TWI559615B - Multi-band antenna - Google Patents

Multi-band antenna Download PDF

Info

Publication number
TWI559615B
TWI559615B TW104102837A TW104102837A TWI559615B TW I559615 B TWI559615 B TW I559615B TW 104102837 A TW104102837 A TW 104102837A TW 104102837 A TW104102837 A TW 104102837A TW I559615 B TWI559615 B TW I559615B
Authority
TW
Taiwan
Prior art keywords
radiating section
parasitic element
radiating
frequency band
section
Prior art date
Application number
TW104102837A
Other languages
Chinese (zh)
Other versions
TW201628264A (en
Inventor
吳承祐
Original Assignee
亞旭電腦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亞旭電腦股份有限公司 filed Critical 亞旭電腦股份有限公司
Priority to TW104102837A priority Critical patent/TWI559615B/en
Publication of TW201628264A publication Critical patent/TW201628264A/en
Application granted granted Critical
Publication of TWI559615B publication Critical patent/TWI559615B/en

Links

Description

多頻段天線 Multi-band antenna

本發明是有關於一種天線,且特別是有關於一種多頻段天線。 The present invention relates to an antenna, and more particularly to a multi-band antenna.

傳統五頻天線通常以平面倒F天線(Planar inverted-F antenna;PIFA)型作為主要設計原型,如圖1為平面倒F天線型的範例。請參照圖1,平面倒F天線100具有與接地面150連接的短路腳位110及接收饋入訊號135的饋入點130。 The traditional five-frequency antenna usually adopts the Planar inverted-F antenna (PIFA) type as the main design prototype, as shown in Fig. 1 is an example of a planar inverted-F antenna type. Referring to FIG. 1 , the planar inverted-F antenna 100 has a short-circuit pin 110 connected to the ground plane 150 and a feed-in point 130 for receiving the feed signal 135 .

而隨著通訊技術的快速演進,近年來快速發展的第四代行動通訊系統長期演進(Long term evolution;LTE)技術所能支援頻段更多,其可支援頻率係自698百萬赫茲(MHz)至2690MHz,而包含將近八個頻段(700/850/900/1800/1900/2100/2300/2600)。然而,前述傳統五頻天線由於受到機構設計等限制(例如,天線配置空間有限等),將難以透過習知延伸共振路徑長度之方法,來滿足長期演進技術的低頻頻段。例如,圖2為傳統五頻天線的返回損失(return loss) 圖。請參照圖2,透過圖2的返回損失曲線可知,此傳統五頻天線無法有效支援LTE技術的700/2300/2600MHz頻段。據此,有需要提出一種在機構設計限制中符合更多頻段的天線設計。 With the rapid evolution of communication technology, the rapid development of the fourth-generation mobile communication system Long Term Evolution (LTE) technology in recent years can support more frequency bands, which can support the frequency system from 698 megahertz (MHz). Up to 2690MHz, including nearly eight bands (700/850/900/1800/1900/2100/2300/2600). However, the conventional five-frequency antenna is limited by the design of the mechanism (for example, the antenna configuration space is limited), and it is difficult to satisfy the long-term frequency band of the long-term evolution technology by a conventional method of extending the length of the resonance path. For example, Figure 2 shows the return loss of a conventional five-band antenna. Figure. Referring to FIG. 2, it can be seen from the return loss curve of FIG. 2 that the conventional five-band antenna cannot effectively support the 700/2300/2600 MHz band of the LTE technology. Accordingly, there is a need to propose an antenna design that meets more frequency bands in the design constraints of the mechanism.

本發明提供一種多頻段天線,透過電容耦合方式增加低頻頻寬,並加入寄生元件來增加高頻頻段,藉以提昇頻寬並擴增支援頻段。 The invention provides a multi-band antenna, which increases the low-frequency bandwidth through capacitive coupling, and adds parasitic components to increase the high-frequency frequency band, thereby increasing the bandwidth and amplifying the support frequency band.

本發明的一種多頻段天線,包括輻射元件、第一寄生元件及第二寄生元件。輻射元件具有第一輻射區段、第二輻射區段、第三輻射區段及第四輻射區段。第一寄生元件具有第一接地點。第一寄生元件與第二輻射區段間具有第一耦合間距,並透過第一輻射區段及第二輻射區段而操作於第一頻段。第一寄生元件與第四輻射區段間具有第二耦合間距,並透過第一輻射區段、第三輻射區段及第四輻射區段而操作於第二頻段。第二寄生元件具有兩個第二接地點,且第二寄生元件與兩個第二接地點構成一”ㄇ”字形外觀。第二寄生元件與第三輻射區段間具有第三耦合間距,並透過第一輻射區段及第三輻射區段而操作於第三頻段。 A multi-band antenna of the present invention includes a radiating element, a first parasitic element, and a second parasitic element. The radiating element has a first radiating section, a second radiating section, a third radiating section and a fourth radiating section. The first parasitic element has a first ground point. The first parasitic element and the second radiating section have a first coupling pitch, and operate through the first radiating section and the second radiating section to operate in the first frequency band. The first parasitic element and the fourth radiating section have a second coupling pitch and operate in the second frequency band through the first radiating section, the third radiating section and the fourth radiating section. The second parasitic element has two second ground points, and the second parasitic element and the two second ground points form a "ㄇ" shaped appearance. The second parasitic element has a third coupling pitch between the third radiating section and operates through the first radiating section and the third radiating section to operate in the third frequency band.

在本發明的一實施例中,上述第一輻射區段的第一端具有饋入點,且第一輻射區段的第二端與第二輻射區段的第一端電性連結。第二輻射區段的第二端為開路端,且第二輻射區段的側邊相對於第一寄生元件。第一輻射區段及第二輻射區段構成L字 形外觀。 In an embodiment of the invention, the first end of the first radiating section has a feeding point, and the second end of the first radiating section is electrically connected to the first end of the second radiating section. The second end of the second radiating section is an open end and the sides of the second radiating section are opposite to the first parasitic element. The first radiating section and the second radiating section constitute an L word Shape appearance.

在本發明的一實施例中,上述第三輻射區段的第一端與第一輻射區段的側邊電性連結,第三輻射區段的第一端自第一輻射區段的側邊沿垂直方向延伸,第三輻射區段的第二端與第四輻射區段的第一端電性連結。第三輻射區段的側邊相對於第二寄生元件,第三輻射區段的另一面側邊相對於第二輻射區段。第四輻射區段的第二端為開路端並相對於第一寄生元件,且第三輻射區段及第四輻射區段構成L字形外觀。 In an embodiment of the invention, the first end of the third radiating section is electrically connected to the side of the first radiating section, and the first end of the third radiating section is from the side of the first radiating section. The second end of the third radiating section is electrically connected to the first end of the fourth radiating section. The side of the third radiating section is opposite to the second parasitic element, and the other side of the third radiating section is opposite to the second radiating section. The second end of the fourth radiating section is an open end and is opposite to the first parasitic element, and the third radiating section and the fourth radiating section form an L-shaped appearance.

在本發明的一實施例中,上述第一寄生元件的第一端具有第一接地端,且第一寄生元件的第二端為開路端並相對於第四輻射區段的第二端。第二寄生元件的第一端具有其中一個第二接地端並鄰近饋入點,且第二寄生元件的第二端具有另一個第二接地端。 In an embodiment of the invention, the first end of the first parasitic element has a first ground end, and the second end of the first parasitic element is an open end and opposite to the second end of the fourth radiating section. The first end of the second parasitic element has one of the second ground ends adjacent to the feed point, and the second end of the second parasitic element has another second ground.

在本發明的一實施例中,上述多頻段天線透過第一輻射區段、第二輻射區段及第一寄生元件形成第一電流路徑,透過第一輻射區段、第三輻射區段、第四輻射區段及第一寄生元件形成第二電流路徑,且透過第一輻射區段、第三輻射區段及第二寄生元件形成第三電流路徑。第三電流路徑的長度小於第一電流路徑的長度,且第一電流路徑的長度小於第二電流路徑的長度。 In an embodiment of the present invention, the multi-band antenna forms a first current path through the first radiating section, the second radiating section, and the first parasitic element, and transmits the first radiating section, the third radiating section, and the first The fourth radiating section and the first parasitic element form a second current path, and form a third current path through the first radiating section, the third radiating section, and the second parasitic element. The length of the third current path is less than the length of the first current path, and the length of the first current path is less than the length of the second current path.

在本發明的一實施例中,上述第一頻段介於1700MHz頻段至2100MHz頻段之間,第二頻段介於700MHz頻段至900MHz頻段之間,且第三頻段介於2300MHz頻段至2600MHz頻段之間。 In an embodiment of the invention, the first frequency band is between the 1700 MHz frequency band and the 2100 MHz frequency band, the second frequency band is between the 700 MHz frequency band and the 900 MHz frequency band, and the third frequency band is between the 2300 MHz frequency band and the 2600 MHz frequency band.

在本發明的一實施例中,上述饋入點、第一接地點及兩個第二接地點皆位於同側並以直線排列。 In an embodiment of the invention, the feed point, the first ground point, and the two second ground points are all on the same side and are arranged in a straight line.

在本發明的一實施例中,上述第一耦合間距、第二耦合間距及第三耦合間距介於0.8毫米(mm)到1.2毫米之間。 In an embodiment of the invention, the first coupling pitch, the second coupling pitch, and the third coupling pitch are between 0.8 millimeters (mm) and 1.2 millimeters.

在本發明的一實施例中,上述第一寄生元件、第二寄生元件及輻射元件皆位於相同平面。 In an embodiment of the invention, the first parasitic element, the second parasitic element, and the radiating element are all located in the same plane.

在本發明的一實施例中,上述部份的第一寄生元件、部份的第二寄生元件及部份的輻射元件位於不同平面。 In an embodiment of the invention, the first parasitic element, the second parasitic element, and a portion of the radiating element of the portion are located on different planes.

在本發明的一實施例中,上述第一寄生元件、第二寄生元件或及輻射元件係由印刷電路板之金屬層上的金屬層蝕刻而成。 In an embodiment of the invention, the first parasitic element, the second parasitic element, or the radiating element are etched from a metal layer on a metal layer of the printed circuit board.

基於上述,本發明透過輻射元件與第一寄生元件耦合操作於第一頻段及第二頻段,並透過輻射元件與第二寄生元件耦合操作於第三頻段。藉此,本發明實施例便能支援700MHz頻段至900MHz頻段、1700MHz頻段至2100MHz頻段及2300MHz頻段至2600MHz頻段,以符合現今LTE技術所支援的所有頻段。此外,本發明實施例更能依據機構設計需求,而將部份的輻射元件、第一寄生元件及第二寄生元件配置於立體基板的不同平面上,藉以提昇天線設計的彈性度。 Based on the above, the present invention operates in the first frequency band and the second frequency band by coupling the radiating element with the first parasitic element, and is coupled to the second frequency band by the radiating element and the second parasitic element. Therefore, the embodiment of the present invention can support the 700MHz frequency band to the 900MHz frequency band, the 1700MHz frequency band to the 2100MHz frequency band, and the 2300MHz frequency band to the 2600MHz frequency band to conform to all frequency bands supported by the current LTE technology. In addition, the embodiment of the present invention can further configure a part of the radiating element, the first parasitic element and the second parasitic element on different planes of the three-dimensional substrate according to the design requirement of the mechanism, thereby improving the elasticity of the antenna design.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧平面倒F天線 100‧‧‧ Planar inverted F antenna

110‧‧‧短路腳位 110‧‧‧Short-circuited feet

130、FP‧‧‧饋入點 130, FP‧‧‧ feed points

135‧‧‧饋入訊號 135‧‧‧Feeding signal

150‧‧‧接地面 150‧‧‧ ground plane

30、60‧‧‧多頻段天線 30, 60‧‧‧Multi-band antenna

300、600‧‧‧輻射元件 300, 600‧‧‧radiation components

310、610‧‧‧第一輻射區段 310, 610‧‧‧First Radiation Section

311‧‧‧第一輻射區段的第一端 311‧‧‧First end of the first radiation section

315‧‧‧第一輻射區段的第二端 315‧‧‧second end of the first radiation section

317‧‧‧第一輻射區段的側邊 317‧‧‧Side side of the first radiant section

320、620‧‧‧第二輻射區段 320, 620‧‧‧second radiation section

321‧‧‧第二輻射區段的第一端 321‧‧‧ the first end of the second radiating section

325‧‧‧第二輻射區段的第二端 325‧‧‧ second end of the second radiating section

327、329‧‧‧第二輻射區段的側邊 327, 329‧‧‧ side of the second radiating section

330、630‧‧‧第三輻射區段 330, 630‧‧‧ Third Radiation Section

331‧‧‧第三輻射區段的第一端 331‧‧‧ the first end of the third radiating section

335‧‧‧第三輻射區段的第二端 335‧‧‧second end of the third radiating section

337、339‧‧‧第三輻射區段的側邊 337, 339‧‧‧ side of the third radiating section

340、640‧‧‧第四輻射區段 340, 640‧‧‧fourth radiation section

341‧‧‧第四輻射區段的第一端 341‧‧‧ the first end of the fourth radiation section

345‧‧‧第四輻射區段的第二端 345‧‧‧second end of the fourth radiating section

360、660‧‧‧第一寄生元件 360, 660‧‧‧ first parasitic element

361‧‧‧第一寄生元件的第一端 361‧‧‧ the first end of the first parasitic element

365‧‧‧第一寄生元件的第二端 365‧‧‧The second end of the first parasitic element

380、680‧‧‧第二寄生元件 380, 680‧‧‧ second parasitic element

381‧‧‧第二寄生元件的第一端 381‧‧‧ the first end of the second parasitic element

385‧‧‧第二寄生元件的第二端 385‧‧‧ second end of the second parasitic element

390、690‧‧‧匹配元件 390, 690‧‧‧Matching components

391‧‧‧匹配元件的第一端 391‧‧‧The first end of the matching component

395‧‧‧匹配元件的第二端 395‧‧‧The second end of the matching component

410‧‧‧第一電流路徑 410‧‧‧First current path

430‧‧‧第二電流路徑 430‧‧‧second current path

450‧‧‧第三電流路徑 450‧‧‧ third current path

510‧‧‧第二頻段 510‧‧‧second frequency band

530‧‧‧第一頻段 530‧‧‧First frequency band

550‧‧‧第三頻段 550‧‧‧ third frequency band

601‧‧‧第一平面 601‧‧‧ first plane

602‧‧‧第二平面 602‧‧‧ second plane

603‧‧‧第三平面 603‧‧‧ third plane

604‧‧‧第四平面 604‧‧‧fourth plane

CG1、CG4‧‧‧第一耦合間距 CG1, CG4‧‧‧ first coupling spacing

CG2、CG5‧‧‧第二耦合間距 CG2, CG5‧‧‧second coupling spacing

CG3、CG6‧‧‧第三耦合間距 CG3, CG6‧‧‧ third coupling spacing

DR1、DR2‧‧‧參考方向 DR1, DR2‧‧‧ reference direction

GP1‧‧‧第一接地點 GP1‧‧‧first grounding point

GP2‧‧‧第二接地點 GP2‧‧‧second grounding point

圖1為平面倒F天線型的範例。 Figure 1 shows an example of a planar inverted-F antenna type.

圖2為傳統五頻天線的返回損失(return loss)圖。 2 is a diagram of a return loss of a conventional five-band antenna.

圖3是依據本發明一實施例之多頻段天線的結構示意圖。 FIG. 3 is a schematic structural diagram of a multi-band antenna according to an embodiment of the present invention.

圖4為第一電流路徑、第二電流路徑及第三電流路徑的示意範例。 4 is a schematic illustration of a first current path, a second current path, and a third current path.

圖5為依據本發明一實施例之多頻段天線的返回損失圖。 FIG. 5 is a diagram showing return loss of a multi-band antenna according to an embodiment of the present invention.

圖6A與6B是依據本發明另一實施例之多頻段天線的結構示意圖。 6A and 6B are schematic diagrams showing the structure of a multi-band antenna according to another embodiment of the present invention.

為了提昇天線所支援的頻寬以及彌補低頻頻段及高頻頻段的不足,本發明實施例係透過具有饋入點的輻射元件與第一寄生元件間的第一耦合間距及第二耦合間距,而耦合操作於第一頻段(例如,1700MHz頻段~2100MHz頻段)及第二頻段(例如,700MHz頻段~900MHz頻段),且透過輻射元件與第二寄生元件間的第三耦合間距,而耦合操作於第三頻段(例如,2300MHz頻段~2600MHz頻段),藉以達到長期演進(LTE)技術所使用到的8個頻段。此外,部份的輻射元件、第一寄生元件及第二寄生元件可配置於相同平面或不同平面上(例如,配置於立體基板),以提昇設計路徑的彈性度。以下提出符合本發明之精神的多個實施 例,應用本實施例者可依其需求而對這些實施例進行適度調整,而不僅限於下述描述中的內容。 In order to improve the bandwidth supported by the antenna and to compensate for the shortage of the low frequency band and the high frequency band, the embodiment of the present invention transmits the first coupling pitch and the second coupling pitch between the radiating element having the feeding point and the first parasitic element. The coupling operation is performed in the first frequency band (for example, the 1700 MHz band to the 2100 MHz band) and the second frequency band (for example, the 700 MHz band to the 900 MHz band), and the third coupling pitch between the radiating element and the second parasitic element is coupled, and the coupling operation is performed. The three bands (for example, the 2300MHz band to the 2600MHz band) are used to achieve the eight frequency bands used by Long Term Evolution (LTE) technology. In addition, a part of the radiating element, the first parasitic element and the second parasitic element may be disposed on the same plane or different planes (for example, disposed on the three-dimensional substrate) to improve the elasticity of the design path. Several implementations consistent with the spirit of the present invention are presented below For example, those applying the present embodiment can appropriately adjust these embodiments according to their needs, and are not limited to the contents in the following description.

圖3是依據本發明一實施例之多頻段天線的結構示意圖。請參照圖3,多頻段天線30包括輻射元件300、第一寄生元件360及第二寄生元件380。輻射元件300具有第一輻射區段310、第二輻射區段320、第三輻射區段330及第四輻射區段340。第一輻射區段310具有饋入點FP。第一輻射區段310與第二輻射區段320電性連結,第一輻射區段310與第三輻射區段330電性連結,且第三輻射區段330與第四輻射區段340電性連結。第一寄生元件360具有接地點GP1。第一寄生元件360與第二輻射區段320間具有第一耦合間距CG1。第一寄生元件360與第四輻射區段340間具有第二耦合間距CG2。第二寄生元件380具有兩個第二接地點GP2。第二寄生元件380與兩個第二接地點GP2構成一”ㄇ”字形外觀。第二寄生元件380與第三輻射區段330間具有第三耦合間距CG3。 FIG. 3 is a schematic structural diagram of a multi-band antenna according to an embodiment of the present invention. Referring to FIG. 3, the multi-band antenna 30 includes a radiating element 300, a first parasitic element 360, and a second parasitic element 380. The radiating element 300 has a first radiating section 310, a second radiating section 320, a third radiating section 330 and a fourth radiating section 340. The first radiating section 310 has a feed point FP. The first radiating section 310 is electrically connected to the second radiating section 320, the first radiating section 310 is electrically connected to the third radiating section 330, and the third radiating section 330 and the fourth radiating section 340 are electrically connected. link. The first parasitic element 360 has a ground point GP1. The first parasitic element 360 and the second radiating section 320 have a first coupling pitch CG1. The first parasitic element 360 and the fourth radiating section 340 have a second coupling pitch CG2. The second parasitic element 380 has two second ground points GP2. The second parasitic element 380 and the two second ground points GP2 form a "ㄇ" shaped appearance. The second parasitic element 380 has a third coupling pitch CG3 between the third radiating section 330.

在本實施例中,多頻段天線30透過第一輻射區段310及第二輻射區段320而操作於第一頻段,透過第一輻射區段310、第三輻射區段330及第四輻射區段340而操作於第二頻段,且透過第一輻射區段310及第三輻射區段330而操作於第三頻段。其中,第一頻段介於1700MHz頻段至2100MHz頻段之間(即,1700MHz~2170MHz),第二頻段介於700MHz頻段至900MHz頻段之間(即,698MHz~960MHz),且第三頻段介於2300MHz頻段至 2600MHz頻段之間(即,2300MHz~2690MHz)。而在一些實施例中,第一頻段可以是第二頻段的倍頻頻段。例如,第一頻段介於1800MHz頻段至1900MHz頻段之間,而第二頻段介於700MHz頻段至900MHz頻段之間。 In this embodiment, the multi-band antenna 30 operates through the first radiating section 310 and the second radiating section 320 to operate in the first frequency band, and transmits the first radiating section 310, the third radiating section 330, and the fourth radiating area. The segment 340 operates in the second frequency band and operates in the third frequency band through the first radiation segment 310 and the third radiation segment 330. The first frequency band is between the 1700MHz frequency band and the 2100MHz frequency band (ie, 1700MHz~2170MHz), the second frequency band is between the 700MHz frequency band and the 900MHz frequency band (ie, 698MHz~960MHz), and the third frequency band is between the 2300MHz frequency band. to Between the 2600MHz bands (ie, 2300MHz~2690MHz). In some embodiments, the first frequency band can be the frequency doubled frequency band of the second frequency band. For example, the first frequency band is between the 1800 MHz band and the 1900 MHz band, and the second band is between the 700 MHz band and the 900 MHz band.

就電流路徑而言,多頻段天線30透過第一輻射區段310、第二輻射區段320及第一寄生元件360形成第一電流路徑,透過第一輻射區段310、第三輻射區段330、第四輻射區段340及第一寄生元件360形成第二電流路徑,且透過第一輻射區段310、第三輻射區段330及第二寄生元件380形成第三電流路徑。其中,第三電流路徑的長度小於第一電流路徑的長度,且第一電流路徑的長度小於第二電流路徑的長度。換句話說,基於電流路徑(或是,共振路徑)的長度,第三頻段大於第一頻段,且第一頻段大於第二頻段。 In terms of the current path, the multi-band antenna 30 forms a first current path through the first radiating section 310, the second radiating section 320, and the first parasitic element 360, and transmits the first radiating section 310 and the third radiating section 330. The fourth radiating section 340 and the first parasitic element 360 form a second current path, and form a third current path through the first radiating section 310, the third radiating section 330, and the second parasitic element 380. Wherein the length of the third current path is less than the length of the first current path, and the length of the first current path is less than the length of the second current path. In other words, based on the length of the current path (or the resonant path), the third frequency band is greater than the first frequency band and the first frequency band is greater than the second frequency band.

以圖4為範例進行說明,圖4為第一電流路徑、第二電流路徑及第三電流路徑的示意範例。請參照圖4,在操作上,多頻段天線30透過第一輻射區段310的饋入點FP接收饋入訊號。而第一電流路徑410中,饋入訊號將流經第一輻射區段310及第二輻射區段320,並透過第一耦合間距CG1激發第一寄生元件360,以致使多頻段天線30可透過第一寄生元件360產生第一共振模態,進而可操作在第一頻段。在第二電流路徑430中,饋入訊號將流經第一輻射區段310、第三輻射區段330及第四輻射區段340,並透過第二耦合間距CG2激發第一寄生元件360,以致使多 頻段天線30可透過第一寄生元件360產生第二共振模態,進而可操作在第二頻段。此外,在第三電流路徑450中,饋入訊號將流經第一輻射區段310及第三輻射區段330,並透過第三耦合間距CG3激發第二寄生元件380,以致使多頻段天線30可透過第二寄生元件380產生第三共振模態,進而可操作在第三頻段。 4 is used as an example for illustration. FIG. 4 is a schematic example of a first current path, a second current path, and a third current path. Referring to FIG. 4, in operation, the multi-band antenna 30 receives the feed signal through the feed point FP of the first radiating section 310. In the first current path 410, the feed signal will flow through the first radiating section 310 and the second radiating section 320, and the first parasitic element 360 is excited through the first coupling pitch CG1 to make the multi-band antenna 30 permeable. The first parasitic element 360 produces a first resonant mode that is operable in the first frequency band. In the second current path 430, the feed signal will flow through the first radiating section 310, the third radiating section 330 and the fourth radiating section 340, and excite the first parasitic element 360 through the second coupling pitch CG2, so that Make more The band antenna 30 can generate a second resonant mode through the first parasitic element 360, thereby operating in the second frequency band. In addition, in the third current path 450, the feed signal will flow through the first radiating section 310 and the third radiating section 330, and the second parasitic element 380 is excited through the third coupling pitch CG3 to cause the multi-band antenna 30. A third resonant mode can be generated by the second parasitic element 380, which in turn can operate in the third frequency band.

換句話說,輻射元件300可分別與第一寄生元件360與第二寄生元件380產生電容耦合效應。如此,多頻段天線30除了可以透過第一寄生元件360產生第一共振模態及第二共振模態,還可透過第二寄生元件380產生第三共振模態。因此,多頻天線100可操作在三個頻段,進而可符合LTE技術支援的所有頻段。 In other words, the radiating element 300 can create a capacitive coupling effect with the first parasitic element 360 and the second parasitic element 380, respectively. As such, the multi-band antenna 30 can generate the first resonant mode and the second resonant mode through the first parasitic element 360, and can also generate the third resonant mode through the second parasitic element 380. Therefore, the multi-frequency antenna 100 can operate in three frequency bands, and thus can conform to all frequency bands supported by the LTE technology.

舉例來說,圖5為依據本發明一實施例之多頻段天線30的返回損失圖。請參照圖5,多頻段天線30可操作在第二頻段510、第一頻段530及第三頻段550。第一頻段530可涵蓋1800MHz頻段至2100MHz頻段,第二頻段510可涵蓋700MHz頻段至900MHz頻段,而第三頻段550可涵蓋2300MHz頻段至2600MHz頻段。 For example, FIG. 5 is a diagram of return loss of multi-band antenna 30 in accordance with an embodiment of the present invention. Referring to FIG. 5, the multi-band antenna 30 is operable in the second frequency band 510, the first frequency band 530, and the third frequency band 550. The first frequency band 530 can cover the 1800 MHz band to the 2100 MHz band, the second band 510 can cover the 700 MHz band to the 900 MHz band, and the third band 550 can cover the 2300 MHz band to the 2600 MHz band.

請繼續參照圖3。就多頻段天線30的細部架構而言,第一輻射區段310的第一端311具有饋入點FP,且第一輻射區段310的第二端315與第二輻射區段320的第一端321電性連結。第二輻射區段320的第二端325為開路端,且第二輻射區段320的側邊327相對於第一寄生元件360。第一輻射區段310及第二輻射區段320構成L字形外觀。 Please continue to refer to Figure 3. In the detailed architecture of the multi-band antenna 30, the first end 311 of the first radiating section 310 has a feed point FP, and the first end 315 of the first radiating section 310 and the first end of the second radiating section 320 The terminal 321 is electrically connected. The second end 325 of the second radiating section 320 is an open end and the side 327 of the second radiating section 320 is opposite the first parasitic element 360. The first radiating section 310 and the second radiating section 320 constitute an L-shaped appearance.

第三輻射區段330的第一端331與第一輻射區段310的側邊317電性連結,第三輻射區段330的第一端331自第一輻射區段310的側邊317沿垂直方向延伸,第三輻射區段330的第二端335與第四輻射區段340的第一端341電性連結。換句話說,第三輻射區段330的第一端331延伸至其第二端335的方向,與第二輻射區段320的第一端321延伸至其第二端325的方向相同。例如,參考方向DR1。此外,第三輻射區段330的側邊337相對於第二寄生元件380,第三輻射區段330的另一個側邊339相對於第二輻射區段320(第二輻射區段320的側邊329)。也就是說,第三輻射區段330介於第二輻射區段320及第二寄生元件380之間。而第四輻射區段340的第二端345為開路端並相對於第一寄生元件360,且第三輻射區段330及第四輻射區段340構成L字形外觀。 The first end 331 of the third radiating section 330 is electrically coupled to the side 317 of the first radiating section 310, and the first end 331 of the third radiating section 330 is perpendicular to the side 317 of the first radiating section 310. The second end 335 of the third radiating section 330 is electrically coupled to the first end 341 of the fourth radiating section 340. In other words, the first end 331 of the third radiating section 330 extends to the direction of its second end 335, the same direction as the first end 321 of the second radiating section 320 extends to its second end 325. For example, reference direction DR1. Furthermore, the side 337 of the third radiating section 330 is opposite to the second parasitic element 380, and the other side 339 of the third radiating section 330 is opposite to the second radiating section 320 (the side of the second radiating section 320) 329). That is, the third radiating section 330 is interposed between the second radiating section 320 and the second parasitic element 380. The second end 345 of the fourth radiating section 340 is an open end and is opposite to the first parasitic element 360, and the third radiating section 330 and the fourth radiating section 340 form an L-shaped appearance.

第一寄生元件360的第一端361具有第一接地端GP1,且第一寄生元件360的第二端365為開路端並相對於第四輻射區段340的第二端345。其中,基於共振路徑長度,第四輻射區段340相對於第二輻射區段的方向(例如,參考方向DR1),與第一寄生元件360的第一端361延伸至其第二端365的方向相同,以使第四輻射區段340與第一寄生元件360所耦合操作的第二頻段小於第二輻射區段320與第一寄生元件360所耦合操作的第一頻段。 The first end 361 of the first parasitic element 360 has a first ground end GP1 and the second end 365 of the first parasitic element 360 is an open end and opposite the second end 345 of the fourth radiating section 340. Wherein, based on the resonant path length, the direction of the fourth radiating section 340 relative to the second radiating section (eg, the reference direction DR1), and the direction in which the first end 361 of the first parasitic element 360 extends to the second end 365 thereof The second frequency band, which is operated such that the fourth radiating section 340 is coupled to the first parasitic element 360, is smaller than the first frequency band in which the second radiating section 320 is coupled to the first parasitic element 360.

此外,第二寄生元件380的第一端381具有其中一個第 二接地端GP2並鄰近饋入點FP,且第二寄生元件380的第二端385具有另一個第二接地端GP2。其中,饋入點FP、第一接地點GP1及兩個第二接地點GP2皆位於同側並以直線排列。而饋入點FP係介於第一接地點GP1及兩個第二接地點GP2之間。藉此,本實施例的饋入點FP、第一接地點GP1及兩個第二接地點GP2便可方便與饋入訊號來源端及接地面(或接地線、接地端等)連接。 In addition, the first end 381 of the second parasitic element 380 has one of the first The second ground terminal GP2 is adjacent to the feed point FP, and the second end 385 of the second parasitic element 380 has another second ground terminal GP2. The feed point FP, the first ground point GP1, and the two second ground points GP2 are all on the same side and are arranged in a straight line. The feed point FP is between the first ground point GP1 and the two second ground points GP2. Therefore, the feeding point FP, the first grounding point GP1 and the two second grounding points GP2 of the embodiment can be easily connected to the source of the feeding signal and the grounding surface (or the grounding line, the grounding end, etc.).

另一方面,就電流路經的細部說明而言,第一電流路徑是自第一輻射區段310的第一端311至第二輻射區段320,並透過第一耦合間距CG1而到達第一寄生元件360的第一端361。而第二電流路徑是自第一輻射區段310的第一端311至第三輻射區段330及第四輻射區段340,並透過第二耦合間距CG2而經由第一寄生元件360的第二端365到達第一寄生元件360的第一端361。此外,第三電流路經是自第一輻射區段310的第一端311至第三輻射區段330,並透過第三耦合間距CG3而經由第二寄生元件380到達第二接地點GP2。其中,第一區間、第二區間及第三區間介於0.8毫米(mm)到1.2毫米之間。 On the other hand, in terms of the detailed description of the current path, the first current path is from the first end 311 to the second radiating section 320 of the first radiating section 310, and reaches the first through the first coupling pitch CG1. The first end 361 of the parasitic element 360. The second current path is from the first end 311 of the first radiating section 310 to the third radiating section 330 and the fourth radiating section 340, and is transmitted through the second coupling pitch CG2 via the second of the first parasitic element 360. End 365 reaches first end 361 of first parasitic element 360. In addition, the third current path is from the first end 311 to the third radiating section 330 of the first radiating section 310 and passes through the second parasitic element 380 to the second grounding point GP2 through the third coupling pitch CG3. Wherein, the first interval, the second interval and the third interval are between 0.8 mm (mm) and 1.2 mm.

此外,輻射元件300可進一步包括匹配元件390。匹配元件390的第一端391與第二輻射區段320的第一端321及/或第一輻射區段310的第二端315電性連結,自第二輻射區段320的第一端321而朝參考方向DR2延伸,並藉以對輻射元件300阻抗匹配。其中,參考方向DR2係與第二輻射區段320的第一端321朝向第二輻射區段320的第二端325的方向(例如,參考方向DR1) 相反。藉此,便可透過匹配元件390來對第一頻段或第二頻段的頻寬、頻率或輻射效益等特性參數進行細部微調。 Moreover, the radiating element 300 can further include a matching element 390. The first end 391 of the matching component 390 is electrically coupled to the first end 321 of the second radiating section 320 and/or the second end 315 of the first radiating section 310, from the first end 321 of the second radiating section 320. It extends toward the reference direction DR2 and thereby impedance matches the radiating element 300. Wherein, the reference direction DR2 is opposite to the direction in which the first end 321 of the second radiating section 320 faces the second end 325 of the second radiating section 320 (eg, the reference direction DR1) in contrast. Thereby, the characteristic parameters such as the bandwidth, the frequency or the radiation benefit of the first frequency band or the second frequency band can be finely fine-tuned through the matching component 390.

需說明的是,依據設計需求,可透過輻射元件300、第一寄生元件360與第二寄生元件380之形狀的改變,來調整多頻段天線30的特性參數(例如,頻寬、增益或是輻射效率等),本發明實施例不加以限制。 It should be noted that, according to design requirements, the characteristic parameters (eg, bandwidth, gain, or radiation) of the multi-band antenna 30 can be adjusted through changes in the shape of the radiating element 300, the first parasitic element 360, and the second parasitic element 380. The efficiency and the like) are not limited in the embodiment of the present invention.

在前述實施例中,第一寄生元件360、第二寄生元件380及輻射元件300皆位於相同平面(例如,X-Y平面、X-Z平面等)。換句話說,多頻段天線30具有平面結構,並可同時配置在基板的一個表面上,例如,印刷電路板或是軟性印刷電路板(Flexible Printed Circuit Board,FPCB)。而在另一實施例中,部份的第一寄生元件、部份的第二寄生元件及部份的輻射元件位於不同平面,以下將舉實施例說明。 In the foregoing embodiment, the first parasitic element 360, the second parasitic element 380, and the radiating element 300 are all located in the same plane (for example, an X-Y plane, an X-Z plane, etc.). In other words, the multi-band antenna 30 has a planar structure and can be simultaneously disposed on one surface of the substrate, for example, a printed circuit board or a Flexible Printed Circuit Board (FPCB). In another embodiment, a portion of the first parasitic element, a portion of the second parasitic element, and a portion of the radiating element are located on different planes, as will be described below.

圖6A與6B是依據本發明另一實施例之多頻段天線的結構示意圖。請同時參照圖6A與6B,多頻段天線60包括輻射元件600、第一寄生元件660及第二寄生元件680。輻射元件300具有第一輻射區段610、第二輻射區段620、第三輻射區段630及第四輻射區段640。第一寄生元件660與第二輻射區段620間具有第一耦合間距CG4。第一寄生元件660與第四輻射區段640間具有第二耦合間距CG5。第二寄生元件680具有兩個第二接地點GP2。第二寄生元件680與第三輻射區段630間具有第三耦合間距CG6。 6A and 6B are schematic diagrams showing the structure of a multi-band antenna according to another embodiment of the present invention. 6A and 6B, the multi-band antenna 60 includes a radiating element 600, a first parasitic element 660, and a second parasitic element 680. The radiating element 300 has a first radiating section 610, a second radiating section 620, a third radiating section 630 and a fourth radiating section 640. The first parasitic element 660 and the second radiating section 620 have a first coupling pitch CG4. The first parasitic element 660 and the fourth radiating section 640 have a second coupling pitch CG5. The second parasitic element 680 has two second ground points GP2. The second parasitic element 680 has a third coupling pitch CG6 between the third radiating section 630.

輻射元件600、第一寄生元件660、第二寄生元件680、 第一耦合間距CG4、第二耦合間距CG5及第三耦合間距CG6可分別對應至圖3之輻射元件300、第一寄生元件360、第二寄生元件380、第一耦合間距CG1、第二耦合間距CG2及第三耦合間距CG3,而其細部結構、相對位置、電流路徑及連接方式請參照圖3及圖4之相關說明,於此不再贅述。與圖3不同的地方在於,基於硬體機構設計需求,部份的第一寄生元件660、部份的第二寄生元件680或部份的輻射元件600其中之一或其組合位於不同平面。 Radiation element 600, first parasitic element 660, second parasitic element 680, The first coupling pitch CG4, the second coupling pitch CG5, and the third coupling pitch CG6 may correspond to the radiating element 300, the first parasitic element 360, the second parasitic element 380, the first coupling pitch CG1, and the second coupling pitch of FIG. 3, respectively. CG2 and the third coupling pitch CG3, and the detailed structure, relative position, current path and connection manner are referred to the relevant descriptions of FIG. 3 and FIG. 4, and details are not described herein again. The difference from FIG. 3 is that one or a combination of a portion of the first parasitic element 660, a portion of the second parasitic element 680, or a portion of the radiating element 600 is located on a different plane based on the design requirements of the hardware mechanism.

具體而言,請先參照圖6A,首先,為了使饋入點FP、第一接地點GP1及兩個第二接地點GP2方便與饋入訊號來源端及接地面(或接地線)連接,饋入點FP、第一接地點GP1及兩個第二接地點GP2可配置於第一平面601(例如,朝向-Y軸之X-Z平面)。而輻射元件600的第一輻射區段610、第二輻射區段620、第三輻射區段630及第四輻射區段、部份的第一寄生元件660及部份的第二寄生元件680配置於第二平面602(例如,朝向Z軸之X-Y平面)。請參照圖6B,部份的第一寄生元件660可彎折,以使部份的第一寄生元件660配置於第三平面603(例如,朝向Y軸的X-Z平面)及/或第四平面604(例如,朝向-Z軸的X-Y平面)。換句話說,多頻段天線60具有立體結構,並可同時配置在立體基板(例如,長方體等)上。藉此,便可進一步地降低多頻段天線60所耗費的硬體空間,並有助於天線微型化上的發展。 Specifically, please refer to FIG. 6A firstly, firstly, in order to facilitate the connection of the feed point FP, the first ground point GP1 and the two second ground points GP2 with the feed signal source end and the ground plane (or ground line), the feed The in point FP, the first grounding point GP1, and the two second grounding points GP2 may be disposed on the first plane 601 (eg, toward the XZ plane of the -Y axis). The first radiating section 610, the second radiating section 620, the third radiating section 630 and the fourth radiating section of the radiating element 600, a portion of the first parasitic element 660 and a portion of the second parasitic element 680 are disposed. In the second plane 602 (eg, toward the XY plane of the Z axis). Referring to FIG. 6B, a portion of the first parasitic element 660 can be bent such that a portion of the first parasitic element 660 is disposed on the third plane 603 (eg, the XZ plane toward the Y-axis) and/or the fourth plane 604. (for example, the XY plane toward the -Z axis). In other words, the multi-band antenna 60 has a three-dimensional structure and can be simultaneously disposed on a stereoscopic substrate (for example, a rectangular parallelepiped or the like). Thereby, the hardware space consumed by the multi-band antenna 60 can be further reduced, and the development of the antenna miniaturization can be facilitated.

需說明的是,前述第一寄生元件(例如,圖3的第一寄生元件360、圖6A及圖6B的第一寄生元件660)、第二寄生元件 或(例如,圖3的第二寄生元件380、圖6A及圖6B的第二寄生元件680)及輻射元件(例如,圖3的輻射元件300、圖6A及圖6B的輻射元件600)係由印刷電路板之金屬層上的金屬層蝕刻而成。在其他一些實施例中,前述圖3及圖6之結構亦可採用軟性印刷電路板搭配塑膠載體(carrier)或鐵件(stamping)或其他任何建構天線之材料或元件,本發明實施例不加以限制。此外,圖3之多頻段天線30及圖6之多頻段天線60可適用於手機、平板、筆記型電腦等具備行動通訊模組之無線設備。 It should be noted that the first parasitic element (for example, the first parasitic element 360 of FIG. 3, the first parasitic element 660 of FIGS. 6A and 6B) and the second parasitic element Or (eg, second parasitic element 380 of FIG. 3, second parasitic element 680 of FIGS. 6A and 6B) and radiating element (eg, radiating element 300 of FIG. 3, radiating element 600 of FIGS. 6A and 6B) are The metal layer on the metal layer of the printed circuit board is etched. In other embodiments, the foregoing structures of FIG. 3 and FIG. 6 may also use a flexible printed circuit board with a plastic carrier or a stamping or any other material or component of the constructed antenna. limit. In addition, the multi-band antenna 30 of FIG. 3 and the multi-band antenna 60 of FIG. 6 can be applied to a wireless device having a mobile communication module such as a mobile phone, a tablet, or a notebook computer.

綜上所述,本發明實施例的多頻段天線,其可適於一般的電子裝置上內建使用,同時又具有較寬的頻寬,以使天線可在較寬的頻段中工作(700MHZ~2600MHZ)。其中,透過輻射元件分別與第一寄生元件及第二寄生元件產生電容耦合效應,可使多頻段天線可操作在介於1700頻段至2100頻段的第一頻段、介於700頻段至900頻段的第二頻段以及介於2300頻段至2600頻段的第三頻段,進而達到LTE技術所使用到的所有8個頻段。而本發明實施例所使用的電容耦合方式相較於平面倒F天線(PIFA)型,可調整至較大的頻寬、輻射效率更高且更容易的寬頻實現度。此外,本發明實施例更可將部份的輻射元件、第一寄生元件及第二寄生元件配置於立體基板的相同或不同平面上,並藉以提昇天線設計的彈性度。 In summary, the multi-band antenna of the embodiment of the present invention can be adapted for internal use on a general electronic device, and has a wide bandwidth, so that the antenna can work in a wider frequency band (700 MHz). 2600MHZ). Wherein, the capacitive coupling effect is respectively generated by the radiating element and the first parasitic element and the second parasitic element, so that the multi-band antenna can be operated in the first frequency band between the 1700 frequency band and the 2100 frequency band, and the first frequency band between the 700 frequency band and the 900 frequency band The second frequency band and the third frequency band between the 2300 frequency band and the 2600 frequency band further reach all eight frequency bands used by the LTE technology. However, the capacitive coupling method used in the embodiment of the present invention can be adjusted to a larger bandwidth, a higher radiation efficiency, and an easier broadband implementation than a planar inverted-F antenna (PIFA) type. In addition, in the embodiment of the present invention, a part of the radiating element, the first parasitic element and the second parasitic element are disposed on the same or different planes of the three-dimensional substrate, thereby improving the elasticity of the antenna design.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的 精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art without departing from the invention. In the spirit and scope, the scope of protection of the present invention is subject to the definition of the appended patent application.

60‧‧‧多頻段天線 60‧‧‧Multi-band antenna

600‧‧‧輻射元件 600‧‧‧radiation components

610‧‧‧第一輻射區段 610‧‧‧First Radiation Section

620‧‧‧第二輻射區段 620‧‧‧second radiation section

630‧‧‧第三輻射區段 630‧‧‧ Third Radiation Section

640‧‧‧第四輻射區段 640‧‧‧fourth radiation section

660‧‧‧第一寄生元件 660‧‧‧First parasitic element

680‧‧‧第二寄生元件 680‧‧‧Second parasitic element

690‧‧‧匹配元件 690‧‧‧Matching components

601‧‧‧第一平面 601‧‧‧ first plane

602‧‧‧第二平面 602‧‧‧ second plane

CG4‧‧‧第一耦合間距 CG4‧‧‧First coupling spacing

CG5‧‧‧第二耦合間距 CG5‧‧‧second coupling spacing

CG6‧‧‧第三耦合間距 CG6‧‧‧ third coupling spacing

FP‧‧‧饋入點 FP‧‧‧Feeding point

GP1‧‧‧第一接地點 GP1‧‧‧first grounding point

GP2‧‧‧第二接地點 GP2‧‧‧second grounding point

Claims (9)

一種多頻段天線,包括:一輻射元件,具有一第一輻射區段、一第二輻射區段、一第三輻射區段及一第四輻射區段;一第一寄生元件,具有一第一接地點,其中該第一寄生元件與該第二輻射區段間具有一第一耦合間距,並透過該第一輻射區段及該第二輻射區段而操作於一第一頻段,且該第一寄生元件與該第四輻射區段間具有一第二耦合間距,並透過該第一輻射區段、該第三輻射區段及該第四輻射區段而操作於一第二頻段;以及一第二寄生元件,具有二第二接地點,其中該第二寄生元件與該些第二接地點構成一”ㄇ”字形外觀,且該第二寄生元件與該第三輻射區段間具有一第三耦合間距,並透過該第一輻射區段及該第三輻射區段而操作於一第三頻段,其中該第一輻射區段的第一端具有一饋入點,該第一輻射區段的第二端與該第二輻射區段的第一端電性連結,該第二輻射區段的第二端為一開路端,該第二輻射區段的一側邊相對於該第一寄生元件,且該第一輻射區段及該第二輻射區段構成一L字形外觀,其中該第三輻射區段的第一端與該第一輻射區段的一側邊電性連結,該第三輻射區段的第一端自該第一輻射區段的該側邊沿垂直方向延伸,該第三輻射區段的第二端與該第四輻射區段的第 一端電性連結,該第三輻射區段的一側邊相對於該第二寄生元件,該第三輻射區段的另一側邊相對於該第二輻射區段,該第四輻射區段的第二端為一開路端並相對於該第一寄生元件,且該第三輻射區段及該第四輻射區段構成一L字形外觀。 A multi-band antenna comprising: a radiating element having a first radiating section, a second radiating section, a third radiating section and a fourth radiating section; a first parasitic element having a first a grounding point, wherein the first parasitic element and the second radiating section have a first coupling pitch, and operate through a first frequency band through the first radiating section and the second radiating section, and the first a parasitic element and the fourth radiating section have a second coupling pitch, and operate in a second frequency band through the first radiating section, the third radiating section and the fourth radiating section; and a a second parasitic element having two second grounding points, wherein the second parasitic element and the second grounding points form a "ㄇ"-shaped appearance, and the second parasitic element and the third radiating section have a a third coupling pitch, and operating through a first frequency band and the third radiation segment in a third frequency band, wherein the first end of the first radiation segment has a feed point, the first radiation segment The second end is electrically connected to the first end of the second radiating section Connecting, the second end of the second radiating section is an open end, one side of the second radiating section is opposite to the first parasitic element, and the first radiating section and the second radiating section are configured An L-shaped appearance, wherein the first end of the third radiating section is electrically coupled to one side of the first radiating section, and the first end of the third radiating section is from the first radiating section a side edge extending in a vertical direction, a second end of the third radiating section and a fourth end of the fourth radiating section One end is electrically connected, one side of the third radiating section is opposite to the second parasitic element, and the other side of the third radiating section is opposite to the second radiating section, the fourth radiating section The second end is an open end and opposite to the first parasitic element, and the third radiating section and the fourth radiating section form an L-shaped appearance. 如申請專利範圍第1項所述的多頻段天線,其中該第一寄生元件的第一端具有該第一接地端,且該第一寄生元件的第二端為一開路端並相對於該第四輻射區段的第二端,而該第二寄生元件的第一端具有該些第二接地端之中的一者並鄰近該饋入點,且該第二寄生元件的第二端具有該些第二接地端之中的另一者。 The multi-band antenna of claim 1, wherein the first end of the first parasitic element has the first ground end, and the second end of the first parasitic element is an open end and opposite to the first a second end of the fourth radiating section, wherein the first end of the second parasitic element has one of the second ground ends adjacent to the feed point, and the second end of the second parasitic element has the The other of the second ground terminals. 如申請專利範圍第1項所述的多頻段天線,其中該多頻段天線透過該第一輻射區段、該第二輻射區段及該第一寄生元件形成一第一電流路徑,透過該第一輻射區段、該第三輻射區段、該第四輻射區段及該第一寄生元件形成一第二電流路徑,且透過該第一輻射區段、該第三輻射區段及該第二寄生元件形成一第三電流路徑,其中該第三電流路徑的長度小於該第一電流路徑的長度,且該第一電流路徑的長度小於該第二電流路徑的長度。 The multi-band antenna of claim 1, wherein the multi-band antenna forms a first current path through the first radiating section, the second radiating section and the first parasitic element, and the first current path is transmitted through the first The radiation section, the third radiation section, the fourth radiation section, and the first parasitic element form a second current path, and pass through the first radiation section, the third radiation section, and the second parasitic The component forms a third current path, wherein the length of the third current path is less than the length of the first current path, and the length of the first current path is less than the length of the second current path. 如申請專利範圍第1項所述的多頻段天線,其中該第一頻段介於1700(百萬赫茲;MHz)頻段至2100MHz頻段之間,該第二頻段介於700MHz頻段至900MHz頻段之間,且該第三頻段介於2300MHz頻段至2600MHz頻段之間。 The multi-band antenna according to claim 1, wherein the first frequency band is between the 1700 (million Hz; MHz) frequency band and the 2100 MHz frequency band, and the second frequency band is between the 700 MHz frequency band and the 900 MHz frequency band. And the third frequency band is between the 2300MHz frequency band and the 2600MHz frequency band. 如申請專利範圍第1項所述的多頻段天線,其中該饋入點、該第一接地點及該些第二接地點皆位於同側並以直線排列。 The multi-band antenna of claim 1, wherein the feed point, the first ground point, and the second ground point are all on the same side and are arranged in a straight line. 如申請專利範圍第1項所述的多頻段天線,其中該第一耦合間距、該第二耦合間距及該第三耦合間距介於0.8毫米(mm)到1.2毫米之間。 The multi-band antenna of claim 1, wherein the first coupling pitch, the second coupling pitch, and the third coupling pitch are between 0.8 millimeters (mm) and 1.2 millimeters. 如申請專利範圍第1項所述的多頻段天線,其中該第一寄生元件、該第二寄生元件及該輻射元件皆位於相同平面。 The multi-band antenna of claim 1, wherein the first parasitic element, the second parasitic element, and the radiating element are all located in the same plane. 如申請專利範圍第1項所述的多頻段天線,其中部份的該第一寄生元件、部份的該第二寄生元件及部份的該輻射元件位於不同平面。 The multi-band antenna of claim 1, wherein a portion of the first parasitic element, a portion of the second parasitic element, and a portion of the radiating element are located in different planes. 如申請專利範圍第1項所述的多頻段天線,其中該第一寄生元件、該第二寄生元件或及該輻射元件係由一印刷電路板之金屬層上的一金屬層蝕刻而成。 The multi-band antenna of claim 1, wherein the first parasitic element, the second parasitic element or the radiating element is etched from a metal layer on a metal layer of a printed circuit board.
TW104102837A 2015-01-28 2015-01-28 Multi-band antenna TWI559615B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104102837A TWI559615B (en) 2015-01-28 2015-01-28 Multi-band antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104102837A TWI559615B (en) 2015-01-28 2015-01-28 Multi-band antenna

Publications (2)

Publication Number Publication Date
TW201628264A TW201628264A (en) 2016-08-01
TWI559615B true TWI559615B (en) 2016-11-21

Family

ID=57181885

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104102837A TWI559615B (en) 2015-01-28 2015-01-28 Multi-band antenna

Country Status (1)

Country Link
TW (1) TWI559615B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713259B (en) * 2019-12-05 2020-12-11 和碩聯合科技股份有限公司 Antenna structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI823474B (en) * 2022-07-13 2023-11-21 廣達電腦股份有限公司 Antenna structure
TWI828261B (en) * 2022-08-05 2024-01-01 廣達電腦股份有限公司 Antenna structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201540960U (en) * 2009-11-17 2010-08-04 精乘科技股份有限公司 Multi-band antenna
CN101192708B (en) * 2006-11-24 2011-04-20 连展科技电子(昆山)有限公司 Multi-frequency antenna
TWI363454B (en) * 2007-07-24 2012-05-01 Hon Hai Prec Ind Co Ltd Antenna assembly
TWI364133B (en) * 2008-06-06 2012-05-11 Univ Nat Sun Yat Sen A coupled-fed multiband antenna
CN103022635A (en) * 2011-09-21 2013-04-03 联想移动通信科技有限公司 Multifunctional built-in antenna
CN101986461B (en) * 2010-01-05 2014-02-05 连展科技电子(昆山)有限公司 Integrated multi-frequency antenna
TWI431849B (en) * 2009-11-24 2014-03-21 Ind Tech Res Inst Mobile communication device
CN103682585A (en) * 2012-09-24 2014-03-26 宏碁股份有限公司 An electronic device containing a planar inverted F antenna with dual parasitic elements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192708B (en) * 2006-11-24 2011-04-20 连展科技电子(昆山)有限公司 Multi-frequency antenna
TWI363454B (en) * 2007-07-24 2012-05-01 Hon Hai Prec Ind Co Ltd Antenna assembly
TWI364133B (en) * 2008-06-06 2012-05-11 Univ Nat Sun Yat Sen A coupled-fed multiband antenna
CN201540960U (en) * 2009-11-17 2010-08-04 精乘科技股份有限公司 Multi-band antenna
TWI431849B (en) * 2009-11-24 2014-03-21 Ind Tech Res Inst Mobile communication device
CN101986461B (en) * 2010-01-05 2014-02-05 连展科技电子(昆山)有限公司 Integrated multi-frequency antenna
CN103022635A (en) * 2011-09-21 2013-04-03 联想移动通信科技有限公司 Multifunctional built-in antenna
CN103682585A (en) * 2012-09-24 2014-03-26 宏碁股份有限公司 An electronic device containing a planar inverted F antenna with dual parasitic elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713259B (en) * 2019-12-05 2020-12-11 和碩聯合科技股份有限公司 Antenna structure

Also Published As

Publication number Publication date
TW201628264A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
TWI499132B (en) Antenna module
US8599084B2 (en) Mobile communication device and antenna
TWI622230B (en) Antenna structure and wireless communication device using the same
US8779988B2 (en) Surface mount device multiple-band antenna module
TWI628851B (en) Multi-band antenna structure
EP2169763A1 (en) WWAN printed circuit antenna with three monopole antennas disposed on a same plane
TWI656686B (en) Antenna structure and wireless communication device having the same
US20110102272A1 (en) Mobile Communication Device and Antenna Thereof
TWI619314B (en) Multiple frequency antenna
TW201433000A (en) Antenna assembly and wireless communication device employing same
TWI542073B (en) Multi-band inverted-f antenna
TWI768843B (en) Antenna module and electronic device
US8723739B2 (en) Multi-frequency antenna
TWM502257U (en) Wideband antenna
TWI559615B (en) Multi-band antenna
TWI437762B (en) Mobile communication device antenna
TW201712945A (en) Antenna module and wireless communication device using the same
CN109659672B (en) Terminal equipment
TWI545837B (en) Wireless communication apparatus and antenna module thereof
TWI659568B (en) Antenna structure and wireless communication device having the same
TW201517380A (en) Wireless communication device
TW201351783A (en) Antenna assembly and wireless communication device employing same
TWI530025B (en) Multiband antenna for portable electronic device
TWI583057B (en) Working frequency-tunable antenna and wireless communication device having same
TWI493792B (en) Multiband antenna