續擴散至氣流中(裂縫或孔隙中)。實驗已顯示CrO2(OH)2與LSM互連體塗層104反應形成尖晶石相105,例如氧化錳鉻(Mn,Cr)3O4,如圖1A所示。儘管CrO2(OH)2與LSM反應形成尖晶石相,但未阻止鉻物質再蒸發且沿著裂縫或缺陷進一步擴散。已觀測到鉻沿LSM IC塗層中之裂縫之長度輸運,該等LSM IC塗層已在燃料電池中 工作較長時間。圖1B展示在SOFC堆疊中在800-850℃且陰極側為環境空氣之正常條件下工作2000小時之LSM IC塗層104中之裂縫103中的鉻晶體105。含有鉻之晶體形成為由蒸氣相-固相轉換形成者之特徵。遠離裂縫之主體LSM塗層之SEM及EDS分析未顯示鉻的存在。因此,可推斷自CrF互連體之大部分鉻輸運穿過LSM IC塗層,此係經由氣相穿過及沿LSM塗層中之微裂縫及大裂縫、粒子內間隔及孔隙輸運。 If the CrO 2 (OH) 2 molecule contacts the surface of the coating, it can react to form crystals, which are then evaporated to continue to diffuse into the gas stream (in cracks or pores). Experiments have shown that CrO 2 (OH) 2 reacts with the LSM interconnect coating 104 to form a spinel phase 105, such as manganese oxide chromium (Mn, Cr) 3 O 4 , as shown in Figure 1A. Although CrO 2 (OH) 2 reacts with LSM to form a spinel phase, it does not prevent the chromium species from re-evaporating and further spreading along cracks or defects. It has been observed that chromium is transported along the length of the crack in the LSM IC coating, which has been operating in the fuel cell for a longer period of time. 1B shows the chromium crystals 105 in the cracks 103 in the LSM IC coating 104 operating at 800-850 ° C in the SOFC stack at 2000-850 ° C under normal conditions for ambient air on the cathode side. The crystal containing chromium is formed as a feature formed by vapor phase-solid phase conversion. SEM and EDS analysis of the LSM coating away from the crack did not show the presence of chromium. Thus, it can be inferred that most of the chromium transport from the CrF interconnect passes through the LSM IC coating, which is transported through the vapor phase and along the microcracks and large cracks in the LSM coating, intraparticle spacing, and pore transport.

在固態輸運之情況下,選擇具有極少氧化物離子空位且因此具有低氧化物離子傳導率之材料。舉例而言,鈣鈦礦LSM之獨特之處在於其展現低陽離子及陰離子傳導率而具有高電子傳導率,使其成為極佳塗層材料。諸如La1-xSrxFeO3-d、La1-xSrxCoO3-d及La1-xSrxCo1-yFeyO3-d之其他鈣鈦礦均展現高電子傳導性及低陽離子傳導性(低鉻擴散速率)。然而,此等特定材料亦展現高氧化物離子傳導率,且因此在保護互連體免於氧化(氧化物生長)方面不太有效。 In the case of solid state transport, materials having very few oxide ion vacancies and therefore low oxide ionic conductivity are selected. For example, perovskite LSM is unique in that it exhibits low cation and anion conductivity with high electron conductivity, making it an excellent coating material. Other perovskites such as La 1-x Sr x FeO 3-d , La 1-x Sr x CoO 3-d and La 1-x Sr x Co 1-y Fe y O 3-d exhibit high electron conductivity And low cation conductivity (low chromium diffusion rate). However, such specific materials also exhibit high oxide ionic conductivity and are therefore less effective in protecting the interconnect from oxidation (oxide growth).

可用於互連體塗層之第二材料家族為氧化錳鈷(MCO)尖晶石材料。圖2A說明含有鉻之互連體100之空氣側上之MCO尖晶石層102。MCO尖晶石層102可具有下式:(M1,M2)3O4±0.1,其中M1佔至少70原子%,諸如70-100原子%錳,且M2佔至少70原子%,諸如70-100原子%鈷。M1及/或M2可含有其他元素,如下文關於後續實施例所描述。MCO尖晶石涵蓋M12M21O4±0.1至M22M11O4±0.1之組成範圍。 A second family of materials that can be used for interconnect coatings are manganese oxide cobalt (MCO) spinel materials. 2A illustrates a MCO spinel layer 102 on the air side of a chromium containing interconnect 100. The MCO spinel layer 102 can have the formula: (M1, M2) 3 O 4 ± 0.1 , wherein M1 accounts for at least 70 atom%, such as 70-100 atom% manganese, and M2 accounts for at least 70 atom%, such as 70-100. Atomic % cobalt. M1 and/or M2 may contain other elements as described below with respect to subsequent embodiments. The MCO spinel covers the composition range of M1 2 M2 1 O 4±0.1 to M2 2 M1 1 O 4±0.1 .

在一個實施例中,M1由Mn(及不可避免之雜質(若存在))組成且M2由Co(及不可避免之雜質(若存在))組成,且尖晶石為化學計量的(亦即金屬與氧之原子比為3:4)。 In one embodiment, M1 consists of Mn (and unavoidable impurities (if present) and M2 consists of Co (and unavoidable impurities (if present)) and the spinel is stoichiometric (ie metal) The atomic ratio to oxygen is 3:4).

在一個實施例中,MCO尖晶石涵蓋Mn2CoO4至Co2MnO4之組成範圍。亦即,可使用具有組成Mn2-xCo1+xO4(0x1)或寫作z(Mn3O4)+(1-z)(Co3O4)(其中(1/3z2/3))或寫作(Mn,Co)3O4之任何尖晶石,諸如Mn1.5Co1.5O4、MnCo2O4或Mn2CoO4。許多含有過渡金屬之尖晶石展 現良好電子傳導率及相當低的陰離子及陽離子擴散率,且因此為適合之塗層材料。 In one embodiment, the MCO spinel encompasses a compositional range of Mn 2 CoO 4 to Co 2 MnO 4 . That is, a composition having Mn 2-x Co 1+x O 4 (0) can be used. x 1) or write z(Mn 3 O 4 )+(1-z)(Co 3 O 4 ) (of which (1/3 z 2/3)) or write any spinel of (Mn, Co) 3 O 4 , such as Mn 1.5 Co 1.5 O 4 , MnCo 2 O 4 or Mn 2 CoO 4 . Many transition metal-containing spinels exhibit good electronic conductivity and relatively low anion and cation diffusivity, and are therefore suitable coating materials.

尖晶石組成較佳含有至少25原子%氧化鈷,諸如25原子%至60原子%氧化鈷。其另一表達方式為尖晶石中Co與Mn之原子比較佳為至少1:3,諸如1:3至6:4,較佳1:1。因此,較佳但非限制性之尖晶石組成為Mn1.5Co1.5O4,其包含50原子%氧化錳及50原子%氧化鈷。MCO塗層102可具有任何適合厚度,諸如20至100微米,較佳大於20微米,諸如25至40微米。 The spinel composition preferably contains at least 25 atomic percent cobalt oxide, such as 25 atomic percent to 60 atomic percent cobalt oxide. Another way of expression is that the atoms of Co and Mn in the spinel are preferably at least 1:3, such as 1:3 to 6:4, preferably 1:1. Thus, a preferred, but non-limiting, spinel composition is Mn 1.5 Co 1.5 O 4 which comprises 50 atomic percent manganese oxide and 50 atomic percent cobalt oxide. The MCO coating 102 can have any suitable thickness, such as from 20 to 100 microns, preferably greater than 20 microns, such as from 25 to 40 microns.

可使用任何適合之含鉻互連體基板100。基板100較佳為基於鉻之合金,諸如含有以下之合金:至少70重量%鉻,例如92重量%至97重量%鉻,3重量%至7重量%鐵,及視情況存在之0至1重量%釔、氧化釔、其他合金元素及/或不可避免之雜質。基板100較佳包含所謂的CrF合金(例如95重量% Cr及5重量% Fe)。合金之表面上及/或其整個體積可經氧化,使得基板在其表面上含有氧化鉻及/或氧化鐵層或在其體積中含有氧化物區域。然而,可替代地使用其他適合基板100材料,諸如nicrofer、Inconel 600或X750、Crofer 22 APU或其他含鉻不鏽鋼。 Any suitable chromium-containing interconnect substrate 100 can be used. The substrate 100 is preferably a chromium-based alloy such as an alloy containing at least 70% by weight chromium, such as 92% to 97% by weight chromium, 3% to 7% by weight iron, and optionally 0 to 1 weight. %钇, yttria, other alloying elements and/or unavoidable impurities. The substrate 100 preferably contains a so-called CrF alloy (for example, 95% by weight of Cr and 5% by weight of Fe). The surface of the alloy and/or its entire volume may be oxidized such that the substrate contains a layer of chromium oxide and/or iron oxide on its surface or contains an oxide region in its volume. However, other suitable substrate 100 materials may alternatively be used, such as nicrofer, Inconel 600 or X750, Crofer 22 APU or other chromium-containing stainless steel.

如圖2A所示,互連體在基板100與MCO尖晶石塗層102之間可含有中間(亦即界面)氧化物層101。中間氧化物層101在CrF互連體基板100上可包含天然氧化鉻層及/或中間氧化物層101可包含含有Cr、Mn、O及視情況存在之Co的中間尖晶石層。舉例而言,中間氧化物層101可包含在SOFC堆疊高溫工作或堆疊退火以使密封部分熔融或使金屬陶瓷SOFC陽極電極中之鎳氧化物還原為鎳期間藉由使MCO塗層102與含鉻基板100反應形成之(Mn,Cr,Co)3O4尖晶石層,如下文所描述。中間層101若存在,則可具有5微米或小於5微米,諸如1至5微米之厚度。 As shown in FIG. 2A, the interconnect may contain an intermediate (ie, interfacial) oxide layer 101 between the substrate 100 and the MCO spinel coating 102. The intermediate oxide layer 101 may comprise a native chromium oxide layer on the CrF interconnect substrate 100 and/or the intermediate oxide layer 101 may comprise an intermediate spinel layer comprising Cr, Mn, O and optionally Co. For example, the intermediate oxide layer 101 can include the MCO coating 102 and the chromium-containing layer during high temperature operation or stack annealing of the SOFC stack to melt the sealing portion or reduce the nickel oxide in the cermet SOFC anode electrode to nickel. The substrate 100 reacts to form a (Mn, Cr, Co) 3 O 4 spinel layer, as described below. The intermediate layer 101, if present, can have a thickness of 5 microns or less, such as from 1 to 5 microns.

使用任何適合沈積方法使MCO塗層102沈積於互連體基板100上。較佳藉由電漿噴射製程,諸如空氣電漿噴射(APS)製程沈積塗層102。在電漿噴射製程中,將原料粉末引入由電漿源(諸如電漿炬)發出之電漿射流或噴霧中。原料粉末在電漿射流(其中溫度超過8,000K)中熔融且向互連體基板100推進。在此,熔融之液滴變平,快速凝固且形成MCO尖晶石塗層102。原料粉末較佳包含組成與塗層102相同之MCO粉末。然而,可替代地使用金屬(例如Mn、Co或Mn-Co合金)粉末且隨後氧化形成MCO尖晶石塗層102。 The MCO coating 102 is deposited on the interconnect substrate 100 using any suitable deposition method. The coating 102 is preferably deposited by a plasma jet process, such as an air plasma jet (APS) process. In the plasma jet process, the raw material powder is introduced into a plasma jet or spray from a plasma source such as a plasma torch. The raw material powder is melted in the plasma jet (where the temperature exceeds 8,000 K) and is advanced to the interconnect substrate 100. Here, the molten droplets flatten, rapidly solidify and form the MCO spinel coating 102. The raw material powder preferably comprises the same MCO powder as the coating 102. However, a metal (eg, Mn, Co or Mn-Co alloy) powder may alternatively be used and subsequently oxidized to form the MCO spinel coating 102.

電漿可由直流電產生(例如電弧DC電漿),或由感應(例如藉由穿過感應線圈中心提供電漿射流,同時RF交流電通過線圈)產生。電漿可包含氣體穩定之電漿(例如氬氣、氦氣等)。電漿噴射較佳為在環境空氣中進行之空氣電漿噴射(APS)。或者,可使用在密閉室中進行之受控氛圍電漿噴射(CAPS)方法,該密閉室填充有惰性氣體或抽真空。 The plasma may be generated by direct current (e.g., arc DC plasma) or by induction (e.g., by providing a plasma jet through the center of the induction coil while RF alternating current is passed through the coil). The plasma may comprise a gas stable plasma (e.g., argon, helium, etc.). The plasma jet is preferably an air plasma jet (APS) performed in ambient air. Alternatively, a controlled atmosphere plasma jet (CAPS) process performed in a closed chamber filled with an inert gas or evacuated may be used.

較佳在塗層沈積之前自互連體基板100移除天然氧化物層。舉例而言,在MCO塗層102沈積之前可藉由研磨、拋光、噴砂處理、蝕刻或其他適合方法自CrF基板100移除天然氧化鉻層,使得天然氧化鉻在MCO塗層沈積之前實質上不會重新形成。圖2B為說明移除天然氧化鉻層之後互連體100上之沈積態Mn1.5Co1.5O4塗層102的顯微照片。Mn1.5Co1.5O4塗層102展現良好密度以及一些孔隙及微裂縫。 The native oxide layer is preferably removed from the interconnect substrate 100 prior to deposition of the coating. For example, the native chromium oxide layer can be removed from the CrF substrate 100 by grinding, polishing, sandblasting, etching, or other suitable method prior to deposition of the MCO coating 102 such that the native chromium oxide is substantially absent prior to deposition of the MCO coating. Will be re-formed. 2B is a photomicrograph illustrating a deposited state Mn 1.5 Co 1.5 O 4 coating 102 on interconnect 100 after removal of the native chromium oxide layer. The Mn 1.5 Co 1.5 O 4 coating 102 exhibits good density as well as some porosity and micro-cracks.

測試含有一些塗覆有Mn1.5Co1.5O4塗層之互連體及一些具有LSM塗層之互連體的平坦SOFC堆疊,以獲得塗層之頭對頭比較(head-to-head comparison)。圖2C及圖2D中說明此等測試之結果。圖2C及圖2D為含有經Mn1.5Co1.5O4塗覆之互連體100與經LSM塗覆之互連體100之兩個不同SOFC堆疊之電壓對於時間之曲線。圖2C中所示之結果為乾空氣中測試之堆疊,而圖2D中所示之結果為濕空氣中測試之堆疊。 在兩種情況下,具有Mn1.5Co1.5O4塗層之重複層之降級速率顯著低於具有LSM塗層之重複層。 A flat SOFC stack containing some interconnects coated with a Mn 1.5 Co 1.5 O 4 coating and some interconnects with LSM coatings was tested to obtain a head-to-head comparison of the coating. The results of these tests are illustrated in Figures 2C and 2D. 2C and 2D are voltage versus time curves for two different SOFC stacks comprising interconnects 100 coated with Mn 1.5 Co 1.5 O 4 and LSM coated interconnects 100. The results shown in Figure 2C are the stacks tested in dry air, while the results shown in Figure 2D are the stacks tested in wet air. In both cases, the rate of degradation of the repeating layer with the Mn 1.5 Co 1.5 O 4 coating was significantly lower than that of the repeating layer with the LSM coating.

在乾空氣測試之情況下(圖2C),Mn1.5Co1.5O4塗層相對於LSM塗層展現較低ASR降級。摻雜Mn及Co之Cr尖晶石層101之較低電阻率使得經Mn1.5Co1.5O4塗覆之互連體相對於經LSM塗覆之互連體(及其相鄰SOFC陰極電極)具有較低互連體及相鄰SOFC陰極電極降級。此中間含鉻氧化物層之電阻視中間氧化物層之厚度及氧化物層之電導率兩者而定。塗層以兩種方式影響氧化物層之電阻:i)在既定時間降低氧化物層之生長速率且因此減小其厚度,及ii)與氧化物層反應產生具有不同組成及傳導率之二次氧化物相。 In the case of a dry air test (Fig. 2C), the Mn 1.5 Co 1.5 O 4 coating exhibited a lower ASR degradation relative to the LSM coating. The lower resistivity of the Cr spinel layer 101 doped with Mn and Co such that the interconnect coated with Mn 1.5 Co 1.5 O 4 is relative to the LSM coated interconnect (and its adjacent SOFC cathode electrode) With lower interconnects and adjacent SOFC cathode electrodes degraded. The electrical resistance of the intermediate chromium-containing oxide layer depends on both the thickness of the intermediate oxide layer and the electrical conductivity of the oxide layer. The coating affects the resistance of the oxide layer in two ways: i) reducing the growth rate of the oxide layer and thus reducing its thickness at a given time, and ii) reacting with the oxide layer to produce a second composition having a different composition and conductivity. Oxide phase.

MCO塗層102用作抑制氧氣自氣流向互連體基板100上之中間氧化物層101擴散之障壁層。此繼而降低天然氧化鉻層及/或中間尖晶石層101之生長速率。有效減少氧氣自氣流輸運至天然氧化物之塗層包括展現低氧擴散率(氧化物離子之固態擴散)之材料,諸如尖晶石相。良好保護塗層之物理特徵包括具有高密度、低連通孔隙率、無微裂縫及完全覆蓋互連體。 The MCO coating 102 acts as a barrier layer that inhibits the diffusion of oxygen from the gas stream to the intermediate oxide layer 101 on the interconnect substrate 100. This in turn reduces the growth rate of the native chromium oxide layer and/or the intermediate spinel layer 101. Coatings that effectively reduce the transport of oxygen from the gas stream to the natural oxide include materials that exhibit low oxygen diffusivity (solid diffusion of oxide ions), such as the spinel phase. The physical characteristics of a good protective coating include high density, low connectivity porosity, no micro cracks, and complete coverage of the interconnect.

塗層102亦藉由相互擴散及形成二次相而影響天然氧化物之電阻。未經塗覆之CrF互連體上形成之氧化物層為天然氧化物Cr2O3。此氧化物在850℃下展現約0.01 S/cm之傳導率。然而,對於互連體上之塗層,在天然Cr2O3氧化物與塗層材料之間發生反應。此反應會形成反應區氧化物層,其傳導率不同於Cr2O3天然氧化物或塗層材料。 The coating 102 also affects the electrical resistance of the natural oxide by interdiffusion and formation of a secondary phase. The oxide layer formed on the uncoated CrF interconnect is a natural oxide Cr 2 O 3 . This oxide exhibited a conductivity of about 0.01 S/cm at 850 °C. However, for the coating on the interconnect, a reaction occurs between the natural Cr 2 O 3 oxide and the coating material. This reaction forms a reaction zone oxide layer with a conductivity different from that of the Cr 2 O 3 natural oxide or coating material.

在塗覆有LSM之CrF互連體之情況下,所形成之反應區氧化物層在尖晶石家族(Mn,Cr)3O4中。(Mn,Cr)3O4尖晶石之傳導率視組成而定,所提供之實例如下:在800℃下,MnCr2O4 0.003 S/cm、Mn1.2Cr1.8O4 0.02 S/cm及Mn1.5Cr1.5O4 0.07 S/cm。 In the case of a CrF interconnect coated with LSM, the resulting reaction zone oxide layer is in the spinel family (Mn, Cr) 3 O 4 . The conductivity of (Mn,Cr) 3 O 4 spinel depends on the composition, and the examples provided are as follows: at 800 ° C, MnCr 2 O 4 0.003 S/cm, Mn 1.2 Cr 1.8 O 4 0.02 S/cm and Mn 1.5 Cr 1.5 O 4 0.07 S/cm.

一般而言,(Mn,Cr)3O4尖晶石之傳導率略優於天然Cr2O3。然 而,反應區氧化物之厚度相比天然氧化物可較厚。因此,總歐姆電阻可較大。對於CrF材料上之Mn1.5Co1.5O4尖晶石塗層,反應區中間氧化物層101包括(Mn,Cr,Co)3O4尖晶石相。層101可包含60至100體積%(Mn,Cr,Co)3O4尖晶石相,其餘(若存在)為氧化鉻或其他相。尖晶石之含鈷(Mn,Cr,Co)3O4家族之傳導率顯著高於以下實例所提供之(Mn,Cr)3O4尖晶石之傳導率:MnCo2O4:36 S/cm,CoCr2O4:7 S/cm,及CoMn2O4:6 S/cm。以CrF上之Mn1.5Co1.5O4尖晶石塗層(其較佳具有至少20 S/cm,諸如至少38 S/cm之電導率)形成之反應區氧化物的較高傳導率使得由此界面引起之歐姆電阻損失較低且因此使得SOFC效能隨時間之降級較低。 In general, the conductivity of (Mn,Cr) 3 O 4 spinel is slightly better than that of natural Cr 2 O 3 . However, the thickness of the oxide in the reaction zone can be thicker than the native oxide. Therefore, the total ohmic resistance can be large. For the Mn 1.5 Co 1.5 O 4 spinel coating on the CrF material, the reaction zone intermediate oxide layer 101 comprises a (Mn, Cr, Co) 3 O 4 spinel phase. Layer 101 may comprise from 60 to 100 volume percent (Mn, Cr, Co) 3 O 4 spinel phase, with the remainder, if present, being chromium oxide or other phase. The conductivity of the cobalt-containing (Mn, Cr, Co) 3 O 4 family of spinel is significantly higher than that of the (Mn,Cr) 3 O 4 spinel provided by the following examples: MnCo 2 O 4 : 36 S /cm, CoCr 2 O 4 : 7 S/cm, and CoMn 2 O 4 : 6 S/cm. The higher conductivity of the oxide of the reaction zone formed by the Mn 1.5 Co 1.5 O 4 spinel coating on CrF, which preferably has an electrical conductivity of at least 20 S/cm, such as at least 38 S/cm, thereby The ohmic resistance loss caused by the interface is low and thus the SOFC performance is degraded over time.

在濕空氣氛圍中及在SOFC工作溫度下,鉻自互連體表面之蒸發速率相對較高。因此,由塗層引起之圍阻較佳。圖2D中說明濕空氣中測試之SOFC堆疊的結果。此等結果亦顯示具有Mn1.5Co1.5O4尖晶石塗層之重複層相較於具有LSM塗層之重複層展現較低降級。 The rate of evaporation of chromium from the interconnect surface is relatively high in a humid air atmosphere and at SOFC operating temperatures. Therefore, the containment resistance caused by the coating is preferred. The results of the SOFC stack tested in wet air are illustrated in Figure 2D. These results also show that the repeating layer with the Mn 1.5 Co 1.5 O 4 spinel coating exhibits a lower degradation compared to the repeating layer with the LSM coating.

Mn1.5Co1.5O4尖晶石塗層之較低降級可歸因於以下兩者:i)反應區氧化物層之較低歐姆電阻,及ii)鉻蒸發速率降低。圖2E展示在高工作溫度下於SOFC堆疊(如下文所述)中工作1000小時後,CrF基板100上之Mn1.5Co1.5O4塗層102的顯微照片。圖2F展示在高工作溫度下工作1000小時之SOFC堆疊中CrF基板100上之LSM塗層104的顯微照片。如顯微照片中顯而易見,Mn1.5Co1.5O4塗層102緻密,不具有開口孔隙且不具有微裂縫103。此與SOFC工作後具有微裂縫之LSM塗層104成對比。 The lower degradation of the Mn 1.5 Co 1.5 O 4 spinel coating can be attributed to the following two: i) lower ohmic resistance of the oxide layer of the reaction zone, and ii) reduced evaporation rate of chromium. 2E shows a photomicrograph of a Mn 1.5 Co 1.5 O 4 coating 102 on a CrF substrate 100 after 1000 hours of operation in a SOFC stack (described below) at high operating temperatures. 2F shows a photomicrograph of the LSM coating 104 on the CrF substrate 100 in a SOFC stack operating at high operating temperatures for 1000 hours. As is apparent from the photomicrograph, the Mn 1.5 Co 1.5 O 4 coating 102 is dense, has no open pores and does not have microcracks 103. This is in contrast to the LSM coating 104 with micro-cracks after SOFC operation.

LSM塗層104在SOFC工作期間傾向於燒結,導致形成可允許鉻蒸氣穿過塗層輸運之微裂縫103。圖2B與圖2E之比較指示,儘管圖2B中所示之Mn1.5Co1.5O4之沈積態APS塗層可含有一些微裂縫及裂紋,但在SOFC工作溫度(例如700至900℃)下一段時間後,MCO塗層似乎以如 圖2F所示之方式緻密化,從而修繕並消除連通微裂縫。同樣地,中間含鉻尖晶石層101係由在堆疊製造退火期間及/或堆疊在高溫下工作期間MCO塗層102與CrF互連體基板100之間的反應形成。 The LSM coating 104 tends to sinter during operation of the SOFC, resulting in the formation of microcracks 103 that allow chromium vapor to pass through the coating. A comparison of FIG. 2B with FIG. 2E indicates that although the as-deposited APS coating of Mn 1.5 Co 1.5 O 4 shown in FIG. 2B may contain some micro-cracks and cracks, a section at the SOFC operating temperature (eg, 700 to 900 ° C) After the time, the MCO coating appeared to densify in the manner shown in Figure 2F, thereby repairing and eliminating the connected microcracks. Likewise, the intermediate chrome-containing spinel layer 101 is formed by a reaction between the MCO coating 102 and the CrF interconnect substrate 100 during operation during stack fabrication annealing and/or during stacking at elevated temperatures.

在一個實施例中,例如(Mn,Co)3O4之尖晶石粉末經Cu摻雜以降低尖晶石之熔融溫度。較低熔融溫度改良(提高)使用塗覆法(諸如空氣電漿噴射(APS))沈積後之塗層密度且提高反應區氧化物之傳導率。因較低熔融溫度引起之塗層密度改良可在APS沈積期間及在SOFC溫度下長期工作期間發生。 In one embodiment, a spinel powder such as (Mn,Co) 3 O 4 is doped with Cu to reduce the melting temperature of the spinel. The lower melting temperature improves (improves) the coating density after deposition using a coating process such as air plasma jet (APS) and increases the conductivity of the oxide in the reaction zone. Improvements in coating density due to lower melting temperatures can occur during APS deposition and during long-term operation at SOFC temperatures.

向尖晶石層中添加Cu具有另一優點。諸如(Mn,Co)3O4之尖晶石的Cu摻雜可使得基礎尖晶石相以及在尖晶石與天然Cr2O3氧化物之間形成的任何反應區氧化物之電導率較高。來自(Mn,Co,Cu,Cr)3O4家族之氧化物之電導率的實例包括:CuCr2O4:800℃下0.4 S/cm,Cu1.3Mn1.7O4:750℃下225 S/cm,及CuMn2O4:800℃下40 S/cm。 Adding Cu to the spinel layer has another advantage. The Cu doping of a spinel such as (Mn,Co) 3 O 4 can make the basic spinel phase and the conductivity of any reaction zone oxide formed between the spinel and the natural Cr 2 O 3 oxide. high. Examples of the electrical conductivity of the oxide of the (Mn, Co, Cu, Cr) 3 O 4 family include: CuCr 2 O 4 : 0.4 S/cm at 800 ° C, Cu 1.3 Mn 1.7 O 4 : 225 S at 750 ° C / Cm, and CuMn 2 O 4 : 40 S/cm at 800 °C.

尖晶石家族之材料具有通式AB2O4。視佔據A及B位點之元素而定,此等材料可形成八面體或立方體晶體結構。另外,視摻雜條件而定,銅原子可佔據A位點、B位點或A位點與B位點之組合。一般而言,Cu優先進入B位點。當A元素為Mn,B元素為Co且尖晶石摻雜有Cu時,尖晶石家族可用通式(Mn,Co,Cu)3O4描述。更特定言之,視Cu合金元素之位置而定,尖晶石家族可用以下式描述: The material of the spinel family has the general formula AB 2 O 4 . Depending on the elements occupying the A and B sites, these materials can form octahedral or cubic crystal structures. In addition, depending on the doping conditions, the copper atom may occupy the A site, the B site, or a combination of the A site and the B site. In general, Cu preferentially enters the B site. When the A element is Mn, the B element is Co and the spinel is doped with Cu, the spinel family can be described by the general formula (Mn, Co, Cu) 3 O 4 . More specifically, depending on the location of the Cu alloying elements, the spinel family can be described by the following formula:

(1)若Cu進入A位點,則為Mn2-x-yCo1+xCuyO4(0x1),(0y0.3) (1) If Cu enters the A site, it is Mn 2-xy Co 1+x Cu y O 4 (0) x 1), (0 y 0.3)

(2)若Cu進入B位點,則為Mn2-xCo1+x-yCuyO4(0x1),(0y0.3) (2) If Cu enters the B site, it is Mn 2-x Co 1+xy Cu y O 4 (0 x 1), (0 y 0.3)

(3)若Cu同等地進入A位點與B位點,則為Mn2-x-y/2Co1+x-y/2CuyO4(0x1),(0y0.3)。 (3) If Cu enters the A site and the B site equally, it is Mn 2-xy/2 Co 1+xy/2 Cu y O 4 (0) x 1), (0 y 0.3).

特定(Mn,Co,Cu)3O4組成包括(但不限於)Mn1.5Co1.2Cu0.3O4、 Mn1.5Co1.4Cu0.1O4、Mn2Co0.8Cu0.2O4及Co2Mn0.8Cu0.2O4。若Cu進入B位點,則其他組成包括Mn2Co1-yCuyO4,其中(0y0.3)。此等組成亦可寫成(Mn2O3)+(1-z)(CoO)+z(CuO),其中(0z0.3)。若Cu進入B位點,則其他組成包括Co2Mn1-yCuyO4,其中(0y0.3)。此等組成亦可寫成(Co2O3)+(1-z)(MnO)+z(CuO),其中(0z0.3)。在一個較佳Mn,Co尖晶石組成中,Mn/Co比為1.5/1.5,例如Mn1.5Co1.5O4。當B位點摻雜有Cu時,較佳組成包括Mn1.5Co1.5-yCuyO4,其中(0y0.3)。 The specific (Mn, Co, Cu) 3 O 4 composition includes, but is not limited to, Mn 1.5 Co 1.2 Cu 0.3 O 4 , Mn 1.5 Co 1.4 Cu 0.1 O 4 , Mn 2 Co 0.8 Cu 0.2 O 4 and Co 2 Mn 0.8 Cu 0.2 O 4 . If Cu enters the B site, the other composition includes Mn 2 Co 1-y Cu y O 4 , where (0 y 0.3). These compositions can also be written as (Mn 2 O 3 )+(1-z)(CoO)+z(CuO), where (0 z 0.3). If Cu enters the B site, the other composition includes Co 2 Mn 1-y Cu y O 4 , where (0 y 0.3). These compositions can also be written as (Co 2 O 3 )+(1-z)(MnO)+z(CuO), where (0 z 0.3). In a preferred Mn, Co spinel composition, the Mn/Co ratio is 1.5/1.5, such as Mn 1.5 Co 1.5 O 4 . When the B site is doped with Cu, the preferred composition includes Mn 1.5 Co 1.5-y Cu y O 4 , where (0 y 0.3).

在另一實施例中,(Mn,Co)3O4或(Mn,Co,Cu)3O4尖晶石家族經一或多種單價物質摻雜。亦即,一或多種僅具有一種價態之物質。經單價物質摻雜會減少高溫下之陽離子輸運且因此降低中間氧化物層101之厚度。尖晶石中之主要離子輸運機制為陽離子經由晶格結構中之陽離子空位擴散。在具有多價物質M2+/3+(諸如Mn3+/4+及Co2+/3+)之尖晶石中,當M物質自較低價態氧化成較高價態以維持局部電荷中性時,產生陽離子空位。引入單價物質通常減少陽離子空位數量,且減少尖晶石塗層102與天然Cr2O3氧化物或CrF基板100之間的相互擴散量。以此方式,所形成之中間氧化物層101的量減少。可引入尖晶石塗層中之單價物質之實例包括Y3+、Al3+、Mg2+及/或Zn2+金屬。在一個態樣中,尖晶石塗層具有(Mn,Co,M)3O4組成,其中M=Y、Al、Mg或Zn。舉例而言,若M=A位置中摻雜之Al,則尖晶石組成可包括Mn2-yAlyCoO4(0y0.3)或(1-z)(Mn2O3)+z(Al2O3)+CoO,其中(0z0.15)。 In another embodiment, the (Mn,Co) 3 O 4 or (Mn,Co,Cu) 3 O 4 spinel family is doped with one or more monovalent species. That is, one or more substances having only one valence state. Doping with a monovalent species reduces cation transport at elevated temperatures and thus reduces the thickness of the intermediate oxide layer 101. The primary ion transport mechanism in spinels is the diffusion of cations through cation vacancies in the crystal lattice structure. In spinels with multivalent species M 2+/3+ (such as Mn 3+/4+ and Co 2+/3+ ), when substance M is oxidized from a lower valence state to a higher valence state to maintain local charge At neutral, cation vacancies are produced. The introduction of a monovalent species generally reduces the amount of cationic vacancies and reduces the amount of interdiffusion between the spinel coating 102 and the natural Cr 2 O 3 oxide or CrF substrate 100. In this way, the amount of the intermediate oxide layer 101 formed is reduced. Examples of monovalent materials that can be introduced into the spinel coating include Y 3+ , Al 3+ , Mg 2+ , and/or Zn 2+ metals. In one aspect, the spinel coating has a (Mn, Co, M) 3 O 4 composition, where M = Y, Al, Mg or Zn. For example, if M = A is doped in the A position, the spinel composition may include Mn 2-y Al y CoO 4 (0 y 0.3) or (1-z)(Mn 2 O 3 )+z(Al 2 O 3 )+CoO, where (0 z 0.15).

在一個實施例中,使用空氣電漿噴射(APS)製程使互連體塗層沈積於基於Cr之合金互連體上,諸如含有93-97重量% Cr及3-7重量% Fe之IC,諸如上文所述之Cr-Fe-Y或CrF互連體。空氣電漿噴射製程為將粉末狀塗層材料饋入塗覆裝置中之熱噴射製程。將塗料粒子引入電漿射流中,在其中該等粒子熔融且接著向基板加速。到達基板時,熔融 液滴變平且冷卻,從而形成塗層。電漿可由直流電產生(DC電漿)或由感應產生(RF電漿)。另外,不同於需要惰性氣體或真空之受控氛圍電漿噴射(CAPS),空氣電漿噴射在環境空氣中進行。 In one embodiment, an interconnect plasma coating is deposited on a Cr-based alloy interconnect using an air plasma jet (APS) process, such as an IC containing 93-97 wt% Cr and 3-7 wt% Fe. A Cr-Fe-Y or CrF interconnect such as described above. The air plasma jet process is a thermal spray process that feeds the powdered coating material into the coating apparatus. The coating particles are introduced into a plasma jet where the particles melt and then accelerate toward the substrate. Melt when reaching the substrate The droplets flatten and cool to form a coating. The plasma can be produced by direct current (DC plasma) or by induction (RF plasma). In addition, unlike controlled atmosphere plasma jet (CAPS), which requires an inert gas or vacuum, air plasma jets are carried out in ambient air.

塗層中之裂縫可在兩個不同時間產生:a)沈積期間,及b)在SOFC條件下工作期間。沈積期間形成之裂縫受噴槍參數及塗層材料之材料特性兩者所影響。工作期間形成之裂縫主要隨材料特性而變且更特定言之隨材料之密度及可燒結性而變。在不受特定理論約束下,咸信工作期間出現之裂縫為塗層連續燒結之結果,且因此增加塗層隨時間之緻密化。隨著塗層緻密化,其橫向收縮。然而,塗層受基板約束,且因此形成裂縫以解除應力。以低密度施加之塗層很有可能在工作期間進一步緻密化,導致裂縫形成。相比之下,以較高密度施加之塗層不太可能形成裂縫。 Cracks in the coating can occur at two different times: a) during deposition, and b) during operation under SOFC conditions. Cracks formed during deposition are affected by both the parameters of the spray gun and the material properties of the coating material. Cracks formed during operation vary primarily with material properties and, more specifically, with the density and sinterability of the material. Without being bound by a particular theory, the cracks that occur during the work of the letter are the result of continuous sintering of the coating and thus increase the densification of the coating over time. As the coating densifies, it shrinks laterally. However, the coating is constrained by the substrate and thus forms a crack to relieve stress. Coatings applied at low density are likely to be further densified during operation, resulting in crack formation. In contrast, coatings applied at higher densities are less likely to form cracks.

在一個實施例中,向IC塗層中添加燒結助劑以減少裂縫形成,且因此減少鉻蒸發。燒結助劑為增加沈積態塗層密度及/或減少塗層沈積後之緻密化的材料。因為燒結助劑增加塗層材料之沈積態密度,所以其藉此減少塗層形成後因後續緻密化及/或相對多孔材料上之工作應力引起的裂縫形成。適合燒結助劑包括達成以下之材料:a)降低塗層材料之主體相之熔融溫度,b)在相比主體相較低之溫度下熔融引起液相燒結,或c)形成具有較低熔融溫度之二次相。對於包括LSM之鈣鈦礦家族,燒結助劑包括Fe、Co、Ni及Cu。此等過渡金屬可溶於LSM且容易摻雜ABO3鈣鈦礦相中之B位點。3d過渡金屬中之氧化物之熔融溫度傾向於以Fe>Co>Ni>Cu之順序降低。將此等元素添加至LSM之B位點中會降低熔融溫度且改良噴射態密度。在一個實施例中,向塗層中添加Fe、Co、Ni及Cu中之一或多者,使得塗層包含0.5重量%至5重量%,諸如1重量%至4重量%,諸如2重量%至3重量%之此等金屬。在一個替代實施例中,塗層組成以原子百分比表示且包含 La1-xSrxMn1-yMyO3-d,其中(M=Fe、Co、Ni及/或Cu),0.1x0.3,0.005y0.05,且0d0.3。應注意,Fe、Co、Ni及Cu之原子百分比範圍並非必須與先前實施例中此等元素之重量百分比範圍匹配。 In one embodiment, a sintering aid is added to the IC coating to reduce crack formation and thus reduce chromium evaporation. The sintering aid is a material that increases the density of the deposited coating and/or reduces the densification after deposition of the coating. Since the sintering aid increases the deposition state density of the coating material, it thereby reduces crack formation due to subsequent densification and/or work stress on the porous material after formation of the coating. Suitable sintering aids include materials that a) reduce the melting temperature of the bulk phase of the coating material, b) melt to cause liquid phase sintering at a lower temperature than the bulk phase, or c) form a lower melting temperature The second phase. For the perovskite family including LSM, the sintering aids include Fe, Co, Ni, and Cu. These transition metals are soluble in LSM and are easily doped at the B site in the ABO 3 perovskite phase. The melting temperature of the oxide in the 3d transition metal tends to decrease in the order of Fe>Co>Ni>Cu. Adding these elements to the B site of the LSM reduces the melting temperature and improves the spray state density. In one embodiment, one or more of Fe, Co, Ni, and Cu are added to the coating such that the coating comprises from 0.5% to 5% by weight, such as from 1% to 4% by weight, such as 2% by weight. Up to 3% by weight of such metals. In an alternate embodiment, the coating composition is expressed in atomic percent and comprises La 1-x Sr x Mn 1-y M y O 3-d , where (M = Fe, Co, Ni and/or Cu), 0.1 x 0.3, 0.005 y 0.05, and 0 d 0.3. It should be noted that the atomic percentage ranges of Fe, Co, Ni, and Cu do not necessarily match the weight percentage ranges of such elements in the previous examples.

其他元素亦可與上述過渡金屬組合添加,以使傳導率、穩定性及可燒結性最佳化。此等元素包括(但不限於)Ba、Bi、B、Cu或其任何組合(例如Cu+Ba組合),諸如在5重量%或小於5重量%,諸如0.5重量%至5重量%之範圍內。此外,可添加特定摻雜LSM之A位點的燒結助劑(諸如Y)以達到類似效果。根據此實施例之一個實例為LayYxSr1-x-yMnO3,其中x=0.05-0.5,y=0.2-0.5,諸如La0.4Y0.1Sr0.5MnO3。對於除LSM以外之塗層材料,可在上文所述之MCO尖晶石材料中使用銅作為燒結助劑。 Other elements may also be added in combination with the above transition metals to optimize conductivity, stability, and sinterability. Such elements include, but are not limited to, Ba, Bi, B, Cu, or any combination thereof (eg, Cu+Ba combination), such as in the range of 5% by weight or less, such as from 0.5% by weight to 5% by weight. . In addition, a sintering aid (such as Y) specifically doping the A site of the LSM may be added to achieve a similar effect. An example according to this embodiment is La y Y x Sr 1-xy MnO 3 , where x = 0.05 - 0.5, y = 0.2 - 0.5, such as La 0.4 Y 0.1 Sr 0.5 MnO 3 . For coating materials other than LSM, copper can be used as a sintering aid in the MCO spinel materials described above.

在另一實施例中,並非在沈積期間將過渡金屬粉末引入空氣電漿噴霧中,而是向電漿中添加在APS氛圍中容易還原成金屬態之金屬氧化物粉末。金屬氧化物之金屬較佳展現低於塗層相(鈣鈦礦或尖晶石相)之熔融溫度。舉例而言,可向塗層粉末(亦即LSM粉末或La+Sr+Mn粉末或其氧化物)中添加二元氧化物氧化鈷(例如CoO、Co3O4或Co2O3)、NiO、In2O3、SnO、B2O3、氧化銅(例如CuO或Cu2O)、BaO、Bi2O3、ZnO或其任何組合(例如(Cu,Ba)O)作為第二相。此添加產生饋入槍中之兩相粉末混合物。第二相之量可小於或等於5重量%,諸如在總粉末重量之0.1重量%至5重量%之範圍內。 In another embodiment, instead of introducing the transition metal powder into the air plasma spray during deposition, a metal oxide powder that is easily reduced to a metallic state in the APS atmosphere is added to the plasma. The metal of the metal oxide preferably exhibits a lower melting temperature than the coating phase (perovskite or spinel phase). For example, a binary oxide cobalt oxide (eg, CoO, Co 3 O 4 or Co 2 O 3 ), NiO may be added to the coating powder (ie, LSM powder or La+Sr+Mn powder or an oxide thereof). In 2 O 3 , SnO, B 2 O 3 , copper oxide (for example CuO or Cu 2 O), BaO, Bi 2 O 3 , ZnO or any combination thereof (for example, (Cu, Ba)O) as the second phase. This addition produces a two phase powder mixture that is fed into the gun. The amount of the second phase may be less than or equal to 5% by weight, such as in the range of from 0.1% by weight to 5% by weight based on the total powder weight.

在APS槍中,金屬氧化物還原成其金屬相,熔融,且當LSM粒子在IC表面上凝固時促進熔融LSM粒子燒結。金屬及二元氧化物之較低熔融溫度促進沈積及凝固期間緻密化。 In an APS gun, the metal oxide is reduced to its metal phase, melted, and promotes sintering of the molten LSM particles as the LSM particles solidify on the surface of the IC. The lower melting temperatures of metals and binary oxides promote densification during deposition and solidification.

在另一實施例中,在APS製程期間向塗層饋料中添加與塗層材料(諸如LSM)反應且形成具有較低熔融溫度之二次相的材料。較低熔融溫度之二次相促進緻密化。舉例而言,矽酸鹽及/或鋁酸鈣粉末可與 APS槍之熱電漿部分中之塗層材料粉末反應形成玻璃相。在一個實施例中,來自LSM材料之La與Si-Ca-Al氧化物(其亦可包括K或Na)反應形成玻璃相,諸如在LSM粒子之間形成的La-Ca-Si-Al氧化物。塗層可包括小於或等於5重量%,諸如0.5-5%之矽酸鹽、Ca-Al氧化物或Si-CaAl氧化物。 In another embodiment, a material that reacts with a coating material (such as LSM) and forms a secondary phase having a lower melting temperature is added to the coating feed during the APS process. The secondary phase of lower melting temperature promotes densification. For example, citrate and/or calcium aluminate powder can be combined with The coating material powder in the hot plasma portion of the APS gun reacts to form a glass phase. In one embodiment, La from the LSM material reacts with Si-Ca-Al oxide (which may also include K or Na) to form a glass phase, such as La-Ca-Si-Al oxide formed between LSM particles. . The coating may include less than or equal to 5% by weight, such as 0.5 to 5% of silicate, Ca-Al oxide or Si-CaAl oxide.

在一個實施例中,塗層以引起無應力緻密化之方式後處理。此後處理可與添加或不添加先前實施例之燒結助劑組合進行。在根據此實施例之一個後處理實例中,進行N2及O2氛圍中之「氧化還原」循環。在此循環中,使塗層交替暴露於中性及氧化氛圍。舉例而言,可在包含氮氣或稀有氣體(例如氬氣)之中性氛圍中處理塗層,接著在包含氧氣、水蒸氣、空氣等之氧化氛圍中處理。必要時,可進行一或多次循環,諸如2次、3次、4次或4次以上。必要時,可使用還原(例如氫氣)氛圍替代中性氛圍,或除中性氛圍之外亦使用還原(例如氫氣)氛圍。N2及O2氛圍中之氧化還原循環可產生陽離子空位濃度梯度,其增加陽離子空位之擴散且藉此有效提高燒結速率。可藉由使用較低Sr含量之LSM塗層La1-xSrxMnO3-d(其中x0.1,例如0.01x0.1,d0.3)來進一步提高此作用,使得氧非化學計量最大化。使用此燒結程序可增強任何或所有上述燒結助劑技術。 In one embodiment, the coating is post treated in a manner that causes stress free densification. Thereafter the treatment can be carried out in combination with or without the addition of the sintering aid of the previous examples. In one case of the process according to this embodiment example, for N 2 and O 2 atmosphere in the "redox" cycle. In this cycle, the coating is alternately exposed to a neutral and oxidizing atmosphere. For example, the coating can be treated in a neutral atmosphere containing nitrogen or a rare gas such as argon, followed by treatment in an oxidizing atmosphere containing oxygen, water vapor, air, and the like. If necessary, one or more cycles may be performed, such as 2, 3, 4 or more times. If necessary, a reducing (e.g., hydrogen) atmosphere may be used instead of a neutral atmosphere, or a reducing (e.g., hydrogen) atmosphere may be used in addition to the neutral atmosphere. The redox cycle in the N 2 and O 2 atmospheres produces a cation vacancy concentration gradient that increases the diffusion of cation vacancies and thereby effectively increases the sintering rate. By using a lower Sr content LSM coating La 1-x Sr x MnO 3-d (where x 0.1, for example 0.01 x 0.1,d 0.3) to further enhance this effect, maximizing oxygen non-stoichiometry. Any or all of the above sintering aid techniques can be enhanced using this sintering procedure.

在另一實施例中,塗層與下層Cr-Fe IC表面之間的電相互作用之表面積擴大。隨著氧化鉻層之厚度增加,塗層與IC之間形成的氧化鉻層引起毫伏數隨時間降低。總電壓降視發生電壓降之面積及厚度而定。增加IC與塗層之間的氧化物生長之面積可降低對電壓損失的影響,藉此增加堆疊壽命。藉由添加將深度穿透塗層之物質,此實施例有效增加接觸表面積且藉此降低生長氧化鉻層的影響。 In another embodiment, the surface area of the electrical interaction between the coating and the underlying Cr-Fe IC surface is enlarged. As the thickness of the chromium oxide layer increases, the chromium oxide layer formed between the coating and the IC causes the millivolts to decrease over time. The total voltage drop depends on the area and thickness of the voltage drop. Increasing the area of oxide growth between the IC and the coating reduces the effect on voltage loss, thereby increasing stack life. This embodiment effectively increases the contact surface area and thereby reduces the effect of the growing chromium oxide layer by adding a substance that will penetrate the coating deeply.

根據此實施例之方法包括向IC中嵌入少量塗層材料。存在此實施例之兩個替代態樣。一個態樣包括在壓實形成IC之前,在IC粉末 (例如Cr-Fe粉末)內充分且均勻地分配塗層材料(諸如LSM或MCO)。當在壓實之前將潤滑劑與Fe、Cr(或Cr-Fe合金)粉末混合在一起時,塗層粉末(例如LSM及/或MCO粉末)可包括在內。粉末混合物較佳能夠經受燒結溫度及還原環境。第二態樣包括僅在Cr合金IC之頂面中併入(例如嵌入)預定量之塗層粉末。CrF或CrFeY IC表面中嵌入之氧化物區域增加IC燒結步驟後IC之表面粗糙度。在擠壓及燒結步驟之後,整個塗層沈積於Cr合金互連體上。 The method according to this embodiment includes embedding a small amount of coating material into the IC. There are two alternative aspects of this embodiment. One aspect includes the IC powder before compaction to form the IC The coating material (such as LSM or MCO) is sufficiently and uniformly distributed within (e.g., Cr-Fe powder). When the lubricant is mixed with the Fe, Cr (or Cr-Fe alloy) powder prior to compaction, the coating powder (eg, LSM and/or MCO powder) may be included. The powder mixture is preferably capable of withstanding sintering temperatures and reducing environments. The second aspect includes incorporating (e.g., embedding) a predetermined amount of coating powder only in the top surface of the Cr alloy IC. The oxide region embedded in the surface of the CrF or CrFeY IC increases the surface roughness of the IC after the IC sintering step. After the extrusion and sintering steps, the entire coating is deposited on the Cr alloy interconnect.

圖3A-3C中說明將塗層材料嵌入互連體頂面中之方法。如圖3A所示,使用第一柱腳(未圖示)或藉由另一適合方法向模穴200中添加潤滑劑及用於形成IC主體之Cr/Fe粉末202。如圖3B所示,在壓實步驟之前,使用第二柱腳206向模穴中在位於模穴中之粉末202上方提供塗層材料粉末204(例如LSM或MCO)或塗層材料粉末204與潤滑劑/Cr/Fe粉末202之混合物。如圖3C所示,接著使用衝頭208壓實粉末204、202,形成塗層材料在空氣側嵌入表面中之互連體(亦即,若IC之空氣側在模具中面朝上形成)。 A method of embedding a coating material in the top surface of an interconnect is illustrated in Figures 3A-3C. As shown in FIG. 3A, a lubricant and a Cr/Fe powder 202 for forming an IC body are added to the cavity 200 using a first leg (not shown) or by another suitable method. As shown in FIG. 3B, prior to the compacting step, a second column 206 is used to provide a coating material powder 204 (eg, LSM or MCO) or coating material powder 204 over the powder 202 located in the cavity in the cavity. A mixture of lubricant/Cr/Fe powder 202. As shown in Figure 3C, the powders 204, 202 are then compacted using a punch 208 to form an interconnect of the coating material in the air-side embedded surface (i.e., if the air side of the IC is formed face up in the mold).

或者,首先向模穴200中提供塗層材料粉末204(例如LSM或MCO)(或塗層材料粉末204與潤滑劑/Cr/Fe粉末202之混合物)。接著,若IC之空氣側在模具中面朝下形成,則在壓實步驟之前,向模穴200中在粉末204上方提供潤滑劑/Cr/Fe粉末202。以此方式,塗層材料主要在IC之空氣側表面之頂部併入IC中。 Alternatively, a coating material powder 204 (e.g., LSM or MCO) (or a mixture of coating material powder 204 and lubricant/Cr/Fe powder 202) is first provided to cavity 200. Next, if the air side of the IC is formed face down in the mold, the lubricant/Cr/Fe powder 202 is provided over the powder 204 in the cavity 200 prior to the compacting step. In this way, the coating material is primarily incorporated into the IC on top of the air side surface of the IC.

或者,如圖4所示,塗層粉末204可靜電吸引至壓機之上衝頭208。接著,上衝頭208擠壓模穴200中之塗層粉末204及潤滑劑/互連體粉末材料202以形成IC,其中塗層材料204嵌入空氣側之頂部中。 Alternatively, as shown in FIG. 4, the coating powder 204 can be electrostatically attracted to the punch 208 above the press. Next, the upper punch 208 extrudes the coating powder 204 and the lubricant/interconnect powder material 202 in the cavity 200 to form an IC in which the coating material 204 is embedded in the top of the air side.

使用上述方法,在壓實步驟之後,可將塗層粉末均勻地併入IC空氣側之表面中。接著,壓實步驟後繼之以燒結及塗覆步驟,諸如藉由APS或本文所述之另一方法進行之MCO及/或LSM塗覆步驟。 Using the above method, after the compacting step, the coating powder can be uniformly incorporated into the surface of the IC air side. Next, the compacting step is followed by a sintering and coating step, such as an MCO and/or LSM coating step by APS or another method described herein.

較佳選擇Cr-Fe合金中塗層粉末與鐵之比率,使得頂部塗層材料具有與燒結並氧化之互連體類似的熱膨脹係數(CTE)。Cr-Fe合金之熱膨脹係數隨合金組成而變且可藉由選擇Cr與Fe之比率來選擇。可調節燒結製程以保持粉末氧化且穩定。舉例而言,可使用濕氫氣或在惰性氛圍(諸如氮氣、氬氣或另一稀有氣體)中進行燒結。濕氫氣或惰性氣體氛圍分別為氧化或中性的,且藉此防止氧化物粉末還原。 The ratio of coating powder to iron in the Cr-Fe alloy is preferably selected such that the top coating material has a coefficient of thermal expansion (CTE) similar to that of the sintered and oxidized interconnect. The coefficient of thermal expansion of the Cr-Fe alloy varies with the alloy composition and can be selected by selecting the ratio of Cr to Fe. The sintering process can be adjusted to keep the powder oxidized and stable. For example, sintering can be carried out using wet hydrogen or in an inert atmosphere such as nitrogen, argon or another noble gas. The wet hydrogen or inert gas atmosphere is oxidized or neutral, respectively, and thereby prevents the oxide powder from being reduced.

在另一實施例中,塗層為多層複合物。圖6A說明此具有複合塗層之IC之實施例的一個實例。複合塗層由尖晶石層102及鈣鈦礦層104構成。首先在Cr合金(例如CrF)互連體100上沈積尖晶石層102。接著在尖晶石層102之頂部沈積上文所述之鈣鈦礦層104層。在層102沈積期間及/或在含有互連體之燃料電池堆疊高溫工作期間,互連體100與層102之間可能形成天然含鉻界面尖晶石層101。 In another embodiment, the coating is a multilayer composite. Figure 6A illustrates an example of an embodiment of such an IC having a composite coating. The composite coating consists of a spinel layer 102 and a perovskite layer 104. A spinel layer 102 is first deposited on a Cr alloy (e.g., CrF) interconnect 100. A layer of perovskite layer 104 as described above is then deposited on top of the spinel layer 102. A natural chromium-containing interface spinel layer 101 may be formed between the interconnect 100 and the layer 102 during deposition of the layer 102 and/or during high temperature operation of the fuel cell stack containing the interconnect.

鈣鈦礦層104可包含上文所述之任何適合鈣鈦礦層,諸如LSM。LSM可具有下式:La1-xSrxMnO3(LSM),其中0.1x0.3,諸如0.1x0.2。首先沈積尖晶石塗層102,且其與互連體基板100直接接觸(若自基板100移除天然層101)或與基板100上之天然層101直接接觸。 Perovskite layer 104 can comprise any suitable perovskite layer as described above, such as LSM. The LSM can have the formula: La 1-x Sr x MnO 3 (LSM), where 0.1 x 0.3, such as 0.1 x 0.2. The spinel coating 102 is first deposited and is in direct contact with the interconnect substrate 100 (if the native layer 101 is removed from the substrate 100) or in direct contact with the native layer 101 on the substrate 100.

下部尖晶石層102較佳包含上述含有Cu及/或Ni之MCO尖晶石。層102用作增加下層氧化錳鉻(Mn,Cr)3O4或氧化錳鈷鉻(Mn,Co,Cr)3O4界面尖晶石層101之傳導率的摻雜層。換言之,在形成層101期間及/或之後,來自尖晶石層102之Cu及/或Ni擴散至界面尖晶石層101中。此產生經Cu及/或Ni摻雜之層101(例如(Mn及Cr)3-x-y Cox(Cu及/或Ni)yO4,其中(0x1),(0<y0.3)),其降低層101電阻率。 The lower spinel layer 102 preferably comprises the above-described MCO spinel containing Cu and/or Ni. Layer 102 serves as a doped layer that increases the conductivity of the underlying layer of manganese oxide chromium (Mn,Cr) 3 O 4 or manganese oxide cobalt chromium (Mn,Co,Cr) 3 O 4 interface spinel layer 101. In other words, Cu and/or Ni from the spinel layer 102 diffuses into the interfacial spinel layer 101 during and/or after formation of layer 101. This produces a layer 101 doped with Cu and/or Ni (eg, (Mn and Cr) 3-xy Co x (Cu and/or Ni) y O 4 , where (0 x 1), (0<y 0.3)), which lowers the resistivity of layer 101.

層102可包含上述含有Cu之MCO層及/或含有Ni之MCO層及/或含有Ni及Cu之MCO層。在MCO層中,當A元素為Mn,B元素為Co,且尖晶石摻雜有Cu及/或Ni時,尖晶石家族可用通式(Mn,Co)3-y(Cu,Ni)yO4描述,其中(0<y0.3)。更特定言之,視Cu及/或Ni合金元素 之位置而定,尖晶石家族可用以下式描述: The layer 102 may include the above-described Cu-containing MCO layer and/or Ni-containing MCO layer and/or MCO layer containing Ni and Cu. In the MCO layer, when the A element is Mn, the B element is Co, and the spinel is doped with Cu and/or Ni, the spinel family can be of the general formula (Mn, Co) 3-y (Cu, Ni). y O 4 description, where (0<y 0.3). More specifically, depending on the location of the Cu and/or Ni alloying elements, the spinel family can be described by the following formula:

(1)若Cu及/或Ni進入A位點,則為Mn2-x-yCo1+x(Cu,Ni)yO4(0x1),(0<y0.3) (1) If Cu and/or Ni enters the A site, it is Mn 2-xy Co 1+x (Cu, Ni) y O 4 (0) x 1), (0<y 0.3)

(2)若Cu及/或Ni進入B位點,則為Mn2-xCo1+x-y(Cu,Ni)yO4(0x1),(0<y0.3) (2) If Cu and/or Ni enters the B site, it is Mn 2-x Co 1+xy (Cu, Ni) y O 4 (0) x 1), (0<y 0.3)

(3)若Cu及/或Ni同等地進入A位點與B位點,則為Mn2-x-y/2Co1+x-y/2(Cu,Ni)yO4(0x1),(0<y0.3)。 (3) If Cu and/or Ni enter the A site and the B site equally, then Mn 2-xy/2 Co 1+xy/2 (Cu, Ni) y O 4 (0) x 1), (0<y 0.3).

圖5說明塗覆有含Cu及Ni之氧化錳摻雜層(例如(Cu,Ni,Mn)3O4尖晶石)之CrF互連體之面比電阻(ASR)隨時間的降級相較於塗覆有LSM層之互連體降低。具有摻雜層之互連體相較於具有LSM層塗層之互連體最初以較高ASR開始。然而,塗覆有LSM層之IC之ASR的增加速率比塗覆有摻雜層之IC高得多。在1000-2000小時內,塗覆有LSM層之IC之ASR高於具有摻雜層塗層之IC。另外,工作約2500小時後,具有摻雜層之互連體之ASR保持恆定,而塗覆有LSM層之互連體之ASR保持隨時間升高。 Figure 5 illustrates the surface specific resistance (ASR) degradation over time of a CrF interconnect coated with a manganese oxide doped layer containing Cu and Ni (e.g., (Cu, Ni, Mn) 3 O 4 spinel) The interconnects coated with the LSM layer are reduced. The interconnect with the doped layer initially begins with a higher ASR than the interconnect with the LSM layer coating. However, the rate of increase of the ASR of the IC coated with the LSM layer is much higher than that of the IC coated with the doped layer. The ASR of the IC coated with the LSM layer is higher than the IC with the doped layer coating in 1000-2000 hours. In addition, after about 2,500 hours of operation, the ASR of the interconnect with the doped layer remains constant, while the ASR of the interconnect coated with the LSM layer remains elevated over time.

儘管含有Cu及/或Ni之尖晶石摻雜層102降低互連體之ASR,但其對氧氣與鉻而言可滲透。因此,在本發明實施例中,在摻雜層102上形成第二鈣鈦礦障壁層104。層104較佳為減少或防止Cr及氧氣擴散之緻密LSM層。可使用上文所述之燒結助劑形成層104以增加其密度。緻密層104藉由在堆疊工作期間阻斷空氣及氧氣自燃料電池陰極側向CrF IC表面擴散來減少或防止界面尖晶石層101生長。層104亦藉由減少或防止鉻自IC擴散至陰極來減少或防止堆疊中之燃料電池陰極鉻中毒。 Although the spinel doped layer 102 containing Cu and/or Ni reduces the ASR of the interconnect, it is permeable to oxygen and chromium. Thus, in an embodiment of the invention, a second perovskite barrier layer 104 is formed on the doped layer 102. Layer 104 is preferably a dense LSM layer that reduces or prevents the diffusion of Cr and oxygen. Layer 104 can be formed using the sintering aids described above to increase its density. The dense layer 104 reduces or prevents the growth of the interfacial spinel layer 101 by blocking the diffusion of air and oxygen from the cathode side of the fuel cell toward the surface of the CrF IC during stacking operations. Layer 104 also reduces or prevents chromium poisoning of the fuel cell cathode in the stack by reducing or preventing the diffusion of chromium from the IC to the cathode.

因此,複合塗層102/104降低或消除互連體之面比電阻(ASR)降級對堆疊造成的影響,且藉由減少或消除燃料電池陰極之Cr中毒來降低燃料電池堆疊之整體降級。首先,尖晶石層102用降低含鉻界面尖晶 石層101之電阻的元素(例如Co及/或Mn,及視情況存在之Ni及/或Cu之一(若存在))摻雜尖晶石層101。第二,尖晶石層102防止鈣鈦礦104層與含Cr界面尖晶石層101之間發生直接相互作用,該相互作用可導致非所要且電阻性之二次相形成。第三,尖晶石(例如具有Co、Cu及/或Ni之含Mn尖晶石)層102相比LSM層104具有較小裂縫傾向,此增強塗層之完整性。第四,頂部鈣鈦礦層104為減少氧氣向互連體表面上之界面氧化物101輸運之第二障壁層。頂部鈣鈦礦層104因此降低天然氧化物層101之生長速率,且減少鉻自層101穿過尖晶石層102輸運至燃料電池陰極。 Thus, the composite coating 102/104 reduces or eliminates the effects of surface specific resistance (ASR) degradation of the interconnect on the stack and reduces overall degradation of the fuel cell stack by reducing or eliminating Cr poisoning of the fuel cell cathode. First, the spinel layer 102 is sputtered with a reduced chromium-containing interface. The element of the electrical resistance of the stone layer 101 (e.g., Co and/or Mn, and optionally one of Ni and/or Cu (if present)) is doped with the spinel layer 101. Second, the spinel layer 102 prevents direct interaction between the perovskite layer 104 and the Cr-containing interface spinel layer 101, which can result in an undesirable and resistive secondary phase formation. Third, the layer 102 of spinel (e.g., Mn-containing spinel having Co, Cu, and/or Ni) has a smaller tendency to crack than the LSM layer 104, which enhances the integrity of the coating. Fourth, the top perovskite layer 104 is a second barrier layer that reduces the transport of oxygen to the interfacial oxide 101 on the surface of the interconnect. The top perovskite layer 104 thus reduces the growth rate of the native oxide layer 101 and reduces the transport of chromium from the layer 101 through the spinel layer 102 to the fuel cell cathode.

圖6B中說明固態氧化物燃料電池(SOFC)堆疊之一個實例。各SOFC 1包含陰極電極7、固態氧化物電解質5及陽極電極3。燃料電池堆疊常常由多個SOFC 1以平面元件之形式或其他幾何形態建構。分別向陽極3及陰極7電極之電化學活性表面提供燃料及空氣。在翼肋10之間含有氣流通路或通道8之互連體9隔開堆疊中之個別電池。互連體9使一個電池1之陽極或燃料電極3與相鄰電池1之陰極或空氣電極7電連接。互連體9隔開在互連體燃料側上之翼肋10之間的燃料通道8中流向堆疊中之一個電池1之燃料電極(例如陽極3)之燃料(諸如烴燃料)與在互連體空氣側上之翼肋10之間的空氣通道8中流向堆疊中之相鄰電池1之空氣電極(亦即陰極7)的氧化劑(諸如空氣)。在堆疊之任一端,可存在用於分別向端電極提供空氣或燃料之空氣端板或燃料端板(未圖示)。圖6B展示下部SOFC 1位於兩個互連體9之間。 An example of a solid oxide fuel cell (SOFC) stack is illustrated in Figure 6B. Each SOFC 1 includes a cathode electrode 7, a solid oxide electrolyte 5, and an anode electrode 3. Fuel cell stacks are often constructed from multiple SOFCs 1 in the form of planar elements or other geometric configurations. Fuel and air are supplied to the electrochemically active surfaces of the anode 3 and cathode 7 electrodes, respectively. Interconnects 9 containing airflow passages or channels 8 between the ribs 10 separate individual cells in the stack. The interconnect 9 electrically connects the anode or fuel electrode 3 of one battery 1 to the cathode or air electrode 7 of an adjacent battery 1. The interconnect 9 is separated from the fuel (such as a hydrocarbon fuel) of the fuel electrode (e.g., anode 3) of one of the cells 1 in the fuel passage 8 between the ribs 10 on the interconnect fuel side and interconnected. An oxidant (such as air) flows to the air electrode (i.e., the cathode 7) of the adjacent battery 1 in the stack in the air passage 8 between the ribs 10 on the body air side. At either end of the stack, there may be an air end plate or fuel end plate (not shown) for providing air or fuel to the end electrodes, respectively. FIG. 6B shows the lower SOFC 1 between two interconnects 9.

如圖6B所示,MCO尖晶石塗層102位於互連體9之空氣側上之翼肋10及空氣通道8上且面向堆疊中之相鄰SOFC 1陰極7。鈣鈦礦層104(例如LSM)位於僅在翼肋10區域上而不在空氣通道8區域中之MCO塗層102上。此允許鈣鈦礦(例如LSM)層104接觸相同或類似之鈣鈦礦(例如LSM)陰極7,而不使用鈣鈦礦層104塗覆互連體9之整個空氣 側。在堆疊退火及/或工作之後,可在CrF互連體9基板100與MCO尖晶石塗層102之間形成上述中間氧化物層(圖6B中未示出)。 As shown in FIG. 6B, the MCO spinel coating 102 is located on the air rib 10 and air channel 8 on the air side of the interconnect 9 and faces the adjacent SOFC 1 cathode 7 in the stack. The perovskite layer 104 (e.g., LSM) is located on the MCO coating 102 only in the region of the rib 10 and not in the region of the air passage 8. This allows the perovskite (e.g., LSM) layer 104 to contact the same or similar perovskite (e.g., LSM) cathode 7 without the perovskite layer 104 coating the entire air of the interconnect 9 side. The intermediate oxide layer (not shown in FIG. 6B) may be formed between the CrF interconnect 9 substrate 100 and the MCO spinel coating 102 after stack annealing and/or operation.

在另一實施例中,向(Mn,Co)3O4尖晶石中添加第二相以用作雜質(諸如硫及矽)集除劑。以此方式,可改良塗層與CrF互連體基板100之黏著。舉例而言,可向塗層102之尖晶石相中添加金屬氧化物相(諸如非尖晶石金屬氧化物,例如Al2O3、Y2O3或TiO2)作為第二相。在一個態樣中,當金屬氧化物相為氧化鋁時,塗層組成可為(1-x)(Mn,Co)3O4及x(Al2O3),其中(0x0.02)。在此種情況下,Al2O3主要以第二相形式而非尖晶石結構中之摻雜劑形式存在。然而,在沈積期間及在SOFC工作溫度下,可能發生一些相互擴散。在此種情況下,尖晶石相將發生鋁、釔或鈦摻雜。 In another embodiment, a second phase is added to the (Mn,Co) 3 O 4 spinel for use as an impurity (such as sulfur and ruthenium) collector. In this way, the adhesion of the coating to the CrF interconnect substrate 100 can be improved. For example, a metal oxide phase (such as a non-spinel metal oxide such as Al 2 O 3 , Y 2 O 3 or TiO 2 ) may be added to the spinel phase of the coating 102 as the second phase. In one aspect, when the metal oxide phase is alumina, the coating composition can be (1-x) (Mn, Co) 3 O 4 and x (Al 2 O 3 ), wherein (0 x 0.02). In this case, Al 2 O 3 is mainly present in the form of a second phase rather than a dopant in the spinel structure. However, some interdiffusion may occur during deposition and at SOFC operating temperatures. In this case, the spinel phase will be doped with aluminum, tantalum or titanium.

圖7A展示例示性互連體100之空氣側。互連體可用於燃料在內部分支且空氣在外部分支之堆疊中。互連體在翼肋10之間含有氣流通路或通道8以允許空氣自互連體之一側13流向對側14。環(例如環形)密封部分15位於燃料入口開口16A及燃料出口開口16B周圍(亦即穿過互連體100中之孔16A、16B)。條形密封部分19位於互連體100之側面上。 FIG. 7A shows the air side of the exemplary interconnect 100. The interconnect can be used in a stack where the fuel branches internally and the air branches in the outside. The interconnects contain airflow passages or channels 8 between the ribs 10 to allow air to flow from one side 13 of the interconnect to the opposite side 14. A ring (e.g., annular) seal portion 15 is located around the fuel inlet opening 16A and the fuel outlet opening 16B (i.e., through the holes 16A, 16B in the interconnect 100). The strip seal portion 19 is located on the side of the interconnect 100.

圖7B展示例示性密封部分15、通路8及翼肋10之近視圖。密封部分15可包含任何適合之密封玻璃或玻璃陶瓷材料,諸如硼矽酸鹽玻璃。或者,密封部分15可包含2008年11月12日申請之美國申請案第12/292,078號中所述之玻璃陶瓷材料,該案以引用的方式併入本文中。 FIG. 7B shows a close up view of the exemplary sealing portion 15, passage 8 and rib 10. Sealing portion 15 can comprise any suitable sealing glass or glass ceramic material, such as borosilicate glass. Alternatively, the sealing portion 15 may comprise a glass-ceramic material as described in U.S. Application Serial No. 12/292,078, filed on Nov. 12, 2008, which is incorporated herein by reference.

必要時,互連體100可在密封部分15下方含有升起或隆起區。此外,如圖7B所說明,密封部分15較佳位於互連體100之平坦區17中。亦即,密封部分15位於不包括翼肋10之互連體部分中。必要時,互連體100可針對空氣與燃料均在內部分支之堆疊進行組態。在此種情況 下,互連體100及相應燃料電池電解質亦將含有其他空氣入口開口及出口開口(未圖示)。 The interconnect 100 may contain raised or raised regions below the sealing portion 15 as necessary. Further, as illustrated in FIG. 7B, the sealing portion 15 is preferably located in the flat region 17 of the interconnect 100. That is, the sealing portion 15 is located in the interconnect portion that does not include the rib 10. If necessary, the interconnect 100 can be configured for a stack of internal branches of air and fuel. In this case Next, interconnect 100 and corresponding fuel cell electrolyte will also contain other air inlet openings and outlet openings (not shown).

圖7C說明互連體100之燃料側。窗形密封部分18位於互連體100之周邊。亦展示燃料分配充氣部17及翼肋10之間的燃料流動通路8。重要的是,應注意圖7C中所示之互連體100具有兩種類型之燃料流動通路;然而,此並不限制本發明。互連體100之燃料側可具有全部為相同深度及長度之燃料流動通路,或短通路與長通路及/或深通路與淺通路之組合。 FIG. 7C illustrates the fuel side of interconnect 100. The window seal portion 18 is located at the periphery of the interconnect 100. A fuel flow passage 8 between the fuel distribution plenum 17 and the rib 10 is also shown. It is important to note that the interconnect 100 shown in Figure 7C has two types of fuel flow paths; however, this does not limit the invention. The fuel side of interconnect 100 can have fuel flow paths that are all of the same depth and length, or short and long paths and/or combinations of deep and shallow paths.

在一個實施例中,在室溫下使用氣溶膠噴塗法以Mn1.5Co1.5O4(MCO)尖晶石塗覆互連體100,且經一或多個熱處理進一步加工。一般而言,藉由遮蔽或移除密封區(環形15、條形19)中沈積之MCO而在此等區中略去MCO塗層。 In one embodiment, the interconnect 100 is coated with Mn 1.5 Co 1.5 O 4 (MCO) spinel using an aerosol spray method at room temperature and further processed by one or more heat treatments. In general, the MCO coating is omitted in these zones by masking or removing the MCO deposited in the seal zone (annular 15, strip 19).

MCO塗層可由升流管孔中之燃料還原,接著與環形密封部分15中之玻璃密封材料反應。因此,在一個實施例中,對於圖7B中所示之互連體100,在堆疊組裝及測試之前,自互連體空氣側上之平坦區17移除MCO塗層(例如藉由噴砂處理)。或者,在氣溶膠沈積期間可遮蔽平坦區17以防止塗覆平坦區17。因此,在與燃料入口開口16A及/或燃料出口開口16B相鄰之環形密封部分15下方之區17中略去MCO塗層。 The MCO coating can be reduced by the fuel in the riser orifice and then reacted with the glass seal material in the annular seal portion 15. Thus, in one embodiment, for the interconnect 100 shown in FIG. 7B, the MCO coating is removed from the flat region 17 on the air side of the interconnect prior to stack assembly and testing (eg, by grit blasting) . Alternatively, the flat zone 17 may be shielded during aerosol deposition to prevent coating of the flat zone 17. Accordingly, the MCO coating is omitted in the region 17 below the annular seal portion 15 adjacent the fuel inlet opening 16A and/or the fuel outlet opening 16B.

在另一實施例中,藉由粉末冶金製程製造互連體100。粉末冶金製程可產生在互連體100之主體內具有連通孔隙之部分,其允許燃料自燃料側擴散至空氣側。此經由孔隙輸運之燃料可與塗層/互連體界面處空氣側上之MCO塗層反應。此反應可導致密封失效及堆疊分離。在一個實施例中,可藉由在MCO沈積期間遮蔽互連體邊緣上之密封部分19之位置而略去條形密封部分19下方的MCO塗層,藉此除去此等密封區域中之塗層且允許玻璃密封部分19直接黏結於金屬互連 體,從而減輕此失效。 In another embodiment, the interconnect 100 is fabricated by a powder metallurgy process. The powder metallurgy process can produce a portion having interconnected pores within the body of interconnect 100 that allows fuel to diffuse from the fuel side to the air side. This fuel transported through the pores can react with the MCO coating on the air side at the coating/interconnect interface. This reaction can result in seal failure and stack separation. In one embodiment, the MCO coating under the strip seal portion 19 can be omitted by masking the location of the seal portion 19 on the edge of the interconnect during MCO deposition, thereby removing the coating in such seal regions. And allows the glass sealing portion 19 to be directly bonded to the metal interconnection Body, thereby alleviating this failure.

在另一實施例中,互連體100在互連體100之燃料側上形成綠色Cr2O3氧化物薄層25。圖8中說明此燃料側氧化物之截面顯微照片。發現Cr2O3氧化物厚度為0.5至2微米。下文所述之三種方法可用於轉化或移除此非所要之氧化鉻層。 In another embodiment, interconnect 100 forms a thin layer 25 of green Cr 2 O 3 oxide on the fuel side of interconnect 100. A cross-sectional photomicrograph of this fuel side oxide is illustrated in FIG. The Cr 2 O 3 oxide was found to have a thickness of 0.5 to 2 μm. The three methods described below can be used to convert or remove this undesirable chromium oxide layer.

在方法之一個實施例中,藉由任何適合方法(噴砂處理)移除此氧化物層。此方法有效。然而,此方法費時且增加加工成本。 In one embodiment of the method, the oxide layer is removed by any suitable method (blasting). This method is effective. However, this method is time consuming and increases processing costs.

或者,可使Cr2O3氧化物層25留在原地且轉化為複合層。在此實施例中,在Cr2O3氧化物層25上沈積鎳網狀陽極觸點且允許擴散至氧化鉻層中。鎳與Cr2O3氧化物層25反應且形成降低層25之歐姆電阻的Ni金屬/Cr2O3複合層。必要時,在接觸層25之後加熱該網以加快複合物形成。 Alternatively, the Cr 2 O 3 oxide layer 25 may be left in place and converted into a composite layer. In this embodiment, a nickel mesh anode contact is deposited on the Cr 2 O 3 oxide layer 25 and allowed to diffuse into the chromium oxide layer. Nickel reacts with the Cr 2 O 3 oxide layer 25 and forms a Ni metal/Cr 2 O 3 composite layer that reduces the ohmic resistance of the layer 25. If necessary, the web is heated after the contact layer 25 to accelerate the formation of the composite.

在另一實施例中,藉由在具有低氧分壓之環境中燃燒經MCO塗覆之互連體來減少或完全除去氧化物層25。舉例而言,基於熱力學,Cr2O3可在10-24atm之pO2(分壓)下在900℃下還原成Cr金屬,而CoO在10-16 atm之pO2下在900℃下還原成Co金屬。藉由在900℃下降低燃燒氛圍之氧分壓(亦即降低露點)至小於10-24 atm,可防止在燃料側(未塗覆側)上形成Cr2O3氧化物,同時可使互連體空氣側上之MCO塗層還原成對燒結有益之MnO(或若pO2<10-27 atm,則為Mn金屬)及Co金屬。在pO2<10-27 atm下,MCO將還原成Mn金屬及Co金屬,其相較於MnO/Co金屬可產生較佳燒結且較緻密之塗層。一般而言,經MCO塗覆之互連體可在T>850℃(諸如900℃至1200℃)下,在10-24 atm(例如10-25 atm至10-30 atm,包括10-27 atm至10-30 atm)之pO2下退火30分鐘至40小時,諸如2-10小時。 In another embodiment, the oxide layer 25 is reduced or completely removed by burning the MCO coated interconnect in an environment having a low oxygen partial pressure. For example, based on thermodynamics, Cr 2 O 3 can be reduced to Cr metal at 900 ° C at 10 -24 atm pO 2 (partial pressure), while CoO is reduced at 900 ° C at 10 -16 atm pO 2 Into Co metal. By reducing the partial pressure of oxygen (ie, reducing the dew point) of the combustion atmosphere to less than 10 -24 atm at 900 ° C, formation of Cr 2 O 3 oxide on the fuel side (uncoated side) can be prevented while allowing mutual The MCO coating on the side of the conjoined air is reduced to MnO (or Mn metal if pO 2 <10 -27 atm) and Co metal beneficial for sintering. At pO 2 <10 -27 atm, the MCO will be reduced to Mn metal and Co metal, which produces a better sintered and denser coating than the MnO/Co metal. In general, MCO coated interconnects can be at 10 to 24 atm (eg, 10 to 25 atm to 10 -30 atm, including 10 -27 atm) at T > 850 ° C (such as 900 ° C to 1200 ° C). to 10 -30 atm) the pO 2 annealed at 30 to 40 minutes, such as 10 hours.

在另一實施例中,為降低MCO塗覆製程之成本,可在粉末冶金(PM)形成之互連體的燒結步驟期間使MCO塗層退火(例如燃燒或燒 結)。粉末冶金互連體100及互連體上MCO塗層之燒結可在相同步驟中,在還原環境(諸如露點為-20℃至-30℃之氫氣還原爐)中,在1300℃至1400℃之溫度下進行,且持續0.5至6小時。在此等溫度及氧分壓下,MCO塗層將完全還原成Co金屬及Mn金屬。然而,Mn之熔融溫度為約1245℃,Co之熔融溫度為約1495℃,且Co-Mn系統具有降低之液相線。因此,在1300℃至1400℃之溫度下燒結可導致非所要之液相形成。 In another embodiment, to reduce the cost of the MCO coating process, the MCO coating can be annealed (eg, burned or burned during the sintering step of the powder metallurgy (PM) formed interconnect. Knot). Sintering of the powder metallurgy interconnect 100 and the MCO coating on the interconnect can be carried out in the same step, in a reducing environment (such as a hydrogen reduction furnace with a dew point of -20 ° C to -30 ° C), at 1300 ° C to 1400 ° C. The temperature is carried out for 0.5 to 6 hours. At these temperatures and partial pressures of oxygen, the MCO coating will be completely reduced to Co metal and Mn metal. However, the melting temperature of Mn is about 1245 ° C, the melting temperature of Co is about 1495 ° C, and the Co-Mn system has a reduced liquidus. Therefore, sintering at a temperature of 1300 ° C to 1400 ° C can result in undesirable liquid phase formation.

避免形成液體之可能方案包括使燒結溫度降至低於1300℃,諸如低於1245℃,例如1100℃至1245℃;升高氧分壓以使MCO中之Mn還原成MnO(熔融溫度1650℃)(但不氧化Cr),與Mn金屬相對比;降低MCO中之Mn:Co比以提高Mn-Co金屬系統之熔融溫度;向MCO中添加摻雜劑(諸如Cr)以提高Co-Mn-Cr金屬系統之熔融溫度;及/或向MCO塗層中添加摻雜劑(諸如Fe、V及/或Ti)以穩定二元及三元氧化物(防止還原成金屬相)。舉例而言,在1400℃之燒結溫度下,MnO在10-17 atm之pO2下還原成Mn金屬,而Cr2O3在10-15 atm之pO2下還原成Cr金屬,此產生Cr還原成金屬而MnO仍呈具有高熔點之氧化物形式的小窗(pO2介於10-17 atm至10-15 atm之間)。因此,互連體及MCO塗層可在1300-1400℃下在pO2=10-15-10-17 atm下燒結。 Possible solutions to avoid liquid formation include reducing the sintering temperature to below 1300 ° C, such as below 1245 ° C, such as 1100 ° C to 1245 ° C; increasing the partial pressure of oxygen to reduce Mn in the MCO to MnO (melting temperature 1650 ° C) (but not oxidizing Cr), as opposed to Mn metal; reducing the Mn:Co ratio in MCO to increase the melting temperature of the Mn-Co metal system; adding a dopant such as Cr to the MCO to increase Co-Mn-Cr The melting temperature of the metal system; and/or the addition of dopants (such as Fe, V, and/or Ti) to the MCO coating to stabilize the binary and ternary oxides (to prevent reduction to the metal phase). For example, at a sintering temperature of 1400 ° C, MnO is reduced to Mn metal at 10 -17 atm pO 2 , and Cr 2 O 3 is reduced to Cr metal at 10 -15 atm pO 2 , which produces Cr reduction. The metal is formed while MnO is still a small window in the form of an oxide having a high melting point (pO 2 is between 10 -17 atm and 10 -15 atm). Thus, the interconnect and MCO coating can be sintered at 1300-1400 ° C at pO 2 = 10 -15 -10 -17 atm.

在另一實施例中,可首先進行IC燒結步驟,此後向燒結之IC施加MCO塗層。接著對IC及塗層進行上述實施例中所述之還原步驟,其較適於MCO塗層。 In another embodiment, the IC sintering step may be performed first, after which an MCO coating is applied to the sintered IC. The IC and coating are then subjected to the reduction steps described in the above examples, which are more suitable for MCO coating.

在另一實施例中,藉由以已還原組分(諸如MnO、CoO、Mn金屬、Co金屬或此等組分之任何組合)之混合物形式沈積MCO層可降低互連體製造成本。接著較佳在低pO2條件下燒結混合物。然而,該燒結可能較容易或起始材料可能較緻密,藉此減少燒結時間。此外,此等前驅粒子不如MCO前驅物昂貴,該MCO前驅物需要昂貴的合成方 法來製造。 In another embodiment, the interconnect fabrication cost can be reduced by depositing the MCO layer as a mixture of reduced components such as MnO, CoO, Mn metal, Co metal, or any combination of such components. The mixture is then preferably sintered under low pO 2 conditions. However, the sintering may be easier or the starting material may be denser, thereby reducing the sintering time. Moreover, such precursor particles are less expensive than MCO precursors, which require expensive synthetic methods to manufacture.

此外,在用MCO層塗覆互連體之前可進行噴砂處理步驟以自互連體之空氣側與燃料側移除天然氧化鉻層。為降低成本,在互連體空氣側上形成MCO塗層之前可僅自互連體空氣側移除天然氧化物。接著在空氣側上沈積MCO塗層且如上文所述使互連體退火。在完成退火之後,接著可諸如藉由噴砂處理自燃料側移除氧化物。以此方式,減少噴砂處理步驟之次數,此係因為無需其他噴砂處理步驟來移除MCO塗層退火期間在互連體燃料側上發生之氧化物生長。 Additionally, a sandblasting step can be performed prior to coating the interconnect with the MCO layer to remove the native chromium oxide layer from the air side and fuel side of the interconnect. To reduce cost, the native oxide can be removed only from the air side of the interconnect before the MCO coating is formed on the air side of the interconnect. An MCO coating is then deposited on the air side and the interconnect is annealed as described above. After the annealing is completed, the oxide can then be removed from the fuel side, such as by grit blasting. In this manner, the number of blasting steps is reduced because no other blasting steps are required to remove oxide growth that occurs on the interconnect fuel side during the MCO coating anneal.

在其他實施例中,改進MCO塗層之組成以提高在SOFC工作溫度(諸如800-1000℃)下之穩定性。一些前述實施例之MCO組成為Mn1.5Co1.5O4。此材料具有高電導率。然而,MCO材料可還原成二元氧化物MnO及CoO,或還原成二元氧化物MnO及Co金屬。 In other embodiments, the composition of the MCO coating is modified to increase stability at SOFC operating temperatures, such as 800-1000 °C. The MCO composition of some of the foregoing examples is Mn 1.5 Co 1.5 O 4 . This material has a high electrical conductivity. However, the MCO material can be reduced to binary oxides MnO and CoO, or reduced to binary oxides MnO and Co metal.

在一些燃料電池幾何形態中,MCO塗層僅直接暴露於升流管開口16A、16B處之燃料物流。可藉由不塗覆開口周圍之平坦區17來消除此燃料/塗層界面(圖7B)。然而,藉由粉末冶金法製造之互連體產生具有一些連通(開口)孔隙之部分,其可允許燃料穿過該部分擴散至空氣側。穿過孔隙擴散之燃料可與MCO/互連體界面(圖9中所示)處之MCO反應且使其還原,產生由MnO及Co金屬組成之多孔層。塗層/IC界面可能受損,導致在常規處理期間黏著失敗且使電池與互連體分離,如圖9所示。 In some fuel cell geometries, the MCO coating is only directly exposed to the fuel stream at the riser openings 16A, 16B. This fuel/coating interface can be eliminated by not coating the flat zone 17 around the opening (Fig. 7B). However, interconnects made by powder metallurgy produce portions with some interconnected (open) pores that allow fuel to diffuse through the portion to the air side. The fuel diffusing through the pores can react with the MCO at the MCO/interconnect interface (shown in Figure 9) and reduce it to produce a porous layer composed of MnO and Co metal. The coating/IC interface may be damaged, resulting in failure of adhesion during normal processing and separation of the cell from the interconnect, as shown in FIG.

需要具有較穩定且當暴露於燃料環境時不太可能還原之塗層材料。下文所述之實施例使組成最佳化及/或用其他元素摻合MCO,以使材料在還原氛圍中穩定。 There is a need for coating materials that are relatively stable and less likely to be reduced when exposed to a fuel environment. The examples described below optimize the composition and/or blend the MCO with other elements to stabilize the material in a reducing atmosphere.

圖11及圖12說明電解質腐蝕理論。在圖11及圖12所示之先前技術SOFC堆疊中,互連體上之LSM塗層11與環密封部分15接觸定位。密封部分15接觸電池電解質5。在不欲受特定理論約束下,咸信來自含 有錳及/或鈷之金屬氧化物(例如LSCo之LSM)層11之錳及/或鈷浸入玻璃密封部分15中及/或與其反應,接著自玻璃輸運至電解質。錳及/或鈷可以錳及/或鈷原子或離子形式或以含有錳及/或鈷之化合物(諸如富含錳及/或鈷之矽酸鹽化合物)形式自玻璃輸運至電解質。舉例而言,咸信錳及鈷與玻璃反應形成(Si,Ba)(Mn,Co)O6±δ移動相,該移動相自玻璃密封部分輸運至電解質。電解質5處或電解質5中之錳及/或鈷(例如作為移動相之一部分)傾向於聚集在基於氧化鋯之電解質之晶界處。此導致削弱電解質晶界之晶粒間腐蝕及凹點,最終導致電解質5中產生裂縫(例如開口16A至開口16B裂縫)。在不受特定理論約束下,如圖11所示,通過燃料入口升流管36之燃料(例如天然氣、氫氣及/或一氧化碳)亦可能與金屬氧化物層11及/或玻璃密封部分15反應形成移動相且增強錳及/或鈷自層11浸入密封部分15中。 Figures 11 and 12 illustrate the theory of electrolyte corrosion. In the prior art SOFC stack shown in Figures 11 and 12, the LSM coating 11 on the interconnect is in contact with the ring seal portion 15. The sealing portion 15 contacts the battery electrolyte 5. Without wishing to be bound by a particular theory, it is believed that manganese and/or cobalt from the layer 11 of a metal oxide containing manganese and/or cobalt (e.g., LSM of LSCo) is immersed in and/or reacted with the glass seal portion 15, followed by The glass is transported to the electrolyte. Manganese and/or cobalt may be transported from the glass to the electrolyte in the form of manganese and/or cobalt atoms or ions or in the form of compounds containing manganese and/or cobalt, such as ceric acid compounds rich in manganese and/or cobalt. For example, manganese and cobalt react with glass to form a (Si,Ba)(Mn,Co)O 6±δ mobile phase that is transported from the glass seal to the electrolyte. Manganese and/or cobalt at the electrolyte 5 or in the electrolyte 5 (for example as part of the mobile phase) tend to accumulate at the grain boundaries of the zirconia-based electrolyte. This results in weakening intergranular corrosion and pits of the electrolyte grain boundaries, eventually resulting in cracks in the electrolyte 5 (e.g., openings 16A to 16B cracks). Without being bound by a particular theory, as shown in FIG. 11, fuel (eg, natural gas, hydrogen, and/or carbon monoxide) passing through the fuel inlet riser 36 may also react with the metal oxide layer 11 and/or the glass seal portion 15 to form The mobile phase and enhanced manganese and/or cobalt are immersed from the layer 11 into the sealing portion 15.

如上文所論述,在其他實施例中,改進MCO塗層之組成以提高在SOFC工作溫度(諸如800-1000℃)下之穩定性。因此,可基於穩定性及電導率使MCO組成最佳化。實例組成包括(但不限於)Mn2CoO4、Mn1.75Co0.25O4、Co1.75Mn0.25O4、Co2MnO4及Co2.5Mn0.5O4As discussed above, in other embodiments, the composition of the MCO coating is improved to increase stability at SOFC operating temperatures, such as 800-1000 °C. Therefore, the MCO composition can be optimized based on stability and conductivity. Example compositions include, but are not limited to, Mn 2 CoO 4 , Mn 1.75 Co 0.25 O 4 , Co 1.75 Mn 0.25 O 4 , Co 2 MnO 4 , and Co 2.5 Mn 0.5 O 4 .

基於相圖(圖10)且出於穩定性觀點,宜具有富含Mn之多相組成,諸如Mn2.5Co0.5O4及Mn2.75Co0.25O4(例如Mn:Co之原子比為5:1或大於5:1,諸如5:1 10 11:1。較高Mn含量亦可產生較穩定組成,此係因為該組成處於高於在高Co含量下所見之兩相尖晶石+二元氧化物之氧化態。然而,(Mn,Co)3O4家族中介於最終組成Co3O4與Mn3O4之間的任何組成均可能適合。 Based on the phase diagram (Fig. 10) and from the viewpoint of stability, it is preferred to have a multiphase composition rich in Mn such as Mn 2.5 Co 0.5 O 4 and Mn 2.75 Co 0.25 O 4 (for example, an atomic ratio of Mn:Co of 5:1) Or greater than 5:1, such as 5:1 10 11:1. Higher Mn content can also produce a more stable composition, because the composition is higher than the two-phase spinel + binary oxidation seen at high Co content. The oxidation state of the species. However, any composition between the final composition Co 3 O 4 and Mn 3 O 4 in the (Mn,Co) 3 O 4 family may be suitable.

在另一實施例中,藉由添加具有較小還原傾向之另一摻雜劑使MCO穩定。舉例而言,已知MCO與IC合金中之Cr反應形成(Cr,Co,Mn)3O4尖晶石。若向MCO塗層中有意添加低含量(諸如0.1原子%至10原子%)之Cr,則此將產生比MCO穩定之尖晶石(Cr,Co,Mn)3O4,此係 因為Cr3+極穩定。可溶於尖晶石結構且可提高穩定性之其他過渡金屬元素包括Fe、V及Ti。實例塗層材料包括具有1原子%至50原子% Fe之尖晶石(Fe,Co,Mn)3O4、具有1原子%至50原子% Ti之(Ti,Co,Mn)3O4,或(Fe,Ti,Co,Mn)3O4之組合。 In another embodiment, the MCO is stabilized by the addition of another dopant having a lower tendency to reduce. For example, it is known that MCO reacts with Cr in an IC alloy to form a (Cr, Co, Mn) 3 O 4 spinel. If a low content (such as 0.1 atomic % to 10 atomic %) of Cr is intentionally added to the MCO coating, this will result in a spinel (Cr, Co, Mn) 3 O 4 that is more stable than MCO because of Cr 3 + Extremely stable. Other transition metal elements that are soluble in the spinel structure and that improve stability include Fe, V, and Ti. The example coating material includes spinel (Fe, Co, Mn) 3 O 4 having 1 atom% to 50 atom% Fe, and (Ti, Co, Mn) 3 O 4 having 1 atom% to 50 atom% Ti. Or a combination of (Fe, Ti, Co, Mn) 3 O 4 .

添加Ti可產生較穩定之二次相,包括Co2TiO4、MnTi2O4或FeTi2O4。此等相有益於整體塗層穩定性。具有上述摻雜劑之任何組合的尖晶石為可能的,包括(Fe,Cr,Co,Mn)3O4、(Cr,Ti,Co,Mn)3O4等。 The addition of Ti produces a relatively stable secondary phase, including Co 2 TiO 4 , MnTi 2 O 4 or FeTi 2 O 4 . These phases are beneficial for overall coating stability. Spinels having any combination of the above dopants are possible, including (Fe, Cr, Co, Mn) 3 O 4 , (Cr, Ti, Co, Mn) 3 O 4 and the like.

已知基於Mg、Ca及Al之尖晶石極穩定且抗還原。然而,此等尖晶石具有低電導率且因此對於作為互連體塗層之應用並非較佳。相比之下,將低含量之Ca、Mg及/或Al摻雜至傳導性尖晶石(諸如MCO)中會提高材料穩定性,而僅稍稍降低電導率。實例尖晶石包括具有1原子%至10原子% Ca之(Ca,Co,Mn)3O4、具有1原子%至10原子% Mg之(Mg,Co,Mn)3O4、具有1原子%至10原子% Al之(Al,Co,Mn)3O4,或諸如(Ca,Al,Mn,Co)3O4之組合,其中Ca、Al及/或Mg以1-10原子%添加。Si及Ce為可用作MCO尖晶石之摻雜劑(1-10原子%)之其他元素。 Spinels based on Mg, Ca and Al are known to be extremely stable and resistant to reduction. However, such spinels have low electrical conductivity and are therefore not preferred for use as interconnect coatings. In contrast, doping a low level of Ca, Mg, and/or Al into a conductive spinel (such as MCO) increases material stability while only slightly lowering the conductivity. Examples of spinels include 1 atomic% to 10 atomic% Ca of (Ca, Co, Mn) 3 O 4, with 1 atomic% to 10 atomic% Mg of (Mg, Co, Mn) 3 O 4, having an atomic % to 10 atom% Al (Al, Co, Mn) 3 O 4 , or a combination such as (Ca, Al, Mn, Co) 3 O 4 wherein Ca, Al and/or Mg are added in an amount of 1 to 10 atom% . Si and Ce are other elements which can be used as a dopant (1-10 atom%) of the MCO spinel.

除上述屬於一般材料類別-特定穩定成果之方法以外,描繪替代實施例以設計可作出的與上述實施例組合或替代上述實施例改良塗層穩定性之變化。在第一替代實施例中,在添加MCO塗層之前可向互連體中添加穩定障壁層。此障壁層較佳將由比MCO穩定之氧化物製成,且具有足夠傳導性且足夠薄從而不會對互連體組分之傳導率產生不利影響。另外,此障壁層較佳緻密且氣密。實例障壁層包括(但不限於)經摻雜之Ti氧化物(例如TiO2)層或錳酸鑭鍶(LSM)。 In addition to the above-described methods pertaining to general material classes - specific stabilizing results, alternative embodiments are depicted to design changes that may be made in combination with or in place of the above-described embodiments to improve coating stability. In a first alternative embodiment, a stabilizing barrier layer can be added to the interconnect prior to the addition of the MCO coating. The barrier layer will preferably be made of an oxide that is more stable than MCO and that is sufficiently conductive and thin enough to not adversely affect the conductivity of the interconnect components. In addition, the barrier layer is preferably dense and airtight. Example barrier layers include, but are not limited to, a doped Ti oxide (eg, TiO 2 ) layer or lanthanum manganate (LSM).

第二替代實施例包括在互連體與MCO塗層之間添加反應性障壁層,其包括上文所論述之任何元素(例如Cr、V、Fe、Ti、Al、Mg、Si、Ce及/或Ca)作為可能之摻雜劑。將互連體加熱至標準工作溫度 (800-1000℃)之後,此層使此等元素擴散至MCO塗層中,從而形成在發生還原之互連體界面處摻雜劑濃度較高的分級摻雜型態。以此方式,大部分塗層含有相對較少摻雜劑,且因此可能比均勻摻雜塗層材料對傳導率的影響小。反應層為金屬層(例如Ti或含金屬化合物,其可使金屬在800℃或高於800℃下向外擴散)。 A second alternative embodiment includes the addition of a reactive barrier layer between the interconnect and the MCO coating, including any of the elements discussed above (eg, Cr, V, Fe, Ti, Al, Mg, Si, Ce, and/or Or Ca) as a possible dopant. Heat the interconnect to standard operating temperature After (800-1000 ° C), this layer diffuses these elements into the MCO coating, thereby forming a graded doping profile with a higher dopant concentration at the interface of the reduced interconnect. In this way, most coatings contain relatively few dopants and thus may have less impact on conductivity than uniformly doped coating materials. The reaction layer is a metal layer (for example, Ti or a metal-containing compound which allows the metal to diffuse outward at 800 ° C or higher).

另一實施例包括設計互連體材料,使其含有以與方才所述相同之方式擴散至MCO塗層中之反應性摻雜元素(例如用於Cr-4-6% Fe互連體之Si、Ce、Mg、Ca、Ti及/或Al)。因此,互連體將含有90重量% Cr、4-6% Fe及0.1-2% Mg、Ti、Ca及/或Al。 Another embodiment includes designing the interconnect material to contain reactive doping elements that diffuse into the MCO coating in the same manner as described (eg, Si for Cr-4-6% Fe interconnects) , Ce, Mg, Ca, Ti and/or Al). Therefore, the interconnect will contain 90% by weight of Cr, 4-6% Fe and 0.1-2% of Mg, Ti, Ca and/or Al.

此外,在標準氧化法之外,減少或閉合部分之孔隙的IC之任何沈積或處理方法將有助於限制MCO塗層之還原。舉例而言,Cr層可在MCO退火步驟之前電鍍至多孔部分上以進一步降低孔隙率。或者,如上文所述,添加反應性障壁層(若緻密且氣密)亦將減少或阻斷氫氣自表面孔隙擴散。 In addition, in addition to standard oxidation processes, any deposition or processing of ICs that reduce or close a portion of the pores will help limit the reduction of the MCO coating. For example, the Cr layer can be electroplated onto the porous portion prior to the MCO annealing step to further reduce porosity. Alternatively, as described above, the addition of a reactive barrier layer (if dense and airtight) will also reduce or block the diffusion of hydrogen from the surface pores.

本發明實施例提供複合鈣鈦礦與尖晶石塗層而非雙層尖晶石及鈣鈦礦塗層。圖13為說明具有複合LSM-MCO塗層之互連體的顯微照片。根據此實施例之複合LSM/MCO塗層110經設計以利用上文所論述之此等個別塗層中之每一者的最佳特徵。圖13中所說明之複合塗層110包含40重量% MCO及60重量% LSM且在SOFC堆疊中經調節(在850℃下兩天週期)。亮相112為LSM,而暗相114為MCO。因此,LSM及MCO相在複合塗層中以獨特區域之形式存在。在不欲受特定理論約束下,咸信MCO相可在LSM相矩陣112中形成板狀或扁平狀(例如長而較厚)結構114。然而,對於複合塗層110之不同組成及/或沈積方法,結構可能不同。 Embodiments of the present invention provide composite perovskite and spinel coatings rather than double layer spinel and perovskite coatings. Figure 13 is a photomicrograph illustrating an interconnect having a composite LSM-MCO coating. The composite LSM/MCO coating 110 in accordance with this embodiment is designed to take advantage of the best features of each of these individual coatings discussed above. The composite coating 110 illustrated in Figure 13 contained 40% by weight MCO and 60% by weight LSM and was conditioned in the SOFC stack (two day cycle at 850 °C). Debut 112 is the LSM and dark phase 114 is the MCO. Therefore, the LSM and MCO phases exist in a unique region in the composite coating. Without wishing to be bound by a particular theory, the salty MCO phase may form a plate-like or flat (e.g., long, thicker) structure 114 in the LSM phase matrix 112. However, the structure may vary for different compositions and/or deposition methods of the composite coating 110.

複合塗層110內存在修繕裂縫之扁平狀MCO結構會抑制Cr穿過LSM中產生之裂縫蒸發。LSM之存在使複合LSM/MCO塗層在還原氛 圍中穩定,使得散裂不會發生且維持塗層完整性。複合塗層110之MCO含量較佳足夠高以在IC上形成Mn-Cr-Co氧化物(例如尖晶石101)規模,其相較於單相LSM塗層提供較低歐姆電阻,該單相LSM塗層僅可在互連體表面上形成MnCr氧化物尖晶石。如圖13可見,複合塗層110在SOFC堆疊中在850℃下調節兩天後不展現任何裂縫或散裂。 The flat MCO structure in the composite coating 110 where the crack is repaired inhibits the evaporation of Cr through the cracks generated in the LSM. The presence of LSM allows the composite LSM/MCO coating to be reduced Stable in the enclosure, so that spalling does not occur and the integrity of the coating is maintained. The MCO content of the composite coating 110 is preferably sufficiently high to form a Mn-Cr-Co oxide (e.g., spinel 101) scale on the IC that provides a lower ohmic resistance than the single phase LSM coating, the single phase The LSM coating can only form MnCr oxide spinel on the surface of the interconnect. As can be seen in Figure 13, the composite coating 110 did not exhibit any cracks or spalling after conditioning for two days at 850 °C in the SOFC stack.

複合塗層110之組成可為任何比率之LSM:MCO,只要其為兩種材料之混合物(而非雙層塗層)即可。舉例而言,鈣鈦礦與尖晶石(例如LSM:MCO)之重量比可在20:80至90:10,諸如50:50至80:20之範圍內。複合塗層110中個別LSM及MCO材料之組成可如上文所述而變化,且可具有任何含量或比率之非氧組分,且可包括除鈣鈦礦及尖晶石相以外之其他相及/或除Mn、Co、La、Sr及O以外之其他元素。舉例而言,塗層110之尖晶石相114可包含Mn2-xCo1+xO4,其中0x1,且鈣鈦礦相112可包含La1-xSrxMnO3(LSM),其中0.1x0.3,諸如0.1x0。 The composition of the composite coating 110 can be any ratio of LSM:MCO as long as it is a mixture of two materials (rather than a two-layer coating). For example, the weight ratio of perovskite to spinel (eg, LSM:MCO) can range from 20:80 to 90:10, such as from 50:50 to 80:20. The composition of the individual LSM and MCO materials in the composite coating 110 can vary as described above, and can have any content or ratio of non-oxygen components, and can include phases other than perovskites and spinel phases. / or other elements than Mn, Co, La, Sr and O. For example, the spinel phase 114 of the coating 110 can comprise Mn 2-x Co 1+x O 4 , where 0 x 1, and the perovskite phase 112 may comprise La 1-x Sr x MnO 3 (LSM), wherein 0.1 x 0.3, such as 0.1 x 0.

可使用任何沈積方法(諸如(但不限於)APS)使複合塗層110沈積於互連體上。鈣鈦礦及尖晶石較佳在一個步驟中一起沈積。舉例而言,在APS製程中向電漿中提供之APS原料粉末可包含重量比與塗層110所需相同的LSM與MCO粉末之混合物。 The composite coating 110 can be deposited on the interconnect using any deposition method such as, but not limited to, APS. The perovskite and spinel are preferably deposited together in one step. For example, the APS material powder provided to the plasma in the APS process can comprise a mixture of LSM and MCO powder in the same weight ratio as that required for the coating 110.

塗層之微結構、厚度或任何其他物理特性可變化且可具有任何形式。然而,緻密塗層較佳。複合塗層110可沈積於互連體上之任何位置上。亦即,複合塗層並不限於互連體之任何特定部分,但較佳沈積於互連體之陰極側上。 The microstructure, thickness or any other physical property of the coating can vary and can take any form. However, a dense coating is preferred. Composite coating 110 can be deposited anywhere on the interconnect. That is, the composite coating is not limited to any particular portion of the interconnect, but is preferably deposited on the cathode side of the interconnect.

儘管上述內容涉及特定較佳實施例,但應瞭解,本發明並不限於此。一般技術者將想到可對所揭示之實施例作出多種修改,且該等修改欲處於本發明之範疇內。本文所引用之所有公開案、專利申請案及專利均以全文引用的方式併入本文中。 While the above is directed to certain preferred embodiments, it should be understood that the invention is not limited thereto. Various modifications may be made to the disclosed embodiments, and such modifications are intended to be within the scope of the invention. All publications, patent applications, and patents cited herein are hereby incorporated by reference in their entirety.

100‧‧‧互連體 100‧‧‧Interconnects

101‧‧‧中間氧化物層/中間層/層/中間尖晶石層/界面尖晶石層 101‧‧‧Intermediate oxide layer/intermediate layer/layer/intermediate spinel layer/interface spinel layer

102‧‧‧MCO尖晶石層/MCO尖晶石塗層/MCO塗層/塗層 102‧‧‧MCO spinel layer/MCO spinel coating/MCO coating/coating

Claims (60)

一種塗覆用於固態氧化物燃料電池之互連體之方法,其包含:提供包含Cr及Fe之互連體基板;及使用電漿噴射製程以氧化錳鈷尖晶石塗層塗覆互連體基板之空氣側;其中該尖晶石包含一或多種單價元素。 A method of coating an interconnect for a solid oxide fuel cell, comprising: providing an interconnect substrate comprising Cr and Fe; and coating the interconnect with a manganese cobalt spinel coating using a plasma jet process The air side of the bulk substrate; wherein the spinel comprises one or more monovalent elements. 如請求項1之方法,其中該一或多種單價元素係選自由Y3+、Al3+、Mg2+及Zn2+組成之群,且該尖晶石包含(Mn,Co,M)3O4,其中M=Y、Al、Mg或Zn。 The method of claim 1, wherein the one or more monovalent elements are selected from the group consisting of Y 3+ , Al 3+ , Mg 2+ , and Zn 2+ , and the spinel comprises (Mn, Co, M) 3 O 4 , wherein M=Y, Al, Mg or Zn. 一種塗覆用於固態氧化物燃料電池之互連體之方法,其包含:提供包含Cr及Fe之互連體基板;及使用電漿噴射製程以氧化錳鈷尖晶石塗層塗覆互連體基板之空氣側;其中該塗層另外包含集除劑。 A method of coating an interconnect for a solid oxide fuel cell, comprising: providing an interconnect substrate comprising Cr and Fe; and coating the interconnect with a manganese cobalt spinel coating using a plasma jet process The air side of the bulk substrate; wherein the coating additionally comprises a binder. 如請求項3之方法,其中該集除劑包含Al2O3、Y2O3或TiO2中之至少一者。 The method of claim 3, wherein the collector comprises at least one of Al 2 O 3 , Y 2 O 3 or TiO 2 . 一種塗覆用於固態氧化物燃料電池之互連體之方法,其包含:提供包含Cr及Fe之互連體基板;使用電漿噴射製程以氧化錳鈷尖晶石塗層塗覆互連體基板之空氣側;及在該尖晶石塗層上沈積鈣鈦礦層。 A method of coating an interconnect for a solid oxide fuel cell, comprising: providing an interconnect substrate comprising Cr and Fe; coating the interconnect with a manganese cobalt spinel coating using a plasma jet process An air side of the substrate; and a perovskite layer deposited on the spinel coating. 如請求項5之方法,其中該尖晶石塗層係位於該互連體基板之該空氣側上之翼肋與空氣通道上,且該鈣鈦礦層係位於該互連體基板之該等翼肋上而非該等空氣通道上之該尖晶石塗層上。 The method of claim 5, wherein the spinel coating is on the air ribs on the air side of the interconnect substrate and the air channel, and the perovskite layer is on the wings of the interconnect substrate The ribs are on the spinel coating on the air channels. 一種塗覆用於固態氧化物燃料電池之互連體之方法,其包含:提供包含Cr及Fe之互連體基板;及 使用電漿噴射製程以氧化錳鈷尖晶石塗層塗覆互連體基板之空氣側;其中該氧化錳鈷尖晶石塗層包含鈣鈦礦組分以形成複合塗層。 A method of coating an interconnect for a solid oxide fuel cell, comprising: providing an interconnect substrate comprising Cr and Fe; The air side of the interconnect substrate is coated with a manganese oxide cobalt spinel coating using a plasma spray process; wherein the manganese cobalt cobalt spinel coating comprises a perovskite component to form a composite coating. 如請求項7之方法,其中該複合塗層在鈣鈦礦相矩陣中包含板狀尖晶石相區;該鈣鈦礦相包含錳酸鑭鍶;且錳-鈷-鉻中間尖晶石層係位於該複合塗層與該互連體基板之該空氣側之間。 The method of claim 7, wherein the composite coating comprises a plate-like spinel phase region in a perovskite phase matrix; the perovskite phase comprises barium manganate; and the manganese-cobalt-chromium intermediate spinel layer Located between the composite coating and the air side of the interconnect substrate. 一種用於固態氧化物燃料電池之經塗覆互連體,其包含:包含鐵及鉻之互連體基板;及在該互連體基板之空氣側上形成之複合尖晶石與鈣鈦礦塗層。 A coated interconnect for a solid oxide fuel cell, comprising: an interconnect substrate comprising iron and chromium; and a composite spinel and perovskite formed on an air side of the interconnect substrate coating. 如請求項9之經塗覆互連體,其中該複合塗層在鈣鈦礦相矩陣中包含板狀尖晶石相區。 The coated interconnect of claim 9, wherein the composite coating comprises a plate-like spinel phase region in a matrix of perovskite phases. 如請求項10之經塗覆互連體,其中:該尖晶石相包含氧化錳鈷尖晶石;該鈣鈦礦相包含錳酸鑭鍶;錳-鈷-鉻中間尖晶石層係位於該複合塗層與該互連體基板之該空氣側之間;且該複合塗層係使用空氣電漿噴射製程形成。 The coated interconnect of claim 10, wherein: the spinel phase comprises manganese oxide cobalt spinel; the perovskite phase comprises lanthanum manganate; and the manganese-cobalt-chromium intermediate spinel layer is located The composite coating is formed between the air side of the interconnect substrate; and the composite coating is formed using an air plasma jet process. 一種用於固態氧化物燃料電池之經塗覆互連體,其包含:包含鐵及鉻之互連體基板;在該互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層;位於該尖晶石塗層與該互連體基板之該空氣側之間的錳-鈷-鉻中間尖晶石層;及 位於該尖晶石塗層上之鈣鈦礦層。 A coated interconnect for a solid oxide fuel cell, comprising: an interconnect substrate comprising iron and chromium; a manganese oxide cobalt spinel coating formed on an air side of the interconnect substrate; a manganese-cobalt-chromium intermediate spinel layer between the spinel coating and the air side of the interconnect substrate; a perovskite layer on the spinel coating. 如請求項12之經塗覆互連體,其中該尖晶石塗層之該尖晶石包含Mn2-xCo1+xO4,其中0x1且其中該尖晶石包含至少1:3之Co:Mn原子比。 The coated interconnect of claim 12, wherein the spinel of the spinel coating comprises Mn 2-x Co 1+x O 4 , wherein x 1 and wherein the spinel comprises a Co:Mn atomic ratio of at least 1:3. 如請求項13之經塗覆互連體,其中該尖晶石塗層之該尖晶石包含Mn1.5Co1.5O4且該鈣鈦礦層包含錳酸鑭鍶。 The coated interconnect of claim 13, wherein the spinel of the spinel coating comprises Mn 1.5 Co 1.5 O 4 and the perovskite layer comprises lanthanum manganate. 如請求項12之經塗覆互連體,其中該尖晶石塗層係位於該互連體基板之該空氣側上之翼肋與空氣通道上,且該鈣鈦礦層係位於該互連體基板之該等翼肋上而非該等空氣通道上之該尖晶石塗層上。 The coated interconnect of claim 12, wherein the spinel coating is on the air ribs on the air side of the interconnect substrate and the air channel, and the perovskite layer is located in the interconnect The ribs of the substrate are on the spinel coating on the air channels. 如請求項13之經塗覆互連體,其中:該尖晶石塗層包含1:3至6:4之Co:Mn原子比;且該互連體基板包含含有92重量%至97重量%鉻、3重量%至7重量%鐵及0至1重量%釔或氧化釔之鉻-鐵合金。 The coated interconnect of claim 13, wherein: the spinel coating comprises a Co:Mn atomic ratio of 1:3 to 6:4; and the interconnect substrate comprises 92% to 97% by weight Chromium, 3% by weight to 7% by weight of iron and 0 to 1% by weight of bismuth or cerium oxide chromium-iron alloy. 如請求項16之經塗覆互連體,其中該互連體係位於固態氧化物燃料電池堆疊中。 The coated interconnect of claim 16, wherein the interconnect system is in a solid oxide fuel cell stack. 一種用於固態氧化物燃料電池之經塗覆互連體,其包含:包含至少70重量%鉻之互連體基板;及在該互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,其中該尖晶石包含至少1:3之Co:Mn原子比;其中該尖晶石包含一或多種單價元素。 A coated interconnect for a solid oxide fuel cell, comprising: an interconnect substrate comprising at least 70% by weight chromium; and a manganese oxide cobalt spinel formed on an air side of the interconnect substrate a coating, wherein the spinel comprises a Co:Mn atomic ratio of at least 1:3; wherein the spinel comprises one or more monovalent elements. 如請求項18之經塗覆互連體,其中該一或多種單價元素係選自由Y3+、Al3+、Mg2+及Zn2+組成之群,且該尖晶石包含(Mn,Co,M)3O4,其中M=Y、Al、Mg或Zn。 The coated interconnect of claim 18, wherein the one or more monovalent elements are selected from the group consisting of Y 3+ , Al 3+ , Mg 2+ , and Zn 2+ , and the spinel comprises (Mn, Co, M) 3 O 4 , wherein M=Y, Al, Mg or Zn. 一種用於固態氧化物燃料電池之經塗覆互連體,其包含:包含至少70重量%鉻之互連體基板;及 在該互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,其中該尖晶石包含至少1:3之Co:Mn原子比;其中該塗層包含集除劑。 A coated interconnect for a solid oxide fuel cell comprising: an interconnect substrate comprising at least 70% by weight chromium; A manganese oxide cobalt spinel coating formed on the air side of the interconnect substrate, wherein the spinel comprises a Co:Mn atomic ratio of at least 1:3; wherein the coating comprises a binder. 如請求項20之經塗覆互連體,其中該集除劑包含Al2O3、Y2O3或TiO2中之至少一者。 The coated interconnect of claim 20, wherein the collector comprises at least one of Al 2 O 3 , Y 2 O 3 or TiO 2 . 一種用於固態氧化物燃料電池之經塗覆互連體,其包含:包含至少70重量%鉻之互連體基板;及在該互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,其中該尖晶石包含至少1:3之Co:Mn原子比;且其中該經塗覆互連體包含位於該尖晶石塗層上之鈣鈦礦層。 A coated interconnect for a solid oxide fuel cell, comprising: an interconnect substrate comprising at least 70% by weight chromium; and a manganese oxide cobalt spinel formed on an air side of the interconnect substrate a coating, wherein the spinel comprises a Co:Mn atomic ratio of at least 1:3; and wherein the coated interconnect comprises a perovskite layer on the spinel coating. 如請求項22之經塗覆互連體,其中該尖晶石塗層係位於該互連體基板之該空氣側上之翼肋與空氣通道上,且該鈣鈦礦層係位於該互連體基板之該等翼肋上而非該等空氣通道上之該尖晶石塗層上。 The coated interconnect of claim 22, wherein the spinel coating is on the air ribs on the air side of the interconnect substrate and the air channel, and the perovskite layer is located in the interconnect The ribs of the substrate are on the spinel coating on the air channels. 一種製造用於固態氧化物燃料電池之互連體之方法,其包含:提供包含Cr及Fe之互連體;及使用空氣電漿噴射製程以陶瓷層塗覆該互連體,其中該陶瓷層包含燒結助劑。 A method of fabricating an interconnect for a solid oxide fuel cell, comprising: providing an interconnect comprising Cr and Fe; and coating the interconnect with a ceramic layer using an air plasma spray process, wherein the ceramic layer Contains sintering aids. 如請求項24之方法,其中該燒結助劑展現以下至少一者:a)降低該陶瓷之主體相的熔融溫度;b)在低於該主體相之溫度下熔融;或c)形成熔融溫度低於該主體相陶瓷之二次相。 The method of claim 24, wherein the sintering aid exhibits at least one of: a) lowering a melting temperature of the bulk phase of the ceramic; b) melting at a temperature lower than the bulk phase; or c) forming a low melting temperature The secondary phase of the bulk phase ceramic. 如請求項24之方法,其中該陶瓷層包含LSM且該燒結助劑包含選自Fe、Co、Ni、Cu及其組合之B位點摻雜劑。 The method of claim 24, wherein the ceramic layer comprises an LSM and the sintering aid comprises a B site dopant selected from the group consisting of Fe, Co, Ni, Cu, and combinations thereof. 如請求項24之方法,其中該陶瓷層包含LSM且該燒結助劑包含含 Y之A位點摻雜劑。 The method of claim 24, wherein the ceramic layer comprises LSM and the sintering aid comprises A site dopant of Y. 如請求項24之方法,其中該空氣電漿噴射製程包含噴射該陶瓷與在APS氛圍中還原成金屬態之金屬氧化物之粉末混合物,該經還原金屬之熔融溫度低於該陶瓷層之熔融溫度。 The method of claim 24, wherein the air plasma spraying process comprises spraying a powder mixture of the ceramic and a metal oxide reduced to a metallic state in an APS atmosphere, the reduced temperature of the reduced metal being lower than a melting temperature of the ceramic layer . 如請求項28之方法,其中:該金屬氧化物包含氧化鈷、氧化鎳、氧化銦、氧化錫、氧化硼、氧化鉍、氧化鋇、氧化銅或氧化鋅或其任何組合;該金屬氧化物佔陶瓷與金屬氧化物粉末總重量之0.1重量%至5重量%;且該陶瓷及該經還原金屬在空氣電漿系統之槍中熔融且該熔融金屬促進該熔融陶瓷粉末在該互連體之表面上凝固時燒結。 The method of claim 28, wherein the metal oxide comprises cobalt oxide, nickel oxide, indium oxide, tin oxide, boron oxide, cerium oxide, cerium oxide, copper oxide or zinc oxide, or any combination thereof; 0.1% to 5% by weight based on the total weight of the ceramic and metal oxide powder; and the ceramic and the reduced metal are melted in a gun of an air plasma system and the molten metal promotes the surface of the molten ceramic powder on the interconnect Sintered when solidified. 如請求項25之方法,其中該燒結助劑包含選自矽酸鹽、鋁酸鈣或矽酸鈣鋁之化合物,該化合物與該陶瓷反應且形成一或多種玻璃相。 The method of claim 25, wherein the sintering aid comprises a compound selected from the group consisting of silicate, calcium aluminate or calcium aluminum citrate, the compound reacting with the ceramic and forming one or more glass phases. 一種用於固態氧化物燃料電池之經塗覆互連體,其包含:包含鐵及鉻之互連體基板;在該互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,其中該氧化錳鈷尖晶石塗層另外包含鎳及銅中之至少一者;位於該氧化錳鈷尖晶石塗層與該互連體基板之該空氣側之間的含有錳及鉻之氧化物中間尖晶石層;及位於該氧化錳鈷尖晶石塗層上之鈣鈦礦層。 A coated interconnect for a solid oxide fuel cell, comprising: an interconnect substrate comprising iron and chromium; a manganese oxide cobalt spinel coating formed on an air side of the interconnect substrate, Wherein the manganese oxide cobalt spinel coating further comprises at least one of nickel and copper; and the oxidation of manganese and chromium between the manganese oxide cobalt spinel coating and the air side of the interconnect substrate a middle spinel layer; and a perovskite layer on the manganese oxide cobalt spinel coating. 一種用於固態氧化物燃料電池之經塗覆互連體,其包含:包含鐵及鉻之互連體基板;在該互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層;及在該互連體基板與該氧化錳鈷尖晶石塗層之間的障壁層。 A coated interconnect for a solid oxide fuel cell, comprising: an interconnect substrate comprising iron and chromium; a manganese oxide cobalt spinel coating formed on an air side of the interconnect substrate; And a barrier layer between the interconnect substrate and the cobalt manganese cobalt spinel coating. 如請求項32之經塗覆互連體,其中該障壁層包含二氧化鈦或包 含錳酸鑭鍶之鈣鈦礦。 The coated interconnect of claim 32, wherein the barrier layer comprises titanium dioxide or a package Perovskite containing permanganate. 如請求項32之經塗覆互連體,其中該障壁為包含摻雜劑之反應性障壁且該塗層包含經梯度摻雜之氧化錳鈷尖晶石層。 The coated interconnect of claim 32, wherein the barrier is a reactive barrier comprising a dopant and the coating comprises a gradient doped manganese oxide cobalt spinel layer. 如請求項34之經塗覆互連體,其中該障壁層包含選自Cr、Fe、Ti、V、Mg、Ca、Al、Si或Ce中之一或多者的摻雜劑。 The coated interconnect of claim 34, wherein the barrier layer comprises a dopant selected from one or more of Cr, Fe, Ti, V, Mg, Ca, Al, Si, or Ce. 一種製造用於固態氧化物燃料電池之經塗覆互連體之方法,其包含:在該互連體上形成反應層及氧化錳鈷尖晶石層;及使摻雜劑自該反應層擴散至該氧化錳鈷尖晶石層中。 A method of fabricating a coated interconnect for a solid oxide fuel cell, comprising: forming a reactive layer and a manganese oxide cobalt spinel layer on the interconnect; and diffusing a dopant from the reactive layer To the manganese oxide cobalt spinel layer. 如請求項36之方法,其中該氧化錳鈷尖晶石層具有梯度摻雜型態。 The method of claim 36, wherein the manganese oxide cobalt spinel layer has a gradient doping profile. 如請求項36之方法,其中該摻雜劑包含Cr、Fe、Ti、V、Mg、Ca、Al、Si、Ce或其組合。 The method of claim 36, wherein the dopant comprises Cr, Fe, Ti, V, Mg, Ca, Al, Si, Ce, or a combination thereof. 一種製造用於固態氧化物燃料電池之經塗覆互連體之方法,其包含:形成包含Fe、Cr及摻雜劑之互連體;用氧化錳鈷尖晶石層塗覆該互連體;及使摻雜劑自該互連體擴散至該氧化錳鈷尖晶石層中。 A method of fabricating a coated interconnect for a solid oxide fuel cell, comprising: forming an interconnect comprising Fe, Cr, and a dopant; coating the interconnect with a layer of manganese oxide cobalt spinel And diffusing dopants from the interconnect into the manganese oxide cobalt spinel layer. 如請求項39之方法,其中該氧化錳鈷尖晶石層具有梯度摻雜型態。 The method of claim 39, wherein the manganese oxide cobalt spinel layer has a gradient doping profile. 如請求項39之方法,其中該摻雜劑包含Ti、V、Mg、Ca、Al、Si、Ce或其組合。 The method of claim 39, wherein the dopant comprises Ti, V, Mg, Ca, Al, Si, Ce, or a combination thereof. 一種用於固態氧化物燃料電池之經塗覆互連體,其包含:包含鐵及鉻之互連體基板;及在該互連體基板之空氣側上形成之氧化錳鈷尖晶石塗層,其中該氧化錳鈷尖晶石塗層另外包含鐵、鈦、釩、鉻、鋁、錳、 鈣、矽及/或鈰中之至少一者。 A coated interconnect for a solid oxide fuel cell, comprising: an interconnect substrate comprising iron and chromium; and a manganese oxide cobalt spinel coating formed on an air side of the interconnect substrate Wherein the manganese oxide cobalt spinel coating additionally comprises iron, titanium, vanadium, chromium, aluminum, manganese, At least one of calcium, strontium and/or strontium. 如請求項42之經塗覆互連體,其中該氧化錳鈷尖晶石包含1-50原子% Fe、1-50原子% Ti、1-50原子% V、0.1-10原子% Cr、1-10原子% Mg、Ca、Al、Si或Ce中之至少一者。 The coated interconnect of claim 42, wherein the manganese oxide cobalt spinel comprises 1-50 atom% Fe, 1-50 atom% Ti, 1-50 atom% V, 0.1-10 atom% Cr, 1 -10 at% of at least one of Mg, Ca, Al, Si or Ce. 一種製造用於固態氧化物燃料電池之互連體之方法,其包含:提供包含Cr與Fe粉末之壓坯混合物的互連體;用包含陶瓷粉末之材料層塗覆互連體之空氣側;及在相同燒結步驟中燒結該Cr與Fe粉末之生坯混合物及該陶瓷粉末層。 A method of fabricating an interconnect for a solid oxide fuel cell, comprising: providing an interconnect comprising a compact mixture of Cr and Fe powder; coating an air side of the interconnect with a layer of material comprising ceramic powder; And sintering the green mixture of the Cr and Fe powder and the ceramic powder layer in the same sintering step. 如請求項44之方法,其中該燒結係在露點為-20℃至-30℃之氫氣還原爐中在1300℃至1400℃之溫度下進行,且持續0.5至6小時。 The method of claim 44, wherein the sintering is carried out in a hydrogen reduction furnace having a dew point of -20 ° C to -30 ° C at a temperature of 1300 ° C to 1400 ° C for 0.5 to 6 hours. 如請求項45之方法,其中燒結係在10-17至10-15atm之氧分壓下進行。 The method of claim 45, wherein the sintering is carried out at an oxygen partial pressure of 10 -17 to 10 -15 atm. 一種製造用於固態氧化物燃料電池之互連體之方法,其包含:提供包含Cr及Fe之互連體;用包含MnO、CoO、Mn金屬、Co金屬及其組合中之一或多者的氧化錳鈷前驅物塗覆該互連體;及燒結該等氧化錳鈷前驅物以形成氧化錳鈷尖晶石塗層。 A method of fabricating an interconnect for a solid oxide fuel cell, comprising: providing an interconnect comprising Cr and Fe; using one or more of MnO, CoO, Mn metal, Co metal, and combinations thereof A manganese oxide cobalt precursor is applied to the interconnect; and the manganese manganese cobalt precursor is sintered to form a manganese oxide cobalt spinel coating. 如請求項47之方法,其另外包含自該互連體之空氣側或燃料側中之至少一者移除天然氧化物。 The method of claim 47, further comprising removing the native oxide from at least one of an air side or a fuel side of the interconnect. 如請求項48之方法,其包含自該互連體之該空氣側及該燃料側移除天然氧化物。 The method of claim 48, comprising removing the native oxide from the air side and the fuel side of the interconnect. 如請求項49之方法,其中移除包含噴砂處理。 The method of claim 49, wherein the removing comprises blasting. 一種製造用於固態氧化物燃料電池堆疊之互連體之方法,其包含:在模穴中提供包含Cr及Fe之第一金屬粉末粒子; 在該模穴中提供包含Sr、La、Mn及Co氧化物中之一或多者的第二粉末粒子;及壓實該等第一粉末粒子及該等第二粉末粒子以形成該互連體。 A method of fabricating an interconnect for a stack of solid oxide fuel cells, comprising: providing a first metal powder particle comprising Cr and Fe in a cavity; Providing a second powder particle comprising one or more of Sr, La, Mn, and Co oxides in the mold cavity; and compacting the first powder particles and the second powder particles to form the interconnect . 如請求項51之方法,其中該等第一粉末粒子與該等第二粉末粒子混合在一起以形成粉末混合物,隨後以該粉末混合物形式向該模穴提供。 The method of claim 51, wherein the first powder particles are mixed with the second powder particles to form a powder mixture, and then supplied to the cavity as the powder mixture. 如請求項52之方法,其另外包含在該壓實步驟之前向該粉末混合物中添加潤滑劑。 The method of claim 52, additionally comprising adding a lubricant to the powder mixture prior to the compacting step. 如請求項53之方法,其中該互連體在其整個厚度中具有Sr、La、Mn及Co氧化物區域中之至少一者。 The method of claim 53, wherein the interconnect has at least one of Sr, La, Mn, and Co oxide regions throughout its thickness. 如請求項51之方法,其中該等第一粉末粒子首先提供於該模穴中,且該等第二粉末粒子提供於該模穴中該等第一粉末粒子之上,且其中該壓實在Cr-Fe合金互連體之頂面上產生錳酸鑭鍶(LSM)或氧化錳鈷(MCO)區域。 The method of claim 51, wherein the first powder particles are first provided in the cavity, and the second powder particles are provided on the first powder particles in the cavity, and wherein the compaction is A lanthanum manganate (LSM) or manganese manganese cobalt (MCO) region is produced on the top surface of the Cr-Fe alloy interconnect. 如請求項51之方法,其中該等第二粉末粒子首先提供於該模穴中,且該等第一粉末粒子提供於該模穴中該等第二粉末粒子之上,且其中該壓實在Cr-Fe合金互連體之底面上產生錳酸鑭鍶(LSM)或氧化錳鈷(MCO)區域。 The method of claim 51, wherein the second powder particles are first provided in the cavity, and the first powder particles are provided on the second powder particles in the cavity, and wherein the compaction is A lanthanum manganate (LSM) or manganese manganese cobalt (MCO) region is produced on the underside of the Cr-Fe alloy interconnect. 如請求項51之方法,其中:該等第一粉末粒子首先提供於該模具,且該等第二粉末粒子靜電吸引至用於壓實該等粉末粒子之衝頭的底面;且該衝頭將該第二粉末擠壓至該第一粉末上以壓實該等第一粉末粒子及該等第二粉末粒子,以形成在該互連體之頂面上具有錳酸鑭鍶(LSM)或氧化錳鈷(MCO)區域之Cr-Fe合金互連體。 The method of claim 51, wherein: the first powder particles are first supplied to the mold, and the second powder particles are electrostatically attracted to a bottom surface of a punch for compacting the powder particles; and the punch Pressing the second powder onto the first powder to compact the first powder particles and the second powder particles to form lanthanum manganate (LSM) or oxidation on the top surface of the interconnect Cr-Fe alloy interconnects in the manganese cobalt (MCO) region. 如請求項51之方法,其中該互連體之表面積相對於僅藉由在相 同模穴中壓實該等第一粉末粒子而製成之互連體增加。 The method of claim 51, wherein the surface area of the interconnect is relative to only by phase The interconnects made by compacting the first powder particles in the same cavity increase. 如請求項51之方法,其中該等第一粉末粒子包含元素Cr與元素Fe粒子之混合物或Cr-Fe合金粉末粒子。 The method of claim 51, wherein the first powder particles comprise a mixture of elemental Cr and elemental Fe particles or Cr-Fe alloy powder particles. 如請求項51之方法,其中該等第二粉末粒子包含錳酸鑭鍶(LSM)或氧化錳鈷(MCO)粉末粒子。 The method of claim 51, wherein the second powder particles comprise lanthanum manganate (LSM) or manganese cobalt cobalt (MCO) powder particles.
TW102107116A 2012-03-01 2013-02-27 Coatings for sofc metallic interconnects TWI566461B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261605309P 2012-03-01 2012-03-01
US13/409,629 US10431833B2 (en) 2012-03-01 2012-03-01 Coatings for metal interconnects to reduce SOFC degradation
US201261702397P 2012-09-18 2012-09-18

Publications (2)

Publication Number Publication Date
TW201345034A TW201345034A (en) 2013-11-01
TWI566461B true TWI566461B (en) 2017-01-11

Family

ID=49083211

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102107116A TWI566461B (en) 2012-03-01 2013-02-27 Coatings for sofc metallic interconnects

Country Status (2)

Country Link
TW (1) TWI566461B (en)
WO (1) WO2013130515A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
EP3053211A4 (en) 2013-10-01 2017-07-05 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
WO2015080889A1 (en) 2013-11-27 2015-06-04 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US9634335B2 (en) 2014-01-09 2017-04-25 Bloom Energy Corporation Duplex coating for SOFC interconnect
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
TWI508351B (en) * 2014-07-22 2015-11-11 Iner Aec Executive Yuan Growing method of layers for protecting metal interconnects of solid oxide fuel cells
IT201800004765A1 (en) * 2018-04-20 2019-10-20 PROTECTION OF A METALLIC SUBSTRATE FOR SOLID OXIDE CELL STACKS BY INKJET PRINTING
TW202043497A (en) * 2019-05-27 2020-12-01 台灣保來得股份有限公司 Formulation of fuel cell interconnects
CN112331893B (en) * 2020-10-28 2022-02-15 华中科技大学 Flat-plate type solid oxide fuel cell and sealing method thereof
CN112290070A (en) * 2020-10-30 2021-01-29 潮州三环(集团)股份有限公司 Composite coating for SOFC connector and preparation method thereof
CN114243046A (en) * 2021-12-14 2022-03-25 中国科学院大连化学物理研究所 Metal surface coating and preparation method and application thereof
KR20240040643A (en) * 2022-09-21 2024-03-28 블룸 에너지 코퍼레이션 Method of forming an interconnect coating for an electrochemical device stack using laser sintering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697229A (en) * 2004-05-11 2005-11-16 东邦瓦斯株式会社 Single cell for a solid oxide fuel cell
US20060193971A1 (en) * 2003-02-18 2006-08-31 Frank Tietz Method for producing a protective coating for substrates that are subjected to high temperatures and form chromium oxide
CN101438439A (en) * 2006-04-26 2009-05-20 丹麦技术大学 A multi-layer coating
TW201119771A (en) * 2009-12-09 2011-06-16 Porite Taiwan Co Ltd Method for forming interconnect of solid oxide fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455154B2 (en) * 2008-12-31 2013-06-04 Saint-Gobain Ceramics & Plastics, Inc. Thermal shock-tolerant solid oxide fuel cell stack
US9120683B2 (en) * 2010-02-08 2015-09-01 Ballard Power Systems Inc. Method and device using a ceramic bond material for bonding metallic interconnect to ceramic electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193971A1 (en) * 2003-02-18 2006-08-31 Frank Tietz Method for producing a protective coating for substrates that are subjected to high temperatures and form chromium oxide
CN1697229A (en) * 2004-05-11 2005-11-16 东邦瓦斯株式会社 Single cell for a solid oxide fuel cell
CN101438439A (en) * 2006-04-26 2009-05-20 丹麦技术大学 A multi-layer coating
TW201119771A (en) * 2009-12-09 2011-06-16 Porite Taiwan Co Ltd Method for forming interconnect of solid oxide fuel cell

Also Published As

Publication number Publication date
TW201345034A (en) 2013-11-01
WO2013130515A1 (en) 2013-09-06

Similar Documents

Publication Publication Date Title
TWI566461B (en) Coatings for sofc metallic interconnects
US10505206B2 (en) Coatings for SOFC metallic interconnects
US10446854B2 (en) Coatings for metal interconnects to reduce SOFC degradation
US10553879B2 (en) Fuel cell interconnect with metal or metal oxide contact layer
TWI632728B (en) Fuel cell interconnect with reduced voltage degradation over time and associated method
WO2009131180A1 (en) Cell for solid oxide fuel battery
US9634335B2 (en) Duplex coating for SOFC interconnect
US10873092B2 (en) Fuel cell interconnect with reduced voltage degradation and manufacturing method
US9525179B2 (en) Ceramic anode materials for solid oxide fuel cells
WO2007083627A1 (en) Cell for solid oxide fuel cell and process for producing the same
JP6858084B2 (en) Method for Producing High Temperature Solid Oxide Cell Containing Anti-Reaction Membrane
WO2012142537A1 (en) Protective coatings for metal alloys and methods incorporating the same
EP4033573A1 (en) Wet sprayed coatings for interconnects for soec and sofc
US20140193743A1 (en) Method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (soc) technology, and products obtained by the method
TWI836119B (en) Fuel cell interconnect with iron rich rib regions and method of making thereof
US11335914B2 (en) Fuel cell interconnect with iron rich rib regions and method of making thereof
KR20190044546A (en) Connecting material for solid oxide fuel cell, its manufacturing method and solid oxide fuel cell comprising same
TW202114280A (en) Fuel cell interconnect with iron rich rib regions and method of making thereof
Yu The Performance of Spinel-Based Interconnect Coating and Cathode-Side Contact Layer for Solid Oxide Fuel Cell
Jian et al. Metallic Interconnect Materials of Solid Oxide Fuel Cells
KR20120132058A (en) Solid oxide fuel cell having the improved electrodes and its preparation
Hwang et al. Fabrication of a strontium-doped lanthanum chromite (LSC) thin film on SUS430 substrate
JPH0574465A (en) Manufacture of solid electrolyte fuel cell
Satardekar Materials Development for the Fabrication of Metal-Supported Solid Oxide Fuel Cells by Co-sintering