TWI565662B - Environmental mesoporous molecular sieve hygroscopic material and the preparation methof thereof - Google Patents
Environmental mesoporous molecular sieve hygroscopic material and the preparation methof thereof Download PDFInfo
- Publication number
- TWI565662B TWI565662B TW105107705A TW105107705A TWI565662B TW I565662 B TWI565662 B TW I565662B TW 105107705 A TW105107705 A TW 105107705A TW 105107705 A TW105107705 A TW 105107705A TW I565662 B TWI565662 B TW I565662B
- Authority
- TW
- Taiwan
- Prior art keywords
- tft
- humidity
- waste glass
- molecular sieve
- lcd waste
- Prior art date
Links
Landscapes
- Glass Compositions (AREA)
Description
本發明係關於一種調濕材料,尤指利用廢玻璃及污泥製成之環保中孔分子篩調濕材料及其製備方法。The invention relates to a humidity control material, in particular to an environmentally friendly medium pore molecular sieve humidity control material prepared by using waste glass and sludge and a preparation method thereof.
目前台灣是薄膜式液晶顯示器 (Thin Film Transistor-Liquid Crystal Display, TFT-LCD)面板主要生產國家之一。隨著科技、網際網路與通訊技術的急遽發展,3C產品因應而生,也致使TFT-LCD液晶面板於資訊市場需求量大幅提升。根據Digitimes Research 統計資料顯示,於2010年大尺寸TFT-LCD面板出貨量達較2009年成長25.6%,其出貨量達164.8 Mm2,屆時將有300萬噸TFT-LCD廢玻璃亟待處理處置;另外,於TFT-LCD製造業中,其廢棄物再利用率僅為69%,而依據行政院環保署公佈102年全國事業廢棄物申報物種統計顯示, TFT-LCD廢玻璃為3,643公噸,未來故若能全資源化再利用,將是最佳去化管道。At present, Taiwan is one of the major producers of Thin Film Transistor-Liquid Crystal Display (TFT-LCD) panels. With the rapid development of technology, Internet and communication technologies, 3C products have been born, which has led to a significant increase in the demand for TFT-LCD panels in the information market. According to Digitimes Research statistics, in 2010, large-size TFT-LCD panel shipments increased by 25.6% compared with 2009, and its shipments reached 164.8 Mm2. At that time, 3 million tons of TFT-LCD waste glass will be disposed of; In addition, in the TFT-LCD manufacturing industry, the waste recycling rate is only 69%, and according to the statistics of the 102-year national waste waste declaration by the Environmental Protection Agency of the Executive Yuan, the TFT-LCD waste glass is 3,643 metric tons. If it can be fully resourced and reused, it will be the best way to deconstruct the pipeline.
此外,碳化矽污泥 (Silicon Carbide Sludge, SiC) 為在生產 LED藍寶石基板過程中,鑽石線切割時有少許鑽石屑及雜屑會流入至廢棄收集管線,利用雙面研磨加工方式以磨粒的微小塑性切削,過程中則以碳化矽粉進行研磨,並以水當介質並添加研磨液,研磨時大量移除藍寶石基材,因此有少許Al 2O 3混合至碳化矽中,產生之廢水經處理後,故衍生出大量之碳化矽污泥。根據行政院環保署公佈102年全國事業廢棄物申報物種統計顯示,從2010年33公噸至2013年已增至1,074公噸,而隨著 LED藍寶石基板生產有逐年成長之趨勢,屆時會產生大量 SiC污泥,若未能建立最佳之處理及處置方式,對環境影響具有相當之衝擊。 In addition, Silicon Carbide Sludge (SiC) is used in the production of LED sapphire substrates. When diamond wire is cut, a small amount of diamond chips and debris will flow into the waste collection line, and the double-side grinding process will be used to grind the grain. In the case of micro-plastic cutting, the process is carried out with tantalum carbide powder, and water is used as the medium and the polishing liquid is added. When the grinding, a large amount of sapphire substrate is removed, so that a little Al 2 O 3 is mixed into the tantalum carbide, and the waste water is produced. After the treatment, a large amount of carbonized sludge was derived. According to the statistics of the 102-year national waste waste declaration species published by the Environmental Protection Agency of the Executive Yuan, it has increased from 33 metric tons in 2010 to 1,074 metric tons in 2013. As the production of LED sapphire substrates grows year by year, a large amount of SiC pollution will be generated. Mud, if it fails to establish the best treatment and disposal methods, has a considerable impact on the environmental impact.
綜上所述,將TFT-LCD廢玻璃或碳化矽污泥進行掩埋處理或熔融再製並非最有效利用資源的方式,在環保越益受到重視的今日,迫切的需要更為善的方式回收利用年產量節節升高的TFT-LCD廢玻璃及碳化矽污泥。In summary, the disposal of TFT-LCD waste glass or tantalum carbide sludge is not the most effective way to use resources. Today, environmental protection is becoming more and more important, and there is an urgent need for a better way to recycle the year. TFT-LCD waste glass and tantalum carbide sludge with increased production.
有鑑於先前技術之缺失,本發明之主要目的在於提供一種環保中孔分子篩調濕材料,其係以TFT-LCD廢玻璃及碳化矽污泥為主要材料,達到資源回收之目的。In view of the lack of prior art, the main object of the present invention is to provide an environmentally-friendly medium-porosity molecular sieve humidity-regulating material, which uses TFT-LCD waste glass and silicon carbide sludge as main materials to achieve resource recovery.
本發明之另一目的在於提供一種環保中孔分子篩調濕材料的製備方法,其係以TFT-LCD廢玻璃及碳化矽污泥為主要材料,以製得具有優異吸濕量及平衡含水率而能夠資源化再利用為綠建材之調濕塗佈材料。Another object of the present invention is to provide a method for preparing an environmentally-friendly mesoporous molecular sieve humidity-regulating material, which uses TFT-LCD waste glass and strontium carbide sludge as main materials to obtain an excellent moisture absorption amount and an equilibrium moisture content. It can be reused as a humidity-control coating material for green building materials.
為達上述目的,本發明提供一種環保中孔分子篩調濕材料,包括10wt%~90wt%的TFT-LCD廢玻璃;及10wt%~90wt%的碳化矽污泥(SiC);其中該TFT-LCD廢玻璃包含二氧化矽(SiO 2)、氧化鋁(Al 2O 3)、氧化鈣(CaO),該SiC污泥包含二氧化矽(SiO 2)。 To achieve the above object, the present invention provides an environmentally-friendly mesoporous molecular sieve humidity-conditioning material comprising 10 wt% to 90 wt% of TFT-LCD waste glass; and 10 wt% to 90 wt% of niobium carbide sludge (SiC); wherein the TFT-LCD The waste glass contains cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and calcium oxide (CaO), and the SiC sludge contains cerium oxide (SiO 2 ).
較佳地,前述TFT-LCD廢玻璃與碳化矽污泥的比例為20wt%:80wt%、10wt%:90wt%或87.5wt%:12.5wt%。Preferably, the ratio of the aforementioned TFT-LCD waste glass to the strontium carbide sludge is 20 wt%: 80 wt%, 10 wt%: 90 wt% or 87.5 wt%: 12.5% wt%.
較佳地,前述TFT-LCD廢玻璃係為液晶面板製造時產出之邊料、下腳料或不良品的廢玻璃。Preferably, the aforementioned TFT-LCD waste glass is waste glass which is produced as a side material, a scrap or a defective product when the liquid crystal panel is manufactured.
較佳地,前述碳化矽污泥係為LED藍寶石基板生產製程中,以碳化矽作為研磨材料,並以水作為研磨介質或者添加研磨液移除藍寶石基材所產生之廢棄污泥。Preferably, the tantalum carbide sludge is used in the production process of the LED sapphire substrate, using tantalum carbide as the abrasive material, and using water as the grinding medium or adding the grinding liquid to remove the waste sludge generated by the sapphire substrate.
較佳地,當前述調濕材料置入相對濕度為53~75%之環境,12小時後之吸濕量大於29 g/m 2。 Preferably, when the humidity-conditioning material is placed in an environment having a relative humidity of 53 to 75%, the moisture absorption amount after 12 hours is more than 29 g/m 2 .
較佳地,當前述調濕材料置入相對濕度為53~75%之環境,12小時後之吸濕量大於71 g/m 2。 Preferably, when the humidity-conditioning material is placed in an environment having a relative humidity of 53 to 75%, the moisture absorption amount after 12 hours is more than 71 g/m 2 .
較佳地,當前述調濕材料置於室溫且相對濕度為10~95%之環境,24小時後之平衡含水率大於 5 kg/m 3。 Preferably, when the humidity-conditioning material is placed at room temperature and the relative humidity is 10 to 95%, the equilibrium moisture content after 24 hours is more than 5 kg/m 3 .
本發明另提供一種環保中孔分子篩調濕材料的製備方法,其方法步驟包括:The invention further provides a preparation method of an environmentally-friendly mesoporous molecular sieve humidity-regulating material, the method steps comprising:
取材步驟:提供TFT-LCD廢玻璃與碳化矽污泥,作為製備中孔分子篩調濕材料的原料,該原料的組成包括10wt%~90wt%的TFT-LCD廢玻璃,以及10wt%~90wt%的碳化矽污泥;Material extraction step: providing TFT-LCD waste glass and silicon carbide sludge as a raw material for preparing a medium pore molecular sieve humidity-control material, the raw material composition comprising 10 wt% to 90 wt% of TFT-LCD waste glass, and 10 wt% to 90 wt% Tantalum carbide sludge;
鹼熔步驟:將鹼劑以質量比值1.25~1.75添加至原料中,在溫度450~650℃下進行鹼熔程序,得一鹼熔產物;Alkali melting step: adding an alkali agent to the raw material at a mass ratio of 1.25 to 1.75, and performing an alkali melting process at a temperature of 450 to 650 ° C to obtain an alkali fusion product;
矽鋁提取步驟:提取鹼熔產物中的矽源及鋁源,製得液固比(L/S)為5~15的矽鋁酸鈉溶液;The bismuth aluminum extraction step: extracting the lanthanum source and the aluminum source in the alkali fusion product, and preparing a sodium strontium aluminate solution having a liquid-solid ratio (L/S) of 5-15;
模板形成步驟:提供一CTAB水溶液,將該矽鋁酸鈉溶液加入該CTAB水溶液中,製成一凝膠溶液;Forming step: providing a CTAB aqueous solution, adding the sodium strontium aluminate solution to the CTAB aqueous solution to prepare a gel solution;
水熱合成步驟:將該凝膠溶夜置入高溫高壓釜,在溫度90~120℃進行水熱反應;Hydrothermal synthesis step: the gel is dissolved in a high temperature autoclave and subjected to a hydrothermal reaction at a temperature of 90 to 120 ° C;
模板去除步驟:將水熱反應後的固體產物過濾出洗滌,經烘乾後進行煅燒以去除CTAB模板,製得一環保中孔分子篩調濕材料。Template removal step: the solid product after the hydrothermal reaction is filtered and washed, and dried to be calcined to remove the CTAB template to obtain an environmentally-friendly mesoporous molecular sieve humidity-regulating material.
較佳地,前述取材步驟中,TFT-LCD廢玻璃與碳化矽污泥的重量比例為1:4、1:9或7:1;前述鹼熔步驟中,鹼熔程序係將鹼劑添加至原料中進行壓錠,再置於高溫爐,以450℃、550℃或650℃進行煅燒,其中,鹼劑選自氫氧化鈉(NaOH)、氫氧化鉀(KOH)或碳酸鈉(Na 2CO 3),且鹼劑與原料的質量比例為1.25、1.5或1.75;前述矽鋁提取步驟中,係將鹼熔產物以液固比為5、10或15,提取矽源及鋁源;前述模板形成步驟中,該CTAB水溶液包括CTAB及30mL去離子水與1.5mL氨水,該矽鋁酸鈉溶液加入CTAB水溶液後,經調節pH值及劇烈攪拌反應後,製成該凝膠溶液;前述水熱合成步驟中,係於水熱反應溫度為90℃、105℃或120℃,進行24至48小時的水熱反應;前述模板去除步驟中,該固體產物濾出後,係以去離子水洗滌,並在105℃烘箱中烘乾,隨後在550℃持續煅燒5小時以完全除去CTAB模板,製得該環保中孔分子篩調濕材料。 Preferably, in the step of taking the material, the weight ratio of the TFT-LCD waste glass to the strontium carbide sludge is 1:4, 1:9 or 7:1; in the alkali melting step, the alkali fusion process adds the alkali agent to The ingot is pressed in the raw material, and then placed in a high temperature furnace, and calcined at 450 ° C, 550 ° C or 650 ° C, wherein the alkali agent is selected from sodium hydroxide (NaOH), potassium hydroxide (KOH) or sodium carbonate (Na 2 CO 3 ). And the mass ratio of the alkali agent to the raw material is 1.25, 1.5 or 1.75; in the foregoing bismuth aluminum extraction step, the alkali fusion product is obtained by using a liquid-solid ratio of 5, 10 or 15, to extract the cerium source and the aluminum source; In the step, the CTAB aqueous solution comprises CTAB and 30 mL of deionized water and 1.5 mL of ammonia water, and the sodium citrate solution is added to the CTAB aqueous solution, and the gel solution is prepared by adjusting the pH value and vigorously stirring the reaction; the hydrothermal synthesis In the step, the hydrothermal reaction is carried out at a hydrothermal reaction temperature of 90 ° C, 105 ° C or 120 ° C for 24 to 48 hours; in the template removal step, the solid product is filtered, washed with deionized water, and Drying in an oven at 105 ° C, followed by continuous calcination at 550 ° C for 5 hours to completely remove CTA The B template is used to prepare the environmentally-friendly mesoporous molecular sieve humidity-regulating material.
較佳地,前述TFT-LCD廢玻璃與碳化矽污泥係經原料預處理後作為該原料,其中,該預處理包括:Preferably, the foregoing TFT-LCD waste glass and the cerium carbide sludge are pretreated as raw materials by the raw material, wherein the pretreatment comprises:
將採集之TFT-LCD廢玻璃與碳化矽污泥分別以105℃溫度烘乾24小時;The collected TFT-LCD waste glass and the silicon carbide sludge are respectively dried at a temperature of 105 ° C for 24 hours;
將烘乾後之TFT-LCD廢玻璃與碳化矽污泥分別置入球磨機中研磨24小時;The dried TFT-LCD waste glass and the silicon carbide sludge are respectively placed in a ball mill and ground for 24 hours;
將研磨後之TFT-LCD廢玻璃與碳化矽污泥分別以40-600mesh之篩網過篩以平均粒徑;The ground TFT-LCD waste glass and the silicon carbide sludge are respectively sieved by a 40-600 mesh sieve to have an average particle diameter;
將平均粒徑後之TFT-LCD廢玻璃與碳化矽污泥充分混合,形成該原料。The TFT-LCD waste glass having an average particle diameter is sufficiently mixed with the cerium carbide sludge to form the raw material.
綜上所述,本發明之環保中孔分子篩調濕材料透過以TFT-LCD廢玻璃及碳化矽污泥作為主要材料,而達到回收再利用TFT-LCD廢玻璃及碳化矽污泥之目的,其製備方法是以TFT-LCD廢玻璃為主原料,以不同比例的碳化矽污泥取代TFT-LCD廢玻璃,再進行鹼熔、矽鋁提取、模板形成、水熱合成及模板去除,而製得本發明環保中孔分子篩調濕材料。In summary, the environmentally-friendly mesoporous molecular sieve humidity-regulating material of the present invention achieves the purpose of recycling and recycling TFT-LCD waste glass and carbonized sludge by using TFT-LCD waste glass and silicon carbide sludge as main materials. The preparation method comprises the following steps: using TFT-LCD waste glass as the main raw material, replacing TFT-LCD waste glass with different proportions of silicon carbide sludge, and performing alkali fusion, bismuth aluminum extraction, template formation, hydrothermal synthesis and template removal. The environmentally friendly medium pore molecular sieve humidity-regulating material of the invention.
有關於本發明為達成上述目的,所採用之技術、手段及其他功效,茲舉一較佳可行實施例並配合圖式詳細說明如后。The preferred embodiments of the present invention are described in detail with reference to the accompanying drawings.
本發明中孔分子篩調濕材料係指一種可以調節環境濕度之材料,其調濕原理是當環境相對濕度較高時,平衡含濕量會急速增加,則調濕材料吸收環境中的水分,阻止環境相對濕度的增加;反之,當環境中相對濕度較低時,平衡含濕量急速降低,調濕材料放出水分於空氣中加濕,阻止環境相對濕度的降低。藉此,本發明中孔分子篩調濕材料可作為環境之吸濕產品、建材或建材之塗佈材料等用途,其中,當其重金屬總量、TCLP溶出濃度、平衡含水率及調濕性能皆需符合標準,方得以作為建材。The pore molecular sieve humidity-regulating material of the invention refers to a material which can adjust the humidity of the environment. The principle of humidity control is that when the relative humidity of the environment is high, the equilibrium moisture content will increase rapidly, and the humidity-control material absorbs the moisture in the environment to prevent The relative humidity of the environment increases; conversely, when the relative humidity in the environment is low, the equilibrium moisture content decreases rapidly, and the humidity-control material releases moisture to humidify in the air to prevent the relative humidity of the environment from decreasing. Therefore, the pore molecular sieve humidity-regulating material of the invention can be used as an environment moisture absorption product, a building material or a coating material for building materials, etc., wherein the total amount of heavy metals, TCLP dissolution concentration, equilibrium moisture content and humidity control performance are required. In line with the standard, it can be used as building materials.
本發明係關於將TFT-LCD廢玻璃及碳化矽污泥回收並加工而製得之中孔分子篩調濕材料(以下簡稱調濕材料),其中,TFT-LCD廢玻璃作為主成分,以碳化矽污泥取代而改變中孔分子篩之特性,以製得具有優異吸濕量及平衡含水率之調濕材料;其中該TFT-LCD廢玻璃及該碳化矽污泥之含量比例為:10wt%~90wt%的TFT-LCD廢玻璃以及10wt%~90wt%的碳化矽(SiC)污泥,其中該TFT-LCD廢玻璃包含二氧化矽(SiO 2)、氧化鋁(Al 2O 3)、氧化鈣(CaO),該SiC污泥包含二氧化矽(SiO 2)。於較佳實施例中,TFT-LCD廢玻璃與碳化矽污泥的比例為20wt%:80wt%(1:4)、10wt%:90wt%(1:9)或87.5wt%:12.5wt%(7:1);又,最佳為87.5wt%:12.5wt%(7:1)。 The invention relates to recovering and processing a TFT-LCD waste glass and a cerium carbide sludge to obtain a mesoporous molecular sieve humidity-regulating material (hereinafter referred to as a humidity-conditioning material), wherein the TFT-LCD waste glass is used as a main component and the bismuth carbide is used. The sludge is substituted to change the characteristics of the mesoporous molecular sieve to obtain a humidity-controlling material having excellent moisture absorption and equilibrium moisture content; wherein the content ratio of the TFT-LCD waste glass and the tantalum carbide sludge is: 10 wt% to 90 wt. % TFT-LCD waste glass and 10 wt% to 90 wt% of cerium carbide (SiC) sludge, wherein the TFT-LCD waste glass comprises cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), calcium oxide ( CaO), the SiC sludge contains cerium oxide (SiO 2 ). In a preferred embodiment, the ratio of TFT-LCD waste glass to tantalum carbide sludge is 20 wt%: 80 wt% (1:4), 10 wt%: 90 wt% (1:9) or 87.5 wt%: 12.5% wt% ( 7:1); again, the optimum is 87.5 wt%: 12.5 wt% (7:1).
本發明調濕材料較佳為符合置於室溫且相對濕度為10~95%之環境下之平衡含水率大於 5 kg/m 3(>5 kg/m 3)之標準(依據日本工業規格JIS A 1475之建築材料平衡含水率及其測定方法)。 The humidity-conditioning material of the present invention preferably has an equilibrium moisture content of more than 5 kg/m 3 (>5 kg/m 3 ) in an environment of room temperature and a relative humidity of 10 to 95% (according to Japanese Industrial Standard JIS) A 1475 building material equilibrium moisture content and its determination method).
本發明調濕材料較佳為符合12小時吸濕量大於29 g/m 2(>29 g/m 2)之標準(依據日本工業規範調濕建材 JIS A 1470-1法規第三等級及其濕度應答法)。 The humidity-controlling material of the present invention preferably has a hygroscopic content of more than 29 g/m 2 (>29 g/m 2 ) for 12 hours (according to Japanese Industrial Standards, the third grade of the JIS A 1470-1 regulation and its humidity. Response method).
本發明所述之「TFT-LCD廢玻璃」係指含有二氧化矽(SiO 2)、氧化鋁(Al 2O 3)、氧化鐵(Fe 2O 3)、氧化鈣(CaO)、氧化鎂(MgO)、二氧化鈦(TiO 2)或其組合之成分的玻璃;進一步表示在液晶面板製造時產出之邊料、下腳料或不良品的廢玻璃。於本發明的較佳實施例中,TFT-LCD廢玻璃的主要成分為二氧化矽(SiO 2)、氧化鋁(Al 2O 3)、氧化鈣(CaO)。 The "TFT-LCD waste glass" as used in the present invention means containing cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), calcium oxide (CaO), magnesium oxide ( A glass of a composition of MgO), titanium oxide (TiO 2 ), or a combination thereof; further represents a waste glass of a side material, a scrap or a defective product produced at the time of manufacture of a liquid crystal panel. In a preferred embodiment of the present invention, the main components of the TFT-LCD waste glass are cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and calcium oxide (CaO).
本發明所述之「碳化矽污泥」係指含有二氧化矽(SiO 2)、氧化鋁(Al 2O 3)、氧化鐵(Fe 2O 3)、氧化鎂(MgO)、氧化硫(SO 3)、氧化鉀(K 2O)、二氧化鈦(TiO 2)或其組合之成分的玻璃;進一步表示在LED藍寶石基板生產製程中,以碳化矽作為研磨材料,並以水作為研磨介質或者添加研磨液移除藍寶石基材所產生之廢棄污泥。於本發明的較佳實施例中,碳化矽污泥的主要成分為二氧化矽(SiO 2)。 The "carbonized sludge" according to the present invention means containing cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), magnesium oxide (MgO), and sulfur oxide (SO). 3 ) glass of potassium oxide (K 2 O), titanium dioxide (TiO 2 ) or a combination thereof; further indicating that in the production process of the LED sapphire substrate, tantalum carbide is used as the abrasive material, and water is used as the grinding medium or the grinding is added. The liquid removes waste sludge from the sapphire substrate. In a preferred embodiment of the invention, the main component of the niobium carbide sludge is ceria (SiO 2 ).
本發明亦提供一種環保中孔分子篩調濕材料之製備方法,其中,該TFT-LCD廢玻璃與該碳化矽污泥係經原料預處理後作為製備原料,該預處理包括大量採樣(採集100公斤以上),經105℃烘乾24小時,置入球磨機中研磨24小時後,以40- 200 mesh之篩網過篩,藉此平均粒徑,並充分混合後,做為製備合成中孔分子篩調濕材料之原料。請參閱圖4,本發明中孔分子篩調濕材料的製法步驟包括取材步驟S1、鹼熔步驟S2、矽鋁提取步驟S3、模板形成步驟S4、水熱合成步驟S5及模板去除步驟S6。其中:The invention also provides a preparation method of the environmentally-friendly mesoporous molecular sieve humidity-regulating material, wherein the TFT-LCD waste glass and the tantalum carbide sludge are pretreated as raw materials, and the pretreatment comprises a large amount of sampling (collecting 100 kg) Above), dried at 105 ° C for 24 hours, placed in a ball mill for 24 hours, sieved through a 40-200 mesh sieve, the average particle size, and mixed thoroughly, as a synthetic mesoporous molecular sieve Raw material for wet materials. Referring to FIG. 4, the manufacturing process of the pore molecular sieve moisture regulating material of the present invention comprises a material taking step S1, an alkali melting step S2, a bismuth aluminum extraction step S3, a template forming step S4, a hydrothermal synthesis step S5, and a template removing step S6. among them:
取材步驟S1:提供TFT-LCD廢玻璃與碳化矽污泥,作為製備中孔分子篩調濕材料的原料,該原料的組成包括10wt%~90wt%的TFT-LCD廢玻璃,以及10wt%~90wt%的碳化矽污泥;其中,TFT-LCD廢玻璃與碳化矽污泥的重量比例較佳為1:4、1:9或7:1,最佳為7:1。Step S1: providing TFT-LCD waste glass and tantalum carbide sludge as a raw material for preparing a medium pore molecular sieve humidity-controlling material, the raw material composition comprising 10 wt% to 90 wt% of TFT-LCD waste glass, and 10 wt% to 90 wt% The strontium carbide sludge; wherein the weight ratio of the TFT-LCD waste glass to the strontium carbide sludge is preferably 1:4, 1:9 or 7:1, and most preferably 7:1.
鹼熔步驟S2:將鹼劑以質量比值1.25~1.75添加至原料中(鹼劑(g):原料(g)=1.25~1.75:1),接著在溫度450~650℃下進行鹼熔程序,得一鹼熔產物;前述鹼熔程序係將鹼劑添加至原料中進行壓錠,再置於高溫爐,以450℃、550℃或650℃進行煅燒,其中,鹼劑選自氫氧化鈉(NaOH)、氫氧化鉀(KOH)或碳酸鈉(Na 2CO 3),且鹼劑與原料的質量比值為1.25、1.5或1.75;較佳地,鹼劑為氫氧化鈉且與原料的質量比值為1.5。 Alkali melting step S2: adding an alkali agent to the raw material at a mass ratio of 1.25 to 1.75 (alkaline agent (g): raw material (g) = 1.25 to 1.75:1), followed by an alkali fusion process at a temperature of 450 to 650 ° C, An alkali fusion product is obtained; the alkali fusion process is performed by adding an alkali agent to the raw material for ingot pressing, and then placing it in a high temperature furnace and calcining at 450 ° C, 550 ° C or 650 ° C, wherein the alkali agent is selected from sodium hydroxide (NaOH). ), potassium hydroxide (KOH) or sodium carbonate (Na 2 CO 3 ), and the mass ratio of the alkali agent to the raw material is 1.25, 1.5 or 1.75; preferably, the alkali agent is sodium hydroxide and the mass ratio to the raw material is 1.5.
矽鋁提取步驟S3:提取鹼熔產物中的矽源及鋁源,製得液固比(L/S)為5~15的矽鋁酸鈉溶液;較佳地,係將鹼熔產物以液固比為5、10或15,提取矽源及鋁源;最佳地,液固比為10。矽 aluminum extraction step S3: extracting the lanthanum source and the aluminum source in the alkali fusion product to obtain a sodium strontium aluminate solution having a liquid-solid ratio (L/S) of 5 to 15; preferably, the alkali fusion product is liquid The solid ratio is 5, 10 or 15, and the source of germanium and aluminum is extracted; optimally, the liquid-solid ratio is 10.
模板形成步驟S4:提供一CTAB(溴化十六烷基三甲銨)水溶液,將該矽鋁酸鈉溶液加入該CTAB水溶液中,製成一凝膠溶液;其中,該CTAB水溶液包括CTAB及30mL去離子水與1.5mL氨水,該矽鋁酸鈉溶液加入CTAB水溶液後,經調節pH值及劇烈攪拌反應後,製成該凝膠溶液。其中,CTAB水溶液中的CTAB係以莫耳比CTAB:SiO 2=1:0.15(相反了應為0.15:1)之比例進行添加。 Template forming step S4: providing a CTAB (cetyltrimethylammonium bromide) aqueous solution, adding the sodium strontium aluminate solution to the CTAB aqueous solution to prepare a gel solution; wherein the CTAB aqueous solution comprises CTAB and 30 mL After the ionized water and 1.5 mL of ammonia water were added to the CTAB aqueous solution, the gel solution was prepared by adjusting the pH value and vigorously stirring the reaction. Among them, the CTAB system in the CTAB aqueous solution was added at a ratio of molar ratio CTAB:SiO 2 =1:0.15 (opposite should be 0.15:1).
水熱合成步驟S5:將該凝膠溶夜置入高溫高壓釜,在溫度90~120℃進行水熱反應;較佳地,係於水熱反應溫度為90℃、105℃或120℃,進行24至48小時的水熱反應。Hydrothermal synthesis step S5: The gel is dissolved in a high temperature autoclave and subjected to a hydrothermal reaction at a temperature of 90 to 120 ° C; preferably, the hydrothermal reaction temperature is 90 ° C, 105 ° C or 120 ° C. 24-60 hours of hydrothermal reaction.
模板去除步驟S6:將水熱反應後的固體產物過濾出洗滌,經烘乾後進行煅燒以去除CTAB模板,製得一環保中孔分子篩調濕材料;其中,該固體產物濾出後,係以去離子水洗滌,並在105℃烘箱中烘乾,隨後在550℃持續煅燒5小時以完全除去CTAB模板,製得該環保中孔分子篩調濕材料。Template removal step S6: filtering the solid product after the hydrothermal reaction to be washed, drying and calcining to remove the CTAB template, thereby preparing an environmentally-friendly mesoporous molecular sieve humidity-regulating material; wherein, after filtering the solid product, The environmentally friendly mesoporous molecular sieve humidity-conditioning material was prepared by washing with deionized water and drying in an oven at 105 ° C, followed by continuous calcination at 550 ° C for 5 hours to completely remove the CTAB template.
以下實施例係用於進一步瞭解本發明之優點,並非用於限制本發明之申請專利範圍;其個別以TFT-LCD廢玻璃及碳化矽污泥之不同比例,依前述製備方法步驟製成環保中孔分子篩調濕材料的各種性能測試。The following examples are used to further understand the advantages of the present invention, and are not intended to limit the scope of the patent application of the present invention; the individual preparations are made in the environmental protection according to the different ratios of the TFT-LCD waste glass and the strontium carbide sludge. Various performance tests of pore molecular sieve conditioning materials.
實施例一:本發明調濕材料之原料的成分及特性分析Example 1: Analysis of the composition and characteristics of the raw materials of the humidity control material of the present invention
本發明TFT-LCD廢玻璃及碳化矽污泥之基本物理性質如下表1所示。其中,TFT-LCD廢玻璃及碳化矽污泥的pH值為8.44及7.55,顯示TFT-LCD廢玻璃及碳化矽污泥皆為偏鹼性的材料;且TFT-LCD廢玻璃及SiC污泥之比重分別為2.15及2.15。The basic physical properties of the TFT-LCD waste glass and the niobium carbide sludge of the present invention are shown in Table 1 below. Among them, the pH values of TFT-LCD waste glass and tantalum carbide sludge are 8.44 and 7.55, indicating that both TFT-LCD waste glass and tantalum carbide sludge are alkaline materials; and TFT-LCD waste glass and SiC sludge The specific gravity is 2.15 and 2.15 respectively.
<TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> 表1 </td></tr><tr><td> 原 料 </td><td> pH值 (1:10) </td><td> 比重 </td><td> 密度 (g/cm<sup>3</sup>) </td><td> 水份 (%) </td><td> 細度 (m<sup>3</sup>/kg) </td></tr><tr><td> TFT-LCD廢玻璃 </td><td> 9.09 </td><td> 3.06 </td><td> 2.33 </td><td> 0.01 </td><td> 253 </td></tr><tr><td> 碳化矽污泥 </td><td> 7.85 </td><td> 3.38 </td><td> 2.54 </td><td> 7.23 </td><td> 279 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> Table 1 </td></tr><tr><td> Raw material</td> <td> pH (1:10) </td><td> Specific Gravity</td><td> Density (g/cm<sup>3</sup>) </td><td> Moisture (% </td><td> Fineness (m<sup>3</sup>/kg) </td></tr><tr><td> TFT-LCD waste glass</td><td> 9.09 </td><td> 3.06 </td><td> 2.33 </td><td> 0.01 </td><td> 253 </td></tr><tr><td> Carbide sludge </td><td> 7.85 </td><td> 3.38 </td><td> 2.54 </td><td> 7.23 </td><td> 279 </td></tr></ TBODY></TABLE>
請參閱圖1及下表2,顯示本發明原料之粒徑分佈分析結果以及化學組成分析。圖1顯示TFT-LCD廢玻璃之粒徑主要分佈於19-105 μm的範圍,約為整體之99.8%;碳化矽污泥之粒徑主要分佈於19-149 μm的範圍,約為整體之84.05%。由表2顯示,TFT-LCD 廢玻璃主要成分為SiO 2、Al 2O 3及CaO,分別佔69.7 %、15.3 %以及8.45 %;而碳化矽污泥主要組成以SiO 2為主,佔98.4 %。其中TFT-LCD廢玻璃主要來自玻璃基板之裁切料,而SiO 2及Al 2O 3為共同構成玻璃網絡結構的主體,因此,含有較高含量之Al 2O 3,故本研究藉由TFT-LCD廢玻璃含有Al 2O 3與碳化矽污泥進行調質,使具有足夠之矽源及鋁源以合成中孔分子篩調濕材料,並同時兼具低成本及資源再利用之效能。 Please refer to FIG. 1 and Table 2 below for the results of particle size distribution analysis and chemical composition analysis of the raw materials of the present invention. Figure 1 shows that the particle size of the TFT-LCD waste glass is mainly distributed in the range of 19-105 μm, which is about 99.8% of the whole; the particle size of the tantalum carbide sludge is mainly distributed in the range of 19-149 μm, which is about 84.05 of the whole. %. Table 2 shows that the main components of TFT-LCD waste glass are SiO 2 , Al 2 O 3 and CaO, accounting for 69.7 %, 15.3% and 8.45% respectively; while the main composition of strontium carbide sludge is mainly SiO 2 , accounting for 98.4 %. . Among them, the TFT-LCD waste glass is mainly from the cutting material of the glass substrate, and SiO 2 and Al 2 O 3 are the main body of the glass network structure, and therefore, contain a high content of Al 2 O 3 , so the research by TFT - LCD waste glass contains Al 2 O 3 and tantalum carbide sludge for quenching and tempering, so that there is sufficient source and aluminum source to synthesize mesoporous molecular sieve to adjust the moisture content, and at the same time, it has the advantages of low cost and resource reuse.
<TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td> 表2 </td></tr><tr><td> 化學組成 (%) </td><td> TFT-LCD廢玻璃 </td><td> 碳化矽污泥 </td></tr><tr><td> SiO<sub>2</sub></td><td> 69.7 </td><td> 98.4 </td></tr><tr><td> Al<sub>2</sub>O<sub>3</sub></td><td> 15.3 </td><td> 0.80 </td></tr><tr><td> Fe<sub>2</sub>O<sub>3</sub></td><td> 0.18 </td><td> 0.58 </td></tr><tr><td> CaO </td><td> 8.45 </td><td> 0.09 </td></tr><tr><td> MgO </td><td> 0.77 </td><td> - </td></tr><tr><td> SO<sub>3</sub></td><td> - </td><td> 0.06 </td></tr><tr><td> K<sub>2</sub>O </td><td> - </td><td> 0.01 </td></tr><tr><td> TiO<sub>2</sub></td><td> 0.22 </td><td> 0.01 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td> Table 2 </td></tr><tr><td> Chemical composition (%) < /td><td> TFT-LCD waste glass</td><td> carbonized sludge</td></tr><tr><td> SiO<sub>2</sub></td>< Td> 69.7 </td><td> 98.4 </td></tr><tr><td> Al<sub>2</sub>O<sub>3</sub></td><td> 15.3 </td><td> 0.80 </td></tr><tr><td> Fe<sub>2</sub>O<sub>3</sub></td><td> 0.18 < /td><td> 0.58 </td></tr><tr><td> CaO </td><td> 8.45 </td><td> 0.09 </td></tr><tr>< Td> MgO </td><td> 0.77 </td><td> - </td></tr><tr><td> SO<sub>3</sub></td><td> - </td><td> 0.06 </td></tr><tr><td> K<sub>2</sub>O </td><td> - </td><td> 0.01 </ Td></tr><tr><td> TiO<sub>2</sub></td><td> 0.22 </td><td> 0.01 </td></tr></TBODY>< /TABLE>
圖2為本發明原料之XRD圖譜。圖2顯示TFT-LCD廢玻璃由於製程中使用大量的助熔劑熔融成液相,並於冷凝過程中晶格尚未規則排列而凝固,故玻璃內部皆為非晶型結構,經XRD分析後並無任何明顯的繞射峰產生。另外,碳化矽污泥於2θ的16-30°範圍內,出現典型的無定形寬峰,證實不存在有序性的晶體結構,且由於沒有峰值,證實二氧化矽的純度,其主要繞射鋒於34.18°、35.72°、38.23°、60.15°、71.96° 等波鋒,表示碳化矽為6H-SiC,晶相物種與文獻相符 (Ding et al., 2015)。Figure 2 is an XRD pattern of the starting material of the present invention. 2 shows that the TFT-LCD waste glass is melted into a liquid phase by using a large amount of flux in the process, and the crystal lattice is not regularly arranged and solidified during the condensation process, so the inside of the glass is amorphous, and there is no XRD analysis. Any significant diffraction peaks are produced. In addition, the tantalum carbide sludge exhibits a typical amorphous broad peak in the range of 16-30° of 2θ, confirming the absence of an ordered crystal structure, and since there is no peak, the purity of the cerium oxide is confirmed, and the main diffraction The peaks at 34.18°, 35.72°, 38.23°, 60.15°, and 71.96° indicate that tantalum carbide is 6H-SiC, and the crystal phase species are consistent with the literature (Ding et al., 2015).
請參關下表3,顯示本發明原料之重金屬總量及其TCLP重金屬溶出濃度。重金屬總量分析結果顯示,TFT-LCD廢玻璃之重金屬總量以Zn為主,其含量為160 mg/kg,其來源主要應為面板蝕刻槽中之導線。碳化矽污泥之重金屬溶出則以Cu含量最高為1100 mg/kg,其次Zn含量為20 mg/kg。本發明另以NIEA R201.14C之毒性特性溶出程序(TCLP)法,將各材料進行重金屬溶出測試並以FLAA測定各材料之重金屬溶出濃度,其結果如表3所示。TCLP重金屬溶出結果顯示,TFT-LCD廢玻璃之Zn溶出量為0.10 mg/L;碳化矽污泥之Zn溶出量為0.08 mg/L、Ni溶出量為0.06 mg/L及Cu溶出量為7.4 mg/L。透過前述試驗結果顯示,本發明TFT-LCD廢玻璃及碳化矽污泥之重金屬溶出量皆符合法規標準而具資源化之潛力。Please refer to Table 3 below to show the total amount of heavy metals in the raw materials of the present invention and the TCLP heavy metal dissolution concentration. The results of total heavy metal analysis showed that the total amount of heavy metals in TFT-LCD waste glass was mainly Zn, and its content was 160 mg/kg. The source should be the wire in the panel etching tank. The heavy metal dissolution of the strontium carbide sludge has a Cu content of up to 1100 mg/kg and a secondary Zn content of 20 mg/kg. In the present invention, each material was subjected to a heavy metal dissolution test by the toxic characteristic dissolution procedure (TCLP) method of NIEA R201.14C, and the heavy metal dissolution concentration of each material was measured by FLAA. The results are shown in Table 3. The TCLP heavy metal dissolution results showed that the Zn elution amount of the TFT-LCD waste glass was 0.10 mg/L; the Zn dissolution amount of the strontium carbide sludge was 0.08 mg/L, the Ni dissolution amount was 0.06 mg/L, and the Cu dissolution amount was 7.4 mg. /L. According to the foregoing test results, the amount of heavy metal eluted from the TFT-LCD waste glass and the strontium carbide sludge of the present invention is in compliance with regulatory standards and has the potential to be resourced.
<TABLE border="1" borderColor="#000000" width="_0005"><TBODY><tr><td> 表3 </td></tr><tr><td> 重金屬總量 (mg/kg) </td><td> Pb </td><td> Cr </td><td> Cu </td><td> Zn </td><td> Cd </td><td> Ni </td></tr><tr><td> TFT-LCD廢玻璃 </td><td> N.D. </td><td> N.D. </td><td> N.D. </td><td> 160 </td><td> N.D. </td><td> N.D. </td></tr><tr><td> 碳化矽污泥 </td><td> N.D. </td><td> N.D. </td><td> 1100 </td><td> 20 </td><td> N.D. </td><td> 10 </td></tr><tr><td> TCLP (mg/L) </td><td> Pb </td><td> Cr </td><td> Cu </td><td> Zn </td><td> Cd </td><td> Ni </td></tr><tr><td> TFT-LCD廢玻璃 </td><td> N.D. </td><td> N.D. </td><td> N.D. </td><td> 0.10 </td><td> N.D. </td><td> N.D. </td></tr><tr><td> 碳化矽污泥 </td><td> N.D. </td><td> N.D. </td><td> 7.40 </td><td> 0.08 </td><td> N.D. </td><td> 0.06 </td></tr><tr><td> 法規標準 </td><td> 5.00 </td><td> 5.00 </td><td> 15.00 </td><td> - </td><td> 1.00 </td><td> - </td></tr><tr><td> N.D.:Pb<0.015 mg/L; Cr<0.009 mg/L; Cd<0.021 mg/L </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0005"><TBODY><tr><td> Table 3 </td></tr><tr><td> Total amount of heavy metals (mg/ Kg) </td><td> Pb </td><td> Cr </td><td> Cu </td><td> Zn </td><td> Cd </td><td> Ni </td></tr><tr><td> TFT-LCD waste glass</td><td> ND </td><td> ND </td><td> ND </td><td> 160 </td><td> ND </td><td> ND </td></tr><tr><td> Carbide sludge</td><td> ND </td><td> ND </td><td> 1100 </td><td> 20 </td><td> ND </td><td> 10 </td></tr><tr><td> TCLP (mg /L) </td><td> Pb </td><td> Cr </td><td> Cu </td><td> Zn </td><td> Cd </td><td> Ni </td></tr><tr><td> TFT-LCD waste glass</td><td> ND </td><td> ND </td><td> ND </td><td > 0.10 </td><td> ND </td><td> ND </td></tr><tr><td> Carbide sludge</td><td> ND </td><td > ND </td><td> 7.40 </td><td> 0.08 </td><td> ND </td><td> 0.06 </td></tr><tr><td> Regulatory standards </td><td> 5.00 </td><td> 5.00 </td><td> 15.00 </td><td> - </td><td> 1.00 </td><td> - </ Td></tr><tr><td> ND: Pb<0.015 mg/L; Cr<0.009 mg/L; Cd<0.021 mg/L </t d></tr></TBODY></TABLE>
實施例二:本發明中孔分子篩調濕材料之製備Example 2: Preparation of the pore molecular sieve moisture regulating material of the present invention
本發明以TFT-LCD廢玻璃及碳化矽污泥合成中孔分子篩調濕材料過程中,最具影響力的因素在於,作為前趨液之原料需具備足夠的矽源及鋁源,故本發明將TFT-LCD廢玻璃與碳化矽污泥以不同配比進行調質,其配比之SiO 2及Al 2O 3,將可作為評估合成中孔分子篩調濕材料特性之依據。 The most influential factor in the process of synthesizing medium-porosity molecular sieve humidity-regulating material by using TFT-LCD waste glass and tantalum carbide sludge is that the raw material of the precursor liquid needs sufficient source and source of aluminum, so the invention The TFT-LCD waste glass and the cerium carbide sludge are tempered in different ratios, and the ratio of SiO 2 and Al 2 O 3 can be used as a basis for evaluating the characteristics of the synthetic medium pore molecular sieve humidity modulating material.
請參閱下表4,顯示TFT-LCD廢玻璃與碳化矽污泥以不同配比調質後的化學組成。由表4可知,純TFT-LCD廢玻璃的主要化學組成為SiO 2、Al 2O 3與CaO,含量分別為69.7 %、15.3 %及8.45 %,故有取代矽源及鋁源之潛力。接著,本實施例將TFT-LCD廢玻璃與碳化矽污泥以1:4、1:9及7:1之比例調質並進行化學組成分析。其中,當碳化矽污泥取代量為80%(配比為1:4)時,其SiO 2及Al 2O 3之成分為94%及3.09%;當碳化矽污泥取代量為90%(配比為1:9)時,其SiO 2及Al 2O 3分別為95.8%及2.29%;此外,當碳化矽污泥取代量為12.5%(配比為7:1)時,其SiO 2及Al 2O 3分別為75.6及13.1%。 Please refer to Table 4 below to show the chemical composition of TFT-LCD waste glass and tantalum carbide sludge after quenching and tempering with different ratios. It can be seen from Table 4 that the main chemical composition of pure TFT-LCD waste glass is SiO 2 , Al 2 O 3 and CaO, and the contents are 69.7 %, 15.3 % and 8.45%, respectively, so there is potential to replace the source of lanthanum and aluminum. Next, in this embodiment, the TFT-LCD waste glass and the cerium carbide sludge were tempered at a ratio of 1:4, 1:9, and 7:1, and chemical composition analysis was performed. Wherein, when the substitution amount of the strontium carbide sludge is 80% (the ratio is 1:4), the composition of the SiO 2 and Al 2 O 3 is 94% and 3.09%; when the substitution amount of the strontium carbide sludge is 90% ( When the ratio is 1:9), the SiO 2 and Al 2 O 3 are 95.8% and 2.29%, respectively. In addition, when the amount of tantalum carbide sludge is 12.5% (the ratio is 7:1), the SiO 2 is used. And Al 2 O 3 were 75.6 and 13.1%, respectively.
<TABLE border="1" borderColor="#000000" width="_0006"><TBODY><tr><td> 表4 </td></tr><tr><td> 化學組成 </td><td> TFT-LCD廢玻璃 </td><td> 碳化矽污泥 </td><td> IGA(1:4) </td><td> IGA (1:9) </td><td> IGA (7:1) </td></tr><tr><td> SiO<sub>2</sub></td><td> 69.7 </td><td> 98.4 </td><td> 94.0 </td><td> 95.8 </td><td> 75.6 </td></tr><tr><td> Al<sub>2</sub>O<sub>3</sub></td><td> 15.3 </td><td> 0.80 </td><td> 3.09 </td><td> 2.29 </td><td> 13.1 </td></tr><tr><td> CaO </td><td> 8.45 </td><td> 0.09 </td><td> 1.50 </td><td> 0.78 </td><td> 7.06 </td></tr><tr><td> SO<sub>3</sub></td><td> - </td><td> 0.06 </td><td> 0.06 </td><td> 0.07 </td><td> 0.03 </td></tr><tr><td> TiO<sub>2</sub></td><td> 0.22 </td><td> 0.01 </td><td> 0.06 </td><td> 0.04 </td><td> 0.15 </td></tr><tr><td> Fe<sub>2</sub>O<sub>3</sub></td><td> 0.18 </td><td> 0.58 </td><td> 0.52 </td><td> 0.54 </td><td> 0.26 </td></tr><tr><td> IGA:TFT-LCD廢玻璃與碳化矽污泥之配比。 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0006"><TBODY><tr><td> Table 4 </td></tr><tr><td> Chemical Composition</td> <td> TFT-LCD waste glass</td><td> Tantalum carbide sludge</td><td> IGA(1:4) </td><td> IGA (1:9) </td>< Td> IGA (7:1) </td></tr><tr><td> SiO<sub>2</sub></td><td> 69.7 </td><td> 98.4 </td ><td> 94.0 </td><td> 95.8 </td><td> 75.6 </td></tr><tr><td> Al<sub>2</sub>O<sub>3< /sub></td><td> 15.3 </td><td> 0.80 </td><td> 3.09 </td><td> 2.29 </td><td> 13.1 </td></tr ><tr><td> CaO </td><td> 8.45 </td><td> 0.09 </td><td> 1.50 </td><td> 0.78 </td><td> 7.06 </ Td></tr><tr><td> SO<sub>3</sub></td><td> - </td><td> 0.06 </td><td> 0.06 </td>< Td> 0.07 </td><td> 0.03 </td></tr><tr><td> TiO<sub>2</sub></td><td> 0.22 </td><td> 0.01 </td><td> 0.06 </td><td> 0.04 </td><td> 0.15 </td></tr><tr><td> Fe<sub>2</sub>O<sub >3</sub></td><td> 0.18 </td><td> 0.58 </td><td> 0.52 </td><td> 0.54 </td><td> 0.26 </td> </tr><tr><td> IGA: The ratio of TFT-LCD waste glass to tantalum carbide sludge. </td></tr></TBODY></TABLE>
參閱圖3A至圖3C,顯示本發明TFT-LCD廢玻璃與碳化矽污泥配比7:1時,不同鹼熔溫度(450-650℃)及鹼劑添加量(1.25~1.75)之XRD圖譜。由圖中可知,當鹼熔溫度為450℃、550℃、650℃時,鹼劑添加質量比值為1.25、1.5及1.75時之晶相皆無石英相存在,其係由於石英相皆轉變為矽酸鈉及矽鋁酸鈉;而隨著溫度提升,晶相強度有隨之增高之趨勢。Referring to FIG. 3A to FIG. 3C, XRD patterns of different alkali melting temperatures (450-650 ° C) and alkali agent addition amounts (1.25 to 1.75) when the ratio of the TFT-LCD waste glass to the tantalum carbide sludge of the present invention is 7:1 are shown. . As can be seen from the figure, when the alkali melting temperature is 450 ° C, 550 ° C, 650 ° C, the crystal phase of the alkali agent added mass ratio of 1.25, 1.5 and 1.75 is free of quartz phase, which is converted into tannic acid due to the quartz phase. Sodium and strontium aluminate; and as the temperature increases, the crystal phase strength tends to increase.
參閱圖5,顯示本發明TFT-LCD廢玻璃與碳化矽污泥之TFT-LCD廢玻璃與碳化矽污泥配比7:1時,不同鹼熔溫度(450-650℃)及鹼劑添加量(1.25~1.75)之二氧化矽(SiO 2)萃取量。由圖可知,當鹼熔溫度為650℃時,鹼劑添加量為1.5,可明顯得到最高之SiO 2萃取量,故為最佳之操作條件適合進行後續水熱合成試驗。 Referring to FIG. 5, the ratio of the alkali melting temperature (450-650 ° C) and the amount of alkali agent added when the ratio of the TFT-LCD waste glass of the TFT-LCD waste glass and the tantalum carbide sludge of the present invention is 7:1. (1.25~1.75) cerium oxide (SiO 2 ) extraction amount. It can be seen from the figure that when the alkali melting temperature is 650 ° C, the amount of the alkali agent added is 1.5, and the highest SiO 2 extraction amount can be obtained, so that the optimum operating conditions are suitable for the subsequent hydrothermal synthesis test.
實施例三:本發明中孔分子篩調濕材料的材料特性Example 3: Material properties of the pore molecular sieve moisture regulating material of the present invention
本實施例係以液固比為5、10、15,在水熱溫度為90℃、105℃、120℃時進行中孔分子篩調濕材料合成。請配合參閱圖6A至圖6C,說明中孔分子篩調濕材料在不同液固比與水熱溫度下合成之中孔分子篩調濕材料之結晶性。In this embodiment, the liquid-solid ratio is 5, 10, and 15, and the mesoporous molecular sieve humidity-regulating material is synthesized at a hydrothermal temperature of 90 ° C, 105 ° C, and 120 ° C. Please refer to FIG. 6A to FIG. 6C to illustrate the crystallinity of the mesoporous molecular sieve humidity-regulating material synthesized by the medium-porosity molecular sieve humidity-regulating material at different liquid-solid ratios and hydrothermal temperatures.
參閱圖6A,顯示當液固比為5時,在不同反應溫度下所合成之中孔分子篩調濕材料的結晶度。隨著反應溫度的增加,特徵峰有明顯增高之趨勢及較強之結晶度。而根據文獻指出,當反應溫度越高,特徵峰d(100)將轉移至較低的值,表示孔隙的晶格空間d(100)增大,而溫度過高,會影響中孔材料的有序性結構呈現退化的狀態,因此當反應溫度為120℃,液固比為5時,中孔分子篩調濕材料的峰值有略為下降之現象。Referring to Figure 6A, the crystallinity of the mesoporous molecular sieve conditioned material synthesized at different reaction temperatures when the liquid to solid ratio is 5 is shown. As the reaction temperature increases, the characteristic peaks increase significantly and the crystallinity is stronger. According to the literature, when the reaction temperature is higher, the characteristic peak d(100) will shift to a lower value, indicating that the lattice space d(100) of the pore increases, and the temperature is too high, which will affect the mesoporous material. The sequence structure exhibits a degraded state, so when the reaction temperature is 120 ° C and the liquid-solid ratio is 5, the peak value of the medium-porosity molecular sieve humidity-conditioning material slightly decreases.
參閱圖6B,顯示當液固比為10時,在不同反應溫度下所合成之中孔分子篩調濕材料的結晶性。其中,當反應溫度為90℃時,所合成之中孔分子篩調濕材料的特徵峰,明顯高於105℃及120℃,係因界面活性劑分子聚集體形成的膠團因晶化溫度的提高,導致發生變形或部分破壞,進而使產物中孔孔道結構有序度嚴重下降所致,表示當液固比為10時,水熱溫度為90℃時,結晶性呈現較佳之趨勢。Referring to Figure 6B, the crystallinity of the mesoporous molecular sieve conditioned material synthesized at different reaction temperatures when the liquid to solid ratio is 10 is shown. Among them, when the reaction temperature is 90 °C, the characteristic peak of the synthesized mesoporous molecular sieve humidity-regulating material is obviously higher than 105 °C and 120 °C, because the micelle formed by the surfactant molecular aggregates is improved by the crystallization temperature. The deformation or partial destruction occurs, which leads to a serious decrease in the order of pore structure in the product, indicating that when the liquid-solid ratio is 10, the crystallinity tends to be better when the hydrothermal temperature is 90 °C.
參閱圖6C,顯示液固比為15時,於不同反應溫度下所合成之中孔分子篩調濕材料的結晶性。其中,當水熱反應溫度為90℃、105℃及120℃時,皆有明顯主要特徵鋒d(100)呈現。而根據文獻指出,認為弱峰d(110)及d(200)較不明顯,其可能原因為骨架中引入鋁(Al)後所導致,使樣品晶粒減小。Referring to Fig. 6C, the crystallinity of the mesoporous molecular sieve humidity-modulating material synthesized at different reaction temperatures is shown when the liquid-solid ratio is 15. Among them, when the hydrothermal reaction temperature is 90 ° C, 105 ° C and 120 ° C, there are obvious main characteristic front d (100). According to the literature, it is considered that the weak peaks d(110) and d(200) are less obvious, which may be caused by the introduction of aluminum (Al) in the framework, which causes the sample grains to decrease.
實施例四:本發明中孔分子篩調濕材料的平衡含水率與調濕性能Example 4: Balanced moisture content and humidity control performance of the pore molecular sieve moisture regulating material of the present invention
本實施例係依據日本工業規格 JIS A 1475之建築材料平衡含水率測定方法,在環境溫度恆定於23℃下,並於不同環境溼度(10%、33%、55%、75%、85%及95%)條件下測定中孔分子篩調濕材料之平衡含水率吸放濕曲線,測定結果如圖7A至圖7C,顯示不同液固比(5~15)及不同水熱反應溫度(90~120℃)合成之中孔分子篩調濕材料之平衡含水率吸放濕曲線。This embodiment is based on the method for determining the equilibrium moisture content of building materials according to Japanese Industrial Standard JIS A 1475, at an ambient temperature of 23 ° C and at different ambient humidity (10%, 33%, 55%, 75%, 85% and The equilibrium moisture content moisture absorption and desorption curve of the medium pore molecular sieve humidity-regulating material was measured under the condition of 95%). The measurement results are shown in Fig. 7A to Fig. 7C, showing different liquid-solid ratio (5~15) and different hydrothermal reaction temperatures (90~120). °C) Synthetic moisture content of the mesoporous molecular sieve humidity-regulating material.
圖7A顯示液固比為5,當水熱溫度為90℃時,平衡含水率為14.18 kg/kg;隨著水熱溫度增加至120℃時,有最高平衡含水率為19.05 kg/kg;圖7B顯示液固比為10,當水熱溫度為105℃時,最高之平衡含水率為17.08 kg/kg;圖7C顯示液固比為15,當水熱溫度為90℃時,平衡含水率為19.71 kg/kg。由圖7A至圖7C及前述說明可知,本發明在液固比為5、10、15及不同水熱溫度時合成之中孔分子篩調濕材料的平衡含水率皆高於 5 kg/m 3,亦即,本發明中孔分子篩調濕材料係符合JIS A 1475之建築材料之標準。 Figure 7A shows a liquid-solid ratio of 5, when the hydrothermal temperature is 90 ° C, the equilibrium moisture content is 14.18 kg / kg; as the hydrothermal temperature increases to 120 ° C, the highest equilibrium moisture content is 19.05 kg / kg; 7B shows a liquid-solid ratio of 10, when the hydrothermal temperature is 105 ° C, the highest equilibrium moisture content is 17.08 kg / kg; Figure 7C shows a liquid-solid ratio of 15, when the hydrothermal temperature is 90 ° C, the equilibrium moisture content 19.71 kg/kg. 7A to 7C and the foregoing description, the equilibrium moisture content of the mesoporous molecular sieve humidity-regulating material synthesized in the liquid-solid ratio of 5, 10, 15 and different hydrothermal temperatures is higher than 5 kg/m 3 , That is, the pore molecular sieve humidity-conditioning material of the present invention conforms to the standard of building materials of JIS A 1475.
本實施例係根據日本工業規範 JIS A 1470濕度應答法,測試本發明中孔分子篩調濕材料在相對濕度於53-75%的吸放濕速度。其係首先將中孔分子篩調濕材料放入相對濕度為53%的環境達到飽和;再將中孔分子篩調濕材料置入環境相對濕度為75%下,連續監控24小時;最後再置入環境相對濕度為53%下,進行連續24小時監控,最後求得單位面積於不同時間下的吸脫附曲線,測定結果如圖8A至圖8C,顯示不同液固比(5~15)及不同水熱反應溫度(90~120℃)合成之中孔分子篩調濕材料之48小時連續吸放濕試驗。This example tests the moisture absorption and desorption rate of the pore molecular sieve moisture regulating material of the present invention at a relative humidity of 53-75% according to the Japanese Industrial Standard JIS A 1470 humidity response method. The system firstly saturates the medium-porosity molecular sieve humidity-control material into a relative humidity of 53%; then the medium-porosity molecular sieve humidity-control material is placed in an environment relative humidity of 75%, continuously monitored for 24 hours; and finally placed in the environment. When the relative humidity is 53%, the monitoring is carried out for 24 hours. Finally, the adsorption and desorption curves of the unit area at different times are obtained. The results are shown in Fig. 8A to Fig. 8C, showing different liquid-solid ratio (5~15) and different water. The 48-hour continuous moisture absorption and desorption test of the mesoporous molecular sieve humidity-regulating material was synthesized at a thermal reaction temperature (90 to 120 ° C).
圖8A顯示液固比為5,當水熱溫度為90℃時,所合成之中孔分子篩調濕材料之24小時吸濕量為48.08 g/m 2;而圖8B顯示液固比為10,當水熱溫度則為90℃時,所合成之中孔分子篩調濕材料之24小時吸濕量為85.75 g/m 2;此外,圖8C顯示液固比為15,當水熱溫度以105℃時,中孔分子篩調濕材料之24小時吸濕量為76 g/m 2。由圖8A至圖8C及前述說明可知,當液固比為5時,所合成之中孔分子篩調濕材料之最佳吸濕量大於29 g/m 2,符合日本工業規範調濕建材 JIS A 1470-1法規第三等級之十二小時吸濕量之標準;當液固比為10及15時,所合成之中孔分子篩調濕材料最佳吸濕量大於71 g/m 2,符合第一等級之十二小時吸濕量之標準。 8A shows a liquid-solid ratio of 5, and when the hydrothermal temperature is 90 ° C, the 24-hour moisture absorption of the synthesized mesoporous molecular sieve humidity-conditioning material is 48.08 g/m 2 ; and FIG. 8B shows a liquid-solid ratio of 10, When the hydrothermal temperature is 90 ° C, the 24-hour moisture absorption of the synthetic mesoporous molecular sieve humidity-control material is 85.75 g / m 2 ; in addition, Figure 8C shows a liquid-solid ratio of 15, when the hydrothermal temperature is 105 ° C At the time, the 24-hour moisture absorption of the medium pore molecular sieve humidity-control material was 76 g/m 2 . 8A to 8C and the foregoing description, when the liquid-solid ratio is 5, the optimal moisture absorption amount of the synthesized mesoporous molecular sieve humidity-regulating material is more than 29 g/m 2 , which conforms to the Japanese industrial standard humidity-control building material JIS A. The standard for the 12-hour moisture absorption of the third grade of the 1470-1 regulation; when the liquid-solid ratio is 10 and 15, the optimal moisture absorption of the synthetic mesoporous molecular sieve humidity-regulating material is greater than 71 g/m 2 , which is in accordance with the A standard of 12 hours of moisture absorption.
參閱圖9A至圖9C,顯示不同液固比(5~15)及水熱反應溫度90℃合成之中孔分子篩調濕材料之TEM圖。由圖可知,當液固比為5、10及15時,所合成之中孔分子篩調濕材料表現出有序中孔的六角形陣列及均勻孔徑大小,中孔之間的間隔為良好一致性。Referring to Figures 9A to 9C, TEM images of mesoporous molecular sieve humidity-conditioning materials synthesized at different liquid-solid ratios (5-15) and hydrothermal reaction temperatures of 90 °C are shown. As can be seen from the figure, when the liquid-solid ratio is 5, 10 and 15, the synthesized mesoporous molecular sieve humidity-regulating material exhibits a hexagonal array of ordered mesopores and a uniform pore size, and the spacing between the mesopores is good. .
綜合上述結果顯示,TFT-LCD廢玻璃與碳化矽污泥以7:1之配比調質,經鹼熔程序能有效提取液固比10時,所需之矽酸鹽及矽鋁酸鹽與界面活性劑在水熱反應溫度為90℃時,所合成之低成本及環保中孔分子篩調濕材料,皆符合日本工業規範JIS A 1470及1475調濕建材之吸濕量 (>29 g/m 2)及平均平衡含水率規範 (>5 kg/m 3),故TFT-LCD廢玻璃及碳化矽污泥調質水熱合成之中孔分子篩調濕材料確實具有資源化再利用為綠建材塗佈材料之潛力。進一步地可應用擴展到其它類型的含矽質之產業廢棄物及且可大規模生產的高附加價值之調濕材料,以應用於保護環境。 The above results show that the TFT-LCD waste glass and the strontium carbide sludge are tempered in a ratio of 7:1, and the desired citrate and yttrium aluminate can be effectively extracted by the alkali fusion procedure. When the hydrothermal reaction temperature is 90 °C, the low-cost and environmentally-friendly mesoporous molecular sieve humidity-regulating materials synthesized meet the hygroscopicity of the Japanese Industrial Standards JIS A 1470 and 1475 humidity-control building materials (>29 g/m). 2 ) and the average equilibrium moisture content specification (>5 kg/m 3 ), so the TFT-LCD waste glass and the strontium carbide sludge quenching and tempering hydrothermal synthesis of the mesoporous molecular sieve humidity control material do have resources for reuse and green building materials The potential of cloth materials. Further, it is possible to apply a high value-added humidity-conditioning material which is extended to other types of enamel-containing industrial waste and which can be mass-produced, and is applied to protect the environment.
所屬領域之技術人員當可了解,在不違背本發明精神下,依據本案實施態樣所能進行的各種變化。因此,顯見所列之實施態樣並非用以限制本發明,而是企圖在所附申請專利範圍的定義下,涵蓋於本發明的精神與範疇中所做的修改。It will be apparent to those skilled in the art that various changes can be made in accordance with the embodiments of the present invention without departing from the spirit of the invention. Therefore, it is to be understood that the invention is not limited by the scope of the invention, and is intended to cover the modifications of the spirit and scope of the invention.
S1‧‧‧取材步驟
S2‧‧‧鹼熔步驟
S3‧‧‧矽鋁提取步驟
S4‧‧‧模板形成步驟
S5‧‧‧水熱合成步驟
S6‧‧‧模板去除步驟S1‧‧‧Material steps
S2‧‧‧ alkali melting step
S3‧‧‧矽 aluminum extraction step
S4‧‧‧ template forming steps
S5‧‧‧ Hydrothermal synthesis steps
S6‧‧‧Template removal steps
圖1係本發明TFT-LCD廢玻璃與碳化矽污泥之粒徑分佈分析。 圖2係本發明TFT-LCD廢玻璃與碳化矽污泥之XRD圖譜。 圖3A至圖3C係本發明TFT-LCD廢玻璃與碳化矽污泥配比7:1時,不同鹼熔溫度(450-650℃)及鹼劑添加量(1.25~1.75)之XRD圖譜。 圖4係本發明環保中孔分子篩調濕材料製備方法之步驟流程示意圖。 圖5係本發明TFT-LCD廢玻璃與碳化矽污泥之TFT-LCD廢玻璃與碳化矽污泥配比7:1時,不同鹼熔溫度(450-650℃)及鹼劑添加量(NaOH,1.25~1.75)之二氧化矽(SiO 2)萃取量。 圖6A至圖6C係本發明於不同液固比(5~15)及不同水熱反應溫度(90~120℃)合成之中孔分子篩調濕材料之結晶性。 圖7A至圖7C係本發明於不同液固比(5~15)及不同水熱反應溫度(90~120℃)合成之中孔分子篩調濕材料之平衡含水率吸放濕曲線。 圖8A至圖8C係本發明於不同液固比(5~15)及不同水熱反應溫度(90~120℃)合成之中孔分子篩調濕材料之48小時連續吸放濕試驗。 圖9A至圖9C係本發明於不同液固比(5~15)及水熱反應溫度90℃合成之中孔分子篩調濕材料之TEM圖。 1 is a particle size distribution analysis of the TFT-LCD waste glass and the cerium carbide sludge of the present invention. 2 is an XRD pattern of the TFT-LCD waste glass and the cerium carbide sludge of the present invention. 3A to 3C are XRD patterns of different alkali melting temperatures (450-650 ° C) and alkali agent addition amounts (1.25 to 1.75) when the ratio of the TFT-LCD waste glass to the tantalum carbide sludge of the present invention is 7:1. 4 is a schematic flow chart showing the steps of the preparation method of the environmentally-friendly mesoporous molecular sieve humidity-regulating material of the present invention. 5 is a different alkali melting temperature (450-650 ° C) and an alkali agent addition amount (NaOH) when the ratio of the TFT-LCD waste glass of the TFT-LCD waste glass and the tantalum carbide sludge of the present invention is 7:1. , 1.25~1.75) of cerium oxide (SiO 2 ) extraction amount. 6A to 6C show the crystallinity of the mesoporous molecular sieve humidity-regulating material synthesized by the present invention in different liquid-solid ratios (5-15) and different hydrothermal reaction temperatures (90-120 °C). 7A to 7C show the equilibrium moisture content absorption and desorption curves of the mesoporous molecular sieve humidity-regulating material synthesized in different liquid-solid ratios (5-15) and different hydrothermal reaction temperatures (90-120 °C). 8A to 8C show a 48-hour continuous moisture absorption and desorption test of a mesoporous molecular sieve humidity-modulating material synthesized in different liquid-solid ratios (5-15) and different hydrothermal reaction temperatures (90-120 °C). 9A to 9C are TEM images of the mesoporous molecular sieve humidity-conditioning material synthesized by the present invention at different liquid-solid ratios (5-15) and hydrothermal reaction temperature of 90 °C.
S1‧‧‧取材步驟 S1‧‧‧Material steps
S2‧‧‧鹼熔步驟 S2‧‧‧ alkali melting step
S3‧‧‧矽鋁提取步驟 S3‧‧‧矽 aluminum extraction step
S4‧‧‧模板形成步驟 S4‧‧‧ template forming steps
S5‧‧‧水熱合成步驟 S5‧‧‧ Hydrothermal synthesis steps
S6‧‧‧模板去除步驟 S6‧‧‧Template removal steps
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105107705A TWI565662B (en) | 2016-03-14 | 2016-03-14 | Environmental mesoporous molecular sieve hygroscopic material and the preparation methof thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105107705A TWI565662B (en) | 2016-03-14 | 2016-03-14 | Environmental mesoporous molecular sieve hygroscopic material and the preparation methof thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI565662B true TWI565662B (en) | 2017-01-11 |
TW201808828A TW201808828A (en) | 2018-03-16 |
Family
ID=58408163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105107705A TWI565662B (en) | 2016-03-14 | 2016-03-14 | Environmental mesoporous molecular sieve hygroscopic material and the preparation methof thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI565662B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201127508A (en) * | 2010-02-08 | 2011-08-16 | Qing-Feng Huang | Environmentally conscious and hollow material |
TW201136677A (en) * | 2010-04-28 | 2011-11-01 | Univ Nat Ilan | Humidity adjusting material and method for producing the same |
-
2016
- 2016-03-14 TW TW105107705A patent/TWI565662B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201127508A (en) * | 2010-02-08 | 2011-08-16 | Qing-Feng Huang | Environmentally conscious and hollow material |
TW201136677A (en) * | 2010-04-28 | 2011-11-01 | Univ Nat Ilan | Humidity adjusting material and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201808828A (en) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017215011A1 (en) | Ion sieve material, preparation method therefor and using method thereof | |
Tisler et al. | Clinoptilolite foams prepared by alkali activation of natural zeolite and their post-synthesis modifications | |
US20230027987A1 (en) | Orthosilicate-based adsorbent and selective metal adsorption from brines using orthosilicate-based adsorbent | |
US20220033269A1 (en) | Zeolite and preparation method therefor | |
CN109928406B (en) | Analcime and its synthesis method | |
WO2013183646A1 (en) | Process for producing zeolite a from aluminoborosilicate glass as raw material | |
KR101618773B1 (en) | Method for manufacturing fullerene | |
KR20210074781A (en) | Manufaturing method of zeolite using lithium residue | |
JP4613348B2 (en) | Method for producing thin plate-like porous silica | |
KR20200017715A (en) | Method for manufacturing of zeolite using waste resources | |
TWI565662B (en) | Environmental mesoporous molecular sieve hygroscopic material and the preparation methof thereof | |
CN109437264A (en) | A method of aluminium oxide is prepared from mentioning in lithium waste residue | |
CN105776253A (en) | Method for preparing potassium nitrate and nanometer kaolinite with kaliophilite powder bodies | |
JP7400716B2 (en) | Inorganic ion exchanger and its manufacturing method, and method for purifying water containing radioactive strontium | |
CN113184873B (en) | Preparation method of molecular sieve, low-nitrogen-adsorption hollow glass drying agent and preparation method thereof | |
KR102599442B1 (en) | Alpha alumina with excellent aspect ratio and free of heavy metals and its manufacturing method | |
CN109928403B (en) | Large-size analcite and synthesis method thereof | |
CN108658088B (en) | Method for preparing magnetic 3A type molecular sieve by using coal gangue | |
CN106564916A (en) | Preparation method for preparing high-quality chromium slag filler and recovering sodium carbonate by using chromium slag | |
CN105664846B (en) | A kind of preparation method of gas dehydration molecular sieve desiccant | |
JP4729725B2 (en) | Silica-based highly active adsorbent material and method for producing the same | |
JP6107359B2 (en) | Type A zeolite powder | |
JP2011148677A (en) | Novel metallosilicate | |
KR20120061435A (en) | Recycling of SiO2 and Al2O3 from wasted RFCC catalyst by mechnochemistry | |
Zemnukhova et al. | Amorphous silicon dioxide from waste of Ferroally production |