TWI566365B - Contact structure and forming method, and the circuit using the same - Google Patents
Contact structure and forming method, and the circuit using the same Download PDFInfo
- Publication number
- TWI566365B TWI566365B TW103132208A TW103132208A TWI566365B TW I566365 B TWI566365 B TW I566365B TW 103132208 A TW103132208 A TW 103132208A TW 103132208 A TW103132208 A TW 103132208A TW I566365 B TWI566365 B TW I566365B
- Authority
- TW
- Taiwan
- Prior art keywords
- stack
- layer
- buffer layer
- active
- etching
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Non-Volatile Memory (AREA)
Description
本揭露內容係有關於一種高密度元件。特別是,本發明之實施例係提供用於形成接觸結構之方法,其導體係連接於例如是記憶體元件之三維高密度半導體元件中的主動層。 The disclosure relates to a high density component. In particular, embodiments of the present invention provide a method for forming a contact structure that is coupled to an active layer in a three-dimensional high density semiconductor device such as a memory device.
三維半導體元件之特色係具有多個層,以形成交替的主動層與絕緣層之堆疊。在記憶體元件中,各個層可包括記憶胞的平面陣列。對於某些三維堆疊的記憶體元件而言,主動層可包括主動串列,主動串列的材料係由用於堆疊於隔開的脊狀結構之記憶胞中的位元線或字元線所構成。主動層可由摻雜的(p型或n型)或未摻的半導體材料所組成。在此類三維記憶體中,記憶胞可配置於堆疊的位元線或字元線以及交叉的字元線或位元線的交叉點上,以形成一三維記憶體陣列。 The three-dimensional semiconductor component is characterized by a plurality of layers to form a stack of alternating active and insulating layers. In a memory component, each layer can include a planar array of memory cells. For some three-dimensional stacked memory elements, the active layer may comprise active strings, the active series of materials being used by bit lines or word lines for stacking in memory cells of spaced apart ridge structures Composition. The active layer may be composed of a doped (p-type or n-type) or undoped semiconductor material. In such three-dimensional memory, the memory cells can be disposed at the intersection of stacked bit lines or word lines and intersecting word lines or bit lines to form a three-dimensional memory array.
連接層間導體至堆疊中的主動層的其中一種方法可參照揭露於美國專利號8,383,512的多重光蝕刻製程(multiple lithographic-etch process),其發明名稱為「用於製造多層連接結 構的方法(Method for Making Multilayer Connection Structure)」,其揭露內容係作為本發明之參考。連接層間導體至堆疊中的主動層的另一種方法可稱為修整蝕刻製程(trim-etch process),揭露於美國申請號13/735,922,申請日期為2013年1月7日,其發明名稱為「用於堆疊結構之導電層之中間連接件的形成方法(Method for Forming Interlayer Conductors to a Stack of Conductor Layers)」,其揭露內容係作為本發明之參考。 One of the methods of joining the interlayer conductors to the active layers in the stack can be found in the multiple lithographic-etch process disclosed in U.S. Patent No. 8,383,512, entitled "Using a Multilayer Connection. Method for Making Multilayer Connection Structure, the disclosure of which is incorporated herein by reference. Another method of joining the interlayer conductors to the active layers in the stack can be referred to as a trim-etch process, as disclosed in U.S. Application Serial No. 13/735,922, filed on Jan. 7, 2013, entitled " Method for Forming Interlayer Conductors to a Stack of Conductor Layers, the disclosure of which is incorporated herein by reference.
可依據下列所述來進行一種在一層堆疊中形成通孔的方法。藉由形成第一次堆疊、第二次堆疊、第一緩衝層、與第二緩衝層來形成交替的主動層與絕緣層之一堆疊。第一次堆疊包括藉由絕緣層分開的N個主動層。第二次堆疊於第一次堆疊之上,且第二次堆疊包括藉由絕緣層分開的M個主動層。第一緩衝層係形成於第一次堆疊與第二次堆疊之間,且第二緩衝層係形成於第一次堆疊之下。第一次堆疊之一上層係藉由第一蝕刻製程與第二蝕刻製程通過一組通孔來暴露出。使用第一蝕刻製程來進行蝕刻,以形成通過第二次堆疊並停止於第一緩衝層或停止於第一緩衝層之中的一第一組蝕刻通孔。使用第二蝕刻製程來進行蝕刻,通過第一緩衝層至第一次堆疊之上層。藉由第三蝕刻製程與第四蝕刻製程以蝕刻通過第一次堆疊。使用第三蝕刻製程來進行蝕刻,通過第一組蝕刻通孔來通過第一次堆疊並停止於第二緩衝層或停止於第二緩衝層之中。且接著使用第四蝕刻製程來進行蝕刻,通過第二緩衝層。 A method of forming a via hole in a layer stack can be performed as described below. A stack of alternating active layers and insulating layers is formed by forming a first stack, a second stack, a first buffer layer, and a second buffer layer. The first stack includes N active layers separated by an insulating layer. The second stack is stacked on the first stack, and the second stack includes M active layers separated by an insulating layer. The first buffer layer is formed between the first stack and the second stack, and the second buffer layer is formed under the first stack. One of the upper layers of the first stack is exposed through a set of through holes by a first etching process and a second etching process. The etching is performed using a first etching process to form a first set of etched vias that are stacked by the second time and stopped in the first buffer layer or stopped in the first buffer layer. The etching is performed using a second etching process, passing through the first buffer layer to stack the upper layer for the first time. The first stacking is performed by etching through the third etching process and the fourth etching process. Etching is performed using a third etch process, through the first set of etch vias, through the first stack and stops at the second buffer layer or stops in the second buffer layer. And then etching is performed using a fourth etching process through the second buffer layer.
用於形成通孔的方法可包括下列所述的一個或多個步驟。可藉由蝕刻通過通孔以形成著陸區的階梯式結構,著陸區係位於第一次堆疊與第二次堆疊之主動層之上,且可形成延伸至著陸區的層間導體。用以形成階梯式結構之蝕刻可包括使用單一蝕刻製程,以形成著陸區於一N層的整數倍上,該N層的整數倍係至少為2。在使用對於第一緩衝層與第二次堆疊之各自的第二蝕刻製程與第一蝕刻製程之下,第一緩衝層的蝕刻時間係大於第二次堆疊之一絕緣層的蝕刻時間。第一緩衝層之可能的情況為(1)第一緩衝層可由與第一次堆疊之絕緣層相同的材料所組成,但是第一緩衝層的厚度不同於第一次堆疊之一絕緣層的厚度的情況,或者(2)第一緩衝層的材料組成可能不同於第一次堆疊的絕緣層的情況,或者是(3)之具有(1)與(2)兩者的情況。第一緩衝層的厚度可至少大於第一次堆疊中的一主動層的厚度的1.5倍。第一次堆疊可以一第一空間週期(spatial period)N1為特色,且第二次堆疊可以一第二空間週期N2為特色,其中N1等於N2。蝕刻遮罩可以形成於第二次堆疊之上,蝕刻遮罩具有蝕刻遮罩開孔,且暴露出上層的步驟可通過蝕刻遮罩開孔來進行。可進行第一次堆疊與第二次堆疊的形成步驟,使得各個第一次堆疊與第二次堆疊的上層的厚度係大於對應的次堆疊的主動層與絕緣層中的至少其一。 The method for forming the vias can include one or more of the steps described below. A stepped structure can be formed by etching through the vias to form a landing zone, the landing zone being over the active layer of the first stack and the second stack, and forming an interlayer conductor extending to the landing zone. The etching used to form the stepped structure may include using a single etching process to form the landing zone on an integer multiple of an N layer having an integer multiple of at least two. The etching time of the first buffer layer is greater than the etching time of one of the insulating layers of the second stack under the second etching process and the first etching process for each of the first buffer layer and the second stack. The first buffer layer may be (1) the first buffer layer may be composed of the same material as the first stacked insulating layer, but the thickness of the first buffer layer is different from the thickness of one of the first stacked insulating layers. The case, or (2) the material composition of the first buffer layer may be different from the case of the first stacked insulating layer, or the case of (3) having both (1) and (2). The thickness of the first buffer layer may be at least 1.5 times greater than the thickness of an active layer in the first stack. The first stack may feature a first spatial period N1, and the second stack may feature a second spatial period N2, where N1 is equal to N2. An etch mask can be formed over the second stack, the etch mask having an etch mask opening, and the step of exposing the upper layer can be performed by etching the mask opening. The forming step of the first stacking and the second stacking may be performed such that the thickness of the upper layer of each of the first stacking and the second stacking is greater than at least one of the active layer and the insulating layer of the corresponding sub-stack.
一種階梯式接觸結構包括具有複數個非簡單空間週期(non-simple spatial period)的交替的主動層與絕緣層之堆疊、位於主動層上之著陸區的階梯式結構、及延伸至著陸區且藉由絕緣材料彼此分開的層間導體。交替的主動層與絕緣層之堆疊包括第 一次堆疊與第二次堆疊、及介於第一次堆疊與第二次堆疊之間的第一緩衝層。第一次堆疊具有藉由絕緣層分開的N個主動層,N個主動層包括一上邊界主動層。第二次堆疊係位於第一次堆疊之上,第二次堆疊具有藉由絕緣層分開的M個主動層,M個主動層包括一上邊界主動層。在所進行的蝕刻製程之下,第一緩衝層之蝕刻時間係大於第二次堆疊之一絕緣層之蝕刻時間。 A stepped contact structure includes a stack of alternating active and insulating layers having a plurality of non-simple spatial periods, a stepped structure of a landing zone on the active layer, and extending to the landing zone and borrowing An interlayer conductor separated from each other by an insulating material. The stack of alternating active layers and insulating layers includes One stack and a second stack, and a first buffer layer between the first stack and the second stack. The first stack has N active layers separated by an insulating layer, and the N active layers include an upper boundary active layer. The second stack is located on the first stack, and the second stack has M active layers separated by an insulating layer, and the M active layers include an upper boundary active layer. Under the etching process performed, the etching time of the first buffer layer is greater than the etching time of one of the insulating layers of the second stack.
階梯式接觸結構可包括一個或多個下述情形。第一緩衝層的可能情況為(1)第一緩衝層可由與第一次堆疊之一絕緣層相同的材料所組成,但是第一緩衝層的厚度不同於第一次堆疊之一絕緣層的厚度的情況,或者(2)第一緩衝層的材料組成可能不同於第一次堆疊的一絕緣層的情況,或者是(3)之具有(1)與(2)兩者的情況。堆疊可包括第三次堆疊及介於第二次堆疊與第三次堆疊之間的第二緩衝層。在所進行的蝕刻製程之下,第二緩衝層之蝕刻時間可大於第三次堆疊之一絕緣層之蝕刻時間。各個第一次堆疊與第二次堆疊之上邊界層可能比對應的次堆疊之主動層與絕緣層中之至少其一更厚。 The stepped contact structure can include one or more of the following. The first buffer layer may be (1) the first buffer layer may be composed of the same material as one of the first stack of insulating layers, but the thickness of the first buffer layer is different from the thickness of one of the first stack of insulating layers. The case, or (2) the material composition of the first buffer layer may be different from the case of an insulating layer stacked for the first time, or the case of (3) having both (1) and (2). The stack may include a third stack and a second buffer layer between the second stack and the third stack. The etching time of the second buffer layer may be greater than the etching time of one of the insulating layers of the third stack under the etching process performed. The boundary layer of each of the first stack and the second stack may be thicker than at least one of the active layer and the insulating layer of the corresponding sub-stack.
第一個範例的回路包括一基板以及位於基板上之具有電晶體的反及閘連接的串列。具有電晶體的反及閘連接的串列包括一第一複數個非揮發性記憶胞與一第二複數個非揮發性記憶胞。第一複數個非揮發性記憶胞具有一第一閘極長度。第二複數個非揮發性記憶胞具有一第二閘極長度,第二閘極長度係大於第一閘極長度。通過反及閘連接的串列的電性通道具有一垂直於基板的方向。在一些範例中,第一個範例的電路可包括一個或多個的下述情形。 The circuit of the first example includes a substrate and a series of counter-gate connections with transistors on the substrate. The tandem column having the transistor and the gate connection includes a first plurality of non-volatile memory cells and a second plurality of non-volatile memory cells. The first plurality of non-volatile memory cells have a first gate length. The second plurality of non-volatile memory cells have a second gate length, and the second gate length is greater than the first gate length. The series of electrical channels connected by the opposite gates have a direction perpendicular to the substrate. In some examples, the circuitry of the first example may include one or more of the following scenarios.
第一個範例的回路可包括一個或多個的下述情形。電路可控制反及閘連接的串列,電路供應不同的通路電壓至複數個非揮發性記憶胞與複數個電晶體。電路可包括以電路控制反及閘連接的串列,其中第一閘極長度係小於0.1微米,且第二閘極長度係大於0.1微米。反及閘連接的串列可包括一接地選擇線電晶體(GSL transistor)及一串列選擇線電晶體(SSL transistor)。 The loop of the first example may include one or more of the following scenarios. The circuit can control the series of anti-gate connections, and the circuit supplies different path voltages to a plurality of non-volatile memory cells and a plurality of transistors. The circuit can include a series of circuit controlled reverse gate connections, wherein the first gate length is less than 0.1 microns and the second gate length is greater than 0.1 microns. The series of gate connections may include a ground select line transistor (GSL transistor) and a series of select line transistors (SSL transistors).
第二個範例的電路可包括一基板、位於基板上之複數個半導體條之複數個堆疊、及複數個字元線。在複數個堆疊中的複數個半導體條包括至少一第一半導體條及一第二半導體條,第一半導體條具有一第一高度,第二半導體條具有一第二高度,第一高度不同於第二高度。複數個字元線係正交地配置於複數個堆疊之上,且複數個字元線具有共形於複數個堆疊的表面,使得記憶體元件之一三維陣列係建立於複數個堆疊的表面與複數個字元線之間的交叉點,且使得電晶體之反及閘連接的串列係沿著在複數個堆疊中的半導體條所形成。電晶體之反及閘連接的串列包括非揮發性記憶胞的一第一反及閘連接的串列及非揮發性記憶胞的一第二反及閘連接的串列。第一反及閘連接的串列具有第一高度。第二反及閘連接的串列具有第二高度。 The circuit of the second example can include a substrate, a plurality of stacks of a plurality of semiconductor strips on the substrate, and a plurality of word lines. The plurality of semiconductor strips in the plurality of stacks includes at least one first semiconductor strip and a second semiconductor strip, the first semiconductor strip has a first height, and the second semiconductor strip has a second height, the first height being different from the first Two heights. A plurality of word lines are orthogonally disposed on the plurality of stacks, and the plurality of word lines have a conformal shape on the plurality of stacked surfaces, such that a three-dimensional array of memory elements is formed on a plurality of stacked surfaces and The intersection between the plurality of word lines, and such that the series of the transistor and the gate connection are formed along the semiconductor strips in the plurality of stacks. The tandem of the transistor and the gate connection includes a first reverse gate connection of the non-volatile memory cells and a second reverse gate connection of the non-volatile memory cells. The series of first anti-gate connections has a first height. The series of second anti-gate connections has a second height.
第二個範例的回路可包括一個或多個的下述情況。不同的第一高度與第二高度對於具有第一高度之第一半導體條中反及閘連接的串列可造成一第一組電特性,且對於具有第二高度之第二半導體條中反及閘連接的串列可造成一第二組電特性,第一組電特性係不同於第二組電特性。電路可包括第一感測放大器與第二感測放大器,並且電路根據第一組電特性來控制第 一感測放大器,以進行電性量測,且電路根據第二組電特性來控制第二感測放大器,以進行電性量測。電路亦可在電晶體的反及閘連接的串列上進行記憶體之操作,以儲存第一數據於第一反及閘連接的串列上,並使用第二反及閘連接的串列,以校正第一數據中的至少一個錯誤。 The loop of the second example may include one or more of the following. The different first heights and second heights may cause a first set of electrical characteristics for the series of reversed gate connections in the first semiconductor strip having the first height, and for the second semiconductor strip having the second height The series of gate connections can result in a second set of electrical characteristics, the first set of electrical characteristics being different from the second set of electrical characteristics. The circuit can include a first sense amplifier and a second sense amplifier, and the circuit controls the first set according to the first set of electrical characteristics A sense amplifier is used for electrical measurement, and the circuit controls the second sense amplifier according to the second set of electrical characteristics for electrical measurement. The circuit can also perform the operation of the memory on the reverse connection of the transistor to store the first data on the series of the first anti-gate connection, and use the series of the second anti-gate connection. To correct at least one error in the first data.
以下將參照詳細描述的實施方式、所附圖式及後附之申請專利範圍來對於本發明之其他方面與優點進行描述。 Other aspects and advantages of the present invention will be described hereinafter with reference to the detailed description of the embodiments, the appended claims and the appended claims.
67、68、69‧‧‧連線端點 67, 68, 69‧‧‧ connection endpoints
100‧‧‧裝置 100‧‧‧ device
102、103、104、105‧‧‧主動串列 102, 103, 104, 105‧‧‧ active serial
102B、103B、104B、105B、112B、113B、114B、115B‧‧‧半導體襯墊 102B, 103B, 104B, 105B, 112B, 113B, 114B, 115B‧‧‧ semiconductor pads
102C1、102C2、102C3、103C1、103C2、104C1、208、210、214、214.1、214.2、222、280、282、286、288、292.1、292.2、294、296、299、302、306、366、442、482‧‧‧開孔 102C1, 102C2, 102C3, 103C1, 103C2, 104C1, 208, 210, 214, 214.1, 214.2, 222, 280, 282, 286, 288, 292.1, 292.2, 294, 296, 299, 302, 306, 366, 442, 482‧‧‧Opening
119‧‧‧源極線終端 119‧‧‧Source line terminal
125-1、125-N‧‧‧導體 125-1, 125-N‧‧‧ conductor
126、127‧‧‧閘極選擇線 126, 127‧‧ ‧ gate selection line
128‧‧‧源極線 128‧‧‧ source line
152‧‧‧記憶體材料層 152‧‧‧ memory material layer
154‧‧‧層 154‧‧‧
202.1、202.2、202.3、202.4‧‧‧主動層 202.1, 202.2, 202.3, 202.4‧‧‧ active layers
204.1、204.2、204.3、256、258、260、268、270、360、480‧‧‧絕緣層 204.1, 204.2, 204.3, 256, 258, 260, 268, 270, 360, 480 ‧ ‧ insulation
200、330‧‧‧堆疊 200, 330‧‧‧ Stacking
216、308、368‧‧‧通孔 216, 308, 368‧‧‧ through holes
206、220、278、284、290、298、304、332、336、346、354、356、364‧‧‧遮罩 206, 220, 278, 284, 290, 298, 304, 332, 336, 346, 354, 356, 364‧‧ ‧ mask
224、226、228、230、232、234、228、331、334‧‧‧部分 224, 226, 228, 230, 232, 234, 228, 331, 334‧‧‧
252.1、252.2、252.3、252.4‧‧‧次堆疊 252.1, 252.2, 252.3, 252.4‧‧‧ times stacking
254、262、264、266‧‧‧層配對 254, 262, 264, 266‧ ‧ layer matching
272‧‧‧層間導體 272‧‧‧Interlayer conductor
300‧‧‧結構 300‧‧‧ structure
310、358‧‧‧著陸區 310, 358‧‧‧ landing zone
314‧‧‧絕緣體 314‧‧‧Insulator
338、340、342、344、348、349、350、351、452‧‧‧表面 338, 340, 342, 344, 348, 349, 350, 351, 452 ‧ ‧ surface
362‧‧‧絕緣材料 362‧‧‧Insulation materials
370‧‧‧接觸結構 370‧‧‧Contact structure
380、382、384、386、388、390、392、394、396、398、400、402、404、410、412、414、416、418、460、462、464、466、468、470、472‧‧‧步驟 380, 382, 384, 386, 388, 390, 392, 394, 396, 398, 400, 402, 404, 410, 412, 414, 416, 418, 460, 462, 464, 466, 468, 470, 472 ‧‧step
440、490、492‧‧‧元件 440, 490, 492‧‧‧ components
446‧‧‧基板 446‧‧‧Substrate
450、477‧‧‧緩衝層 450, 477‧‧‧ buffer layer
471、496‧‧‧三維非揮發性記憶體陣列 471, 496‧‧‧Three-dimensional non-volatile memory array
474‧‧‧垂直通道反及閘連接的電晶體 474‧‧‧Vertical channel reverse gate-connected transistor
475‧‧‧串列 475‧‧‧Listing
476‧‧‧串列選擇線 476‧‧‧Sequence selection line
478‧‧‧接地選擇線 478‧‧‧ Grounding selection line
484、507‧‧‧捕捉結構 484, 507‧‧‧ capture structure
509‧‧‧層接觸區域 509‧‧‧ contact area
486‧‧‧通道層 486‧‧‧ channel layer
488‧‧‧絕緣芯 488‧‧‧Insulation core
498‧‧‧堆疊 498‧‧‧Stacking
500、502‧‧‧半導體條 500, 502‧‧ ‧ semiconductor strips
503‧‧‧絕緣串列 503‧‧‧Insulated series
504、506‧‧‧反及閘連接的串列的電晶體 504, 506‧‧‧ tandem transistor connected to the gate
508、510‧‧‧反及閘連接的串列 508, 510‧‧‧ reversed gate connection
958‧‧‧平面解碼器 958‧‧‧ Planar Decoder
959‧‧‧位元線 959‧‧‧ bit line
960‧‧‧三維記憶體陣列 960‧‧‧Three-dimensional memory array
961‧‧‧列解碼器 961‧‧‧ column decoder
962‧‧‧字元線 962‧‧‧ character line
963‧‧‧行解碼器 963‧‧‧ row decoder
964‧‧‧源極選擇線 964‧‧‧Source selection line
965‧‧‧匯流排 965‧‧ ‧ busbar
966、968‧‧‧方塊 966, 968‧‧‧ squares
967‧‧‧資料匯流排 967‧‧‧ data bus
969‧‧‧狀態機 969‧‧‧ state machine
971‧‧‧資料輸入線 971‧‧‧ data input line
972‧‧‧資料輸出線 972‧‧‧ data output line
974‧‧‧其他電路 974‧‧‧Other circuits
975‧‧‧積體電路 975‧‧‧ integrated circuit
BL‧‧‧位元線 BL‧‧‧ bit line
G‧‧‧閘極 G‧‧‧ gate
GSL‧‧‧接地選擇線 GSL‧‧‧ Grounding selection line
H1、H2‧‧‧高度 H1, H2‧‧‧ height
L1、L2‧‧‧厚度 L1, L2‧‧‧ thickness
N1‧‧‧第一空間週期 N1‧‧‧First space cycle
N2‧‧‧第二空間週期 N2‧‧‧Second space cycle
WL‧‧‧字元線 WL‧‧‧ character line
第1圖繪示一種包括層間導體之半導體襯墊之半導體元件的透視圖。 1 is a perspective view of a semiconductor component of a semiconductor pad including interlayer conductors.
第2A、2B、2C、2D、2E與2F圖繪示用於當堆疊具有簡單週期時之多重光蝕刻製程之範例來進行製程步驟的簡化視圖。 2A, 2B, 2C, 2D, 2E, and 2F are simplified views of the process steps for performing an example of multiple photolithography processes with simple cycles.
第3A、3B、3C、3D與3E圖繪示當堆疊具有非簡單週期時在製程期間產生蝕刻深度之問題的多重光蝕刻製程之範例的簡化視圖。 3A, 3B, 3C, 3D, and 3E are simplified views of an example of a multiple photolithography process that creates a problem of etch depth during processing during a non-simple cycle.
第4A、4B、4C、4D、4E、4F、與4G圖繪示用於當堆疊具有簡單週期時之修整蝕刻製程之範例來進行製程步驟的簡化視圖。 4A, 4B, 4C, 4D, 4E, 4F, and 4G are diagrams showing a simplified view of a process step for stacking an example of a trim etch process with a simple cycle.
第5A、5B、5C、與5D圖繪示當堆疊具有非簡單週期時在製程期間產生蝕刻深度之問題的修整蝕刻製程之範例的簡化視圖。 5A, 5B, 5C, and 5D are simplified views of an example of a trim etch process that creates a etch depth during processing with a non-simple cycle.
第6圖繪示包括不具有簡單週期之交替的主動層與絕緣層之 堆疊的接觸結構之範例的示意圖。 Figure 6 illustrates an active layer and an insulating layer including alternating periods without a simple period. Schematic diagram of an example of a stacked contact structure.
第7至25圖繪示使用多重光蝕刻製程來形成第6圖之接觸結構之範例的示意圖。 7 to 25 are schematic views showing an example of forming a contact structure of Fig. 6 using a multiple photolithography process.
第7圖繪示主動層與絕緣層之一堆疊的示意圖。 Figure 7 is a schematic view showing the stacking of one of the active layer and the insulating layer.
第8圖繪示將第7圖之結構加上一第一蝕刻遮罩的示意圖。 Figure 8 is a schematic view showing the structure of Figure 7 plus a first etch mask.
第9圖繪示對第8圖之結構進行蝕刻之後的示意圖。 Figure 9 is a schematic view showing the structure of Figure 8 after etching.
第10圖繪示將第9圖之結構的第一蝕刻遮罩移除之後的示意圖。 FIG. 10 is a schematic view showing the first etch mask of the structure of FIG. 9 removed.
第11圖繪示將第10圖之結構加上一第二蝕刻遮罩的示意圖。 Figure 11 is a schematic view showing the structure of Figure 10 plus a second etch mask.
第12圖繪示對第11圖之結構進行蝕刻之後的示意圖。 Fig. 12 is a schematic view showing the structure of Fig. 11 after etching.
第13圖繪示將第12圖之結構的第二蝕刻遮罩移除之後的示意圖。 Figure 13 is a schematic view showing the second etch mask of the structure of Figure 12 removed.
第14圖繪示將第13圖之結構加上一第三蝕刻遮罩的示意圖。 Figure 14 is a schematic view showing the structure of Figure 13 plus a third etch mask.
第15圖繪示對第14圖之結構進行蝕刻之後的示意圖。 Figure 15 is a schematic view showing the structure of Figure 14 after etching.
第16圖繪示將第15圖之結構的第三蝕刻遮罩移除之後的示意圖。 Figure 16 is a schematic view showing the third etch mask of the structure of Figure 15 after removal.
第17圖繪示將第16圖之結構加上一第四蝕刻遮罩的示意圖。 Figure 17 is a schematic view showing the structure of Figure 16 plus a fourth etch mask.
第18圖繪示對第17圖之結構進行蝕刻之後的示意圖。 Figure 18 is a schematic view showing the structure after the etching of the structure of Figure 17.
第19圖繪示將第18圖之結構的第四蝕刻遮罩移除之後的示意圖。 Figure 19 is a schematic view showing the fourth etch mask of the structure of Figure 18 removed.
第20圖繪示將第19圖之結構加上一第五蝕刻遮罩的示意 圖。 Figure 20 is a schematic view showing the structure of Figure 19 plus a fifth etch mask. Figure.
第21圖繪示對第20圖之結構進行蝕刻之後的示意圖。 Figure 21 is a schematic view showing the structure of Figure 20 after etching.
第22圖繪示將第21圖之結構的第五蝕刻遮罩移除之後並顯示出形成於堆疊中之通孔的示意圖。 FIG. 22 is a schematic view showing the fifth etch mask of the structure of FIG. 21 removed and showing the via holes formed in the stack.
第23圖繪示將第22圖之結構進行絕緣層之沉積之後的示意圖。 Figure 23 is a schematic view showing the structure of Figure 22 after deposition of an insulating layer.
第24圖繪示將第23圖之結構的部分的絕緣層移除之後留下側壁絕緣體於通孔之中的示意圖。 Figure 24 is a schematic view showing the portion of the insulating layer of the structure of Figure 23 removed leaving the sidewall insulator in the via.
第25圖繪示將第24圖之結構加上內連導體以形成第6圖之接觸結構的示意圖。 Figure 25 is a schematic view showing the structure of Figure 24 plus an interconnect conductor to form the contact structure of Figure 6.
第26至43圖繪示使用修整蝕刻製程來形成接觸結構之範例的示意圖。 26 to 43 are schematic views showing an example of forming a contact structure using a trim etching process.
第26圖繪示具有一第一蝕刻遮罩之交替的主動層與絕緣層之堆疊的示意圖。 Figure 26 is a schematic diagram showing the stacking of alternating active and insulating layers with a first etch mask.
第27圖繪示對第26圖之結構進行蝕刻之後的示意圖。 Figure 27 is a schematic view showing the structure of Figure 26 after etching.
第28圖繪示將第27圖之結構的第一蝕刻遮罩替換為第二蝕刻遮罩的示意圖。 Figure 28 is a schematic view showing the replacement of the first etch mask of the structure of Figure 27 with the second etch mask.
第29圖繪示對第28圖之結構進行蝕刻之後的示意圖。 Figure 29 is a schematic view showing the structure of Figure 28 after etching.
第30圖繪示將第29圖之結構的第二蝕刻遮罩移除之後的示意圖。 Figure 30 is a schematic view showing the second etch mask of the structure of Figure 29 removed.
第31圖繪示將第30圖之結構加上第三蝕刻遮罩的示意圖。 Figure 31 is a schematic view showing the structure of Figure 30 plus a third etch mask.
第32圖繪示對第31圖之結構進行蝕刻之後的示意圖。 Figure 32 is a schematic view showing the structure after the etching of the structure of Figure 31.
第33圖繪示對第32圖之結構的第三蝕刻遮罩進行第一修整之後的示意圖。 Figure 33 is a schematic view showing the third trim mask of the structure of Figure 32 after the first trimming.
第34圖繪示對第33圖之結構進行蝕刻之後的示意圖。 Figure 34 is a schematic view showing the structure of Figure 33 after etching.
第35圖繪示對第34圖之結構的第三蝕刻遮罩進行第二修整之後的示意圖。 Figure 35 is a schematic view showing a second trimming of the third etch mask of the structure of Figure 34.
第36圖繪示對第35圖之結構進行蝕刻之後的示意圖。 Figure 36 is a schematic view showing the structure of Figure 35 after etching.
第37圖繪示將第36圖之結構的第三蝕刻遮罩移除之後的示意圖。 Figure 37 is a schematic view showing the third etch mask of the structure of Figure 36 removed.
第38圖繪示對第37圖之結構進行絕緣/停止層之沉積之後的示意圖。 Figure 38 is a schematic view showing the deposition of the insulation/stop layer of the structure of Figure 37.
第39圖繪示對第38圖之結構進行絕緣材料之沉積之後的示意圖。 Figure 39 is a schematic view showing the deposition of the insulating material for the structure of Figure 38.
第40圖繪示對第39圖之結構加上第四蝕刻遮罩的示意圖。 Figure 40 is a schematic view showing the structure of Figure 39 plus a fourth etch mask.
第41圖繪示對第40圖之結構進行蝕刻之後的示意圖。 Figure 41 is a schematic view showing the structure after the etching of the structure of Figure 40.
第42圖繪示將第41圖之結構的第四蝕刻遮罩移除之後顯示出形成於結構中之通孔的示意圖。 Figure 42 is a schematic view showing the through hole formed in the structure after the fourth etch mask of the structure of Fig. 41 is removed.
第43圖繪示對第42圖之結構形成通孔中的層間導體的示意圖。 Fig. 43 is a view showing the formation of the interlayer conductor in the through hole in the structure of Fig. 42.
第44圖繪示用於形成關於第7至25圖之下述的接觸結構的方法之概略步驟的簡化流程圖。 Figure 44 is a simplified flow diagram showing the schematic steps of a method for forming the contact structure described below with respect to Figures 7 through 25.
第45圖繪示用於形成關於第26至43圖之下述的接觸結構的方法之概略步驟的簡化流程圖。 Figure 45 is a simplified flow diagram showing the schematic steps of a method for forming the contact structure described below with respect to Figures 26 through 43.
第46圖繪示用於形成關於第7至25圖與第26至43圖之下述的接觸結構的方法之概略步驟的簡化流程圖。 Figure 46 is a simplified flow diagram showing the schematic steps of a method for forming the contact structures described below with respect to Figures 7 through 25 and Figures 26 through 43.
第47圖繪示積體電路之簡化框圖。 Figure 47 shows a simplified block diagram of the integrated circuit.
第48至63圖繪示形成接觸結構之進一步範例的示意圖。 48 to 63 are schematic views showing further examples of forming a contact structure.
第48圖繪示在蝕刻遮罩中蝕刻通過開孔如何能夠造成具有不同深度之蝕刻開孔的示意圖。 Figure 48 is a schematic illustration of how etching through the opening in the etch mask can result in etched openings having different depths.
第49圖繪示對第48圖的結構進行過度蝕刻製程的結果來使得被蝕刻的開孔完全地穿越通過主動層但仍位於不同深度的部分的下方絕緣層中的示意圖。 Figure 49 is a schematic illustration of the result of an overetch process for the structure of Figure 48 such that the etched openings completely traverse the underlying insulating layer through portions of the active layer but still at different depths.
第50圖繪示層及/或蝕刻製程缺乏一致性的結過導致被蝕刻的開孔延伸至不同的層而非相同的層。 Figure 50 illustrates that the lack of uniformity of the layer and/or etch process results in the etched openings extending to different layers rather than the same layer.
第51圖繪示類似於第8圖的結構之具有蝕刻遮罩於上絕緣層之上的主動層與絕緣層之堆疊的示意圖。 Figure 51 is a schematic view showing a stack of an active layer and an insulating layer having an etch mask over the upper insulating layer, similar to the structure of Figure 8.
第52圖繪示對第51圖的結構進行蝕刻之後通過最上層的第一次堆疊並進入部分的最上層的第一緩衝層中的示意圖。 Figure 52 is a schematic view showing the structure of Figure 51 after etching through the first stack of the uppermost layer and into the uppermost first buffer layer of the portion.
第53圖繪示對第52圖的結構進行蝕刻之後通過第一緩衝層的示意圖。 Figure 53 is a schematic view showing the structure of Figure 52 after etching through the first buffer layer.
第54圖繪示對第53圖的結構進行蝕刻之後通過第二次堆疊並進入部分的第二緩衝層中的示意圖。 Figure 54 is a schematic view showing the structure of Figure 53 after etching through the second stack and into a portion of the second buffer layer.
第55圖繪示對第54圖的結構進行蝕刻之後通過第二緩衝層的示意圖。 Figure 55 is a schematic view showing the structure of Figure 54 after etching through the second buffer layer.
第56圖繪示對第55圖的結構進行蝕刻之後通過第三次堆疊並進入部分的第三緩衝層中的示意圖。 Figure 56 is a schematic view showing the structure of Figure 55 after being etched through the third stack and into a portion of the third buffer layer.
第57圖繪示對第56圖的結構進行蝕刻之後通過第三緩衝層的示意圖。 Figure 57 is a schematic view showing the passage of the third buffer layer after etching the structure of Figure 56.
第58圖繪示對第57圖的結構進行蝕刻之後通過最下層的第四次堆疊並進入部分的最下層的第四緩衝層中的示意圖。 Figure 58 is a schematic view showing the structure of Fig. 57 after etching through the fourth stack of the lowermost layer and into the fourth buffer layer of the lowermost layer of the portion.
第59圖繪示對第58圖的結構進行蝕刻之後通過最下層的第 四緩衝層中的示意圖。 Figure 59 is a diagram showing the structure of Fig. 58 after etching through the lowermost layer. Schematic diagram in the four buffer layers.
第60圖繪示類似於第16圖之結構之已通過堆疊來形成至各個次堆疊的最上層的主動層之被蝕刻的開孔,以準備用於處理各個次堆疊之主動層來形成例如是第17至25圖所述之次堆疊的主動層上的著陸區的階梯式結構的示意圖。 Figure 60 is a view showing an etched opening of an active layer which has been formed by stacking to the uppermost layer of each sub-stack, similar to the structure of Figure 16, to prepare an active layer for processing each sub-stack to form, for example, Schematic diagram of the stepped structure of the landing zone on the sub-stacked active layer described in Figures 17-25.
第61圖繪示類似於第52圖之結構但其鄰近於覆蓋的緩衝層的上邊界層係比第52圖之範例更厚以擴大製程窗口的示意圖。 Fig. 61 is a schematic view showing a structure similar to that of Fig. 52 but having an upper boundary layer adjacent to the covered buffer layer thicker than the example of Fig. 52 to enlarge the process window.
第62圖繪示對第61圖之結構進行蝕刻通過覆蓋的緩衝層之後,使被蝕刻的開孔係完全地穿越通過緩衝層,並進入厚度增加以容納此種過度蝕刻的上邊界層來擴大製程窗口的示意圖。 Figure 62 illustrates the etching of the structure of Fig. 61 through the covered buffer layer, the etched opening system is completely traversed through the buffer layer, and the thickness is increased to accommodate the over-etched upper boundary layer to expand Schematic diagram of the process window.
第63圖繪示用於形成階梯式接觸結構之方法的範例的流程圖。 Figure 63 is a flow chart showing an example of a method for forming a stepped contact structure.
第64圖繪示包括垂直通道反及閘連接的電晶體之串列的三維非揮發性記憶體陣列的剖面圖。 Figure 64 is a cross-sectional view of a three-dimensional non-volatile memory array including a vertical channel and a gate connected transistor.
第65圖繪示第64圖之結構的上視圖。 Fig. 65 is a top view showing the structure of Fig. 64.
第66圖繪示第64圖所示之反及閘串列之代表性示意圖。 Figure 66 is a schematic diagram showing the representative of the reverse gate train shown in Figure 64.
第67圖繪示沿第68圖之67-67連線之包括在堆疊之表面與字元線之間的交叉點上形成有三維陣列之反及閘記憶體元件且在基板上具有交替的半導體條與絕緣串列之三維非揮發性記憶體陣列之剖面圖。 Figure 67 is a diagram showing a three-dimensional array of anti-gate memory elements formed on the intersection between the surface of the stack and the word line along the line 67-67 of Fig. 68 and having alternating semiconductors on the substrate. A cross-sectional view of a three-dimensional non-volatile memory array of strips and insulators.
第68圖繪示第67圖之結構所顯示字元線之方向有關於交替的導體與絕緣串列之堆疊的上視圖。 Figure 68 is a top plan view showing the stack of alternating conductors and insulated strings in the direction of the word lines shown in the structure of Figure 67.
第69圖繪示類似於第67圖之沿第68圖的69-69連線的剖面圖。 Figure 69 is a cross-sectional view similar to line 69-69 of Figure 68 taken along line 68.
第70圖繪示垂直於第69圖之平面並藉由第67至69圖的結構來形成較低的第一高度之非揮發性記憶胞之反及閘連接的串列的代表性的示意圖。 Figure 70 is a schematic diagram showing a representation of a non-volatile memory cell and a gate connection of a lower first height formed by a structure perpendicular to the plane of Figure 69 and having the structure of Figures 67-69.
第71圖繪示垂直於第69圖之平面並藉由第67至69圖的結構來形成較高的第二高度之非揮發性記憶胞之反及閘連接的串列的代表性的示意圖。 Figure 71 is a schematic diagram showing a representation of a non-volatile memory cell and a gate connection of a non-volatile memory cell having a higher second height by the structure of Figures 69 to 69, which is perpendicular to the plane of Figure 69.
關於本發明不同實施例的詳細描述請參閱圖式。以下揭露之內容大多需要配合參考特定結構的實施例及方法。應了解的是,本發明並非被限制於特定的揭露實施例與方法,本發明可使用其他特徵、元件、方法與實施例加以實行。本發明所揭露之內容雖然可以透過實施例來說明,但該些實施例不可用來限定本發明之範圍。本領域具有通常知識者於參考本發明揭露內容後,應可了解其他可能的均等實施方式。除非有特別說明,本發明所使用的特定關係詞,如「平行」、「對齊」、「具有一致的特性」或「在相同平面」代表在製程和變換製造當中所限制的特定關係。除非有特別描述,當以「耦接」、「連結」、「接觸於」或「彼此接觸」描述組成物件時,這些組成物件彼此並不需要物理性的直接接觸。不同實施例中相同的元件通常以相同的元件符號表示。 For a detailed description of various embodiments of the invention, please refer to the drawings. Most of the disclosures below need to be accompanied by reference to specific embodiments of the embodiments and methods. It is understood that the invention is not limited to the specific disclosed embodiments and methods, and the invention may be practiced with other features, elements, methods and embodiments. The disclosure of the present invention may be made by way of examples, but the embodiments are not intended to limit the scope of the present invention. Other possible equivalent embodiments will be apparent to those of ordinary skill in the art in view of this disclosure. Unless specifically stated otherwise, the specific relational terms used in the present invention, such as "parallel," "aligned," "having consistent characteristics," or "in the same plane", represent a particular relationship that is limited in process and transformation manufacturing. Unless specifically described, when the components are described by "coupling", "linking", "contacting" or "contacting each other", these constituent objects do not require physical direct contact with each other. The same elements in different embodiments are generally denoted by the same element symbols.
第1圖繪示一種三維半導體裝置(如記憶體裝置)100 之範例的透視圖,如美國公開號2012/0182806之申請案中所述,其申請日為2011年4月1日,發明名稱為「具有交替記憶體字串方向及字串選擇結構之三維陣列之記憶體架構(Memory Architecture of 3D Array With Alternating Memory String Orientation and String Select Structures)」。為了更清楚地繪示主動層,所形成的各種絕緣材料皆未繪示,主動層包括半導體條、用以連結層間導體的半導體襯墊和其他元件。三維半導體裝置100係形成以覆蓋於一基板(未顯示)上,基板具有絕緣層(未顯示)形成於其上。基板可包括一個或多個積體電路以及其他結構。圖中繪示主動層堆疊的近端具有4個半導體襯墊102B、103B、104B與105B,而於堆疊的遠端具有4個半導體襯墊112B、113B、114B與115B,但是主動層和對應之半導體襯墊的數量可以延伸至任一數字的N個層,其中N為大於1的整數。如圖所示,三維半導體裝置100包括主動串列(active string)(例如102、103、104、105)堆疊,此些堆疊係以絕緣材料分隔。半導體襯墊(例如102B、103B、104B、105B)終止對應的主動層中的串列。如圖所示,半導體襯墊102B、103B、104B和105B電性耦接於主動層,用於連結至解碼電路,以選擇陣列中的層。半導體襯墊102B、103B、104B與105B可在主動層圖案化時一同進行圖案化,而層間導體之通孔可能除外。在所繪示的實施例中,各個主動串列包括適於作為通道區域的半導體材料。串列係呈脊型,延伸於圖中的Y軸,使得主動串列102、103、104、105可構成主體,主體包括快閃 記憶胞串列的通道區域,例如水平的反及閘(NAND)串列配置。如圖所示,在本範例中一記憶體材料層152係塗佈於複數個主動串列堆疊,在其他範例中記憶體材料層152係至少塗佈於主動串列之側壁。在其他實施例,主動串列可配置為垂直反及閘中的字元線。例如,請參照美國專利號8,363,476的申請案,申請日為2011年1月19日,發明名稱為「記憶體裝置,及其製造方法與操作方法(Memory Device,Manufacturing Method and Operating Method of The Same)」。 FIG. 1 illustrates a three-dimensional semiconductor device (such as a memory device) 100. A perspective view of an example, as described in the application of US Publication No. 2012/0182806, filed on April 1, 2011, entitled "Three-Dimensional Array with Alternating Memory String Direction and String Selection Structure" Memory Architecture of 3D Array With Alternating Memory String Orientation and String Select Structures. In order to more clearly illustrate the active layer, the various insulating materials formed are not shown, and the active layer includes semiconductor stripes, semiconductor pads for bonding the interlayer conductors, and other components. The three-dimensional semiconductor device 100 is formed to cover a substrate (not shown) having an insulating layer (not shown) formed thereon. The substrate can include one or more integrated circuits as well as other structures. The figure shows that the active layer stack has four semiconductor pads 102B, 103B, 104B and 105B at the proximal end and four semiconductor pads 112B, 113B, 114B and 115B at the far end of the stack, but the active layer and corresponding The number of semiconductor pads can extend to N layers of any number, where N is an integer greater than one. As shown, the three-dimensional semiconductor device 100 includes a stack of active strings (e.g., 102, 103, 104, 105) that are separated by an insulating material. The semiconductor pads (eg, 102B, 103B, 104B, 105B) terminate the series in the corresponding active layer. As shown, the semiconductor pads 102B, 103B, 104B, and 105B are electrically coupled to the active layer for bonding to a decoding circuit to select layers in the array. The semiconductor pads 102B, 103B, 104B, and 105B may be patterned together while the active layer is patterned, with the exception of the vias of the interlayer conductors. In the illustrated embodiment, each active string comprises a semiconductor material suitable for use as a channel region. The tandem system is ridge-shaped and extends over the Y-axis in the figure such that the active series 102, 103, 104, 105 can constitute a body, and the body includes a flash The channel region of the memory cell string, such as a horizontal reverse gate (NAND) string configuration. As shown, in this example a memory material layer 152 is applied to a plurality of active serial stacks. In other examples, the memory material layer 152 is applied to at least the sidewalls of the active series. In other embodiments, the active string can be configured to vertically reverse the word lines in the gate. For example, please refer to the application of U.S. Patent No. 8,363,476, filed on January 19, 2011, entitled "Memory Device, Manufacturing Method and Operating Method of The Same" (Memory Device, Manufacturing Method and Operating Method of The Same) "."
各個主動串列堆疊的一端係終止於半導體襯墊,而另一端則終止於源極線。因此,主動串列102、103、104、105藉由半導體襯墊102B、103B、104B與105B終止於近端,且通過閘極選擇線127終止於主動串列的遠端上的源極線終端119。主動串列112、113、114、115藉由半導體襯墊112B、113B、114B、與115B終止於遠端,且源極線終端(如源極線128)在鄰近於主動串列的近端穿越通過的閘極選擇線126。 One end of each active tandem stack terminates in a semiconductor pad while the other end terminates in a source line. Thus, the active series 102, 103, 104, 105 terminate at the near end by the semiconductor pads 102B, 103B, 104B, and 105B, and terminate at the source line terminal on the far end of the active string through the gate select line 127. 119. The active series 112, 113, 114, 115 terminate at the far end by the semiconductor pads 112B, 113B, 114B, and 115B, and the source line terminals (such as the source line 128) traverse at the near end of the active string. Pass gate selection line 126.
在第1圖的實施例中,複數個導體125-1到125-N正交地排列於複數個主動串列堆疊之上。在以複數個堆疊定義的溝槽(trench)中,導體125-1至125-N具有與於複數個主動串列堆疊共形(conformal)的表面,和在堆疊上的主動串列102、103、104、105側面以及導體125-1到125-N(例如字元線或源極選擇線)之間的交叉點定義介面區域的多層陣列。如圖所示,矽化物(例如矽化鎢、矽化鈷、矽化鈦、或矽化鎳)層154可形成於導體(例如 字元線或源極選擇線)的上表面。 In the embodiment of Figure 1, a plurality of conductors 125-1 through 125-N are arranged orthogonally over a plurality of active serial stacks. In a trench defined in a plurality of stacks, the conductors 125-1 through 125-N have surfaces that are conformal with the plurality of active tandem stacks, and active strings 102, 103 on the stack The intersections between the sides 104, 105 and conductors 125-1 through 125-N (e.g., word line or source select line) define a multi-layer array of interface regions. As shown, a layer 154 of a telluride (eg, tungsten telluride, cobalt antimonide, titanium telluride, or nickel telluride) may be formed on the conductor (eg, The upper surface of the word line or source selection line).
取決於實施方式,記憶體材料層152可包括多層介電電荷儲存結構。例如,多層介電電荷儲存結構包括含有氧化矽的穿隧層(tunneling layer)、含有氮化矽的電荷捕捉層(trapping layer)及含有氧化矽的隔離層(blocking layer)。在某些實施例中,介電電荷儲存層中的穿隧層可包括厚度小於約2奈米的第一氧化矽層、厚度小於約3奈米的氮化矽層以及厚度小於約3奈米的第二氧化矽層。在其他實施方式中,記憶體材料層152可只包括電荷捕捉層,而沒有穿隧層或隔離層。 Depending on the implementation, the memory material layer 152 can include a multilayer dielectric charge storage structure. For example, a multilayer dielectric charge storage structure includes a tunneling layer containing hafnium oxide, a trapping layer containing tantalum nitride, and a blocking layer containing hafnium oxide. In some embodiments, the tunneling layer in the dielectric charge storage layer can include a first tantalum oxide layer having a thickness of less than about 2 nanometers, a tantalum nitride layer having a thickness of less than about 3 nanometers, and a thickness of less than about 3 nanometers. The second layer of ruthenium oxide. In other embodiments, the memory material layer 152 can include only a charge trapping layer without a tunneling layer or isolation layer.
在另一實施例中,可使用例如是具有厚度為1至5奈米等級的反熔絲(Anti-fuse)材料,例如二氧化矽,氮氧化矽或其他氧化矽。亦可使用其他反熔絲材料,如氮化矽。在用於反熔絲的實施例中,主動串列102、103、104、105可以是第一導電型(如p型)的半導體材料。導體(如字元線或源極選擇線)125-N可以是第二導電型(如n型)的半導體材料。舉例來說,主動串列102、103、104、105可以利用p型多晶矽製成,而導體125-N則可利用相對重摻雜的n+型多晶矽製成。在用於反熔絲的實施例中,主動串列的寬度應提供足夠的空間給空乏區(depletion region),以支持二極體運作。因此,包括一整流器的記憶胞係形成於多晶矽串列與導線之間的交叉點之三維陣列中,整流器係於陽極和陰極之間由可寫入的反熔絲層之p-n接面(junction)所形成。 In another embodiment, for example, an anti-fuse material having a thickness of 1 to 5 nanometers, such as cerium oxide, cerium oxynitride or other cerium oxide, may be used. Other anti-fuse materials such as tantalum nitride can also be used. In an embodiment for an antifuse, the active series 102, 103, 104, 105 may be a first conductivity type (e.g., p-type) semiconductor material. The conductor (e.g., word line or source select line) 125-N may be a second conductivity type (e.g., n-type) semiconductor material. For example, active strings 102, 103, 104, 105 can be fabricated using p-type polysilicon, while conductors 125-N can be fabricated using relatively heavily doped n+ type polysilicon. In embodiments for antifuse, the width of the active string should provide sufficient space for the depletion region to support diode operation. Thus, a memory cell comprising a rectifier is formed in a three-dimensional array of intersections between the polysilicon series and the wires, and the rectifier is connected between the anode and the cathode by a pn junction of the writable antifuse layer. Formed.
在其他實施例中,不同的可寫入電阻記憶體材料可作為記憶體材料,包括金屬氧化物,如鎢(tungsten)上的氧化鎢或摻雜的金屬氧化物等。某些此類材料可形成裝置,以在多種電壓或電流下被寫入與抹除,且可執行每個記憶體單元的多位元儲存。 In other embodiments, different writable resistive memory materials can be used as memory materials, including metal oxides such as tungsten oxide or doped metal oxides on tungsten. Certain such materials may form devices to be written and erased under a variety of voltages or currents, and may perform multi-bit storage of each memory cell.
如第1圖所示,半導體襯墊102B、103B、104B與105B的一側在裝置的對應層中耦接於主動串列,如藉由半導體層的連續圖案化而形成。在一些實施例中,襯墊的兩側可以耦接於對應層中之主動串列。在其他實施例,襯墊可以利用其他材料和結構與主動串列連結,這些材料與結構可允許裝置操作所需的電壓和電流之電子通訊。並且,在本實施例中,一覆蓋的絕緣層(未顯示)和半導體襯墊102B、103B、104B與105B中除了最低的襯墊之外的半導體襯墊係包括開孔102C1、102C2、102C3、103C1、103C2、104C1,這些開孔於下方的襯墊上暴露出著陸區來形成一階梯結構。 As shown in FIG. 1, one side of the semiconductor pads 102B, 103B, 104B, and 105B is coupled to the active series in a corresponding layer of the device, such as by continuous patterning of the semiconductor layers. In some embodiments, both sides of the pad may be coupled to a active string in the corresponding layer. In other embodiments, the pads may be coupled to the active string using other materials and structures that allow electronic communication of the voltage and current required for operation of the device. Moreover, in the present embodiment, a covered insulating layer (not shown) and a semiconductor pad other than the lowest pad among the semiconductor pads 102B, 103B, 104B and 105B include openings 102C1, 102C2, 102C3, 103C1, 103C2, 104C1, these openings expose a landing zone on the underlying liner to form a stepped structure.
連接層間導體至堆疊中的主動層的其中一種方法可參照揭露於美國專利號8,383,512的多重光蝕刻製程(multiple lithographic-etch process),其發明名稱為「用於製造多層連接結構的方法(Method for Making Multilayer Connection Structure)」,其揭露內容係作為本發明之參考。連接層間導體至堆疊中的主動層的另一種方法可稱為修整蝕刻製程(trim-etch process),揭露於美國申請號13/735,922,申請日期為2013年1月7日,其發明名稱為「用於堆疊結構之導電層之中間連接件的形成方法(Method for Forming Interlayer Conductors to a Stack of Conductor Layers)」,其揭露內容係作為本發明之參考。 One of the methods of joining the interlayer conductors to the active layers in the stack can be found in the multiple lithographic-etch process disclosed in U.S. Patent No. 8,383,512, entitled "Method for Making Multilayer Connection Structures" (Method for Making Multilayer Connection Structure), the disclosure of which is incorporated herein by reference. Another method of joining the interlayer conductors to the active layers in the stack can be referred to as a trim-etch process, as disclosed in U.S. Application Serial No. 13/735,922, filed on Jan. 7, 2013, entitled " Method for forming intermediate connectors for conductive layers of stacked structures (Method For Forming Interlayer Conductors to a Stack of Conductor Layers), the disclosure of which is incorporated herein by reference.
第2A至2F圖繪示用於製造一接觸結構的多重光蝕刻製程的範例的簡化圖。第2A圖繪示交替的主動層202與絕緣層204的一堆疊200,在最上層主動層202.1上形成有一第一蝕刻遮罩206。第一蝕刻遮罩206具有第一蝕刻遮罩開孔208。主動層202可由不同種類的導電材料所形成,例如是摻雜的半導體、金屬與其之組合。第2B圖顯示蝕刻通過第2A圖中一主動層202與一絕緣層204的一個階層之後的結構。此第一蝕刻係在第一蝕刻遮罩開孔208開始進行,以形成第一蝕刻開孔210。在剝除第一蝕刻遮罩206之後,請參閱第2C圖,一第二蝕刻遮罩212係形成於堆疊200之上,請參閱第2D圖。第二蝕刻遮罩212具有第二蝕刻遮罩開孔214,其中一個第二蝕刻遮罩開孔214係與第一蝕刻遮罩開孔208對齊,而另一個第二蝕刻遮罩開孔214並沒有與第一蝕刻遮罩開孔208對齊。接著,如第2E圖所示,開始進行第二蝕刻並通過2個階層。結果係形成通孔216且延伸至第二、第三、與第四主動層202.2、202.3、與202.4,並藉由移除第二蝕刻遮罩212來暴露第一主動層202.1,如第2F圖所示。 2A through 2F are simplified diagrams showing an example of a multiple photolithography process for fabricating a contact structure. FIG. 2A illustrates a stack 200 of alternating active layers 202 and insulating layers 204, and a first etch mask 206 is formed on the uppermost active layer 202.1. The first etch mask 206 has a first etch mask opening 208. The active layer 202 can be formed of different kinds of conductive materials, such as doped semiconductors, metals, and combinations thereof. Fig. 2B shows the structure after etching through a layer of an active layer 202 and an insulating layer 204 in Fig. 2A. This first etch begins at the first etch mask opening 208 to form a first etch opening 210. After stripping the first etch mask 206, see FIG. 2C, a second etch mask 212 is formed over the stack 200, see FIG. 2D. The second etch mask 212 has a second etch mask opening 214, wherein one second etch mask opening 214 is aligned with the first etch mask opening 208 and the other second etch mask opening 214 Not aligned with the first etch mask opening 208. Next, as shown in FIG. 2E, the second etching is started and passed through two levels. As a result, vias 216 are formed and extend to the second, third, and fourth active layers 202.2, 202.3, and 202.4, and the first active layer 202.1 is exposed by removing the second etch mask 212, as shown in FIG. Shown.
堆疊200係由具有共同蝕刻特性的主動層202以及具有共同蝕刻特性的絕緣層204所形成。在此範例中,主動層202係由相同的導電材料所形成,並具有相同的標稱厚度(nominal thickness)。類似地,絕緣層204係由具有相同的標稱厚度之相同的絕緣材料所形成。因此,各對絕緣層與主動層對於所進行的蝕刻製程將具有一致的蝕刻時間。絕緣層與主動層成對的此種配置 可意指為具有一簡單周期(simple period)的堆疊層。 The stack 200 is formed of an active layer 202 having a common etch characteristic and an insulating layer 204 having a common etch characteristic. In this example, active layer 202 is formed from the same conductive material and has the same nominal thickness. Similarly, insulating layer 204 is formed from the same insulating material having the same nominal thickness. Therefore, each pair of insulating layer and active layer will have a uniform etching time for the etching process performed. This configuration in which the insulating layer is paired with the active layer It can mean a stacked layer having a simple period.
第3A至3D圖繪示類似於第2A至第2F圖之不具有簡單周期的堆疊層的範例。在此例中,第三絕緣層204.3係較其上的絕緣層204.1或204.2更厚。因此,欲在第二蝕刻遮罩開孔214.1蝕刻通過最上層邊界的第一主動層202.1、第一絕緣層204.1、第二主動層202.2、以及第二絕緣層204.2以形成通孔216.1的所需時間在第二蝕刻遮罩開孔214.2僅足以蝕刻通過部分的第三絕緣層204.3以形成通孔216.2的所需時間。 3A to 3D are diagrams showing an example of a stacked layer having no simple period similar to the 2A to 2F drawings. In this example, the third insulating layer 204.3 is thicker than the insulating layer 204.1 or 204.2 thereon. Therefore, it is desired to etch the first active layer 202.1, the first insulating layer 204.1, the second active layer 202.2, and the second insulating layer 204.2 passing through the uppermost boundary at the second etch mask opening 214.1 to form the via 216.1. The time required for the second etch mask opening 214.2 is only sufficient to etch through the portion of the third insulating layer 204.3 to form the via 216.2.
如本文所述,係提供具有非簡單周期的結構,此種結構中的主動層和/或絕緣層具有不同的蝕刻時間,典型地係因為主動層和/或絕緣層是由具有不同的蝕刻特性、或不同的厚度的材料所組成,或者主動層和/或絕緣層係由不同的材料與不同的厚度之組合所組成。 As described herein, a structure having a non-simple period in which the active layer and/or the insulating layer have different etching times is provided, typically because the active layer and/or the insulating layer are composed of different etching characteristics. Or a material of different thickness, or the active layer and / or insulating layer is composed of a combination of different materials and different thicknesses.
第4A至4G圖繪示一修整蝕刻製程的簡化的範例。蝕刻遮罩220係形成於最上層的主動層202.1上,並具有一蝕刻遮罩開孔222來暴露最上層主動層的一部分224。第一蝕刻步驟係蝕刻通過主動層202.1與絕緣層204.1,以暴露出主動層202.2的一部分226,如第4B圖中所示。接著,在第一修整步驟的期間,蝕刻遮罩220的一部分係被移除,以暴露主動層202.1的另一部分228。如第4D圖所示,下一個蝕刻步驟係蝕刻通過一主動層202與一絕緣層204,以暴露出主動層202.2的一部分230及主動層202.3的一部分232。接著,請參閱第4E圖,在第二修整步驟的期間,蝕刻遮罩220的一部分係被移除,以暴露主動層202.1的一部分234。此步驟後係接續另一蝕刻步驟,請參閱第4F圖, 於各個部分234、230與232通過一主動層與一絕緣層,以形成第4F圖的結構。第4G圖繪示剝除第4F圖中剩餘的蝕刻遮罩220之後,在不同的主動層202.1-202.4形成用於連接於層間導體(interlayer conductor)的多個著陸區(landing area)238的階梯式結構236。 4A to 4G illustrate a simplified example of a trim etching process. An etch mask 220 is formed over the uppermost active layer 202.1 and has an etch mask opening 222 to expose a portion 224 of the uppermost active layer. The first etch step is etched through the active layer 202.1 and the insulating layer 204.1 to expose a portion 226 of the active layer 202.2, as shown in FIG. 4B. Next, during the first trimming step, a portion of the etch mask 220 is removed to expose another portion 228 of the active layer 202.1. As shown in FIG. 4D, the next etch step is etched through an active layer 202 and an insulating layer 204 to expose a portion 230 of the active layer 202.2 and a portion 232 of the active layer 202.3. Next, referring to FIG. 4E, during the second trimming step, a portion of the etch mask 220 is removed to expose a portion 234 of the active layer 202.1. This step is followed by another etching step, see Figure 4F. Each of the portions 234, 230 and 232 passes through an active layer and an insulating layer to form the structure of the 4F. FIG. 4G illustrates the step of forming a plurality of landing areas 238 for connection to interlayer conductors at different active layers 202.1-202.4 after stripping the remaining etch mask 220 in FIG. 4F. Structure 236.
第5A至5D圖繪示類似於第4A至4G圖之不具有簡單周期的堆疊層的範例。在此範例中,第二絕緣層204.2係較其之上或之下的絕緣層更加地厚。在對應於第4D圖的蝕刻步驟之第5D圖的蝕刻步驟期間,蝕刻的進行係足以蝕刻主動層202.1的部分228,並蝕刻於下方的絕緣層204.1的部分,以暴露主動層202.2的部分230。然而,如第5D圖所示,由於第二絕緣層204.2的厚度較大,欲蝕刻通過第二絕緣層204.2需要較長的時間,此處的蝕刻係僅足以蝕刻通過部分的第二絕緣層204.2。因此,不同於第4D圖,第三主動層202.3並未藉由第二蝕刻步驟而暴露出。然而,若繼續進行第二蝕刻步驟以蝕刻通過第二絕緣層204.2直到第三主動層202.3暴露出,卻可能損害或毀損主動層202.2的暴露部分230。 5A to 5D are diagrams showing an example of a stacked layer having no simple period similar to the 4A to 4G drawings. In this example, the second insulating layer 204.2 is thicker than the insulating layer above or below it. During the etching step of Figure 5D corresponding to the etching step of Figure 4D, the etching is performed sufficient to etch portions 228 of active layer 202.1 and etched into portions of underlying insulating layer 204.1 to expose portions 230 of active layer 202.2 . However, as shown in FIG. 5D, since the thickness of the second insulating layer 204.2 is large, it takes a long time to etch through the second insulating layer 204.2, and the etching here is only enough to etch the portion of the second insulating layer 204.2. . Therefore, unlike the 4D map, the third active layer 202.3 is not exposed by the second etching step. However, if the second etching step is continued to etch through the second insulating layer 204.2 until the third active layer 202.3 is exposed, the exposed portion 230 of the active layer 202.2 may be damaged or destroyed.
基於上述,不具有簡單週期的主動層與絕緣層堆疊中的接觸結構250的範例係顯示於第6圖中。接觸結構250包括交替的主動層202與絕緣層204之堆疊200。堆疊200亦包括次堆疊252,次堆疊252具有上邊界主動層202.1。次堆疊252亦包括第一層配對254,第一層配對254係位在各個上邊界主動層202.1之下的絕緣層與主動層202、204。在第6圖的範例中,具有4個標示為252.1至252.4的次堆疊252。絕緣層與主動層202、 204的配對254於所進行的蝕刻製程中具有一致的第一蝕刻時間。堆疊200亦包括次堆疊252之間的次堆疊絕緣層256、258與260。在此範例中,絕緣層256與260的組成係相同,典型地係二氧化矽(SiO2),而次堆疊絕緣層258的組成並不相同,例如是氮化矽(SiN)。次堆疊絕緣層256、260的厚度及組成係實質上相同,因此各個具有實質上相同的蝕刻特性。然而,絕緣層256與260的厚度係較絕緣層204的厚度更大,因此,在蝕刻製程的進行中,蝕刻通過絕緣層256與260的所需時間係大於蝕刻通過絕緣層204的所需時間。 Based on the above, an example of the contact structure 250 in the active layer and the insulating layer stack without a simple period is shown in FIG. Contact structure 250 includes a stack 200 of alternating active layers 202 and insulating layers 204. Stack 200 also includes a secondary stack 252 having an upper boundary active layer 202.1. Sub-stack 252 also includes a first layer pair 254 that is positioned between the insulating layer and active layers 202, 204 below each of the upper boundary active layers 202.1. In the example of Figure 6, there are four sub-stacks 252 labeled 252.1 to 252.4. The pair 254 of insulating layers and active layers 202, 204 have a consistent first etch time in the etching process performed. Stack 200 also includes sub-stack insulation layers 256, 258, and 260 between sub-stacks 252. In this example, the insulating layers 256 and 260 have the same composition, typically cerium oxide (SiO 2 ), and the composition of the secondary stacked insulating layer 258 is not the same, such as tantalum nitride (SiN). The thickness and composition of the sub-stack insulation layers 256, 260 are substantially the same, and thus each has substantially the same etch characteristics. However, the thickness of the insulating layers 256 and 260 is greater than the thickness of the insulating layer 204. Therefore, the required time for etching through the insulating layers 256 and 260 is greater than the time required to etch through the insulating layer 204 during the etching process. .
次堆疊絕緣層256與下方的鄰近的主動層202.1組成第二層配對262,第二層配對262於蝕刻製程的進行中具有第二蝕刻時間。次堆疊絕緣層260與下方的鄰近的主動層202.1組成第三層配對264,第三層配對264於蝕刻製程的進行中具有第三蝕刻時間,其中第三蝕刻時間等於第二蝕刻時間。次堆疊絕緣層258與下方的鄰近的主動層202.1組成第四層配對266,第四層配對266於蝕刻製程的進行中具有第四蝕刻時間。第四蝕刻時間不同於第一至第三蝕刻時間中的任何一者。用於不同的層配對254、262、264、266的蝕刻時間可以是相同或不同,使用一寬範圍之具有不同的蝕刻速率的不同的材料搭配使用相同的或不同厚度的絕緣層與主動層。 The secondary stacked insulating layer 256 forms a second layer pair 262 with the underlying active layer 202.1, and the second layer pair 262 has a second etch time during the etching process. The sub-stack insulation layer 260 and the lower adjacent active layer 202.1 form a third layer pair 264 having a third etch time in the middle of the etch process, wherein the third etch time is equal to the second etch time. The secondary stacked insulating layer 258 forms a fourth layer pair 266 with the underlying active layer 202.1, and the fourth layer pair 266 has a fourth etch time during the etching process. The fourth etching time is different from any of the first to third etching times. The etch times for the different layer pairs 254, 262, 264, 266 may be the same or different, using a wide range of different materials having different etch rates in combination with the same or different thicknesses of insulating and active layers.
接觸結構250亦包括上絕緣層268與下絕緣層270。上絕緣層268覆蓋於次堆疊252.1之主動層202.1。下絕緣層270係位於次堆疊252.4之主動層202.4的下方。上絕緣層268與下絕緣層270皆可由二氧化矽所組成。一組層間導體272延伸 通過上絕緣層268,以階梯(stairstep)的方式與各個次堆疊252的各個主動層202形成接觸。各個層間導體272係藉由側壁絕緣體314所環繞,側壁絕緣體314可由氮化矽所組成。 The contact structure 250 also includes an upper insulating layer 268 and a lower insulating layer 270. The upper insulating layer 268 covers the active layer 202.1 of the sub-stack 252.1. The lower insulating layer 270 is located below the active layer 202.4 of the sub-stack 252.4. Both the upper insulating layer 268 and the lower insulating layer 270 may be composed of cerium oxide. a set of interlayer conductors 272 extending Contact is made with the respective active layers 202 of each of the sub-stacks 252 by a superior insulating layer 268 in a stair step manner. Each of the interlayer conductors 272 is surrounded by a sidewall insulator 314 which may be composed of tantalum nitride.
第7至第25圖將顯示利用如第2A至第2F圖所討論的多重光蝕刻製程來製造如第6圖之接觸結構250的步驟的範例。 7 through 25 will show an example of the steps of fabricating the contact structure 250 as shown in Fig. 6 using the multiple photolithography process as discussed in Figs. 2A through 2F.
第7圖顯示堆疊200包括位於上絕緣層268與下絕緣層270之間的次堆疊252.1至252.4,次堆疊係藉由次堆疊絕緣層256、258、260分開。第8圖顯示第7圖之結構中具有第一蝕刻遮罩278以及形成於其中的第一蝕刻遮罩開孔280。第9圖顯示將第8圖的結構於開孔280通過上絕緣層268進行蝕刻的結果,以於層268中往下蝕刻至次堆疊252.1之上邊界主動層202.1,形成第一蝕刻開孔282。第10圖顯示將第9圖的結構的第一蝕刻遮罩278去除之後的結構。 Figure 7 shows that the stack 200 includes sub-stacks 252.1 through 252.4 between the upper insulating layer 268 and the lower insulating layer 270, the sub-stack being separated by the sub-stack insulating layers 256, 258, 260. Figure 8 shows the structure of Figure 7 having a first etch mask 278 and a first etch mask opening 280 formed therein. FIG. 9 shows the result of etching the structure of FIG. 8 through the upper insulating layer 268 in the opening 280 to etch down the upper active layer 202.1 of the sub-stack 252.1 in the layer 268 to form the first etched opening 282. . Fig. 10 shows the structure after the first etch mask 278 of the structure of Fig. 9 is removed.
第11圖顯示將第10圖的結構形成覆蓋第一蝕刻開孔282之一半的第二蝕刻遮罩284並具有與另一半的蝕刻開孔282對齊的第二蝕刻遮罩開孔286的結構。在第12圖中,第11圖的結構係通過開孔286進行蝕刻,以往下蝕刻至次堆疊252.3之上邊界主動層202.1,形成第二蝕刻開孔288。在第13圖中,第二蝕刻遮罩284已經被去除,暴露出第一蝕刻開孔282。 11 shows a structure in which the structure of FIG. 10 is formed to form a second etch mask 284 covering one half of the first etch opening 282 and having a second etch mask opening 286 aligned with the other half of the etch opening 282. In Fig. 12, the structure of Fig. 11 is etched through opening 286, and conventionally etched down to the upper active layer 202.1 of the sub-stack 252.3 to form a second etched opening 288. In FIG. 13, the second etch mask 284 has been removed, exposing the first etch opening 282.
第14圖顯示將第13圖的結構形成一第三蝕刻遮罩290之後具有暴露出第一蝕刻開孔282之一半的第三蝕刻遮罩開孔292.1與暴露出第二蝕刻開孔288之一半的第三蝕刻遮罩開孔292.2的結構。第15圖顯示將第14圖的結構於第三蝕刻遮罩開 孔292.1蝕刻通過第一次堆疊252.1與次堆疊絕緣層256之後的結構。第15圖亦顯示於第三蝕刻遮罩開孔292.2蝕刻通過第三次堆疊252.3與次堆疊絕緣層260的結果。上述蝕刻的進行形成第三蝕刻開孔294與第四蝕刻開孔296。第16圖顯示將第15圖的結構的第三蝕刻遮罩290去除之後的結構。 Figure 14 shows that after the structure of Figure 13 is formed into a third etch mask 290, there is a third etch mask opening 292.1 exposing one half of the first etch opening 282 and exposing one half of the second etch opening 288. The third etch mask has the structure of the opening 292.2. Figure 15 shows the structure of Figure 14 on the third etch mask The holes 292.1 are etched through the structure after the first stacking of 252.1 and the sub-stacking of the insulating layer 256. Figure 15 also shows the result of etching the third etch mask opening 292.2 through the third stack 252.3 and the sub-stack insulating layer 260. The etching proceeds to form a third etch opening 294 and a fourth etch opening 296. Fig. 16 shows the structure after the third etching mask 290 of the structure of Fig. 15 is removed.
第17圖顯示在第16圖的結構形成具有暴露出相隔的第一蝕刻開孔282、第二蝕刻開孔288、第三蝕刻開孔294、與第四蝕刻開孔296之開孔299的第四蝕刻遮罩298的結構。第18圖顯示在各個次堆疊252.1、252.2、252.3、與252.4中蝕刻通過上邊界主動層202.1與下方的絕緣層204.1的結果。上述蝕刻形成一部分蝕刻結構300,第19圖顯示將第四蝕刻遮罩298移除的結果。部分蝕刻結構300具有在堆疊200中延伸至不同階層的開孔302。第20圖顯示在第19圖的結構形成一第五蝕刻遮罩304來交替地覆蓋與暴露2個開孔302。第五蝕刻遮罩304具有重疊於第19圖之暴露的開孔302的開孔306。第21圖顯示進行第二蝕刻過程的結果,使2個主動層202與2個絕緣層204被蝕刻通過各個開孔306。 Figure 17 shows the structure of Figure 16 forming a first etched opening 282, a second etched opening 288, a third etched opening 294, and an opening 299 of the fourth etched opening 296 that are exposed. The structure of the four etch masks 298. Figure 18 shows the results of etching through the upper boundary active layer 202.1 and the underlying insulating layer 204.1 in each of the sub-stacks 252.1, 252.2, 252.3, and 252.4. The above etching forms a portion of the etched structure 300, and FIG. 19 shows the result of removing the fourth etched mask 298. The partially etched structure 300 has openings 302 that extend into different levels in the stack 200. Figure 20 shows the structure of Figure 19 forming a fifth etch mask 304 to alternately cover and expose the two openings 302. The fifth etch mask 304 has an opening 306 that overlaps the exposed opening 302 of FIG. Figure 21 shows the result of performing the second etching process such that the two active layers 202 and the two insulating layers 204 are etched through the respective openings 306.
第22圖顯示將第21圖之結構剝除第五蝕刻遮罩304的結果,來顯現出往下延伸至主動層202之著陸區310的通孔308。第22圖之結構具有著陸區310的階梯式配置。第23圖顯示一沉積於第22圖之結構上的絕緣層312(例如是氮化矽),因此沿著各個通孔308形成側壁絕緣體314之層。在第24圖中,重疊於上絕緣層268以及位於各個通孔308之底部的絕緣層312係被移除,以暴露著陸區310。第25圖顯示將第24圖的通孔308 用導體(例如是鎢(W))填充之後的結構,以從上絕緣層268之上表面318延伸至各個主動層202的著陸區310來形成層間導體272,因而形成第6圖的接觸結構250。 Figure 22 shows the result of stripping the structure of Figure 21 from the fifth etch mask 304 to reveal vias 308 that extend down to the landing zone 310 of the active layer 202. The structure of Fig. 22 has a stepped configuration of the landing zone 310. Figure 23 shows an insulating layer 312 (e.g., tantalum nitride) deposited on the structure of Figure 22, thus forming a layer of sidewall insulators 314 along each via 308. In FIG. 24, the insulating layer 312 overlapping the upper insulating layer 268 and the bottom of each of the vias 308 is removed to expose the landing zone 310. Figure 25 shows the through hole 308 of Figure 24 The structure after filling with a conductor such as tungsten (W) extends from the upper surface 318 of the upper insulating layer 268 to the landing region 310 of each active layer 202 to form the interlayer conductor 272, thus forming the contact structure 250 of FIG. .
第26至第43圖繪示使用關於上述第4A至第4G圖所討論的簡化的範例之修整蝕刻製程來製造接觸結構之步驟的範例。 FIGS. 26 through 43 illustrate an example of the steps of fabricating a contact structure using a trimming etch process described with respect to the simplified examples discussed above in FIGS. 4A through 4G.
第26圖繪示除了缺少上絕緣層268之外其他皆與第7圖之堆疊200相同的一堆疊330。第一蝕刻遮罩332係形成於堆疊330之上來覆蓋第一次堆疊252.1之主動層202.1的一部分331並暴露約一半的主動層。在進行第一蝕刻步驟的期間(其結果顯示於第27圖中),堆疊330係在主動層202.1所暴露的部分被蝕刻通過次堆疊的一半,亦即是通過第一次堆疊252.1、次堆疊絕緣層256、第二次堆疊252.2、與次堆疊絕緣層258,因此暴露出第三次堆疊252.3之上邊界主動層202.1的一部分334。 Figure 26 illustrates a stack 330 identical to the stack 200 of Figure 7 except that the upper insulating layer 268 is absent. A first etch mask 332 is formed over the stack 330 to cover a portion 331 of the active layer 202.1 of the first stack 252.1 and expose about half of the active layer. During the first etching step (the result of which is shown in FIG. 27), the portion of the stack 330 exposed by the active layer 202.1 is etched through half of the sub-stack, that is, by the first stack 252.1, the second stack The insulating layer 256, the second stack 252.2, and the sub-stack insulating layer 258, thus exposing a portion 334 of the boundary active layer 202.1 over the third stack 252.3.
第28圖顯示對第27圖的結構進行第二蝕刻遮罩336來覆蓋約一半的部分331以及約一半的部分334。部分331的暴露區域係接著被蝕刻通過次堆疊252.1及次堆疊絕緣層256。部分334的暴露區域係被蝕刻通過次堆疊252.3及次堆疊絕緣層260。經由上述蝕刻過程而形成第29圖的結構,具有表面區域338、340、342與344。在第30圖中,第二蝕刻遮罩336已從第29圖中的結構去除。 Figure 28 shows a second etch mask 336 for the structure of Figure 27 to cover about half of the portion 331 and about half of the portion 334. The exposed regions of portion 331 are then etched through sub-stack 252.1 and sub-stacked insulating layer 256. The exposed regions of portion 334 are etched through sub-stack 252.3 and sub-stacked insulating layer 260. The structure of Fig. 29 is formed through the above etching process, and has surface regions 338, 340, 342, and 344. In Fig. 30, the second etch mask 336 has been removed from the structure in Fig. 29.
第31圖顯示形成於表面338至344之上的第三蝕刻遮罩346並暴露出各個表面的一部分。這些表面338至344的暴露部分係被蝕刻通過一主動層202及一絕緣層204,以形成第32 圖之具有暴露表面348至351的結構。此後,如第33圖所示,第三蝕刻遮罩346係被修整,以形成被修整的蝕刻遮罩354,被修整的蝕刻遮罩354係暴露出各個次堆疊252.1至252.4之上邊界主動層202.1的另外的部分。接著進行另一蝕刻步驟,以蝕刻通過一主動層202與下方的絕緣層204,上述蝕刻結果顯示於第34圖中。第35圖顯示對被修整的蝕刻遮罩354進行修整的結果,以形成被修整的蝕刻遮罩356,再次地暴露出各個次堆疊252.1至252.4之上邊界主動層202.1的另外的部分。又一次,接著進行另一蝕刻步驟,以蝕刻通過一主動層202與下方的絕緣層204,上述蝕刻結果顯示於第36圖中。 Figure 31 shows a third etch mask 346 formed over surfaces 338 through 344 and exposing a portion of each surface. The exposed portions of these surfaces 338 to 344 are etched through an active layer 202 and an insulating layer 204 to form the 32nd The figure has a structure that exposes surfaces 348 to 351. Thereafter, as shown in FIG. 33, the third etch mask 346 is trimmed to form a trimmed etch mask 354, and the trimmed etch mask 354 exposes the boundary active layer of each of the sub-stacks 252.1 to 252.4. The other part of 202.1. Next, another etching step is performed to etch through an active layer 202 and the underlying insulating layer 204. The etching results are shown in FIG. Figure 35 shows the result of trimming the trimmed etch mask 354 to form a trimmed etch mask 356 that again exposes additional portions of the boundary active layer 202.1 above each of the sub-stacks 252.1 through 252.4. Again, another etching step is performed to etch through an active layer 202 and the underlying insulating layer 204. The etching results are shown in FIG.
第37圖顯示將第36圖之結構移除被修整的蝕刻遮罩356之後使著陸區358形成階梯式配置的結果。如第38圖所示,接著進行絕緣層360的沉積,絕緣層360有時意指為停止層(stopping layer)360,停止層360可例如是氮化矽。接著,如第39圖所示,將第38圖的結構藉由例如是二氧化矽所形成的絕緣材料362覆蓋。接著,第四蝕刻遮罩364係形成於絕緣材料362之上,第四蝕刻遮罩364具有與著陸區358對齊的開孔366。通孔368係通過絕緣材料362與絕緣層360往下至著陸區358所形成。上述結過顯示於第41圖中。第42圖顯示將第41圖的結構移除第四蝕刻遮罩364之後的結構。第43圖顯示層間導體272,層間導體272係形成於通孔368之中,以形成接觸結構370,層間導體272可由鎢(W)所組成。 Figure 37 shows the result of forming the landing zone 358 in a stepped configuration after removing the trimmed etch mask 356 from the structure of Figure 36. As shown in FIG. 38, deposition of an insulating layer 360 is then performed. The insulating layer 360 is sometimes referred to as a stopping layer 360, which may be, for example, tantalum nitride. Next, as shown in Fig. 39, the structure of Fig. 38 is covered with an insulating material 362 formed of, for example, cerium oxide. Next, a fourth etch mask 364 is formed over the insulating material 362, and the fourth etch mask 364 has an opening 366 aligned with the landing zone 358. The via 368 is formed by insulating material 362 and insulating layer 360 down to landing zone 358. The above description is shown in Fig. 41. Figure 42 shows the structure after the structure of Figure 41 is removed from the fourth etch mask 364. Figure 43 shows an interlayer conductor 272 formed in the via 368 to form a contact structure 370 which may be comprised of tungsten (W).
第44圖係用於進行關於如上列第7至第25圖所述的接觸結構的形成方法之概述基本步驟的簡化流程圖。在步驟 380,交替的主動層與絕緣層202與204之堆疊200係形成。在步驟382,複數個開孔294、288、與296係被蝕刻於堆疊中,開孔停止於上邊界層的主動層202.1上。在步驟384,對開孔294、288、與296中所選擇的開孔進行蝕刻使深度增加,以形成通孔308。在步驟386與388,絕緣體314係形成於通孔308中以及未受到蝕刻的開孔294、288、與296中。接著,在步驟390形成層間導體272。層間導體272係連接於主動層202的著陸區310。 Figure 44 is a simplified flow chart for carrying out an overview of the basic steps of the method of forming the contact structure described in Figures 7 through 25 above. In the steps 380, alternating active layers are formed with a stack 200 of insulating layers 202 and 204. At step 382, a plurality of openings 294, 288, and 296 are etched into the stack, and the openings are stopped on the active layer 202.1 of the upper boundary layer. At step 384, the openings selected in openings 294, 288, and 296 are etched to increase the depth to form vias 308. In steps 386 and 388, insulator 314 is formed in vias 308 and openings 294, 288, and 296 that are not etched. Next, an interlayer conductor 272 is formed in step 390. The interlayer conductor 272 is connected to the landing zone 310 of the active layer 202.
第45圖係用於進行關於如上列第26至第43圖所述的接觸結構的形成方法之概述基本步驟的簡化流程圖。在步驟392,交替的主動層與絕緣層202與204之堆疊330係形成。在步驟394,堆疊330係接著被蝕刻,以暴露次堆疊252之上邊界主動層202.1的部分338、342、與344。部分338、342、與344亦意指為表面區域338、342、與344。在步驟396,這些暴露的部分係被蝕刻,以暴露上邊界主動層202.1之下的主動層202.2、202.3、與202.4,且用以形成階梯式的結構。在步驟398,絕緣層360係形成於階梯式結構之上。在步驟400,絕緣層360係被絕緣材料362所覆蓋。在步驟402,通孔368係通過絕緣材料362與絕緣層360來形成。在步驟404,層間導體372係形成於通孔368中,以形成接觸結構370。 Figure 45 is a simplified flow chart for carrying out an overview of the basic steps of the method of forming the contact structure described in Figures 26 through 43 above. At step 392, alternating active layers are formed with a stack 330 of insulating layers 202 and 204. At step 394, the stack 330 is then etched to expose portions 338, 342, and 344 of the boundary active layer 202.1 above the secondary stack 252. Portions 338, 342, and 344 are also referred to as surface areas 338, 342, and 344. At step 396, the exposed portions are etched to expose the active layers 202.2, 202.3, and 202.4 below the upper boundary active layer 202.1 and to form a stepped structure. At step 398, an insulating layer 360 is formed over the stepped structure. At step 400, insulating layer 360 is covered by insulating material 362. At step 402, vias 368 are formed by insulating material 362 and insulating layer 360. At step 404, interlayer conductors 372 are formed in vias 368 to form contact structures 370.
第46圖係用於進行關於如上列第7至第25圖及第26至第43圖所述的接觸結構的形成方法之概述基本步驟的簡化流程圖。在步驟410,交替的主動層與絕緣層202與204之堆疊200、330係藉由形成第一次堆疊、第二次堆疊、第三次堆疊、與第四次堆疊252來形成。各個次堆疊252包括藉由絕緣層204所 分開的主動層202。各個次堆疊的主動層包括上邊界主動層202.1。在步驟412,第一次堆疊絕緣層、第二次堆疊絕緣層、與第三次堆疊絕緣層256、258與260係形成於次堆疊252之間,在所進行的蝕刻製程中,次堆疊之間的絕緣層中的至少2個的蝕刻時間並不同於次堆疊的絕緣層204的蝕刻時間。在步驟414,係對上邊界主動層202.1進行處理。對於上邊界主動層202.1進行處理之後,在步驟416係對其他的主動層202.2至202.4進行處理,以形成如第22與第42圖所示的階梯式結構。在步驟418,係形成層間導體272,以延伸至著陸區310、358,層間導體係藉由絕緣材料彼此分開。 Figure 46 is a simplified flow chart for carrying out an overview of the basic steps of the method of forming the contact structure described in Figures 7 through 25 and Figures 26 through 43 above. At step 410, the stacks 200, 330 of alternating active and insulating layers 202 and 204 are formed by forming a first stack, a second stack, a third stack, and a fourth stack 252. Each sub-stack 252 includes an insulating layer 204 Separate active layer 202. The active layer of each sub-stack includes an upper boundary active layer 202.1. At step 412, the first stacked insulating layer, the second stacked insulating layer, and the third stacked insulating layer 256, 258, and 260 are formed between the sub-stacks 252, in the etching process performed, the second stacked The etching time of at least two of the insulating layers is different from the etching time of the sub-stacked insulating layer 204. At step 414, the upper boundary active layer 202.1 is processed. After processing the upper boundary active layer 202.1, the other active layers 202.2 through 202.4 are processed in step 416 to form a stepped structure as shown in FIGS. 22 and 42. At step 418, interlayer conductors 272 are formed to extend to landing regions 310, 358, and the interlayer conduction systems are separated from each other by an insulating material.
第47圖係積體電路的簡化框圖。積體電路975包括一三維反及閘快閃記憶體陣列(3D NAND flash memory array)960,具有類似於第1圖的結構,例如,在半導體基板上具有高密度及窄間距(pitch)的總體位元線(global bit line)。一列解碼器(row decoder)961係耦接於複數個字元線962,並在記憶體陣列960中沿列(row)進行配置。一行解碼器(column decoder)963係耦接於複數個源極選擇線(SSL line)964,並在記憶體陣列960中沿對應於堆疊的行(column)進行配置,用於從記憶體陣列960中的記憶胞讀取數據或寫入數據。一平面解碼器(plane decoder)958係經由位元線959耦接於記憶體陣列960中的複數個平面。位址(Address)係於匯流排965上供應至行解碼器963、列解碼器961、與平面解碼器958。在此範例中,方塊966中的感測放大器與資料輸入結構係經由資料匯流排967耦接於行解碼器963。資料係 經由資料輸入線(data-in line)971從積體電路975上的輸入/輸出埠、或從其他積體電路975內部與外部的資料來源供應至方塊966中的資料輸入結構。在所示的實施例中,其他電路974係包括積體電路,例如是提供一般用途處理器(general purpose processor)或是特定用途應用電路(special purpose application circuit),或是提供系統晶片(system-on-a-chip)功能且受到反及閘快閃記憶胞陣列所支援的整合模組。資料係經由資料輸出線972從方塊966中的感測放大器供應至積體電路975上的輸入/輸出埠,或者供應至積體電路975內部或外部的其他資料目的。 Figure 47 is a simplified block diagram of the integrated circuit. The integrated circuit 975 includes a 3D NAND flash memory array 960 having a structure similar to that of FIG. 1, for example, having a high density and a narrow pitch on a semiconductor substrate. A bit line (global bit line). A row of decoder 961 is coupled to a plurality of word lines 962 and arranged along a row in memory array 960. A row decoder 963 is coupled to a plurality of source lines (SSL line) 964 and configured in a memory array 960 along a column corresponding to the stack for use in the memory array 960. The memory cells in the cell read data or write data. A plane decoder 958 is coupled to a plurality of planes in the memory array 960 via bit lines 959. The address is supplied to the row decoder 963, the column decoder 961, and the plane decoder 958 on the bus 965. In this example, the sense amplifier and data input structures in block 966 are coupled to row decoder 963 via data bus 967. Data department The data input structure in block 966 is supplied from the input/output port on the integrated circuit 975 via the data-in line 971 or from the internal and external sources of the other integrated circuit 975. In the illustrated embodiment, the other circuit 974 includes an integrated circuit, such as a general purpose processor or a special purpose application circuit, or a system chip (system- The on-a-chip function is integrated by the anti-gate flash memory cell array. The data is supplied from the sense amplifier in block 966 to the input/output port on the integrated circuit 975 via the data output line 972, or to other data objects internal or external to the integrated circuit 975.
此範例中所採用的控制器,是使用偏壓配置狀態機(bia arrangement state machine)969,經由方塊968中的電壓供應或供應器來控制偏壓配置供應電壓的產生或提供,例如是讀取、抹除、寫入、抹除驗證、與寫入驗證。控制器可以採用習知的特定用途邏輯電路。在另一實施例之中,控制器包括一般用途處理器,一般用途處理器可在同一積體電路中實施,且可執行電腦程式以控制元件操作。在又一實施例之中,控制器可以使用特定用途邏輯電路和一般用途的處理器之整合。 The controller employed in this example uses a bia arrangement state machine 969 to control the generation or supply of a bias configuration supply voltage via a voltage supply or supply in block 968, such as reading. , erase, write, erase verification, and write verification. The controller can employ conventional, purpose-specific logic circuits. In another embodiment, the controller includes a general purpose processor that can be implemented in the same integrated circuit and that can execute a computer program to control component operation. In yet another embodiment, the controller can use an integration of a special purpose logic circuit and a general purpose processor.
第48至第63圖顯示又一如何形成例如是著陸區之階梯式結構的接觸結構的範例。 Figures 48 to 63 show yet another example of how to form a contact structure such as a stepped structure of a landing zone.
第48至第51圖係提供一常見的問題,繪示蝕刻通括多個層時由於層之中缺乏一致性所產生的問題、或在蝕刻製程中缺乏一致性所產生的問題、或上述兩者所產生的問題。於層中 缺乏一致性可例如是由於層的厚度與材料組成方面中至少其一的變化。 The 48th to 51th drawings provide a common problem of the problems caused by the lack of uniformity in the layers when etching a plurality of layers, or the lack of uniformity in the etching process, or the above two The problem that arises. In the layer The lack of consistency can be due, for example, to changes in at least one of the thickness and material composition of the layer.
第48圖繪示一堆疊的元件440之簡單範例,堆疊的元件440具有上絕緣層268與交替的主動層與絕緣層202、204。上絕緣層268之上的蝕刻遮罩278具有蝕刻遮罩開孔280,通過蝕刻遮罩開孔280係形成蝕刻開孔442。第48圖顯示蝕刻通過蝕刻遮罩278中的蝕刻遮罩開孔280如何能夠導致被蝕刻的開孔442由於缺乏一致性的問題而具有不同的深度。 Figure 48 illustrates a simple example of a stacked component 440 having an upper insulating layer 268 and alternating active and insulating layers 202,204. The etch mask 278 over the upper insulating layer 268 has an etch mask opening 280 that is formed by etching the mask opening 280. Figure 48 shows how etching through the etch mask opening 280 in the etch mask 278 can result in the etched openings 442 having different depths due to lack of uniformity issues.
第49圖顯示對第48圖的結構進行過度蝕刻製程的結果,使得被蝕刻的開孔442完全地穿越通過主動層202,但仍位於不同深度的部分的下方絕緣層204中。當層202、204的厚度係相對大時,蝕刻製程與層厚度中一致性的缺乏可具有極小的影響。然而,由於層的厚度減小,製程窗口亦受到減小,因此蝕刻製程以及層202、204兩者之中一致性上的缺乏可能造成被蝕刻的開孔442並未延伸至適合的層。 Figure 49 shows the result of an overetch process for the structure of Figure 48 such that the etched openings 442 completely traverse through the active layer 202, but are still in the lower insulating layer 204 of portions of different depths. When the thickness of the layers 202, 204 is relatively large, the lack of uniformity in the etching process and layer thickness can have minimal impact. However, as the thickness of the layer is reduced, the process window is also reduced, so the lack of uniformity in both the etch process and the layers 202, 204 may cause the etched opening 442 not to extend to the appropriate layer.
第50圖繪示層202、204相對薄的堆疊的元件440的範例。層202、204之厚度係持續地受到減少,以增加元件密度。由於層202、204以及蝕刻製程中之一者或兩者缺乏一致性的結果,被蝕刻的開孔442係延伸至不同的主動層202,而非本範例中所需的相同的主動層202。亦即,當使用較少的或較厚的層,有時候在被蝕刻的開孔442之蝕刻深度中可提供較大的容忍度,而使用許多較薄的層則通常無法。 Figure 50 illustrates an example of a relatively thin stacked component 440 of layers 202,204. The thickness of layers 202, 204 is continuously reduced to increase component density. The etched openings 442 extend to different active layers 202 due to the lack of uniformity of one or both of the layers 202, 204 and the etch process, rather than the same active layer 202 as required in this example. That is, when less or thicker layers are used, sometimes greater tolerance is provided in the etch depth of the etched openings 442, and the use of many thinner layers is generally not possible.
第51圖顯示類似於第8圖的結構。圖中顯示堆疊200延伸於基板446之上並包括次堆疊252,本範例中具有4個 次堆疊,各個次堆疊具有主動層202與絕緣層204,並具有蝕刻遮罩278於上絕緣層268之上,類似於第8圖中的結構。各個次堆疊252之最上層有時候係意指為次堆疊之上邊界層。主動層可以由例如是導體或半導體所組成。下列關於第51至第60圖所討論的範例中,次堆疊開始並結束於藉由絕緣層204所分開的主動層202。次堆疊252係藉由緩衝層450來分開,緩衝層450係類似絕緣層204,由電性絕緣材料所形成。在一些範例中,次堆疊252可開始並結束於藉由導體或半導體材料層所分開的絕緣材料層。在這類的範例中,上邊界層可以是絕緣層。 Fig. 51 shows a structure similar to Fig. 8. The figure shows that the stack 200 extends over the substrate 446 and includes a sub-stack 252, which has four in this example. The sub-stack, each sub-stack has an active layer 202 and an insulating layer 204, and has an etch mask 278 over the upper insulating layer 268, similar to the structure in FIG. The uppermost layer of each sub-stack 252 is sometimes referred to as the upper boundary layer of the sub-stack. The active layer may be composed of, for example, a conductor or a semiconductor. In the following examples discussed in relation to Figures 51 through 60, the secondary stack begins and ends with the active layer 202 separated by an insulating layer 204. The sub-stack 252 is separated by a buffer layer 450, which is similar to the insulating layer 204, and is formed of an electrically insulating material. In some examples, the sub-stack 252 can begin and end with a layer of insulating material separated by a layer of conductor or semiconductor material. In such an example, the upper boundary layer can be an insulating layer.
第52圖顯示對第51圖的結構進行蝕刻,通過最上層的次堆疊並進入部分的最上層的緩衝層450。由於蝕刻製程以及緩衝層450之組成與厚度的一致性的限制,被蝕刻的開孔442在緩衝層450中延伸至不同的深度。對第52圖的結構進行蝕刻而通過最上層的緩衝層450之後,在上邊界層202形成一致的蝕刻表面452,所得結構係顯示於第53圖。 Fig. 52 shows the etching of the structure of Fig. 51 through the sub-stack of the uppermost layer and into the uppermost buffer layer 450 of the portion. Due to the etching process and the consistency of the composition and thickness of the buffer layer 450, the etched openings 442 extend to different depths in the buffer layer 450. After the structure of Fig. 52 is etched and passed through the uppermost buffer layer 450, a uniform etched surface 452 is formed on the upper boundary layer 202, and the resulting structure is shown in Fig. 53.
第54圖顯示對第53圖的結構進行蝕刻而通過下一個次堆疊252並部分地進入下一個緩衝層450中之後的結構,類似於第52圖的製程。第55圖顯示對第54圖的結構進行蝕刻而通過下一個緩衝層450之後的結構,類似於第53圖的製程,在上邊界層202形成一致的蝕刻表面452。類似於第52與第53圖中的蝕刻步驟係接續於第56與第57圖中,且亦接續於第58與第59圖中。如第59圖所示,被蝕刻的開孔442係延伸至基板446。藉由在各個次堆疊252的上邊界層202形成一致的蝕刻表面452,解決了關於上列第50圖中所討論的蝕刻深度的問題。亦即, 在對重疊的次堆疊252進行蝕刻的期間,所造成的被蝕刻的開孔442之深度上的差異係減小,同時蝕刻通過緩衝層450,以在上邊界層202形成一致的蝕刻表面452。 Fig. 54 shows the structure after etching the structure of Fig. 53 through the next sub-stack 252 and partially entering the next buffer layer 450, similar to the process of Fig. 52. Figure 55 shows a structure after etching the structure of Figure 54 through the next buffer layer 450, similar to the process of Figure 53, forming a uniform etched surface 452 at the upper boundary layer 202. The etching steps similar to those in Figures 52 and 53 are continued in Figures 56 and 57, and are also continued in Figures 58 and 59. As shown in FIG. 59, the etched opening 442 extends to the substrate 446. By forming a uniform etched surface 452 at the upper boundary layer 202 of each sub-stack 252, the problem with respect to the etch depth discussed in Figure 50 above is addressed. that is, During etching of the overlapping sub-stacks 252, the resulting difference in depth of the etched openings 442 is reduced while etching through the buffer layer 450 to form a uniform etched surface 452 at the upper boundary layer 202.
第60圖繪示類似於第16圖的堆疊200,其中開孔442係通過堆疊至各個次堆疊252的上邊界主動層202、在次堆疊中的各個主動層中的一個來形成。對於各個次堆疊252的主動層202進行處理,來通過第60圖的被蝕刻的開孔442,以在次堆疊252的主動層202上形成著陸區的階梯式結構,如第17至第25圖所示。 Figure 60 illustrates a stack 200 similar to that of Figure 16, wherein the openings 442 are formed by stacking onto the upper boundary active layer 202 of each sub-stack 252, one of each active layer in the sub-stack. The active layer 202 of each sub-stack 252 is processed to pass through the etched opening 442 of FIG. 60 to form a stepped structure of the landing zone on the active layer 202 of the sub-stack 252, such as from 17th to 25th. Shown.
第61圖類似於第52圖的示意圖,然而其中重疊於緩衝層450的上邊界層202a係較第52圖的範例更厚。如此可擴大相關的製程窗口。被蝕刻的開孔442係穿越通過次堆疊25並通過部分的緩衝層450。 Fig. 61 is similar to the schematic of Fig. 52, however, the upper boundary layer 202a overlapping the buffer layer 450 is thicker than the example of Fig. 52. This expands the associated process window. The etched opening 442 is traversed through the sub-stack 25 and through a portion of the buffer layer 450.
第62圖顯示對第61圖的結構進行蝕刻之後通過緩衝層450的結構,被蝕刻的開孔442係完全地穿越通過緩衝層450並進入厚度增加的上邊界層202a。上邊界層202a所增加的厚度係基於對於確認了即使當所選擇的蝕刻製程係被指定為緩衝層450之材料的選擇性蝕刻,並指定僅對於上邊界層202之材料進行最小地蝕刻,在一些情況下,完全地蝕刻通過緩衝層450仍將造成下方的上邊界層202受到蝕刻。在一範例中,上邊界層202a之厚度可以是堆疊252之其他主動層202之厚度的約1.5倍。上邊界層202之多餘的厚度容納此種過度的蝕刻,因而擴大製程窗口。 Figure 62 shows the structure of the buffer layer 450 after etching the structure of Figure 61. The etched opening 442 completely traverses through the buffer layer 450 and into the upper boundary layer 202a of increased thickness. The increased thickness of the upper boundary layer 202a is based on a selective etch for material confirming that the selected etch process is designated as the buffer layer 450, and specifies that only the material of the upper boundary layer 202 is etched minimally, In some cases, completely etching through the buffer layer 450 will still cause the underlying upper boundary layer 202 to be etched. In one example, the thickness of the upper boundary layer 202a can be about 1.5 times the thickness of the other active layers 202 of the stack 252. The excess thickness of the upper boundary layer 202 accommodates this excessive etching, thereby expanding the process window.
用於形成一階梯式接觸結構之方法的範例可依下列 所述進行。一繪示基本步驟以及一些其他實施例之步驟的流程圖係顯示於第63圖中。由交替的主動層202與絕緣層204所組成的堆疊200可藉由下列步驟進行。 Examples of methods for forming a stepped contact structure can be as follows Said to proceed. A flow chart showing the basic steps and the steps of some other embodiments is shown in Figure 63. The stack 200 consisting of alternating active layers 202 and insulating layers 204 can be performed by the following steps.
步驟460:形成一第一次堆疊252,第一次堆疊252包括N個主動層202並藉由絕緣層204分開。 Step 460: Form a first stack 252 that includes N active layers 202 and separated by an insulating layer 204.
步驟462:形成一第二次堆疊252於第一次堆疊之上,第二次堆疊包括M個主動層並藉由絕緣層分開。第二次堆疊具有上邊界層,在第51圖的範例中,上邊界層亦為一主動層202。 Step 462: Form a second stack 252 on the first stack, the second stack includes M active layers and separated by an insulating layer. The second stack has an upper boundary layer. In the example of FIG. 51, the upper boundary layer is also an active layer 202.
步驟464:形成一第一緩衝層450與一第二緩衝層。第一緩衝層450係位於第一次堆疊與第二次堆疊之間。第二緩衝層係位於第一次堆疊之下。在一些範例中,第一次堆疊係以一第一空間週期(spatial period)N1為特色,且第二次堆疊係以一第二空間週期N2為特色,請參閱第51圖,在一些範例中,N1等於N2。在一些範例中,各個第一次堆疊與第二次堆疊包括相同數量的主動層。在一些實施例中,對於個別的蝕刻製程,緩衝層的蝕刻時間係大於第二次堆疊的絕緣層的蝕刻時間。在一些範例中,具有(1)第一次堆疊緩衝層係由與第一次堆疊之絕緣層相同的材料所組成,但是第一次堆疊緩衝層的厚度不同於第一次堆疊之絕緣層的厚度的情況,或者(2)第一次堆疊緩衝層的材料組成不同於第一次堆疊的絕緣層的情況,或者是(3)之具有(1)與(2)兩者的情況。在一些範例中,緩衝層的厚度係大於第一次堆疊中的主動層的厚度,例如是至少大於1.5倍。在一些範例中,可進行第一次堆疊與第二次堆疊的形成步驟,使得各個第一次堆疊與第二次堆疊的上層係比對應的次堆疊之主動層及絕緣層中的至少其中一 個更厚。 Step 464: Form a first buffer layer 450 and a second buffer layer. The first buffer layer 450 is located between the first stack and the second stack. The second buffer layer is located below the first stack. In some examples, the first stacking features a first spatial period N1, and the second stacking features a second spatial period N2, see Figure 51, in some examples , N1 is equal to N2. In some examples, each of the first stack and the second stack includes the same number of active layers. In some embodiments, for an individual etch process, the etch time of the buffer layer is greater than the etch time of the second stack of insulating layers. In some examples, having (1) the first stacked buffer layer is composed of the same material as the first stacked insulating layer, but the thickness of the first stacked buffer layer is different from that of the first stacked insulating layer. In the case of the thickness, or (2) the material composition of the first stacked buffer layer is different from the case of the first stacked insulating layer, or (3) has both (1) and (2). In some examples, the thickness of the buffer layer is greater than the thickness of the active layer in the first stack, such as at least greater than 1.5 times. In some examples, the forming step of the first stacking and the second stacking may be performed such that at least one of the active layer and the insulating layer of the corresponding first stack and the second stack of the corresponding second stack More thick.
步驟466:第一次堆疊的上層係藉由蝕刻暴露於一組通孔,使用第一蝕刻製程,以形成通過第二次堆疊並停止於第一緩衝層的第一組蝕刻通孔或通過第二次堆疊並停止於第一緩衝層之中的第一組蝕刻通孔,請參閱第52圖。並且再使用第二蝕刻製程來蝕刻通過第一緩衝層至第一次堆疊的上層,請參閱第53圖。在一些實施例中,蝕刻遮罩278係形成於第二次堆疊之上,蝕刻遮罩具有蝕刻遮罩開孔280,藉由通過蝕刻遮罩開孔來進行第一蝕刻製程。 Step 466: the upper layer of the first stack is exposed to a set of via holes by etching, using a first etching process to form a first set of etched vias through the second stack and stopped at the first buffer layer or through the first The first set of etched vias that are stacked twice and stopped in the first buffer layer, see Figure 52. And a second etching process is used to etch the upper layer through the first buffer layer to the first stack, see Figure 53. In some embodiments, an etch mask 278 is formed over the second stack, the etch mask having an etch mask opening 280, the first etch process being performed by etching the mask opening.
步驟468:藉由蝕刻來蝕刻通過第一次堆疊,使用第三蝕刻製程來蝕刻通過第一組的蝕刻通孔、通過第一次堆疊、並停止於第二緩衝層或停止於第二緩衝層之中,請參閱第54圖。 Step 468: etching by etching to pass through the first stack, using a third etching process to etch through the first set of etched vias, by first stacking, and stopping at the second buffer layer or stopping at the second buffer layer Among them, please refer to Figure 54.
步驟470:接著,使用第四蝕刻製程來蝕刻通過第二緩衝層,如第55圖所示。 Step 470: Next, etching through the second buffer layer is performed using a fourth etching process, as shown in FIG.
步驟472:著陸區310的階梯式結構係位於第一次堆疊與第二次堆疊的主動層上,著陸區310的階梯式結構可藉由蝕刻通過通孔來形成,請參閱第22圖,且層間導體可延伸至著陸區來形成,請參閱第25圖。在一些範例中,形成一階梯式結構的蝕刻過程包括使用單一蝕刻製程,以在N層的整數倍上形成著陸區,N層的整數倍係至少為2。 Step 472: The stepped structure of the landing zone 310 is located on the active layer of the first stack and the second stack, and the stepped structure of the landing zone 310 can be formed by etching through the through hole, please refer to FIG. 22, and The interlayer conductor can be extended to the landing zone, see Figure 25. In some examples, the etching process to form a stepped structure includes using a single etching process to form a landing zone on an integer multiple of the N layer, the integer multiple of the N layer being at least two.
在不同的實施例中,係提供一三維陣列元件,例如是記憶體元件。三維陣列元件包括複數個被圖案化的半導體材料之層。各個被圖案化的層包括平行的半導體材料串列,半導體材料串列的其中一端係連接於半導體襯墊的第一側。連接於複數個 被圖案化之層的半導體襯墊係配置於一堆疊中。各個半導體襯墊包括一著陸區,著陸區係用於讓層間導體連接於沿著平行的半導體材料串列對齊的位於上方的內連導體(interconnect conductor)。在俯視圖中,層間導體係配置成列(row)並配置於藉由絕緣材料所環繞的通孔結構中。層間導體的各個列係沿著X方向對齊,X方向係平行於第一側。在不同的實施例中,層間導體可在Y方向上部分地偏移,Y方向係垂直於X方向。在不同的實施例中,著陸區可以形成於不同種類的階梯式配置中,例如是第6圖及第43圖中所繪示的階梯式配置。 In various embodiments, a three dimensional array element is provided, such as a memory element. The three-dimensional array element includes a plurality of layers of patterned semiconductor material. Each patterned layer includes a parallel array of semiconductor materials, one end of which is coupled to a first side of the semiconductor liner. Connected to multiple The semiconductor pads of the patterned layer are disposed in a stack. Each of the semiconductor pads includes a landing zone for interconnecting the interlayer conductors to an upper interconnect conductor aligned along a parallel array of semiconductor materials. In a top view, the interlayer conduction system is arranged in a row and disposed in a via structure surrounded by an insulating material. The respective columns of the interlayer conductors are aligned along the X direction, and the X direction is parallel to the first side. In various embodiments, the interlayer conductors may be partially offset in the Y direction, which is perpendicular to the X direction. In various embodiments, the landing zone can be formed in a different type of stepped configuration, such as the stepped configuration illustrated in Figures 6 and 43.
下列係對於第64至第71圖所示的結構進行描述,第64至第71圖所示的結構係進一步繪示藉由邊界層分開的交替的主動層與絕緣層之堆疊的範例,形成垂直的通道與垂直的閘極反及閘結構。 The following structures are described for the structures shown in FIGS. 64 to 71, and the structures shown in FIGS. 64 to 71 further illustrate an example of the stacking of alternating active layers and insulating layers separated by boundary layers to form a vertical The channel and the vertical gate are opposite to the gate structure.
第64至第66圖揭示一種三維非揮發性記憶體陣列(3D nonvolatile memory array)471,三維非揮發性記憶體陣列471包括垂直通道反及閘連接的電晶體(vertical channel NAND-connected transistor)474之串列(string)475。三維非揮發性記憶體陣列471包括上絕緣層268,上絕緣層268覆蓋一串列選擇線(String Select Line,SSL)476,串列選擇線476覆蓋3個次堆疊252。在本範例的各個次堆疊252中,交替的主動層202與絕緣層204係開始並結束於絕緣層204。在次堆疊252之間的是主動材料的主動緩衝層477,主動材料例如是摻雜的半導體材料,例如磷摻雜矽。主動層202、串列選擇線476、與主動緩衝層477可以由相同的材料所組成。主動緩衝層477一般對應於上述實施 例中的緩衝層450,複數個主動緩衝層477亦將複數個次堆疊252分開,然主動緩衝層477的材料可不同於緩衝層450,緩衝層450可由絕緣體製成,而主動緩衝層477可由導體製成以作為閘極。。主動緩衝層477的厚度L2可以是大於主動層202之厚度L1的1.5倍。主動緩衝層477的厚度L2形成閘極,將描述如後。主動緩衝層477之厚度L2所形成的閘極之長度係大於主動層202之厚度L1所形成的閘極的長度的1.5倍。接地選擇線(Ground Select Line,GSL)478及下絕緣層480係位於最下層的次堆疊252與基板446之間。 64 to 66 disclose a 3D nonvolatile memory array 471 including a vertical channel NAND-connected transistor 474 String 475. The three-dimensional non-volatile memory array 471 includes an upper insulating layer 268 that covers a String Select Line (SSL) 476, and the tandem select line 476 covers three sub-stacks 252. In each sub-stack 252 of the present example, alternating active layer 202 and insulating layer 204 begin and end at insulating layer 204. Between the secondary stacks 252 is an active buffer layer 477 of active material, such as a doped semiconductor material, such as a phosphorus doped germanium. The active layer 202, the string selection line 476, and the active buffer layer 477 can be composed of the same material. The active buffer layer 477 generally corresponds to the above implementation In the buffer layer 450 in the example, the plurality of active buffer layers 477 also separate the plurality of sub-stacks 252. However, the material of the active buffer layer 477 may be different from the buffer layer 450, the buffer layer 450 may be made of an insulator, and the active buffer layer 477 may be The conductor is made to serve as a gate. . The thickness L2 of the active buffer layer 477 may be greater than 1.5 times the thickness L1 of the active layer 202. The thickness L2 of the active buffer layer 477 forms a gate as will be described later. The length of the gate formed by the thickness L2 of the active buffer layer 477 is greater than 1.5 times the length of the gate formed by the thickness L1 of the active layer 202. A ground select line (GSL) 478 and a lower insulating layer 480 are located between the lowermost sub-stack 252 and the substrate 446.
開孔482係形成於如第64圖所示的堆疊結構中並延伸至基板446,類似於第59至第62圖所示的被蝕刻的開孔442。開孔482可由上列關於第48至第63圖之範例所討論的方式所形成。開孔482係對捕捉結構(trapping structure)484形成襯裡,捕捉結構484典型地包括氧化物-氮化物-氧化物層(ONO)或者氧化物-氮化物-氧化物-氮化物-氧化物層(ONONO)。捕捉結構484接觸於各個上絕緣層268、串列選擇線、各個次堆疊252的主動層與絕緣層202、204、主動緩衝層477、接地選擇線478、與下絕緣層480之邊緣。形成襯裡的捕捉結構484係一通道層486,通道層486係一導電層且可由摻雜的半導體材料所組成,例如是矽或多晶矽。通道層486環繞絕緣芯488,絕緣芯488可由例如是氧化矽所組成。請參閱第66圖,元件490例如是可以作為非揮發性記憶胞的電晶體474,元件490係由主動層202、捕捉結構484、通道層486所形成,主動層202係接觸於捕捉結構484,捕捉結構484係接觸於通道層486。在此類範例中,主動層202係 作為閘極。元件490具有較短的第一閘極長度L1。元件492有時候係意指為長通道元件492,元件492係在主動緩衝層477所形成,主動緩衝層477係接觸於捕捉結構484,捕捉結構484係接觸於通道層486。元件492具有較長的閘極長度L2。主動層202的厚度L1可形成閘極長度小於0.1微米的電晶體,且主動緩衝層477之厚度L2可形成閘極長度大於0.1微米的電晶體。第二閘極長度L2可以是第一閘極長度L1的至少1.5倍。請參閱第47圖,電路974控制反及閘連接的串列475,電路供應不同的通路電壓至複數個非揮發性記憶胞490以及具有不同的閘極長度L1與L2的複數個電晶體942。 The opening 482 is formed in a stacked structure as shown in Fig. 64 and extends to the substrate 446, similar to the etched opening 442 shown in Figs. 59 to 62. Opening 482 can be formed in the manner discussed above with respect to the examples of Figures 48-63. The opening 482 is lined with a trapping structure 484, which typically includes an oxide-nitride-oxide layer (ONO) or an oxide-nitride-oxide-nitride-oxide layer ( ONONO). The capture structure 484 is in contact with the respective upper insulating layer 268, the string select lines, the active and insulating layers 202, 204 of each sub-stack 252, the active buffer layer 477, the ground select line 478, and the edge of the lower insulating layer 480. The liner-forming capture structure 484 is a channel layer 486 that is a conductive layer and may be comprised of a doped semiconductor material, such as germanium or polysilicon. The channel layer 486 surrounds the insulating core 488, which may be composed, for example, of yttrium oxide. Referring to FIG. 66, element 490 is, for example, a transistor 474 that can be used as a non-volatile memory cell. Element 490 is formed by active layer 202, capture structure 484, channel layer 486, and active layer 202 is in contact with capture structure 484. The capture structure 484 is in contact with the channel layer 486. In such an example, the active layer 202 is As a gate. Element 490 has a shorter first gate length L1. Element 492 is sometimes referred to as long channel element 492, element 492 is formed in active buffer layer 477, active buffer layer 477 is in contact with capture structure 484, and capture structure 484 is in contact with channel layer 486. Element 492 has a longer gate length L2. The thickness L1 of the active layer 202 can form a transistor having a gate length of less than 0.1 micron, and the thickness L2 of the active buffer layer 477 can form a transistor having a gate length greater than 0.1 micron. The second gate length L2 may be at least 1.5 times the first gate length L1. Referring to Figure 47, circuit 974 controls a series 475 of reverse gate connections. The circuit supplies different path voltages to a plurality of non-volatile memory cells 490 and a plurality of transistors 942 having different gate lengths L1 and L2.
第67至第71圖揭露一種三維非揮發性記憶體陣列496,三維非揮發性記憶體陣列496包括基板446與基板446上的半導體條的複數個堆疊498,半導體條包括第一半導體條500與第二半導體條502。第一半導體條500具有較低的第一高度H1,第二半導體條502具有較高的第二高度H2。半導體條500、502係藉由絕緣串列503分開。堆疊498亦包括外捕捉結構507,典型地係包括氧化物-氮化物-氧化物層(ONO)或者氧化物-氮化物-氧化物-氮化物-氧化物層(ONONO)。第一高度與第二高度並不相同。第二高度H2可以是第一高度H1的至少1.5倍。複數個字元線WL係正交地配置於各個複數個堆疊498的捕捉結構507之上,並與各個複數個堆疊498的捕捉結構507具有共形的(conformal)表面,複數個字元線WL中的4個係顯示於第68圖。第70與第71圖係垂直於第69圖之平面,繪示設置於複數個堆疊498的表面以及複數個字元線之間的交叉點的反及閘記憶體元 件504、506的三維陣列。上述設置形成複數個反及閘連接的串列的電晶體504、506,反及閘連接的串列的電晶體504、506係在複數個堆疊498中沿著半導體條500、502所形成。上述設置形成非揮發性記憶胞504的第一反及閘連接的串列508,具有第一高度H1,請參閱第70圖,且非揮發性記憶胞506的第二反及閘連接的串列510具有第二高度H2,如第71圖所示。在此垂直的閘極結構中,較厚的半導體條502可例如是提供擴大的製程窗口,使得元件504可以被使用為記憶胞,而元件506可以被使用為錯誤校正碼記憶體(error correction code memory)。 67-71 illustrate a three-dimensional non-volatile memory array 496 that includes a plurality of stacks 498 of substrate 446 and semiconductor strips on substrate 446, the semiconductor strip including first semiconductor strips 500 The second semiconductor strip 502. The first semiconductor strip 500 has a lower first height H1 and the second semiconductor strip 502 has a higher second height H2. The semiconductor strips 500, 502 are separated by an insulating train 503. Stack 498 also includes outer capture structure 507, typically including an oxide-nitride-oxide layer (ONO) or an oxide-nitride-oxide-nitride-oxide layer (ONONO). The first height is not the same as the second height. The second height H2 may be at least 1.5 times the first height H1. A plurality of word lines WL are orthogonally disposed over the capture structures 507 of each of the plurality of stacks 498 and have a conformal surface, a plurality of word lines WL, with the capture structures 507 of each of the plurality of stacks 498. The four of the lines are shown in Figure 68. The 70th and 71st lines are perpendicular to the plane of Fig. 69, and show the inverse gate memory elements disposed on the surface of the plurality of stacks 498 and the intersections between the plurality of word lines. A three-dimensional array of pieces 504, 506. The arrangement described above forms a plurality of tandem-connected transistors 504, 506, and the tandem-connected transistors 504, 506 are formed along the semiconductor strips 500, 502 in a plurality of stacks 498. The above arrangement forms a series 508 of first anti-valve connections of the non-volatile memory cells 504 having a first height H1, see FIG. 70, and a series of second anti-gate connections of the non-volatile memory cells 506 510 has a second height H2 as shown in FIG. In this vertical gate structure, the thicker semiconductor strip 502 can, for example, provide an enlarged process window such that element 504 can be used as a memory cell and element 506 can be used as an error correction code. Memory).
不同的第一高度H1與第二高度H2導致在具有第一高度之第一半導體條500中的第一反及閘連接的串列508形成第一組電特性,且在具有第二高度H2之第二半導體條502中的第二反及閘連接的串列510形成第二組電特性。不同的電特性可包括:臨界電壓(threshold voltage,Vt)與汲極至源極電流(drain to source current,Ids)。這些不同的第一組與第二組電特性係由半導體條之不同的高度所造成,改變各個電晶體之主動串列的體積。第47圖顯示積體電路975,積體電路975包括方塊966中的第一與第二感測放大器。電路974係被用來控制第一感測放大器,以根據第一組電特性在第一半導體條500中的第一反及閘連接的串列508中進行電晶體之電性量測,且電路974係被用來控制第二感測放大器,以根據第二組電特性在第二半導體條502中的第二反及閘連接的串列510中進行電晶體之電性量測。在一些範例中,電路974可在電晶體504的複數個第一反及閘連接的串列上進行記憶體之操作,以儲存資料於第一反及閘連接的串列508 上,並使用第二反及閘連接的串列510來校正儲存於第一反及閘連接的串列508上的資料的錯誤。 The different first heights H1 and second heights H2 result in the first set of electrical characteristics of the first anti-gate connected series 508 in the first semiconductor strip 500 having the first height, and having the second height H2 The second anti-gate connected series 510 in the second semiconductor strip 502 forms a second set of electrical characteristics. Different electrical characteristics may include: threshold voltage (Vt) and drain to source current (Ids). These different first and second sets of electrical characteristics are caused by different heights of the semiconductor strips, changing the volume of the active string of each transistor. Figure 47 shows an integrated circuit 975 that includes first and second sense amplifiers in block 966. Circuitry 974 is used to control the first sense amplifier to perform electrical measurements of the transistor in the first reverse-gate connected series 508 of the first semiconductor strip 500 in accordance with the first set of electrical characteristics, and the circuit The 974 is used to control the second sense amplifier to perform electrical measurements of the transistor in the series 510 of the second anti-gate connection in the second semiconductor strip 502 in accordance with the second set of electrical characteristics. In some examples, circuit 974 can perform a memory operation on a plurality of first reverse gate connections of transistor 504 to store data in a series of first reverse gate connections 508. The second reverse gate connection sequence 510 is used to correct errors in the data stored on the first reverse gate connection string 508.
雖然本發明已以較佳實施例與範例揭露如上,然應理解的是,這些範例係用以描述本發明而非用以限定本發明。本發明所屬技術領域中具有通常知識者可清楚了解,可在不脫離本發明之精神和後附之申請專利範圍內,對本發明進行各種之更動與潤飾。 The present invention has been described in terms of the preferred embodiments and examples, which are intended to be illustrative of the invention. It will be apparent to those skilled in the art that the present invention can be modified and modified without departing from the spirit and scope of the invention.
200‧‧‧堆疊 200‧‧‧Stacking
202.1、202.4‧‧‧主動層 202.1, 202.4‧‧‧ active layer
204.1、204.3、256、258、260、268、270‧‧‧絕緣層 204.1, 204.3, 256, 258, 260, 268, 270‧ ‧ insulation
252.1、252.2、252.3、252.4‧‧‧次堆疊 252.1, 252.2, 252.3, 252.4‧‧‧ times stacking
254、262、264、266‧‧‧層配對 254, 262, 264, 266‧ ‧ layer matching
272‧‧‧層間導體 272‧‧‧Interlayer conductor
314‧‧‧絕緣體 314‧‧‧Insulator
Claims (21)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/325,069 US9070447B2 (en) | 2013-09-26 | 2014-07-07 | Contact structure and forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201603229A TW201603229A (en) | 2016-01-16 |
TWI566365B true TWI566365B (en) | 2017-01-11 |
Family
ID=55149367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103132208A TWI566365B (en) | 2014-07-07 | 2014-09-18 | Contact structure and forming method, and the circuit using the same |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105280606B (en) |
TW (1) | TWI566365B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI730716B (en) * | 2019-04-15 | 2021-06-11 | 台灣積體電路製造股份有限公司 | Integrated circuit and method of generating the integrated circuit |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018026518A (en) * | 2016-08-12 | 2018-02-15 | 東芝メモリ株式会社 | Semiconductor memory device |
KR102397903B1 (en) * | 2017-07-17 | 2022-05-13 | 삼성전자주식회사 | Semiconductor device including gates |
CN108807404B (en) * | 2018-06-01 | 2020-04-28 | 长江存储科技有限责任公司 | Semiconductor manufacturing method and semiconductor structure |
WO2020029115A1 (en) * | 2018-08-08 | 2020-02-13 | Yangtze Memory Technologies Co., Ltd. | Memory device and forming method thereof |
CN109860196B (en) * | 2019-02-14 | 2021-03-30 | 长江存储科技有限责任公司 | Method for forming 3D NAND memory |
CN109904169B (en) * | 2019-02-14 | 2021-03-30 | 长江存储科技有限责任公司 | Method for forming 3D NAND memory |
JP7134901B2 (en) * | 2019-03-04 | 2022-09-12 | キオクシア株式会社 | Semiconductor memory device manufacturing method |
JP2021048189A (en) * | 2019-09-17 | 2021-03-25 | キオクシア株式会社 | Semiconductor memory device |
US11398498B2 (en) | 2020-05-28 | 2022-07-26 | Micron Technology, Inc. | Integrated assemblies and methods of forming integrated assemblies |
CN112420751B (en) * | 2020-11-17 | 2024-02-23 | 京东方科技集团股份有限公司 | Display substrate, preparation method thereof and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040023499A1 (en) * | 2002-08-02 | 2004-02-05 | Kay Hellig | Method of manufacturing multi-level contacts by sizing of contact sizes in integrated circuits |
US20050280061A1 (en) * | 2004-06-21 | 2005-12-22 | Sang-Yun Lee | Vertical memory device structures |
US20110115010A1 (en) * | 2009-11-17 | 2011-05-19 | Sunil Shim | Three-dimensional semiconductor memory device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100411304B1 (en) * | 2001-06-30 | 2003-12-18 | 주식회사 하이닉스반도체 | Method of manufacturing synchronous dram device |
US7049702B2 (en) * | 2003-08-14 | 2006-05-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Damascene structure at semiconductor substrate level |
KR100715267B1 (en) * | 2005-06-09 | 2007-05-08 | 삼성전자주식회사 | Stacked semiconductor device and method for manufacturing the same |
CN101231998B (en) * | 2007-01-23 | 2011-01-26 | 米辑电子股份有限公司 | Circuit component |
CN101630680B (en) * | 2008-07-17 | 2015-12-16 | 世界先进积体电路股份有限公司 | Semiconductor device and preparation method thereof |
-
2014
- 2014-09-18 TW TW103132208A patent/TWI566365B/en active
- 2014-10-08 CN CN201410526158.2A patent/CN105280606B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040023499A1 (en) * | 2002-08-02 | 2004-02-05 | Kay Hellig | Method of manufacturing multi-level contacts by sizing of contact sizes in integrated circuits |
US20050280061A1 (en) * | 2004-06-21 | 2005-12-22 | Sang-Yun Lee | Vertical memory device structures |
US20110115010A1 (en) * | 2009-11-17 | 2011-05-19 | Sunil Shim | Three-dimensional semiconductor memory device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI730716B (en) * | 2019-04-15 | 2021-06-11 | 台灣積體電路製造股份有限公司 | Integrated circuit and method of generating the integrated circuit |
US11107805B2 (en) | 2019-04-15 | 2021-08-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuit |
US11830869B2 (en) | 2019-04-15 | 2023-11-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuit |
Also Published As
Publication number | Publication date |
---|---|
CN105280606B (en) | 2018-06-12 |
TW201603229A (en) | 2016-01-16 |
CN105280606A (en) | 2016-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9276009B2 (en) | NAND-connected string of transistors having the electrical channel in a direction perpendicular to a surface of the substrate | |
TWI566365B (en) | Contact structure and forming method, and the circuit using the same | |
TWI582964B (en) | A memory device and method for fabricating the same | |
US10211218B2 (en) | U-shaped vertical thin-channel memory | |
US8993429B2 (en) | Interlayer conductor structure and method | |
US8970040B1 (en) | Contact structure and forming method | |
US9412752B1 (en) | Reference line and bit line structure for 3D memory | |
US9401371B1 (en) | Sacrificial spin-on glass for air gap formation after bl isolation process in single gate vertical channel 3D NAND flash | |
US9236346B2 (en) | 3-D IC device with enhanced contact area | |
US9024374B2 (en) | 3D memory array with improved SSL and BL contact layout | |
US8203187B2 (en) | 3D memory array arranged for FN tunneling program and erase | |
US8437192B2 (en) | 3D two bit-per-cell NAND flash memory | |
US8811077B2 (en) | Memory architecture of 3D array with improved uniformity of bit line capacitances | |
TWI512904B (en) | Conductor with a plurality of vertical extensions for a 3d device | |
TWI580087B (en) | Memory device and manufacturing method of the same | |
US9741569B2 (en) | Forming memory using doped oxide | |
TWI572018B (en) | Memory device and fabricating method thereof | |
US10840254B2 (en) | Pitch scalable 3D NAND | |
TW201517248A (en) | Contact structure and forming method | |
TWI569378B (en) | Memory architecture and method of manufacturing the same | |
US20150091076A1 (en) | Isolation formation first process simplification | |
KR20130097496A (en) | Damascene word line |