TWI559685B - Boost circuit and method for controlling boost signal output - Google Patents

Boost circuit and method for controlling boost signal output Download PDF

Info

Publication number
TWI559685B
TWI559685B TW102142375A TW102142375A TWI559685B TW I559685 B TWI559685 B TW I559685B TW 102142375 A TW102142375 A TW 102142375A TW 102142375 A TW102142375 A TW 102142375A TW I559685 B TWI559685 B TW I559685B
Authority
TW
Taiwan
Prior art keywords
signal
level
transistor
boost
boosting
Prior art date
Application number
TW102142375A
Other languages
Chinese (zh)
Other versions
TW201521362A (en
Inventor
胡誌廷
沈欣彰
劉逸青
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW102142375A priority Critical patent/TWI559685B/en
Publication of TW201521362A publication Critical patent/TW201521362A/en
Application granted granted Critical
Publication of TWI559685B publication Critical patent/TWI559685B/en

Links

Landscapes

  • Logic Circuits (AREA)

Description

升壓電路及控制升壓信號之輸出之方法 Boost circuit and method for controlling output of boost signal

本發明是有關於一種升壓電路,且特別是有關於一種具有避免升壓電路崩潰之控制電路之升壓電路,以及用以避免升壓電路崩潰之方法。 The present invention relates to a booster circuit, and more particularly to a booster circuit having a control circuit that avoids collapse of the booster circuit, and a method for avoiding collapse of the booster circuit.

在半導體電路中,有時可能需要將一特定電壓值施加至半導體電路之某個部分(例如特定基板或字元線),俾能使半導體電路正確地發生效用。在某些情況下,特定電壓係為相當高的電壓。這種高電壓可藉由一電荷泵(charge pump)電路而產生,其將相對低的輸入電壓提昇至相對高的輸出電壓。一般而言,電荷泵電路需要與時脈信號一起工作,其所需的時脈信號比正常使用於半導體電路之其他部分之時脈信號具有更高的電壓位準。舉例而言,如果半導體電路之電源軌(power rail)上的供應電壓VDD大約是1.8V,則半導體電路中之時脈信號之電壓位準亦大約是1.8V。為了讓電荷泵電路產生高於供應電壓VDD之電壓,需要具有大約兩倍的供應電壓VDD之電壓位準(亦即大約3.6V)之高電壓時脈信號。 In semiconductor circuits, it may sometimes be necessary to apply a particular voltage value to a portion of the semiconductor circuit (e.g., a particular substrate or word line) that enables the semiconductor circuit to function properly. In some cases, the particular voltage is a relatively high voltage. This high voltage can be generated by a charge pump circuit that boosts the relatively low input voltage to a relatively high output voltage. In general, the charge pump circuit needs to operate with the clock signal, which requires a higher voltage level than the clock signal normally used in other parts of the semiconductor circuit. For example, if the supply voltage V DD on the power rail of the semiconductor circuit is approximately 1.8V, the voltage level of the clock signal in the semiconductor circuit is also approximately 1.8V. In order for the charge pump circuit to generate a voltage higher than the supply voltage V DD , a high voltage clock signal having a voltage level of approximately twice the supply voltage V DD (ie, approximately 3.6 V) is required.

升壓電路可用於「升壓」一輸入時脈信號之電壓並產生具有大約兩倍於供應電壓VDD位準之高電壓時脈信號(亦即升壓時脈信號)。升壓電路可包括多個半導體裝置,包括場效電晶體(Field-Effect Transistor,FET),例如金屬氧化半導體FET(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。當輸入時脈信號之電壓被升壓至高於VDD時,大約兩倍於供應電壓VDD之升壓高電壓亦可能被施加至一個或多個FET。 The boost circuit can be used to "boost" the voltage of an input clock signal and generate a high voltage clock signal (i.e., a boost clock signal) having a level approximately twice the supply voltage V DD . The boosting circuit may include a plurality of semiconductor devices, including Field-Effect Transistors (FETs), such as Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). When the voltage of the input clock signal is boosted above V DD , a boosted high voltage approximately twice the supply voltage V DD may also be applied to one or more FETs.

有時,半導體電路可能需要在低VDD條件與高VDD條件之間(例如在VDD大約是1.8V之操作條件與VDD大約是3.3V之操作條件之間)切換。在VDD大約是3.3V時之操作期間,升壓時脈信號大約是6.6V,其可能高於升壓電路中之一個或多個FET之崩潰電壓,因此導致一個或多個FET崩潰。 Sometimes, a semiconductor circuit may need to switch between a low V DD condition and a high V DD condition (eg, between an operating condition where V DD is approximately 1.8V and an operating condition where V DD is approximately 3.3V). During operation when V DD is approximately 3.3V, the boosted clock signal is approximately 6.6V, which may be higher than the breakdown voltage of one or more of the FETs, thus causing one or more FETs to collapse.

依據本揭露書,提供一種升壓電路。此升壓電路包括:一電源軌,用以提供一供應電壓;一開關電晶體,控制一升壓信號之輸出,升壓信號由開關電晶體之源極輸出;以及一時序及電壓控制電路,用以產生一待被施加至開關電晶體之閘極之EQ信號。EQ信號具有一位準,其係為一EQ高位準、一低於EQ高位準之EQ低位準或一介於EQ低位準與EQ高位準之間的EQ箝位位準。 According to the present disclosure, a booster circuit is provided. The boosting circuit includes: a power rail for providing a supply voltage; a switching transistor for controlling the output of a boosting signal, a boosting signal outputted by a source of the switching transistor; and a timing and voltage control circuit, Used to generate an EQ signal to be applied to the gate of the switching transistor. The EQ signal has a one-level, which is an EQ high level, an EQ low level lower than the EQ high level or an EQ clamp level between the EQ low level and the EQ high level.

又依據本揭露書,提供一種用於控制一升壓信號之輸出之方法。此方法包括產生一具有一位準之EQ信號,此位準 係為一EQ高位準、一低於EQ高位準之EQ低位準以及一介於EQ低位準與EQ高位準之間的EQ箝位位準之其中一個。此方法更包括施加EQ信號至一開關電晶體之一閘極,藉以控制升壓信號之輸出。 Still in accordance with the present disclosure, a method for controlling the output of a boost signal is provided. The method includes generating a one-bit EQ signal, the level It is an EQ high level, an EQ low level lower than the EQ high level, and one of the EQ clamp levels between the EQ low level and the EQ high level. The method further includes applying an EQ signal to one of the gates of a switching transistor to control the output of the boost signal.

依據本揭露書之特徵及優點將在下述說明中部分提出,且部分將從此說明中是顯而易見的,或可藉由揭露書之實施而學習到。這種特徵及優點將利用在以下申請專利範圍中所特別指出之元件及組合而實現並獲得。 The features and advantages of the present disclosure will be set forth in part in the description which follows. Such features and advantages will be realized and attained by the <RTIgt;

吾人應理解到,上述一般說明及下述詳細說明兩者係只為本發明之例示與說明而非限制本發明之申請專利範圍。 It is to be understood that the foregoing general description and the claims

併入及構成這個說明書之一部分之附圖,係顯示本發明之數個實施例,並與說明一起用於說明本發明之原理。 BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in FIG

BST1‧‧‧第一升壓來源信號 BST1‧‧‧First boost source signal

BST2‧‧‧第二升壓來源信號 BST2‧‧‧second boost source signal

BT1‧‧‧第一升壓信號 BT1‧‧‧ first boost signal

BT2‧‧‧第二升壓信號 BT2‧‧‧second boost signal

C1、C2‧‧‧電容器 C1, C2‧‧‧ capacitor

CK1‧‧‧第一升壓時脈信號 CK1‧‧‧First boost clock signal

CK2‧‧‧第二升壓時脈信號 CK2‧‧‧second boost clock signal

CLK‧‧‧輸入時脈信號 CLK‧‧‧ input clock signal

EQ1‧‧‧第一EQ信號 EQ1‧‧‧First EQ signal

EQ2‧‧‧第二EQ信號 EQ2‧‧‧Second EQ signal

EQIN1‧‧‧第一EQ輸入信號 EQIN1‧‧‧First EQ input signal

EQIN2‧‧‧第二EQ輸入信號 EQIN2‧‧‧Second EQ input signal

M31至M38‧‧‧電晶體 M31 to M38‧‧‧O crystal

M71至M77‧‧‧電晶體 M71 to M77‧‧‧O crystal

PB1‧‧‧第一信號 PB1‧‧‧ first signal

PB2‧‧‧第二信號 PB2‧‧‧ second signal

PCLK1‧‧‧第一時脈信號 PCLK1‧‧‧ first clock signal

PCLK2‧‧‧第二時脈信號 PCLK2‧‧‧ second clock signal

PWCTL‧‧‧電源控制信號 PWCTL‧‧‧ power control signal

VBOOST‧‧‧升壓高位準 V BOOST ‧‧‧Boost high level

VBOOST-CK‧‧‧升壓高時脈位準 V BOOST-CK ‧‧‧Boost high clock level

VCLAMP‧‧‧EQ箝位位準 V CLAMP ‧‧‧EQ clamp level

VDD‧‧‧供應電壓 V DD ‧‧‧ supply voltage

VHIGH1‧‧‧第一高位準 V HIGH1 ‧‧‧The first high standard

VHIGH2‧‧‧第二高位準 V HIGH2 ‧‧‧ second highest level

Vref‧‧‧參考電壓 V ref ‧‧‧reference voltage

VSHARE‧‧‧壓降 V SHARE ‧‧‧pressure drop

100‧‧‧升壓電路 100‧‧‧ boost circuit

102‧‧‧非重疊時脈產生區塊 102‧‧‧ Non-overlapping clock generation block

104‧‧‧時序及電壓控制區塊 104‧‧‧Sequence and voltage control blocks

106‧‧‧電壓升壓區塊 106‧‧‧Voltage boost block

302‧‧‧電源軌 302‧‧‧Power rail

304‧‧‧接地端 304‧‧‧ Grounding terminal

500‧‧‧區段 Section 500‧‧‧

502‧‧‧時間延遲元件 502‧‧‧Time delay element

503‧‧‧邏輯電路 503‧‧‧Logical Circuit

504‧‧‧AND閘 504‧‧‧AND gate

506‧‧‧OR閘 506‧‧‧OR gate

508‧‧‧EQ產生元件 508‧‧‧EQ generating components

702‧‧‧第一電路分支 702‧‧‧First circuit branch

704‧‧‧第二電路分支 704‧‧‧Second circuit branch

706‧‧‧第三電路分支 706‧‧‧ Third Circuit Branch

708‧‧‧EQ輸出端子 708‧‧‧EQ output terminal

710‧‧‧反相器 710‧‧‧Inverter

第1圖繪示依據例示實施例之一升壓電路之圖。 1 is a diagram of a booster circuit in accordance with an exemplary embodiment.

第2圖繪示依據例示實施例之輸入時脈信號CLK、第一時脈信號PCLK1及第二時脈信號PCLK2之波形圖。 2 is a waveform diagram of the input clock signal CLK, the first clock signal PCLK1, and the second clock signal PCLK2 according to an exemplary embodiment.

第3圖繪示依據例示實施例之升壓電路之一電壓升壓區塊之電路圖。 FIG. 3 is a circuit diagram of a voltage boosting block of a booster circuit in accordance with an exemplary embodiment.

第4圖繪示依據例示實施例之第一升壓來源信號BST1、第二升壓來源信號BST2、第一升壓信號BT1及第二升壓信號BT2之波形圖。 4 is a waveform diagram of the first boosting source signal BST1, the second boosting source signal BST2, the first boosting signal BT1, and the second boosting signal BT2 according to an exemplary embodiment.

第5圖繪示依據例示實施例之升壓電路之一時序及電壓控制區塊之一區段(segment)的圖。 FIG. 5 is a diagram showing a timing of one of the boosting circuits and a segment of the voltage control block according to the exemplary embodiment.

第6圖繪示依據例示實施例之第一時脈信號PCLK1、延遲的第一時脈信號PCLK1、第一升壓來源信號BST1及第一EQ輸入信號EQIN1之波形圖。 6 is a waveform diagram of the first clock signal PCLK1, the delayed first clock signal PCLK1, the first boost source signal BST1, and the first EQ input signal EQIN1 according to the exemplary embodiment.

第7圖繪示依據例示實施例之時序及電壓控制區塊之一種EQ產生元件之電路圖。 Figure 7 is a circuit diagram showing an EQ generating component of a timing and voltage control block in accordance with an exemplary embodiment.

第8A及8B圖繪示依據例示實施例之在低VDD操作期間之第一EQ輸入信號EQIN1、電源控制信號PWCTL、第一等化信號EQ1及第二等化信號EQ2之波形圖,以及在高VDD操作期間之第一EQ輸入信號EQIN1、第二信號PB2、電源控制信號PWCTL、第一等化信號EQ1及第二等化信號EQ2之波形圖。 8A and 8B are diagrams showing waveforms of the first EQ input signal EQIN1, the power control signal PWCTL, the first equalization signal EQ1, and the second equalization signal EQ2 during low V DD operation according to an exemplary embodiment, and Waveforms of the first EQ input signal EQIN1, the second signal PB2, the power control signal PWCTL, the first equalization signal EQ1, and the second equalization signal EQ2 during high V DD operation.

第9A及9B圖分別繪示依據例示實施例之在低VDD與高VDD操作期間之第一等化信號EQ1、第二等化信號EQ2、第一升壓來源信號BST1、第二升壓來源信號BST2、第一升壓信號BT1、第二升壓信號BT2、第一升壓時脈信號CK1及第二升壓時脈信號CK2之波形圖。 9A and 9B are respectively a first equalized signal EQ1, a second equalized signal EQ2, a first boosted source signal BST1, and a second boosted during low V DD and high V DD operations according to an exemplary embodiment. A waveform diagram of the source signal BST2, the first boosting signal BT1, the second boosting signal BT2, the first boosting clock signal CK1, and the second boosting clock signal CK2.

依據本揭露書之實施例包括能夠維持高輸出電壓之升壓電路以及用以避免升壓電路崩潰之方法。 Embodiments in accordance with the present disclosure include a boost circuit capable of maintaining a high output voltage and a method for avoiding collapse of the boost circuit.

以下,將參考圖式說明依據本揭露書之實施例。若有可能的話,遍及這些圖式將使用相同的參考數字以表示相同或類似的部分。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. Wherever possible, the same reference numerals will be used to the

第1圖繪示依據本揭露書實施例之一例示升壓電路100。升壓電路100用以產生一升壓時脈信號,其具有一個升壓高時脈位準,係高於輸入時脈信號之高時脈位準(升壓高時脈位準譬如大約兩倍於輸入時脈信號之高時脈位準),其中輸入時脈信號之高時脈位準大約與供應電壓VDD相同。在某些實施例中,如第1圖所示,升壓電路100產生兩個升壓時脈信號,即第一升壓時脈信號CK1與第二升壓時脈信號CK2。 FIG. 1 illustrates a booster circuit 100 in accordance with one embodiment of the present disclosure. The boosting circuit 100 is configured to generate a boosting clock signal having a boosted high clock level that is higher than the high clock level of the input clock signal (the boosting high clock position is approximately twice The high clock position of the input clock signal is about the same as the supply voltage V DD . In some embodiments, as shown in FIG. 1, the boosting circuit 100 generates two boosting clock signals, that is, a first boosting clock signal CK1 and a second boosting clock signal CK2.

依據本揭露書之實施例,升壓電路100係用以在低VDD操作條件與高VDD操作條件兩者之下操作,並用以在兩個操作條件之間切換。如於此揭露書所使用的,低VDD表示這樣的VDD不會導致升壓時脈信號之升壓高時脈位準高於升壓電路100中之電子元件之崩潰電壓,而高VDD表示這樣的VDD可能導致升壓時脈信號之升壓高時脈位準高於升壓電路100中之電子元件之崩潰電壓。舉例而言,低VDD可大約是1.65V至大約2V,而高VDD可大約是2.7V至大約3.6V。在某些實施例中,低VDD可大約是1.8V,而高VDD可大約是3.3V。 In accordance with an embodiment of the present disclosure, boost circuit 100 is operative to operate under both low VDD operating conditions and high VDD operating conditions and to switch between two operating conditions. As used in this disclosure, low V DD means that such a V DD does not cause the boosted clock signal's boosted high pulse level to be higher than the breakdown voltage of the electronic components in the boost circuit 100, but high V DD indicates that such a V DD may cause the boosted clock signal to have a boosted high clock level higher than the breakdown voltage of the electronic components in the booster circuit 100. For example, the low V DD can be approximately 1.65V to approximately 2V, while the high V DD can be approximately 2.7V to approximately 3.6V. In some embodiments, the low V DD can be approximately 1.8V, while the high V DD can be approximately 3.3V.

請參考第1圖,升壓電路100包括非重疊時脈產生區塊102、時序及電壓控制區塊104以及電壓升壓區塊106。非重疊時脈產生區塊102係用以基於輸入時脈信號CLK產生第一時脈信號PCLK1及第二時脈信號PCLK2。 Referring to FIG. 1, the booster circuit 100 includes a non-overlapping clock generation block 102, a timing and voltage control block 104, and a voltage boost block 106. The non-overlapping clock generation block 102 is configured to generate the first clock signal PCLK1 and the second clock signal PCLK2 based on the input clock signal CLK.

第2圖繪示輸入時脈信號CLK、第一時脈信號PCLK1及第二時脈信號PCLK2之例示波形。依據本揭露書之實 施例,輸入時脈信號CLK、第一時脈信號PCLK1及第二時脈信號PCLK2皆具有大約等於VDD之高位準以及大約等於接地電壓(亦即0V)之低位準,周期例如皆是40ns。以下,除非另有說明,否則一波形之高位準理想被視為大約VDD,但可能譬如因為寄生電阻而比VDD低了一點。又,一波形之低位準係被視為大約0V,但可能譬如因為寄生電阻而比0V高了一點。在高位準與VDD之間以及在低位準與0V之間的差異小,其乃因為它們起因於譬如寄生電容的壓降。如第2圖所示,第一時脈信號PCLK1及第二時脈信號PCLK2並未彼此重疊,亦即,第一時脈信號PCLK1及第二時脈信號PCLK2並未同時變高。在一個周期之內,第一時脈信號PCLK1從低位準上升至高位準是在輸入時脈信號CLK從低位準上升至高位準的一時間延遲之後,而第一時脈信號PCLK1從高位準下降至低位準是與輸入時脈信號CLK從高位準下降至低位準大約相同時間。相似地,第二時脈信號PCLK2從低位準上升至高位準是在輸入時脈信號CLK從高位準下降至低位準的一時間延遲之後,而第二時脈信號PCLK2從高位準下降至低位準是與輸入時脈信號CLK從低位準上升至高位準大約相同時間。以下,一波形從一個位準至另一個位準之轉變亦被稱為波形之邊緣。波形從低位準至高位準之轉變亦被稱為波形之上升邊緣,而波形從高位準至低位準之轉變亦被稱為下降邊緣。 FIG. 2 illustrates an exemplary waveform of the input clock signal CLK, the first clock signal PCLK1, and the second clock signal PCLK2. According to an embodiment of the present disclosure, the input clock signal CLK, the first clock signal PCLK1, and the second clock signal PCLK2 both have a high level approximately equal to V DD and a low level approximately equal to the ground voltage (ie, 0V). The period is, for example, 40 ns. In the following, unless otherwise stated, the high level of a waveform is considered to be approximately V DD , but may be a little lower than V DD due to parasitic resistance. Again, the low level of a waveform is considered to be approximately 0V, but may be a little higher than 0V due to parasitic resistance. The difference between the high level and V DD and between the low level and 0V is small because they result from a voltage drop such as a parasitic capacitance. As shown in FIG. 2, the first clock signal PCLK1 and the second clock signal PCLK2 do not overlap each other, that is, the first clock signal PCLK1 and the second clock signal PCLK2 do not become high at the same time. Within one cycle, the first clock signal PCLK1 rises from a low level to a high level after a time delay of the input clock signal CLK rising from a low level to a high level, and the first clock signal PCLK1 falls from a high level. The low level is about the same time as the input clock signal CLK falls from a high level to a low level. Similarly, the second clock signal PCLK2 rises from a low level to a high level after a time delay in which the input clock signal CLK falls from a high level to a low level, and the second clock signal PCLK2 falls from a high level to a low level. It is about the same time as the input clock signal CLK rises from a low level to a high level. Hereinafter, the transition of one waveform from one level to another is also referred to as the edge of the waveform. The transition of a waveform from a low level to a high level is also referred to as the rising edge of the waveform, and the transition of the waveform from a high level to a low level is also referred to as a falling edge.

請再參考第1圖,第一時脈信號PCLK1與第二時脈信號PCLK2輸入至時序及電壓控制區塊104,而時序及電壓控制 區塊104產生第一升壓來源信號BST1及第二升壓來源信號BST2,以由電壓升壓區塊106升壓。第一升壓來源信號BST1及第二升壓來源信號BST2亦參與控制電壓升壓區塊106之操作。時序及電壓控制區塊104更進一步產生第一等化(EQ)信號EQ1及第二EQ信號EQ2,其亦用以控制電壓升壓區塊106之操作。於此揭露書隨後將討論,第一EQ信號EQ1及第二EQ信號EQ2係用以控制一輸出升壓時脈信號的開關元件(例如開關電晶體)之導通與不導通操作。 Referring again to FIG. 1, the first clock signal PCLK1 and the second clock signal PCLK2 are input to the timing and voltage control block 104, and the timing and voltage control are performed. The block 104 generates a first boost source signal BST1 and a second boost source signal BST2 to be boosted by the voltage boost block 106. The first boost source signal BST1 and the second boost source signal BST2 also participate in the operation of the control voltage boost block 106. The timing and voltage control block 104 further generates a first equalization (EQ) signal EQ1 and a second EQ signal EQ2, which are also used to control the operation of the voltage boost block 106. As will be discussed later in this disclosure, the first EQ signal EQ1 and the second EQ signal EQ2 are used to control the conduction and non-conduction operations of a switching element (eg, a switching transistor) that outputs a boosted clock signal.

第3圖繪示依據本揭露書實施例之一例示電壓升壓區塊106。第3圖所示之例示電壓升壓區塊106具有「鏡」(mirror)結構(亦即,一對稱結構),「鏡」結構包括電晶體M31-M38及電容器C1與C2。電晶體M31-M38係為金屬氧化半導體場效電晶體(MOSFET),其中電晶體M31、M32、M35、M36、M37及M38係為n通道MOSFET(n-MOS),而電晶體M33及M34係為p通道MOSFET(p-MOS)。如將從第3圖及於此揭露書隨後的討論看到,即使在高VDD操作期間,對於電晶體M31、M32、M35及M36之每一個而言,閘極及源極/汲極之間被施加的電壓差異相對較低,且此電壓差異並未超過氧化物的崩潰電壓,即未超過電晶體之閘極氧化物被破壞之電壓。以下,除非另有說明,否則電晶體之氧化物崩潰電壓亦被稱為電晶體之崩潰電壓。因此,對電晶體M31、M32、M35及M36而言,可使用具有較低閾值電壓之薄氧化物n-MOS以減少功率消耗及電荷共享時間。 FIG. 3 illustrates a voltage boost block 106 in accordance with one embodiment of the present disclosure. The exemplary voltage boost block 106 shown in FIG. 3 has a "mirror" structure (i.e., a symmetrical structure), and the "mirror" structure includes transistors M31-M38 and capacitors C1 and C2. The transistor M31-M38 is a metal oxide semiconductor field effect transistor (MOSFET), in which the transistors M31, M32, M35, M36, M37 and M38 are n-channel MOSFETs (n-MOS), and the transistors M33 and M34 are It is a p-channel MOSFET (p-MOS). As will be seen from the discussion of Figure 3 and the disclosure of this disclosure, the gate and source/drain are for each of the transistors M31, M32, M35 and M36, even during high V DD operation. The voltage difference applied between them is relatively low, and this voltage difference does not exceed the breakdown voltage of the oxide, that is, the voltage at which the gate oxide of the transistor is destroyed. Hereinafter, unless otherwise stated, the oxide breakdown voltage of the transistor is also referred to as the breakdown voltage of the transistor. Thus, for transistors M31, M32, M35, and M36, a thin oxide n-MOS with a lower threshold voltage can be used to reduce power consumption and charge sharing time.

如第3圖所示,電晶體M31及M32之汲極係連接至電源軌302,電源軌302提供供應電壓VDD。電晶體M31及M32形成一條充電路徑,充電路徑與電容器C1及C2一起,以第一升壓來源信號BST1及第二升壓來源信號BST2作為輸入而產生第一升壓信號BT1及第二升壓信號BT2。第4圖繪示第一升壓來源信號BST1、第二升壓來源信號BST2、第一升壓信號BT1及第二升壓信號BT2之例示波形。此揭露書隨後將更進一步討論第一升壓來源信號BST1及第二升壓來源信號BST2之產生。從第4圖可看到當第二升壓來源信號BST2從低位準上升至高位準時,第一升壓信號BT1係藉由電源軌302被充電至第一高位準VHIGH1並維持於此電壓位準直到第一升壓來源信號BST1從低位準上升至高位準為止,於此時第一升壓信號BT1係從第一高位準VHIGH1升壓至升壓高位準VBOOST,升壓高位準VBOOST可大約是VDD之1.8倍至大約2倍。理想上,第一高位準VHIGH1將與VDD相同。然而如前所述,由於升壓電路100中之電子元件之寄生電阻及電容,第一高位準VHIGH1係低於VDD。當第一升壓來源信號BST1從高位準降至低位準時,第一升壓信號BT1從升壓高位準VBOOST降至第二高位準VHIGH2。同樣地,因為寄生電阻及電容,第二高位準VHIGH2係高於接地位準但低於VDD及第一高位準VHIGH1。第二升壓信號BT2隨著時間之改變係類似於第一升壓信號BT1,但具有不同相位,從而於此並未詳細說明。 As shown in FIG. 3, the drains of the transistors M31 and M32 are connected to the power rail 302, and the power rail 302 provides the supply voltage V DD . The transistors M31 and M32 form a charging path, and the charging path together with the capacitors C1 and C2 generates the first boosting signal BT1 and the second boosting with the first boosting source signal BST1 and the second boosting source signal BST2 as inputs. Signal BT2. FIG. 4 is a diagram showing exemplary waveforms of the first boosting source signal BST1, the second boosting source signal BST2, the first boosting signal BT1, and the second boosting signal BT2. This disclosure will further discuss the generation of the first boost source signal BST1 and the second boost source signal BST2. It can be seen from FIG. 4 that when the second boosting source signal BST2 rises from the low level to the high level, the first boosting signal BT1 is charged to the first high level V HIGH1 by the power rail 302 and maintained at the voltage level. Until the first boost source signal BST1 rises from the low level to the high level, at this time, the first boost signal BT1 is boosted from the first high level V HIGH1 to the boost high level V BOOST , and the boost high level V BOOST can be about 1.8 times to about 2 times V DD . Ideally, the first high level V HIGH1 will be the same as V DD . However, as described above, due to the parasitic resistance and capacitance of the electronic components in the booster circuit 100, the first high level V HIGH1 is lower than V DD . When the first boost source signal BST1 is lowered from the high level to the low level, the first boost signal BT1 is decreased from the boost high level V BOOST to the second high level V HIGH2 . Similarly, because of parasitic resistance and capacitance, the second high level V HIGH2 is above the ground level but below V DD and the first high level V HIGH1 . The change of the second boosting signal BT2 with time is similar to the first boosting signal BT1, but has a different phase, and thus is not described in detail herein.

請再參考第3圖,電晶體M37及M38之源極係連 接至接地端304,電晶體M37及M38之汲極係連接至電晶體M35及M36之源極,電晶體M37及M38之閘極係分別由第二升壓來源信號BST2及第一升壓來源信號BST1所控制。此外,電晶體M35及M36之閘極係連接至電源軌302,因此,電晶體M35及M36在升壓電路100之操作期間總是導通。電晶體M35、M36、M37及M38形成一條放電路徑。放電路徑係用於在第二升壓來源信號BST2上升至高位準以導通電晶體M37時,將第一升壓時脈信號CK1拉至低位準。同樣地,放電路徑亦用於在第一升壓來源信號BST1上升至高位準以導通電晶體M38時,將第二升壓時脈信號CK2拉至低位準。電晶體M35及M36被插入在放電路徑中,以避免大的峰值放電電流之發生,並分別用以避免電晶體M37及M38崩潰。 Please refer to Figure 3 again, the source of the transistors M37 and M38 Connected to the ground terminal 304, the drains of the transistors M37 and M38 are connected to the sources of the transistors M35 and M36, and the gates of the transistors M37 and M38 are respectively driven by the second boost source signal BST2 and the first boost source. Controlled by signal BST1. In addition, the gates of the transistors M35 and M36 are connected to the power rail 302, and therefore, the transistors M35 and M36 are always turned on during operation of the booster circuit 100. The transistors M35, M36, M37 and M38 form a discharge path. The discharge path is used to pull the first boosting clock signal CK1 to a low level when the second boosting source signal BST2 rises to a high level to conduct the conducting crystal M37. Similarly, the discharge path is also used to pull the second boosting clock signal CK2 to a low level when the first boosting source signal BST1 rises to a high level to conduct the conducting crystal M38. Transistors M35 and M36 are inserted in the discharge path to avoid large peak discharge currents and are used to avoid breakdown of transistors M37 and M38, respectively.

電晶體M33及M34作為電荷共享開關元件,電荷共享開關元件分別控制第一升壓時脈信號CK1與第二升壓時脈信號CK2之輸出。亦即,電晶體M33及M34係為電壓升壓區塊106中之開關電晶體。舉例而言,如第3圖所示,當第二EQ信號EQ2位於導通電晶體M33之位準時,電晶體M33於其汲極接收第一升壓信號BT1,並於其源極輸出第一升壓時脈信號CK1。同樣地,當第一EQ信號EQ1位於導通電晶體M34之位準時,電晶體M34於其汲極接收第二升壓信號BT2,並於其源極輸出第二升壓時脈信號CK2。第一EQ信號EQ1、第二EQ信號EQ2、第一升壓時脈信號CK1以及第二升壓時脈信號CK2之例示波形隨 後將於此揭露書中說明。 The transistors M33 and M34 function as charge sharing switching elements, and the charge sharing switching elements respectively control the outputs of the first boosting clock signal CK1 and the second boosting clock signal CK2. That is, the transistors M33 and M34 are the switching transistors in the voltage boosting block 106. For example, as shown in FIG. 3, when the second EQ signal EQ2 is at the level of the conducting transistor M33, the transistor M33 receives the first boosting signal BT1 at its drain and outputs the first liter at its source. Press the clock signal CK1. Similarly, when the first EQ signal EQ1 is at the level of the conducting crystal M34, the transistor M34 receives the second boosting signal BT2 at its drain and outputs the second boosting clock signal CK2 at its source. An exemplary waveform of the first EQ signal EQ1, the second EQ signal EQ2, the first boosted clock signal CK1, and the second boosted clock signal CK2 follows This will be explained later in this disclosure.

如上所述,第一升壓來源信號BST1、第二升壓來源信號BST2、第一EQ信號EQ1以及第二EQ信號EQ2係藉由時序及電壓控制區塊104產生。依據本揭露書之實施例,時序及電壓控制區塊104包括兩個近乎相同的區段(segment)。兩區段之其中一個區段係用以產生第一升壓來源信號BST1及第一EQ信號EQ1,而另一個區段係用於產生第二升壓來源信號BST2及第二EQ信號EQ2。舉例而言,第5圖繪示時序及電壓控制區塊104之一個例示區段500,其係用以產生第一升壓來源信號BST1及第一EQ信號EQ1。時序及電壓控制區塊104中,用以產生第二升壓來源信號BST2及第二EQ信號EQ2之另一區段係類似於區段500,從而於此並未描繪出。 As described above, the first boosting source signal BST1, the second boosting source signal BST2, the first EQ signal EQ1, and the second EQ signal EQ2 are generated by the timing and voltage control block 104. In accordance with an embodiment of the present disclosure, timing and voltage control block 104 includes two nearly identical segments. One of the two sections is for generating the first boost source signal BST1 and the first EQ signal EQ1, and the other section is for generating the second boost source signal BST2 and the second EQ signal EQ2. For example, FIG. 5 illustrates an exemplary section 500 of the timing and voltage control block 104 for generating a first boost source signal BST1 and a first EQ signal EQ1. In the timing and voltage control block 104, another segment for generating the second boost source signal BST2 and the second EQ signal EQ2 is similar to the segment 500 and thus is not depicted herein.

如第5圖所示,區段500包括一時間延遲元件502,用以基於一輸入信號產生一延遲信號。舉例而言,時間延遲元件502延遲第一時脈信號PCLK1以產生延遲的第一時脈信號PCLK1。亦即,時間延遲元件502之輸出(亦即延遲的第一時脈信號PCLK1)具有類似於第一時脈信號PCLK1之波形,但被延遲了例如大約2ns。第一時脈信號PCLK1及延遲的第一時脈信號PCLK1兩者係輸入至一邏輯電路503以產生第一升壓來源信號BST1及第一EQ信號EQ1。在某些實施例中,如第5圖所示,邏輯電路503包括一AND閘504、一OR閘506以及一EQ產生元件508。具體而言,延遲的第一時脈信號PCLK1係與第一時脈信 號PCLK1一起輸入至AND閘504以產生第一升壓來源信號BST1。同樣地,延遲的第一時脈信號PCLK1亦與第一時脈信號PCLK1一起輸入至OR閘506以產生第一EQ輸入信號EQIN1,第一EQ輸入信號EQIN1接著輸入至EQ產生元件508以產生第一EQ信號EQ1。 As shown in FIG. 5, section 500 includes a time delay element 502 for generating a delayed signal based on an input signal. For example, the time delay element 502 delays the first clock signal PCLK1 to generate a delayed first clock signal PCLK1. That is, the output of the time delay element 502 (i.e., the delayed first clock signal PCLK1) has a waveform similar to the first clock signal PCLK1, but is delayed by, for example, about 2 ns. Both the first clock signal PCLK1 and the delayed first clock signal PCLK1 are input to a logic circuit 503 to generate a first boost source signal BST1 and a first EQ signal EQ1. In some embodiments, as shown in FIG. 5, logic circuit 503 includes an AND gate 504, an OR gate 506, and an EQ generating component 508. Specifically, the delayed first clock signal PCLK1 is associated with the first clock signal The number PCLK1 is input together to the AND gate 504 to generate a first boost source signal BST1. Similarly, the delayed first clock signal PCLK1 is also input to the OR gate 506 together with the first clock signal PCLK1 to generate a first EQ input signal EQIN1, which is then input to the EQ generating component 508 to generate a first An EQ signal EQ1.

第6圖繪示第一時脈信號PCLK1、延遲的第一時脈信號PCLK1、第一升壓來源信號BST1及第一EQ輸入信號EQIN1之例示波形,每一個信號皆在一高位準與一低位準之間轉變。從第6圖可看出,在一個周期之內,第一升壓來源信號BST1之上升邊緣與延遲的第一時脈信號PCLK1之上升邊緣一致。亦即,當延遲的第一時脈信號PCLK1從一低位準上升至一高位準時,第一升壓來源信號BST1於大約相同的時間從一低位準上升至一高位準。第一升壓來源信號BST1之下降邊緣與第一時脈信號PCLK1之下降邊緣一致。亦即,當第一時脈信號PCLK1從一高位準降至一低位準時,第一升壓來源信號BST1於大約相同的時間從高位準降至低位準。又,第一EQ輸入信號EQIN1之上升邊緣與第一時脈信號PCLK1之上升邊緣一致,而第一EQ輸入信號EQIN1之下降邊緣與延遲的第一時脈信號PCLK1之下降邊緣一致。亦即,第一EQ輸入信號EQIN1在第一升壓來源信號BST1上升之前上升並在第一升壓來源信號BST1下降之後下降。吾人可注意到,由於系統延遲,彼此一致的兩個邊緣並未意指它們於剛好相同的時間上升或下降。舉例而言,第一升壓來源信號BST1之上 升邊緣可略在延遲的第一時脈信號PCLK1之上升邊緣的後方,這種延遲通常小於由時間延遲元件502所造成之刻意延遲。 FIG. 6 is a diagram showing an exemplary waveform of the first clock signal PCLK1, the delayed first clock signal PCLK1, the first boost source signal BST1, and the first EQ input signal EQIN1, each of which is at a high level and a low level. Change between quasi. As can be seen from Fig. 6, within one cycle, the rising edge of the first boosting source signal BST1 coincides with the rising edge of the delayed first clock signal PCLK1. That is, when the delayed first clock signal PCLK1 rises from a low level to a high level, the first boost source signal BST1 rises from a low level to a high level at about the same time. The falling edge of the first boost source signal BST1 coincides with the falling edge of the first clock signal PCLK1. That is, when the first clock signal PCLK1 is lowered from a high level to a low level, the first boost source signal BST1 is lowered from a high level to a low level at about the same time. Moreover, the rising edge of the first EQ input signal EQIN1 coincides with the rising edge of the first clock signal PCLK1, and the falling edge of the first EQ input signal EQIN1 coincides with the falling edge of the delayed first clock signal PCLK1. That is, the first EQ input signal EQIN1 rises before the first boost source signal BST1 rises and falls after the first boost source signal BST1 falls. It can be noted that due to system delay, the two edges that coincide with each other do not mean that they rise or fall at exactly the same time. For example, above the first boost source signal BST1 The rising edge may be slightly behind the rising edge of the delayed first clock signal PCLK1, which is typically less than the deliberate delay caused by the time delay element 502.

第7圖繪示依據本揭露書實施例之一例示的EQ產生元件508。EQ產生元件508包括一第一電路分支702、一第二電路分支704以及一第三電路分支706,用以產生第一EQ信號EQ1之波形之不同部分,第一EQ信號EQ1係從EQ輸出端子708輸出。如第7圖所示,第一電路分支702與第二電路分支704係連接於電源軌302與EQ輸出端子708之間,而第三電路分支706係連接於接地端304與EQ輸出端子708之間。 FIG. 7 illustrates an EQ generating component 508 exemplified in accordance with one embodiment of the present disclosure. The EQ generating component 508 includes a first circuit branch 702, a second circuit branch 704, and a third circuit branch 706 for generating different portions of the waveform of the first EQ signal EQ1. The first EQ signal EQ1 is from the EQ output terminal. 708 output. As shown in FIG. 7, the first circuit branch 702 and the second circuit branch 704 are connected between the power rail 302 and the EQ output terminal 708, and the third circuit branch 706 is connected to the ground terminal 304 and the EQ output terminal 708. between.

在第7圖所示之例子中,EQ產生元件508包括一反相器710以及由不同信號所控制之電晶體M71-M77。在第7圖中,電晶體M71、M74、M75及M76係為p-MOS,而電晶體M72、M73及M77係為n-MOS。第一電路分支702包括電晶體M71。第二電路分支704包括電晶體M74、M75及M76。第三電路分支706包括電晶體M72、M73及M77。 In the example shown in Figure 7, the EQ generating component 508 includes an inverter 710 and transistors M71-M77 controlled by different signals. In Fig. 7, the transistors M71, M74, M75, and M76 are p-MOS, and the transistors M72, M73, and M77 are n-MOS. The first circuit branch 702 includes a transistor M71. The second circuit branch 704 includes transistors M74, M75, and M76. The third circuit branch 706 includes transistors M72, M73, and M77.

依據本揭露書之實施例,EQ產生元件508係用於在低VDD操作條件(例如大約1.65V至大約2V)與高VDD操作條件(例如大約2.7V至大約3.6V)兩操作條件之下工作。在第7圖所示之例子中,電晶體M72及M76係由一電源控制信號PWCTL所控制,其在低VDD操作條件下的操作期間保持電晶體M72導通而電晶體M76不導通,而在高VDD操作條件下的操作期間保持電晶體M72不導通而電晶體M76導通。亦即,當EQ產生元件508 係在低VDD操作條件下工作時,第二電路分支704被切斷,從而並未對第一EQ信號EQ1之產生造成影響。當EQ產生元件508係在高VDD操作條件下工作時,第二電路分支704接入(kicks in)而對第一EQ信號EQ1之產生造成影響。 In accordance with an embodiment of the present disclosure, EQ generating component 508 is used for operating conditions of low V DD operating conditions (eg, from about 1.65 V to about 2 V) and high V DD operating conditions (eg, from about 2.7 V to about 3.6 V). Work under. In the example shown in Figure 7, transistors M72 and M76 are controlled by a power supply control signal PWCTL that keeps transistor M72 conducting and transistor M76 non-conducting during operation under low VDD operating conditions. The transistor M72 is kept non-conductive and the transistor M76 is turned on during operation under high V DD operating conditions. That is, when the EQ generating component 508 operates under low VDD operating conditions, the second circuit branch 704 is turned off, thereby not affecting the generation of the first EQ signal EQ1. When the EQ generating component 508 is operating under high VDD operating conditions, the second circuit branch 704 is kicked in to affect the generation of the first EQ signal EQ1.

第8A圖繪示當第7圖所示之例示的EQ產生元件508在低VDD操作條件下操作時之第一EQ輸入信號EQIN1、電源控制信號PWCTL及第一EQ信號EQ1之波形。雖然第8A圖並未顯示第一信號PB1之波形(即反相器710之輸出),但熟習本項技藝者可知第一信號PB1僅為第一EQ輸入信號EQIN1之反相信號。於此例子,電源控制信號PWCTL被設定到高位準以保持電晶體M72導通而電晶體M76不導通。如第8A圖所示,在低VDD操作條件下,第一EQ信號EQ1具有EQ高位準或EQ低位準之位準,其位準與第一EQ輸入信號EQIN1之高位準及低位準相同。依據本揭露書之實施例,EQ高位準大約等於VDD,而EQ低位準大約等於0V。 8A is a diagram showing waveforms of the first EQ input signal EQIN1, the power control signal PWCTL, and the first EQ signal EQ1 when the illustrated EQ generating element 508 shown in FIG. 7 operates under low V DD operating conditions. Although FIG. 8A does not show the waveform of the first signal PB1 (ie, the output of the inverter 710), it will be apparent to those skilled in the art that the first signal PB1 is only the inverted signal of the first EQ input signal EQIN1. In this example, the power control signal PWCTL is set to a high level to keep the transistor M72 conducting and the transistor M76 not conducting. As shown in FIG. 8A, under the condition of low V DD operation, the first EQ signal EQ1 has a level of EQ high level or EQ low level, and its level is the same as the high level and the low level of the first EQ input signal EQIN1. In accordance with an embodiment of the present disclosure, the EQ high level is approximately equal to V DD and the EQ low level is approximately equal to 0V.

當EQ產生元件508在高VDD操作條件下操作時,如第8B圖所示,電源控制信號PWCTL被設定到低位準,用以保持電晶體M72不導通而電晶體M76導通。依據本揭露書之實施例,第二電路分支704中之電晶體M74係由一參考電壓Vref所控制,使得電晶體M74保持在一局部導通狀態,而存在一壓降VSHARE(例如大約2V)橫跨電晶體M74之汲極及源極。因此,當電晶體M75導通時,施加至EQ輸出端子之電壓並非是大約VDD之 電壓,而是大約VDD-VSHARE之電壓。亦即,由參考電壓Vref所控制之電晶體M74係作為電壓箝位元件,將由EQ輸出端子所輸出之電壓箝位於EQ箝位位準VCLAMP,大約等於VDD-VSHAREWhen the EQ generating component 508 is operating under high VDD operating conditions, as shown in FIG. 8B, the power control signal PWCTL is set to a low level to keep the transistor M72 off and the transistor M76 turned on. In accordance with an embodiment of the present disclosure, the transistor M74 in the second circuit branch 704 is controlled by a reference voltage V ref such that the transistor M74 remains in a partially conductive state and there is a voltage drop V SHARE (eg, approximately 2V). ) across the drain and source of transistor M74. Therefore, when the transistor M75 is turned on, the voltage applied to the EQ output terminal is not a voltage of about V DD but a voltage of about V DD -V SHARE . That is, the transistor M74 controlled by the reference voltage V ref acts as a voltage clamping component, and clamps the voltage outputted by the EQ output terminal to the EQ clamp level V CLAMP , which is approximately equal to V DD -V SHARE .

在某些實施例中,可使用其他電子元件作為電壓箝位元件而不是Vref控制的電晶體M74。舉例而言,耦接至二極體之FET,或是去耦電容器,亦可被使用作為電壓箝位元件。使用耦接至二極體之FET可減少升壓電路100之面積,其係因為不需以電路產生參考電壓VrefIn some embodiments, other electronic components can be used as the voltage clamping component instead of the Vref controlled transistor M74. For example, a FET coupled to a diode, or a decoupling capacitor, can also be used as a voltage clamping component. The use of a FET coupled to a diode can reduce the area of the boost circuit 100 because the reference voltage V ref is not required to be generated by the circuit.

如上所述,在高VDD操作期間,電源控制信號PWCTL被設定到低位準,使電晶體M72在這個操作期間不導通,相當於第三電路分支706並不包括電晶體M72而只包括電晶體M73及M77。從第7圖可看出,第三電路分支706中之電晶體M77以及第二電路分支704中之電晶體M75兩者係由相同的第二信號PB2(即第二EQ輸入信號EQIN2之反相信號)所控制。因為電晶體M75及M77屬於相反類型(在第7圖所示之例子中,一個係為p-MOS而另一個係為n-MOS),所以它們依序地被導通以及不導通。亦即,當電晶體M75導通時,電晶體M77不導通,而反之亦然。同樣地,電晶體M71及M73亦屬於相反類型且係由相同的第一信號PB1(即第一EQ輸入信號EQIN1之反相信號)所控制,從而依序地導通以及不導通。亦即,當電晶體M71導通時,電晶體M73不導通,而反之亦然。這種機制確保在高VDD操作期間,第一電路分支702、第二電路分支704及第三電路分支706 依序輸出至EQ輸出端子708,以產生第一EQ信號EQ1的位準依序為EQ高位準(大約VDD)、EQ箝位位準(大約VDD-VSHARE)及EQ低位準(大約0V)。 As described above, during high V DD operation, the power supply control signal PWCTL is set to a low level, so that the transistor M72 does not conduct during this operation, which corresponds to the third circuit branch 706 not including the transistor M72 but only the transistor. M73 and M77. As can be seen from FIG. 7, both the transistor M77 in the third circuit branch 706 and the transistor M75 in the second circuit branch 704 are both identical to the second signal PB2 (ie, the second EQ input signal EQIN2 is inverted). Signal) is controlled. Since the transistors M75 and M77 belong to the opposite type (in the example shown in Fig. 7, one is p-MOS and the other is n-MOS), they are sequentially turned on and off. That is, when the transistor M75 is turned on, the transistor M77 is not turned on, and vice versa. Similarly, the transistors M71 and M73 are also of the opposite type and are controlled by the same first signal PB1 (i.e., the inverted signal of the first EQ input signal EQIN1), thereby being sequentially turned on and off. That is, when the transistor M71 is turned on, the transistor M73 is not turned on, and vice versa. This mechanism ensures that during high V DD operation, the first circuit branch 702, the second circuit branch 704, and the third circuit branch 706 are sequentially output to the EQ output terminal 708 to generate the first EQ signal EQ1 in the order of EQ high level (approximately V DD ), EQ clamp level (approximately V DD -V SHARE ) and EQ low level (approximately 0V).

第8B圖繪示當第7圖所示之例示的EQ產生元件508在高VDD操作條件下工作時之第一EQ輸入信號EQIN1、第二信號PB2、電源控制信號PWCTL及第一EQ信號EQ1之例示波形。依據本揭露書之實施例,第二信號PB2係為類似於第一信號PB1之波形,是由時序及電壓控制區塊104的另一區段而產生。亦即,第二信號PB2實質上是第二EQ輸入信號EQIN2之反相信號。第8A及8B圖亦分別顯示第二EQ信號EQ2在低VDD操作期間與高VDD操作期間的波形以作為比較用。 8B is a diagram showing the first EQ input signal EQIN1, the second signal PB2, the power control signal PWCTL, and the first EQ signal EQ1 when the illustrated EQ generating component 508 shown in FIG. 7 operates under high V DD operating conditions. An exemplary waveform. In accordance with an embodiment of the present disclosure, the second signal PB2 is a waveform similar to the first signal PB1 and is generated by another segment of the timing and voltage control block 104. That is, the second signal PB2 is substantially an inverted signal of the second EQ input signal EQIN2. Figures 8A and 8B also show waveforms of the second EQ signal EQ2 during low V DD operation and high V DD operation, respectively, for comparison.

如以上所討論的波形(亦即,第一升壓來源信號BST1、第二升壓來源信號BST2、第一EQ信號EQ1以及第二EQ信號EQ2)係如第3圖所示地輸入至電壓升壓區塊106,用以產生第一升壓時脈信號CK1與第二升壓時脈信號CK2。第9A及9B圖分別繪示在低VDD與高VDD操作期間之第一EQ信號EQ1、第二EQ信號EQ2、第一升壓來源信號BST1、第二升壓來源信號BST2、第一升壓信號BT1、第二升壓信號BT2、第一升壓時脈信號CK1及第二升壓時脈信號CK2之例示波形。當第一升壓信號BT1位於升壓高位準VBOOST時,第一升壓時脈信號CK1亦位於升壓高時脈位準VBOOST-CK,其大約等於升壓高位準VBOOST。實際上,由於譬如電晶體M33之寄生電阻及電容,位於第一升壓時脈 信號CK1之升壓高時脈位準VBOOST-CK可能低於位於第一升壓信號BT1之升壓高位準VBOOST。同樣地,當第二升壓信號BT2位於升壓高位準VBOOST時,第二升壓時脈信號CK2亦位於升壓高時脈位準VBOOST-CK,其大約等於升壓高位準VBOOST。實際上,由於譬如電晶體M34之寄生電阻及電容,位於第二升壓時脈信號CK2之升壓高時脈位準VBOOST-CK可能低於位於第二升壓信號BT2之升壓高位準VBOOSTThe waveforms as discussed above (ie, the first boost source signal BST1, the second boost source signal BST2, the first EQ signal EQ1, and the second EQ signal EQ2) are input to the voltage rise as shown in FIG. The nip 106 is configured to generate a first boosting clock signal CK1 and a second boosting clock signal CK2. Figures 9A and 9B illustrate a first EQ signal EQ1, a second EQ signal EQ2, a first boost source signal BST1, a second boost source signal BST2, and a first rise during low V DD and high V DD operations, respectively. An exemplary waveform of the pressure signal BT1, the second boosting signal BT2, the first boosting clock signal CK1, and the second boosting clock signal CK2. When the first boost signal BT1 is at the boost high level V BOOST , the first boost clock signal CK1 is also located at the boost high clock level V BOOST-CK , which is approximately equal to the boost high level V BOOST . In fact, due to the parasitic resistance and capacitance of the transistor M33, the boosted high clock level V BOOST-CK at the first boosting clock signal CK1 may be lower than the boost high level of the first boost signal BT1. V BOOST . Similarly, when the second boosting signal BT2 is located at the boosting high level V BOOST , the second boosting clock signal CK2 is also located at the boosting high clock level V BOOST-CK , which is approximately equal to the boosting high level V BOOST . . In fact, due to the parasitic resistance and capacitance of the transistor M34, the boosted high clock level V BOOST-CK at the second boosting clock signal CK2 may be lower than the boost high level of the second boost signal BT2. V BOOST .

從第9B圖可看出,在高VDD操作期間,第二EQ信號EQ2位於EQ箝位位準VCLAMP的時間周期,係涵蓋(encompass)第一升壓時脈信號CK1位於升壓高時脈位準VBOOST-CK的時間周期。同樣地,第一EQ信號EQ1位於EQ箝位位準VCLAMP的時間周期,係涵蓋第二升壓時脈信號CK2位於升壓高時脈位準VBOOST-CK的時間周期。亦即,每當輸出升壓信號位於可導致開關元件(即第3圖所示之例子中的開關電晶體)崩潰之升壓高時脈位準時,一個等於EQ箝位位準VCLAMP之電壓就被施加至開關電晶體之閘極,如此能減少開關電晶體在閘極與源極之間的壓降,藉以避免開關電晶體崩潰。依據本揭露書之實施例,EQ箝位位準VCLAMP可藉由控制橫跨一電壓箝位元件(例如第7圖所示之電晶體M74)之壓降VSHARE而控制。橫跨電晶體M74之壓降VSHARE可藉由控制參考電壓Vref而控制。 As can be seen from FIG. 9B, during the high V DD operation, the second EQ signal EQ2 is located in the EQ clamp level V CLAMP for the time period, and the first boost clock signal CK1 is located at the boost high time. The time period of the pulse level V BOOST-CK . Similarly, the time period during which the first EQ signal EQ1 is located at the EQ clamp level V CLAMP is a time period in which the second boost clock signal CK2 is located at the boost high clock level V BOOST-CK . That is, whenever the output boost signal is at a boosted high clock level that can cause the switching element (ie, the switching transistor in the example shown in FIG. 3) to collapse, a voltage equal to the EQ clamp level V CLAMP It is applied to the gate of the switching transistor, which can reduce the voltage drop between the gate and the source of the switching transistor, so as to avoid the breakdown of the switching transistor. In accordance with an embodiment of the present disclosure, the EQ clamp level V CLAMP can be controlled by controlling the voltage drop V SHARE across a voltage clamping component (e.g., transistor M74 shown in FIG. 7). The voltage drop across the transistor M74, V SHARE, can be controlled by controlling the reference voltage V ref .

為了簡化圖示,本揭露書之附圖所示之每個波形之每個邊緣係被描繪成一條筆直的垂直線。吾人可注意到,由於例 如寄生RC電路、閘延遲或時脈計數器控制的延遲所導致的延遲,邊緣無法是筆直的垂直線,而可能是彎折、彎曲或傾斜的線。此外,在本揭露書中,假設電壓升壓區塊106是對稱的,因此來自電壓升壓區塊106之左半部與右半部之輸出係類似於彼此,除了它們各自的相位不同。舉例而言,如第9A及9B圖所示,第一升壓信號BT1及第二升壓信號BT2之波形除了它們各自的相位以外是彼此相同的,第一升壓時脈信號CK1及第二升壓時脈信號CK2除了它們各自的相位以外是彼此相同的。然而實際上,由於在升壓電路100中,標示相同的電子元件之間存在差異,來自電壓升壓區塊106之左半部與右半部之輸出可能是彼此相異的。舉例而言,第一升壓信號BT1之升壓高位準可能不同於位於第二升壓信號BT2之升壓高位準,而第一升壓時脈信號CK1之升壓高時脈位準可能不同於第二升壓時脈信號CK2之升壓高時脈位準。 To simplify the illustration, each edge of each of the waveforms shown in the drawings of the present disclosure is depicted as a straight vertical line. I can notice that due to the example For delays caused by parasitic RC circuits, gate delays, or delays controlled by the clock counter, the edges cannot be straight vertical lines, but may be bent, bent, or slanted lines. Moreover, in the present disclosure, it is assumed that the voltage boosting block 106 is symmetrical, so that the output from the left and right halves of the voltage boosting block 106 are similar to each other except that their respective phases are different. For example, as shown in FIGS. 9A and 9B, the waveforms of the first boosting signal BT1 and the second boosting signal BT2 are identical to each other except for their respective phases, the first boosting clock signal CK1 and the second. The boosting clock signals CK2 are identical to each other except for their respective phases. In practice, however, since there is a difference between the same electronic components in the booster circuit 100, the outputs from the left and right halves of the voltage boost block 106 may be different from each other. For example, the boosting high level of the first boosting signal BT1 may be different from the boosting high level of the second boosting signal BT2, and the boosting high clocking level of the first boosting clock signal CK1 may be different. The boosting of the second boosting clock signal CK2 is at a high clock level.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

BST1‧‧‧第一升壓來源信號 BST1‧‧‧First boost source signal

BST2‧‧‧第二升壓來源信號 BST2‧‧‧second boost source signal

CK1‧‧‧第一升壓時脈信號 CK1‧‧‧First boost clock signal

CK2‧‧‧第二升壓時脈信號 CK2‧‧‧second boost clock signal

CLK‧‧‧輸入時脈信號 CLK‧‧‧ input clock signal

EQ1‧‧‧第一EQ波形 EQ1‧‧‧First EQ waveform

EQ2‧‧‧第二EQ波形 EQ2‧‧‧Second EQ waveform

PCLK1‧‧‧第一時脈信號 PCLK1‧‧‧ first clock signal

PCLK2‧‧‧第二時脈信號 PCLK2‧‧‧ second clock signal

100‧‧‧升壓電路 100‧‧‧ boost circuit

102‧‧‧非重疊時脈產生區塊 102‧‧‧ Non-overlapping clock generation block

104‧‧‧時序及電壓控制區塊 104‧‧‧Sequence and voltage control blocks

106‧‧‧電壓升壓區塊 106‧‧‧Voltage boost block

Claims (9)

一種升壓電路,包括:一電源軌,用以提供一供應電壓;一開關電晶體,控制一升壓信號之輸出,該開關電晶體具有一閘極;以及一時序及電壓控制電路,用以產生一等化(Equalization,EQ)信號,該EQ信號被施加至該開關電晶體之該閘極,該EQ信號具有一位準,該位準係為一EQ高位準、一EQ低位準以及一EQ箝位位準之其中一個,該EQ低位準低於該EQ高位準,該EQ箝位位準介於該EQ低位準與該EQ高位準之間;其中該升壓信號於一第一時間周期期間具有一升壓高位準,該時序及電壓控制電路用以在一第四時間周期期間,產生該EQ箝位位準,該第四時間周期涵蓋該第一時間周期。 A boosting circuit comprising: a power rail for providing a supply voltage; a switching transistor for controlling an output of a boosting signal, the switching transistor having a gate; and a timing and voltage control circuit for Generating an equalization (EQ) signal, the EQ signal is applied to the gate of the switching transistor, the EQ signal has a level, the level is an EQ high level, an EQ low level, and a One of the EQ clamp levels, the EQ low level is lower than the EQ high level, and the EQ clamp level is between the EQ low level and the EQ high level; wherein the boost signal is at a first time The cycle has a boost high level, and the timing and voltage control circuit is configured to generate the EQ clamp level during a fourth time period, the fourth time period covering the first time period. 如申請專利範圍第1項所述之升壓電路,其中該升壓信號於一第二時間周期期間具有一低位準;其中該時序及電壓控制電路包括:一第一電路分支,連接於該電源軌與一輸出端子之間,該輸出端子耦接至該開關電晶體之該閘極,該第一電路分支係用以在一第三時間周期期間,產生該EQ高位準至該輸出端子;一第二電路分支,連接於該電源軌與該輸出端子之間,該第二電路分支係用以在該第四時間周期期間,產生該EQ 箝位位準至該輸出端子;以及一第三電路分支,連接於一接地端與該輸出端子之間,該第三電路分支係用以在一第五時間周期期間,產生該EQ低位準至該輸出端子;其中,該開關電晶體在該EQ信號位於該EQ高位準時不導通,而在該EQ信號位於該EQ低位準或該EQ箝位位準時導通。 The booster circuit of claim 1, wherein the boost signal has a low level during a second time period; wherein the timing and voltage control circuit comprises: a first circuit branch connected to the power source Between the rail and an output terminal, the output terminal is coupled to the gate of the switch transistor, the first circuit branch is configured to generate the EQ high level to the output terminal during a third time period; a second circuit branch connected between the power rail and the output terminal, the second circuit branch being configured to generate the EQ during the fourth time period Clamping a level to the output terminal; and a third circuit branch connected between a ground terminal and the output terminal, the third circuit branching for generating the EQ low level to a fifth time period The output terminal; wherein the switch transistor is non-conducting when the EQ signal is at the EQ high level, and is turned on when the EQ signal is at the EQ low level or the EQ clamp level. 如申請專利範圍第2項所述之升壓電路,其中:該第一電路分支包括一電晶體,該電晶體在該第三時間周期期間導通,使得該輸出端子電性耦接至該電源軌,且該EQ高位準大約等於該供應電壓。 The booster circuit of claim 2, wherein the first circuit branch comprises a transistor, the transistor being turned on during the third time period, such that the output terminal is electrically coupled to the power rail And the EQ high level is approximately equal to the supply voltage. 如申請專利範圍第2項所述之升壓電路,其中:該第二電路分支包括:一電晶體,該電晶體在該第四時間周期期間導通;以及一電壓箝位元件,電性耦接至該電晶體,該電壓箝位元件將該輸出端子輸出之電壓箝位至該EQ箝位位準,且該EQ箝位位準係低於該供應電壓。 The booster circuit of claim 2, wherein: the second circuit branch comprises: a transistor, the transistor is turned on during the fourth time period; and a voltage clamping component electrically coupled To the transistor, the voltage clamping component clamps the voltage output from the output terminal to the EQ clamping level, and the EQ clamping level is lower than the supply voltage. 如申請專利範圍第4項所述之升壓電路,其中:該電晶體係為一第一電晶體,且該電壓箝位元件包括由一參考電壓所控制之一第二電晶體,以使該第二電晶體局部導通,且橫跨該第二電晶體之一壓降係高到足以使得該輸出端子輸出之電壓被箝位於該EQ箝位位準。 The booster circuit of claim 4, wherein: the electro-crystal system is a first transistor, and the voltage clamping component comprises a second transistor controlled by a reference voltage to enable the The second transistor is partially turned on, and the voltage drop across one of the second transistors is high enough that the output of the output terminal is clamped at the EQ clamp level. 如申請專利範圍第1項所述之升壓電路,更包括一放電路徑,電性耦接在該關關電晶體及一接地端之間,該放電路徑包括:一放電電晶體,電性耦接至該接地端,該放電電晶體被導通以將該升壓信號拉至一低位準;以及一低閾值電晶體,電性耦接在該放電電晶體與該開關電晶體之間,該低閾值電晶體之一閘極係電性耦接至該電源軌。 The booster circuit of claim 1, further comprising a discharge path electrically coupled between the off-cell transistor and a ground, the discharge path comprising: a discharge transistor, electrically coupled Connected to the ground, the discharge transistor is turned on to pull the boost signal to a low level; and a low threshold transistor is electrically coupled between the discharge transistor and the switch transistor, the low One of the gates of the threshold transistor is electrically coupled to the power rail. 如申請專利範圍第1項所述之升壓電路,其中:該升壓信號係一第一升壓信號,該第一升壓信號在一第一時間周期期間具有一第一升壓高位準,在一第二時間周期期間具有一第一低位準,該第一升壓高位準係高於該開關電晶體之一崩潰電壓,且該開關電晶體更用以控制一第二升壓信號之輸出,該第二升壓信號由該開關電晶體之源極輸出,該第二升壓信號在一第三時間周期期間具有一第二升壓高位準,在一第四時間周期期間具有一第二低位準,該第二升壓高位準係低於該開關電晶體之該崩潰電壓。 The booster circuit of claim 1, wherein the boosting signal is a first boosting signal, and the first boosting signal has a first boosting high level during a first time period. Having a first low level during a second time period, the first boost high level is higher than a breakdown voltage of the switching transistor, and the switching transistor is further configured to control the output of a second boost signal The second boosting signal is outputted by a source of the switching transistor, the second boosting signal having a second boosting high level during a third time period and a second during a fourth time period The low level is lower than the breakdown voltage of the switching transistor. 一種控制升壓信號之輸出之方法,包括:產生一具有一位準之一EQ信號,該位準係為一EQ高位準、一EQ低位準以及一EQ箝位位準之其中一個,該EQ低位準低於該EQ高位準,該EQ箝位位準介於該EQ低位準與該EQ高位準之間;以及 施加該EQ信號至一開關電晶體之一閘極,藉以控制該升壓信號之輸出;其中該升壓信號於一第一時間周期期間具有一升壓高位準,產生該EQ信號包括:在一第四時間周期期間產生該EQ箝位位準,其中該第四時間周期涵蓋該第一時間周期。 A method for controlling an output of a boost signal, comprising: generating a one-bit EQ signal, the level being one of an EQ high level, an EQ low level, and an EQ clamping level, the EQ The low level is lower than the EQ high level, and the EQ clamp level is between the EQ low level and the EQ high level; Applying the EQ signal to one of the gates of a switching transistor to control the output of the boosting signal; wherein the boosting signal has a boosting high level during a first time period, and generating the EQ signal includes: The EQ clamp level is generated during a fourth time period, wherein the fourth time period covers the first time period. 如申請專利範圍第8項所述之方法,更包括:產生一升壓來源信號,用以被升壓以產生該升壓信號;以及產生一EQ輸入信號,用以產生該EQ信號。 The method of claim 8, further comprising: generating a boost source signal for being boosted to generate the boost signal; and generating an EQ input signal for generating the EQ signal.
TW102142375A 2013-11-21 2013-11-21 Boost circuit and method for controlling boost signal output TWI559685B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102142375A TWI559685B (en) 2013-11-21 2013-11-21 Boost circuit and method for controlling boost signal output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102142375A TWI559685B (en) 2013-11-21 2013-11-21 Boost circuit and method for controlling boost signal output

Publications (2)

Publication Number Publication Date
TW201521362A TW201521362A (en) 2015-06-01
TWI559685B true TWI559685B (en) 2016-11-21

Family

ID=53935168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102142375A TWI559685B (en) 2013-11-21 2013-11-21 Boost circuit and method for controlling boost signal output

Country Status (1)

Country Link
TW (1) TWI559685B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075706A1 (en) * 1990-04-06 2002-06-20 Mosaid Technologies Incorporated Boosted voltage supply
US6614699B2 (en) * 2000-03-22 2003-09-02 Kabushiki Kaisha Toshiba Booster circuit for raising voltage by sequentially transferring charges from input terminals of booster units to output terminals thereof in response to clock signals having different phases
US8339183B2 (en) * 2009-07-24 2012-12-25 Sandisk Technologies Inc. Charge pump with reduced energy consumption through charge sharing and clock boosting suitable for high voltage word line in flash memories

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075706A1 (en) * 1990-04-06 2002-06-20 Mosaid Technologies Incorporated Boosted voltage supply
US6614699B2 (en) * 2000-03-22 2003-09-02 Kabushiki Kaisha Toshiba Booster circuit for raising voltage by sequentially transferring charges from input terminals of booster units to output terminals thereof in response to clock signals having different phases
US8339183B2 (en) * 2009-07-24 2012-12-25 Sandisk Technologies Inc. Charge pump with reduced energy consumption through charge sharing and clock boosting suitable for high voltage word line in flash memories

Also Published As

Publication number Publication date
TW201521362A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
US20050151580A1 (en) Four-phase dual pumping circuit
US20150015323A1 (en) Charge pump circuit
US6208197B1 (en) Internal charge pump voltage limit control
JP2009260909A (en) Circuit and method for gate control circuit with reduced voltage stress
US20060061410A1 (en) Charge pump circuit
US9564886B2 (en) Circuit and method for controlling operation voltage, and storage device
US7733135B2 (en) High side boosted gate drive circuit
US6861889B2 (en) Amplitude converting circuit
CN109427371B (en) Power switch, memory device and method for providing power switch voltage output
JP4746380B2 (en) Charge pump circuit
TWI520490B (en) High voltage generator and method of generating high voltage
TW201729539A (en) Power gating devices and methods
TWI580163B (en) Charge pump circuit
TWI559685B (en) Boost circuit and method for controlling boost signal output
US10243454B2 (en) Boost circuit
JP3698550B2 (en) Boost circuit and semiconductor device using the same
TWI527349B (en) Initialization device, integrated circuit, and method of operating a charge pump
KR100573780B1 (en) Charge pump
US6798246B2 (en) Boosted clock generator having an NMOSFET pass gate transistor
CN104682701B (en) Boosted circuit
TWI713285B (en) Charge pump circuit, semiconductor device, and semiconductor memory device
TWI762401B (en) Boosted clock generator
TWI534803B (en) Memory device and data writing method
JPH0799772A (en) Booster circuit and electric-potential control booster circuit
WO2022074968A1 (en) Non-volatile memory