TWI556068B - Methods of laser processing photoresist in a gaseous environment - Google Patents

Methods of laser processing photoresist in a gaseous environment Download PDF

Info

Publication number
TWI556068B
TWI556068B TW103133027A TW103133027A TWI556068B TW I556068 B TWI556068 B TW I556068B TW 103133027 A TW103133027 A TW 103133027A TW 103133027 A TW103133027 A TW 103133027A TW I556068 B TWI556068 B TW I556068B
Authority
TW
Taiwan
Prior art keywords
gas
photoresist layer
processing
wafer
laser beam
Prior art date
Application number
TW103133027A
Other languages
Chinese (zh)
Other versions
TW201612658A (en
Inventor
亞瑟 賽菲羅普羅
安德魯 漢瑞魯克
Original Assignee
精微超科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精微超科技公司 filed Critical 精微超科技公司
Priority to TW103133027A priority Critical patent/TWI556068B/en
Publication of TW201612658A publication Critical patent/TW201612658A/en
Application granted granted Critical
Publication of TWI556068B publication Critical patent/TWI556068B/en

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Drying Of Semiconductors (AREA)

Description

在氣體環境中使用雷射之光阻處理方法 Laser treatment method using laser in a gas environment

本發明是有關於光阻處理過程,特別是利用雷射及氣態環境之光阻處理系統與方法,用以改善光阻之特性。 The present invention relates to photoresist processing, and in particular to photoresist processing systems and methods utilizing laser and gaseous environments for improving the characteristics of photoresist.

光阻是一種感光物質應用於半導體製程。在形成半導體的過程中,光阻可使小型特徵形成於矽表面。如同在微影成像(photolithography)的過程中,覆與光阻之矽晶圓放置於微影設備。接著,將所要形成於矽晶圓的特定圖案(pattern)製作在一光罩(mask)上,然後將光罩進行曝光。這樣,光罩上的圖案就呈現在光阻上,其中光阻對光波波長(wavelength)具敏感性。光阻又可區分為正光阻(“postive photoresist”)及負光阻(“negative photoresist”)。正光阻經過光的照射後,曝光區可經由曝光處理而除去,並留下光罩的圖案於光阻上。然後,將光阻進行蝕刻(etching),使光阻上的設計圖案移轉至光阻下的矽晶圓或其他材質。 Photoresist is a photosensitive material used in semiconductor processes. In the process of forming a semiconductor, the photoresist can form small features on the surface of the crucible. As in the process of photolithography, the wafer with the photoresist is placed on the lithography apparatus. Next, a specific pattern to be formed on the germanium wafer is formed on a mask, and then the mask is exposed. Thus, the pattern on the reticle appears on the photoresist, where the photoresist is sensitive to the wavelength of the light. The photoresist can be further divided into a "positive photoresist" and a "negative photoresist". After the positive photoresist is irradiated with light, the exposed region can be removed by exposure processing, and the pattern of the photomask is left on the photoresist. The photoresist is then etched to shift the design pattern on the photoresist to a germanium wafer or other material under the photoresist.

理想的說,光阻圖案具有雙方面的特質及完美正方形的側壁。並且,理想的光阻能準確的複製光罩圖案及做為完美的蝕刻阻擋層。然而,就實際情況而論,光阻的敏感度是有限的,並且有某種程度上的線邊緣粗糙度(line-edge roughness/LER),以及是非完美的蝕刻 阻擋層。 Ideally, the photoresist pattern has dual qualities and a perfect square sidewall. Moreover, the ideal photoresist can accurately replicate the reticle pattern and serve as a perfect etch stop. However, as far as the actual situation is concerned, the sensitivity of the photoresist is limited, and there is some degree of line-edge roughness/LER, and imperfect etching. Barrier layer.

許多的努力已投入於改善光阻敏感度、減少LER及提升抗蝕刻性。有一種方式是使用連續滲透合乘法(sequential infiltration synthesis/SIS)。此方法利用小於100℃的三甲基鋁(trimethyl aluminum)及水,在幾分鐘的情況下,試圖提高抗蝕刻性及減少LER。描述此方法的參考文獻為“Enhanced polymeric lithography resists via sequential infiltration synthesis”,Tseng et al.(Jounal of Materials Chemistry,21,2011 pp.11722-25。此文獻亦引用為數位物件識別號(Digital Object Identifier/DOI):10.1039/c1jm12461g。 Many efforts have been made to improve photoresist sensitivity, reduce LER, and improve etch resistance. One way is to use sequential infiltration synthesis (SIS). This method utilizes trimethyl aluminum and water at less than 100 ° C in an attempt to improve etch resistance and reduce LER in a few minutes. A reference describing this method is "Enhanced polymeric lithography resists via sequential in circulation synthesis", Tseng et al. (Jounal of Materials Chemistry, 21, 2011 pp. 11722-25. This document is also cited as a Digital Object Identifier. /DOI): 10.1039/c1jm12461g.

然而,執行此過程所花費的幾分鐘會減少生產線上的晶圓生產量。 However, the few minutes it takes to perform this process will reduce wafer throughput on the production line.

本發明所揭露的一特徵為一種圖案化產品晶圓之改善方法。晶元包括光阻層,其中光阻層具有表面。此方法使光阻層之抗蝕刻性(etch resistance)及線邊緣粗糙度(LER)當中至少一特性獲得改善。改善方法的步驟包括:a)曝露光阻層於至少一第一處理氣體,其選自於由三甲基鋁氣體(Al2(CH3)6)、四氯化鈦氣體(TiCl4)及二乙基鋅氣體((C2H5)2Zn)所構成的群組;b)以雷射照射光阻層及第一處理氣體,使第一氣體注入光阻層,其中光阻層的表面溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃;c)移除光阻層週圍剩餘的第一處理氣體;d)曝露光阻層於第二處理氣體,其中此氣體包含水(H2O);e)以雷射照射光阻層及第二處理氣體,使水成份(H2O)注入光阻層,其中光阻層的表面溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃。 One feature disclosed in the present invention is a method of improving a patterned product wafer. The wafer includes a photoresist layer, wherein the photoresist layer has a surface. This method improves at least one of the etch resistance and the line edge roughness (LER) of the photoresist layer. The method of improving the method comprises: a) exposing the photoresist layer to at least one first process gas selected from the group consisting of trimethyl aluminum gas (Al 2 (CH 3 ) 6 ), titanium tetrachloride gas (TiCl 4 ), and a group consisting of diethylzinc gas ((C 2 H 5 ) 2 Zn); b) irradiating the photoresist layer and the first process gas with a laser to inject a first gas into the photoresist layer, wherein the photoresist layer The surface temperature is raised to 300 ° C ~ 500 ° C, and the temperature uniformity is +/- 5 ° C; c) the first processing gas remaining around the photoresist layer is removed; d) the photoresist layer is exposed to the second processing gas, wherein The gas comprises water (H 2 O); e) irradiating the photoresist layer and the second processing gas with a laser to inject a water component (H 2 O) into the photoresist layer, wherein the surface temperature of the photoresist layer is raised to 300 ° C to 500 °C, and temperature uniformity is +/- 5 °C.

本發明所揭露的另一特徵為上述的改善方法,其中雷射照射包括使用雷射光束對光阻層進行掃描。 Another feature disclosed herein is the improved method described above, wherein laser illumination comprises scanning the photoresist layer using a laser beam.

本發明所揭露的另一特徵為上述的改善方法,其中雷射掃描包括移動雷射光束、移動圖案化產品晶圓或共同移動雷射光束及晶圓。 Another feature disclosed in the present invention is the above-described improvement method, wherein the laser scanning comprises moving a laser beam, moving a patterned product wafer or co-moving a laser beam and a wafer.

本發明所揭露的另一特徵為上述的改善方法,其中雷射光束形成一線形圖像於光阻層表面。 Another feature disclosed in the present invention is the above-described improvement method, wherein the laser beam forms a linear image on the surface of the photoresist layer.

本發明所揭露的另一特徵為上述的改善方法,其中線形圖像的停留時間t為1毫秒(ms)t100毫秒(ms)。 Another feature disclosed in the present invention is the above improvement method, wherein the staying time t of the line image is 1 millisecond (ms) t 100 milliseconds (ms).

本發明所揭露的另一特徵為上述的改善方法,其中線形圖像的寬度W與長度L分別為0.2mmW2mm及為10mmL100mm。 Another feature disclosed in the present invention is the above improvement method, wherein the width W and the length L of the line image are respectively 0.2 mm. W 2mm and 10mm L 100mm.

本發明所揭露的另一特徵為上述的改善方法,其中線形圖像的掃描速度vs為20mm/svs 5000mm/s。 Another feature disclosed in the present invention is the above improvement method, wherein the scanning speed v s of the line image is 20 mm/s v s 5000mm/s.

本發明所揭露的另一特徵為上述的改善方法,其中雷射光束的功率密度P為50watts/mm2 P150watts/mm2Another feature disclosed in the present invention is the above improvement method, wherein the power density P of the laser beam is 50 watts/mm 2 P 150watts/mm 2 .

本發明所揭露的另一特徵為上述的改善方法,其中圖案化產品晶圓容納於製程腔體的內部空間。 Another feature disclosed in the present invention is the above-described improvement method in which a patterned product wafer is housed in an internal space of a process chamber.

本發明所揭露的另一特徵為上述的改善方法,更包括對處理過之圖案化產品晶圓進行蝕刻。 Another feature disclosed in the present invention is the above-described improvement method, which further includes etching the processed patterned product wafer.

本發明所揭露的另一特徵為上述的改善方法,其中執行步驟a)至e)於整個晶圓所需的時間為30~120秒。 Another feature disclosed in the present invention is the above-described improvement method, wherein the steps required to perform steps a) through e) for the entire wafer are 30 to 120 seconds.

本發明所揭露的另一特徵為上述的改善方法,其中步驟a)至e)的重複次數為一次以上。另外,每一次完成步驟e)之後,增加移除光阻層周圍之第二處理氣體的新步驟。 Another feature disclosed in the present invention is the above-described improvement method, wherein the number of repetitions of steps a) to e) is one or more. Additionally, each time step e) is completed, a new step of removing the second process gas around the photoresist layer is added.

本發明所揭露的另一特徵為上述的改善方法,其中產品晶圓容納於製程腔體內。改善方法亦包括移除光阻層周圍的第一處理氣體。移除的過程包括從製程腔體內抽除第一處理氣體及使用惰性氣體以吹淨製程腔體當中的至少一項。 Another feature disclosed in the present invention is the above-described improvement method in which a product wafer is housed in a process chamber. The improvement method also includes removing the first process gas surrounding the photoresist layer. The removing process includes extracting the first process gas from the process chamber and using an inert gas to purge at least one of the process chambers.

本發明所揭露的另一特徵為一種產品晶圓之處理方法。產品晶圓設於製程腔體之內部空間並具有圖案化光阻層,其中光阻層具有表面此方法使光阻層之抗蝕刻性(etch resistance)及線邊緣粗糙度(LER)當中至少一特性獲得改善。處理方法的步驟包括:a)曝露光阻層之表面於第一分子處理氣體;b)使用雷射光束對光阻層之表面進行掃描,使第一分子氣體的分子注入光阻層,其中光阻層的表面溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃;c)移除製程腔體之內部空間裡所剩之第一分子處理氣體;d)曝露光阻層於第二分子處理氣體,並且對於第二分子處理氣體重複步驟b),其中第一分子處理氣體選自於由三甲基鋁氣體(Al2(CH3)6)、四氯化鈦氣體(TiCl4)及二乙基鋅氣體((C2H5)2Zn)所構成之群組當中的至少一種氣體,而第二分子處理氣體包括水成份(H2O)。 Another feature disclosed in the present invention is a method of processing a product wafer. The product wafer is disposed in an inner space of the processing chamber and has a patterned photoresist layer, wherein the photoresist layer has a surface, wherein the method comprises at least one of an etch resistance and a line edge roughness (LER) of the photoresist layer. Features improved. The steps of the processing method include: a) exposing the surface of the photoresist layer to the first molecular processing gas; b) scanning the surface of the photoresist layer with a laser beam, and injecting molecules of the first molecular gas into the photoresist layer, wherein the light The surface temperature of the resist layer is raised to 300 ° C ~ 500 ° C, and the temperature uniformity is +/- 5 ° C; c) the first molecular processing gas remaining in the internal space of the process chamber is removed; d) the exposed photoresist layer Processing the gas in the second molecule, and repeating step b) for the second molecular processing gas, wherein the first molecular processing gas is selected from the group consisting of trimethyl aluminum gas (Al 2 (CH 3 ) 6 ), titanium tetrachloride gas ( At least one of the group consisting of TiCl 4 ) and diethylzinc gas ((C 2 H 5 ) 2 Zn), and the second molecular treatment gas includes a water component (H 2 O).

本發明所揭露的另一特徵為上述之處理方法,其中雷射光束形成線形圖像於光阻層之表面。線形圖像的停留時間t為1mst100ms。 Another feature disclosed in the present invention is the above processing method, wherein the laser beam forms a line image on the surface of the photoresist layer. The datum time t of the line image is 1ms t 100ms.

本發明所揭露的另一特徵為上述之處理方法,其中線形圖 像的寬度W與長度L分別為0.2mmW2mm及10mmL100mm。 Another feature disclosed in the present invention is the above processing method, wherein the width W and the length L of the line image are respectively 0.2 mm. W 2mm and 10mm L 100mm.

本發明所揭露的另一特徵為上述之處理方法,其中線形圖像的掃描速度vs為20mm/svs 5000mm/s。 Another feature disclosed in the present invention is the above processing method, wherein the scanning speed v s of the line image is 20 mm/s v s 5000mm/s.

本發明所揭露的另一特徵為上述之處理方法,其中雷射光束的功率密度P為50watts/mm2 P150watts/mm2Another feature disclosed in the present invention is the above processing method, wherein the power density P of the laser beam is 50 watts/mm 2 P 150watts/mm 2 .

本發明所揭露的另一特徵為上述之處理方法,更包括對處理過之晶圓進行蝕刻。 Another feature disclosed in the present invention is the above-described processing method, which further includes etching the processed wafer.

本發明所揭露的另一特徵為上述之處理方法,其中執行步驟a)至d)於整個晶圓所需的時間為30~120秒。 Another feature disclosed in the present invention is the above-described processing method, wherein the steps required to perform steps a) through d) for the entire wafer are 30 to 120 seconds.

本發明所揭露的另一特徵為上述之處理方法,其中從製程腔體之內部空間中移除第一分子處理氣體的過程包括從製程腔體之內部空間抽除第一分子處理氣體,以及使用惰性氣體以吹淨製程腔體的內部空間當中的至少一項。 Another feature disclosed in the present invention is the above processing method, wherein the process of removing the first molecular processing gas from the internal space of the process chamber includes extracting the first molecular processing gas from the internal space of the processing chamber, and using The inert gas is used to blow at least one of the internal spaces of the process chamber.

本發明所揭露的另一特徵為一種產品晶圓之處理方法。晶圓設於製程腔體之內部空間並具有圖案化光阻層,其中光阻層具有表面。此方法使具有光阻層之抗蝕刻性(etch resistance)及線邊緣粗糙度(LER)當中至少一特性獲得改善。處理方法的步驟包括:a)有次序性的注入第一及第二處理氣體於製程腔體的內部空間,其中在注入後續的氣體前,移除首先注入的氣體;b)使用雷射對光阻層之表面進行掃描,使第一及第二分子氣體有次序性的注入光阻層;c)多次重複步驟a)與b),其中第一分子氣體選自於由三甲基鋁氣體(Al2(CH3)6)、四氯化鈦氣體(TiCl4)及二乙基鋅氣體((C2H5)2Zn)所構成之群組 當中的至少一種氣體,而第二分子氣體包括水蒸氣。 Another feature disclosed in the present invention is a method of processing a product wafer. The wafer is disposed in an inner space of the process chamber and has a patterned photoresist layer, wherein the photoresist layer has a surface. This method improves at least one of the etch resistance and the line edge roughness (LER) of the photoresist layer. The steps of the processing method include: a) sequentially injecting the first and second process gases into the internal space of the process chamber, wherein the first injected gas is removed before injecting the subsequent gas; b) using the laser to the light Scanning the surface of the resist layer to sequentially inject the first and second molecular gases into the photoresist layer; c) repeating steps a) and b) multiple times, wherein the first molecular gas is selected from the group consisting of trimethyl aluminum gas At least one of a group consisting of (Al 2 (CH 3 ) 6 ), titanium tetrachloride gas (TiCl 4 ), and diethylzinc gas ((C 2 H 5 ) 2 Zn), and the second molecule The gas includes water vapor.

本發明所揭露的另一特徵為上述採用有次序性注入第一及第二分子氣體之處理方法,其中雷射掃描藉由雷射光束形成線形圖像。線形圖像的停留時間t為1mst100ms。 Another feature disclosed in the present invention is the above-described processing method for sequentially injecting first and second molecular gases, wherein the laser scanning forms a linear image by a laser beam. The datum time t of the line image is 1ms t 100ms.

本發明所揭露的另一特徵為上述採用有次序性注入第一及第二分子氣體之處理方法,其中線形圖像的寬度W與長度L分別為0.2mmW2mm及10mmL100mm。 Another feature disclosed in the present invention is the above-described processing method for sequentially injecting first and second molecular gases, wherein the width W and length L of the linear image are respectively 0.2 mm. W 2mm and 10mm L 100mm.

本發明所揭露的另一特徵為上述採用有次序性注入第一及第二分子氣體之處理方法,其中線形圖像的掃描速度vs為20mm/svs 5000mm/s。 Another feature disclosed in the present invention is the above-described processing method for sequentially injecting first and second molecular gases, wherein the scanning speed v s of the linear image is 20 mm/s. v s 5000mm/s.

本發明所揭露的另一特徵為上述採用有次序性注入第一及第二分子氣體之處理方法,其中雷射光束的功率密度P為50watts/mm2 P150watts/mm2Another feature disclosed in the present invention is the above-described processing method for sequentially injecting first and second molecular gases, wherein the power density P of the laser beam is 50 watts/mm 2 P 150watts/mm 2 .

本發明所揭露的另一特徵為上述採用有次序性注入第一及第二分子氣體之處理方法,其中從製程腔體之內部空間中移除第一或第二分子氣體的過程以下至少一項:i)從製程腔體之內部空間中抽除第一或第二分子氣體;及ii)利用惰性氣體吹淨製程腔體之內部空間。 Another feature disclosed in the present invention is the above-described processing method for sequentially injecting first and second molecular gases, wherein at least one of the following steps of removing the first or second molecular gas from the internal space of the processing chamber : i) extracting the first or second molecular gas from the internal space of the process chamber; and ii) purging the internal space of the process chamber with an inert gas.

本發明所揭露的另一特徵為一種產品晶圓之處理方法。晶圓設於製程腔體之內部空間中並具有圖案化光阻層,其中光阻層具有表面。此方法使光阻層之抗蝕刻性(etch resistance)及線邊緣粗糙度(LER)當中至少一特性獲得改善。處理方法的步驟包括:a)曝露光阻層之表面於第一處理氣體,其中第一處理氣體包含分子,並且分子選自於由三甲基鋁(Al2(CH3)6)氣體、 四氯化鈦(TiCl4)氣體及二乙基鋅((C2H5)2Zn)氣體所構成之分子群組當中的至少一種氣體;b)使用雷射光束對圖光阻層之表面進行掃描,使第一處理氣體的分子注入光阻層,其中光阻層的表面溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃。 Another feature disclosed in the present invention is a method of processing a product wafer. The wafer is disposed in an inner space of the process chamber and has a patterned photoresist layer, wherein the photoresist layer has a surface. This method improves at least one of the etch resistance and the line edge roughness (LER) of the photoresist layer. The steps of the processing method include: a) exposing the surface of the photoresist layer to the first process gas, wherein the first process gas comprises molecules, and the molecules are selected from the group consisting of trimethyl aluminum (Al 2 (CH 3 ) 6 ) gas, four At least one gas in a molecular group consisting of titanium chloride (TiCl 4 ) gas and diethyl zinc ((C 2 H 5 ) 2 Zn) gas; b) using a laser beam to irradiate the surface of the photoresist layer Scanning, the molecules of the first process gas are injected into the photoresist layer, wherein the surface temperature of the photoresist layer is raised to 300 ° C ~ 500 ° C, and the temperature uniformity is +/- 5 ° C.

本發明所揭露的另一特徵為上述採用分子注入光阻層之處理方法,於步驟b)之後,更包括以下步驟:c)移除製程腔體之內部空間中的第一處理氣體;d)曝露光阻層於第二處理氣體,其中第二處理氣體包括水(H2O)分子;e)使用雷射光束對光阻層之表面進行掃描,使水(H2O)分子注入光阻層。 Another feature disclosed in the present invention is the above-described processing method using a molecular injection photoresist layer. After the step b), the method further includes the steps of: c) removing the first processing gas in the internal space of the processing chamber; d) Exposing the photoresist layer to the second process gas, wherein the second process gas comprises water (H 2 O) molecules; e) scanning the surface of the photoresist layer with a laser beam to inject water (H 2 O) molecules into the photoresist Floor.

本發明所揭露的另一特徵為上述採用分子注入光阻層之處理方法,其中從製程腔體之內部空間移除第一處理氣體的過程包括以下至少一項技巧:i)從製程腔體的內部空間抽除第一或第二分子處理氣體;及ii)使用惰性氣體以吹淨製程腔體之內部空間。 Another feature disclosed in the present invention is the above-described processing method using a molecular injection photoresist layer, wherein the process of removing the first process gas from the internal space of the process chamber includes at least one of the following techniques: i) from the process chamber The internal space extracts the first or second molecular processing gas; and ii) uses an inert gas to purge the internal space of the process chamber.

本發明所揭露的另一特徵為上述採用分子注入光阻層之處理方法,其中雷射光束形成線形圖像。線形圖像的停留時間t為1mst100ms。 Another feature disclosed in the present invention is the above-described processing method using a molecular injection photoresist layer in which a laser beam forms a linear image. The datum time t of the line image is 1ms t 100ms.

本發明所揭露的另一特徵為上述採用分子注入光阻層之處理方法,其中,線形圖像的寬度W與長度L分別為0.2mmW2mm及10mmL100mm、線形圖像的掃描速度vs為20mm/svs 5000mm/s以雷射光束的功率密度P為50watts/mm2 P150watts/mm2Another feature disclosed in the present invention is the above-described processing method using a molecular injection photoresist layer, wherein the width W and the length L of the linear image are respectively 0.2 mm. W 2mm and 10mm L 100mm, linear image scanning speed v s is 20mm / s v s The power density P of the laser beam of 5000 mm/s is 50 watts/mm 2 P 150watts/mm 2 .

本發明所揭露的另一特徵為上述採用分子注入光阻層之處理方法,其中執行步驟a)與b)於整個晶圓所需的時間為30~120秒。 Another feature disclosed in the present invention is the above-described processing method using a molecular injection photoresist layer, wherein the steps required to perform steps a) and b) for the entire wafer are 30 to 120 seconds.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。上述之發明內容及以下詳細說明僅為舉例,其目的為提供一概要或架構以瞭解專利範圍的屬性與特性。 The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The above summary of the invention and the following detailed description are merely exemplary, and are intended to provide an overview or architecture to understand the attributes and characteristics of the patent scope.

10‧‧‧產品晶圓 10‧‧‧Product Wafer

20‧‧‧基板 20‧‧‧Substrate

22‧‧‧上表面 22‧‧‧ upper surface

30‧‧‧光阻層 30‧‧‧Photoresist layer

32‧‧‧頂面 32‧‧‧ top surface

TH‧‧‧厚度 TH‧‧‧ thickness

40‧‧‧曝光區域 40‧‧‧Exposure area

44‧‧‧積體電路晶片 44‧‧‧Integrated circuit chip

50‧‧‧圖形 50‧‧‧ graphics

100‧‧‧雷射處理系統 100‧‧‧ Laser Processing System

104‧‧‧週邊環境 104‧‧‧Environmental environment

110‧‧‧製程腔體 110‧‧‧Processing cavity

112‧‧‧內部空間 112‧‧‧Internal space

114‧‧‧頂壁 114‧‧‧ top wall

116‧‧‧窗體 116‧‧‧Form

130‧‧‧晶圓平台 130‧‧‧ Wafer Platform

132‧‧‧卡盤 132‧‧‧ chuck

134‧‧‧平台引動器 134‧‧‧ platform actuator

136‧‧‧托板 136‧‧‧ board

150A‧‧‧第一處理氣體來源 150A‧‧‧First process gas source

152A‧‧‧第一處理氣體 152A‧‧‧First process gas

150B‧‧‧第二處理氣體來源 150B‧‧‧second source of process gas

152B‧‧‧第二處理氣體 152B‧‧‧second process gas

160‧‧‧真空系統 160‧‧‧vacuum system

170‧‧‧惰性氣體來源 170‧‧‧Inert gas source

172‧‧‧惰性氣體 172‧‧‧Inert gas

180‧‧‧雷射系統 180‧‧‧Laser system

AR‧‧‧箭頭 AR‧‧‧ arrow

182‧‧‧雷射光束 182‧‧‧Laser beam

182L‧‧‧線形圖像 182L‧‧‧ linear image

N‧‧‧垂直方向 N‧‧‧Vertical direction

α‧‧‧入射角度 Α‧‧‧incidence angle

W‧‧‧寬度 W‧‧‧Width

L‧‧‧長度 L‧‧‧ length

200‧‧‧控制器 200‧‧‧ controller

220‧‧‧氣簾 220‧‧‧Air curtain

所附之圖式提供對本發明更多的瞭解,並合併與屬於本說明書的一部份。該些圖式舉例說明一個或多個實施例,並且與以下的詳細說明共同解釋不同實施例之原理及使用程序。透過以下的詳細說明與附圖可獲得對本發明更完全的瞭解。 The accompanying drawings are provided to provide a further understanding of the invention and are incorporated The drawings illustrate one or more embodiments, and together with the detailed description A more complete understanding of the present invention can be obtained from the following description and drawings.

[第1圖]係一晶圓剖面圖,其包括一塗與光阻層的矽基板。 [Fig. 1] is a cross-sectional view of a wafer including a tantalum substrate coated with a photoresist layer.

[第2圖]係第1圖中的晶圓俯視圖,其顯示晶圓的曝光區域(exposure fields)及所包含的圖案。 [Fig. 2] is a plan view of the wafer in Fig. 1 showing the exposure fields of the wafer and the included patterns.

[第3圖]係一雷射處理系統之示意圖,其中此系統用以執行晶圓的處理方法,進而改善光阻層之抗蝕刻性(etch resistance)及線邊緣粗糙度(LER)當中的至少一項特性。 [Fig. 3] is a schematic diagram of a laser processing system for performing a wafer processing method, thereby improving at least etch resistance and line edge roughness (LER) of the photoresist layer. A feature.

[第4圖]係一線形圖像立視圖,其藉由雷射光束形成於光阻層的表面,並具有一寬度W及長度L。 [Fig. 4] is a vertical view of a linear image formed by a laser beam on the surface of the photoresist layer and having a width W and a length L.

[第5圖]係晶圓之光阻層平面圖,其正在進行雷射掃描的步驟。 [Fig. 5] is a plan view of a photoresist layer of a wafer, which is subjected to a laser scanning step.

[第6圖]係類似第3圖的示意圖,其顯示製程腔體的另一實施例之微 製程腔體。 [Fig. 6] is a schematic view similar to Fig. 3, showing another embodiment of the process chamber Process chamber.

以下是本發明之不同實施例的詳細參考資料,其中藉由附圖做舉例說明。在任何可能的情況下,所有圖式中相同或類似的參考數標代表了相同或類似的元件。所附之圖式並非完全按照比例。熟悉相關技藝者可從簡化的圖式中辨別本發明之主要特徵。 The following are detailed references to various embodiments of the invention, which are illustrated by the accompanying drawings. Wherever possible, the same or similar reference numerals reference The attached drawings are not to scale. Those skilled in the art will recognize the main features of the invention from the simplified drawings.

以下之專利範圍是併入實施方式並為其一部份。 The following patent ranges are incorporated into and incorporated by reference.

在此所揭露之任何文獻或專利文件階包含於參考資料內。 Any documents or patent documents disclosed herein are included in the references.

為了標示目的,有些圖式使用笛卡爾座標,但並不是用來限制方向或位置。 For illustration purposes, some patterns use Cartesian coordinates, but are not intended to limit direction or position.

第1圖及第2圖分別為產品晶圓10的剖面圖及俯視圖。晶圓10包括矽基板20,其中基板20具有上表面22。光阻層30塗於基板20的上表面22,其中光阻層30具有頂面32及厚度TH。請參閱第2圖,其中晶圓10包括曝光區域(exposure fields)(簡稱“區域”)40陣列。區域40是透過光阻層30以逐區域或單次多重區域曝光而形成的。譬如說,每一個曝光區域40包括複數個次區域。此些次區域是用以界定當晶圓製程完成時,所形成之積體電路晶片44的邊界(如第一特寫圖)。圖式中所顯示的晶圓10代表的是積體電路製程中的半導體晶圓。 1 and 2 are a cross-sectional view and a plan view, respectively, of the product wafer 10. Wafer 10 includes a tantalum substrate 20, wherein substrate 20 has an upper surface 22. The photoresist layer 30 is applied to the upper surface 22 of the substrate 20, wherein the photoresist layer 30 has a top surface 32 and a thickness TH. Please refer to FIG. 2, in which wafer 10 includes an array of exposure fields ("regions") 40. The region 40 is formed by the photoresist layer 30 exposing layer by region or a single multiple region. For example, each exposure area 40 includes a plurality of sub-areas. These sub-regions are used to define the boundaries of the integrated circuit wafer 44 (as shown in the first close-up) when the wafer process is completed. The wafer 10 shown in the drawings represents a semiconductor wafer in an integrated circuit process.

透過微影圖像系統,或如業界常稱之微影設備,光阻層30將光罩(photolithography reticle)所轉移的圖形特徵記錄於各個曝光區域40。微影設備的一個範例在美國專利6,879,383有做描述。因次,當所有的曝光區域40已形成後,晶圓10被視為曝光(exposed)狀態。 The photoresist layer 30 records the pattern features transferred by the photolithography reticles in the respective exposure regions 40 through a lithography image system, or a lithography apparatus as is commonly referred to in the industry. An example of a lithography apparatus is described in U.S. Patent 6,879,383. Then, when all of the exposed regions 40 have been formed, the wafer 10 is regarded as an exposed state.

曝光後的晶圓10再透過顯影(develop),將光阻層30之曝光部份移除(當光阻層30為正光阻)。經由以上過程所產生的結果如第2圖之第二特寫圖所示,其中每個曝光區域40包括同樣的立體光阻圖案50。在此過程中處於目前狀態的晶圓10可稱為“圖案化產品晶圓”(patterned product wafer)。 The exposed wafer 10 is further developed to develop the exposed portion of the photoresist layer 30 (when the photoresist layer 30 is a positive photoresist). The results produced by the above process are as shown in the second close-up view of FIG. 2, in which each of the exposed regions 40 includes the same three-dimensional resist pattern 50. The wafer 10 in its current state during this process may be referred to as a "patterned product wafer."

一般來說,經圓製程之下一步是將圖案化產品晶圓進行蝕刻(etching)。蝕刻將光阻30的圖案50轉移至矽基板20。在此步驟中,光阻圖案50扮演蝕刻阻擋結構(etch-stopping structure)。 In general, the next step in the round process is to etch the patterned product wafer. The etching transfers the pattern 50 of the photoresist 30 to the germanium substrate 20. In this step, the photoresist pattern 50 acts as an etch-stopping structure.

如先前所述,除了別的以外,光阻層30具有抗蝕刻性及線邊緣粗糙度相關之性能限制。 As previously described, the photoresist layer 30 has, among other things, performance limitations associated with etch resistance and line edge roughness.

請參閱第3圖,為雷射處理系統100的剖面示意圖。雷射處理系統100是用以對圖案化產品晶圓10進行處理,使光阻層30的性能獲得改善。光阻層30所獲得的性能改善為抗蝕刻性及線邊緣粗糙度當中的至少一項。此圖式與非經過處理之圖案化產品晶圓10做出區別。 Please refer to FIG. 3, which is a schematic cross-sectional view of the laser processing system 100. The laser processing system 100 is used to process the patterned product wafer 10 to improve the performance of the photoresist layer 30. The performance obtained by the photoresist layer 30 is improved to at least one of etching resistance and line edge roughness. This pattern distinguishes from a non-processed patterned product wafer 10.

雷射處理系統100包括製程腔體110。製程腔體110設有內部空間112。內部空間112足夠容納圖案化產品晶圓10。製程腔體110包含頂壁114,其中頂壁114具有窗體116。窗體116的透光波長範圍是△λ。波長範圍△λ包括以下將討論的處理波長λ。在一範例中,窗體116使用的材料為石英玻璃。雷射處理系統100設置於周圍環境104內。製程腔體110被設計為可在內部空間112提供控制環境,進而對光阻層30做處理(如以下所述)。 Laser processing system 100 includes a process chamber 110. The process chamber 110 is provided with an interior space 112. The interior space 112 is sufficient to accommodate the patterned product wafer 10. The process chamber 110 includes a top wall 114 with a top wall 114 having a window 116. The light transmission wavelength range of the window 116 is Δλ. The wavelength range Δλ includes the processing wavelength λ which will be discussed below. In one example, the material used for the window 116 is quartz glass. The laser processing system 100 is disposed within the ambient environment 104. The process chamber 110 is designed to provide a control environment in the interior space 112 to process the photoresist layer 30 (as described below).

圖案化產品晶圓10是藉由晶圓平台130支撐於製程腔體 110之內部空間112中。在一範例中,晶圓平台130可朝x、y及z方向移動。若需要,晶圓平台130亦可於x、y及z軸線做旋轉。晶圓平台130連接平台引動器134,以利操作。 The patterned product wafer 10 is supported by the wafer platform 130 in the process chamber 110 is in the internal space 112. In one example, wafer platform 130 can be moved in the x, y, and z directions. Wafer platform 130 can also be rotated on the x, y, and z axes if desired. The wafer platform 130 is coupled to the platform actuator 134 for operation.

雷射處理系統100亦包括處理氣體來源150A及150B當中的至少一個來源。處理氣體來源150A及150B流控連接製程腔體110的內部空間112,並釋放處理氣體152A及152B當中的至少一種氣體。在一範例中,處理氣體152A及152B當中的至少一種氣體為分子氣體。在第3圖的雷射處理系統100中,分別釋放處理氣體152A及152B的處理氣體來源150A及150B是藉由舉例而呈現的。在一範例中,第一處理氣體152A為分子氣體選自於由三甲基鋁(Al2(CH3)6)、四氯化鈦(TiCl4)及二乙基鋅((C2H5)2Zn)所構成之群組當中的至少一種分子氣體。在另一實施例中,第二分子處理氣體152B包括水蒸氣(也就是H2O氣體)。在一範例中,水蒸氣可為空氣或其他氣體的一成份,而非純水蒸氣。 Laser processing system 100 also includes at least one source of process gas sources 150A and 150B. The process gas sources 150A and 150B flow control connect the internal space 112 of the process chamber 110 and release at least one of the process gases 152A and 152B. In one example, at least one of the process gases 152A and 152B is a molecular gas. In the laser processing system 100 of FIG. 3, the process gas sources 150A and 150B that release the process gases 152A and 152B, respectively, are presented by way of example. In one example, the first process gas 152A is a molecular gas selected from the group consisting of trimethyl aluminum (Al 2 (CH 3 ) 6 ), titanium tetrachloride (TiCl 4 ), and diethyl zinc ((C 2 H 5 ) 2 Zn) at least one molecular gas in the group consisting of. In another embodiment, the second molecular treatment gas 152B includes water vapor (ie, H 2 O gas). In one example, the water vapor can be a component of air or other gas rather than pure water vapor.

雷射處理系統100亦包括真空系統160流控連接製程腔體110的內部空間112。真空系統160的目的為:在處理圖案化產品晶圓10時,於特定的時間移除製程腔體110之內部空間112中的任何氣體。 The laser processing system 100 also includes a vacuum system 160 fluidly coupled to the interior space 112 of the process chamber 110. The purpose of the vacuum system 160 is to remove any gas in the interior space 112 of the process chamber 110 at a particular time while processing the patterned product wafer 10.

雷射處理系統100亦包括惰性氣體來源170流控連接製程腔體110的內部空間112。惰性氣體來源170可提供惰性氣體172,以吹淨第一處理氣體152A或第二處理氣體152B。在一範例中,惰性氣體172為氮氣(nitrogen)。因此,光阻層30周圍的處理氣體152A或152B可被移除,使得此些氣體無法再與光阻層30進行化學反應。 The laser processing system 100 also includes an inert gas source 170 fluidly coupled to the interior space 112 of the process chamber 110. The inert gas source 170 can provide an inert gas 172 to purge the first process gas 152A or the second process gas 152B. In one example, the inert gas 172 is nitrogen. Therefore, the process gas 152A or 152B around the photoresist layer 30 can be removed, so that these gases can no longer chemically react with the photoresist layer 30.

雷射處理系統100亦包括雷射系統180。雷射系統180用以 產生具有處理波長λ的雷射光束182。在一範例中,雷射光束182可進行掃描,如箭頭AR所示。雷射處理系統100可包括收束型聚光鏡(beam conditioning optics)(圖未示)。收束型聚光鏡可包括光束掃描元件及組件(譬如掃描鏡)。 Laser processing system 100 also includes a laser system 180. Laser system 180 is used A laser beam 182 having a processing wavelength λ is produced. In one example, laser beam 182 can be scanned as indicated by arrow AR. The laser processing system 100 can include a beam conditioning optics (not shown). The beam concentrating mirror can include beam scanning elements and components such as scanning mirrors.

第4圖為舉例之線形圖像182L的立視圖。如以下描述,線形圖像182L是藉由雷射光束182與光阻層30之頂面32交會而形成的,。線形圖像182L具有寬度W及長度L,其中W與L線是透過相對於光阻層30的頂面32之垂直方向N的光束入射角α而決定的。 Fig. 4 is an elevational view of an exemplary linear image 182L. As described below, the line image 182L is formed by the laser beam 182 intersecting the top surface 32 of the photoresist layer 30. The line image 182L has a width W and a length L, wherein the W and L lines are determined by the incident angle α of the light beam with respect to the vertical direction N of the top surface 32 of the photoresist layer 30.

在一範例中,雷射系統180產生具有以下參數的雷射光束182,如表1所示。 In one example, laser system 180 produces a laser beam 182 having the following parameters, as shown in Table 1.

於表1中,停留時間t所代表的是線形圖像182L停留在光阻層30的頂面32之定點時間。掃描速度vs代表線形圖像182L於光阻層 30之頂面32的移動速度。請參照第5圖,係圖案化產品晶圓10的俯視圖。此圖列舉線形圖像182L如何在光阻層30之頂面32移動。相對於光阻層30之頂面32,線形圖像182L的移動可藉由以下方式實現:移動雷射光束182(掃描);移動晶圓平台130;及前述兩種做法的結合。在一範例中,雷射光束182採用的是前後往返掃描法,例如牛耕式轉行書寫法(boustrophedonic)或光柵掃描法(raster-scan)。 In Table 1, the dwell time t represents the fixed time at which the line image 182L stays on the top surface 32 of the photoresist layer 30. The scanning speed v s represents the moving speed of the line image 182L on the top surface 32 of the photoresist layer 30. Referring to Figure 5, a plan view of the patterned product wafer 10 is shown. This figure illustrates how the line image 182L moves on the top surface 32 of the photoresist layer 30. With respect to the top surface 32 of the photoresist layer 30, the movement of the line image 182L can be achieved by moving the laser beam 182 (scanning); moving the wafer platform 130; and a combination of the two. In one example, the laser beam 182 is a back-and-forth reciprocating scan method, such as a botanic burstrophed or raster-scan.

雷射處理系統100亦包括控制器200。控制器200操控連接:第一及第二處理氣體來源150A及150B當中的至少一個氣體來源;平台引動器134;真空系統160;惰性氣體來源170;及雷射系統180。當雷射處理系統100對圖案化產品晶圓10進行處理時,以上設計賦予控制器200掌控雷射處理系統100之整體運作。在一範例中,控制器200為或包括一電腦,例如個人電腦或工作站。控制器200較佳包括任何數量的商業級微處理器、合適的匯流排系統結構(將微處理器連接記憶裝置,例如硬碟)及合適的輸入裝置(如鍵盤)與輸出裝置(如顯示器)。控制器200可透過編控的方式,經由軟體指令內建於電腦可讀取媒體(例如記憶體、處理器或兩者),使其執行雷射處理系統100的各種功能,進而對圖案化產品晶圓10做處理。 The laser processing system 100 also includes a controller 200. The controller 200 operates the connection: at least one gas source of the first and second process gas sources 150A and 150B; a platform actuator 134; a vacuum system 160; an inert gas source 170; and a laser system 180. When the laser processing system 100 processes the patterned product wafer 10, the above design gives the controller 200 control of the overall operation of the laser processing system 100. In one example, controller 200 is or includes a computer, such as a personal computer or workstation. The controller 200 preferably includes any number of commercial grade microprocessors, suitable bus system architectures (connecting the microprocessor to a memory device, such as a hard disk), and suitable input devices (such as a keyboard) and output devices (such as a display). . The controller 200 can be built into a computer readable medium (such as a memory, a processor, or both) via a software command in a programmed manner to perform various functions of the laser processing system 100, thereby implementing a patterned product. Wafer 10 is processed.

以下將討論雷射處理系統100對圖案化產品晶圓10進行處理的運作步驟。步驟1為操作真空系統160,以移除製程腔體110之內部空間112裡的環境氣體,進而建立處理過程的初始狀態。譬如說,製程腔體100之內部空間112中的氧氣密度是小於100ppm(百萬分率)。完成建立初始狀態後,步驟2是在製程腔體100的內部空間112注入第一處理 氣體152A,其中第一處理氣體152A接觸光阻層30之頂面32。 The operational steps of the processing of the patterned product wafer 10 by the laser processing system 100 will be discussed below. Step 1 is to operate the vacuum system 160 to remove ambient gases in the interior space 112 of the process chamber 110 to establish an initial state of the process. For example, the oxygen density in the interior space 112 of the process chamber 100 is less than 100 ppm (parts per million). After the initial state is established, step 2 is to inject the first process into the internal space 112 of the process chamber 100. Gas 152A, wherein first process gas 152A contacts top surface 32 of photoresist layer 30.

接著,於步驟3,雷射光束182對圖案化產品晶圓10進行掃描(例如光柵掃描)。也就是說,線形圖像182L經由雷射光束182打在光阻層30的頂面32上。在一範例中,雷射掃描的過程將光阻層30之溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃。此現象導致第一處理氣體152A的分子注入光阻層30。根據表1所列之參數資料,掃描整個圖案化產品晶圓10所需要時間約30~120秒。此時間範圍於本說明書中稱為“晶圓處理時間”。 Next, in step 3, the laser beam 182 scans the patterned product wafer 10 (eg, raster scan). That is, the line image 182L is struck on the top surface 32 of the photoresist layer 30 via the laser beam 182. In one example, the laser scanning process increases the temperature of the photoresist layer 30 to 300 ° C to 500 ° C and the temperature uniformity is +/- 5 ° C. This phenomenon causes the molecules of the first process gas 152A to be injected into the photoresist layer 30. According to the parameter data listed in Table 1, it takes about 30 to 120 seconds to scan the entire patterned product wafer 10. This time range is referred to as "wafer processing time" in this specification.

本晶圓處理方法或過程之以下要討論的部份,類似原子層沉基法(atomic layer deposition/ALD)。也就是說,某材料的單原子層沉積在表面上,並且產生化學反應,進而對表面及表面下的部分物質造成影響。就目前所知,三甲基鋁(Al2(CH3)6)的注入對光阻層30的抗蝕刻性有造成改善。然而,如之前所討論的,在先前技術所提到的處理過程中,氣體注入光阻的步驟是在緩慢的速度及低溫狀態下執行。不同的是,本發明之注入步驟的完成時間只需要幾毫秒(ms)。 The portions of the wafer processing method or process discussed below are similar to atomic layer deposition (ALD). That is to say, a monoatomic layer of a material is deposited on the surface and a chemical reaction is generated, which in turn affects some substances on the surface and under the surface. As far as is known, the injection of trimethylaluminum (Al 2 (CH 3 ) 6 ) causes an improvement in the etching resistance of the photoresist layer 30. However, as previously discussed, in the process of the prior art, the step of gas injection of photoresist is performed at slow speed and low temperature conditions. The difference is that the completion time of the injection step of the present invention takes only a few milliseconds (ms).

需特別注意的是,線形圖像182L(經由雷射光束)的短暫停留時間t阻止光阻層30的流動,藉此維持光阻圖案50。由此可見,經由雷射光束182提高光阻層30之表面溫度的原固,進而促使ALD形態的材料沉積於光阻層30的頂面32或光阻層30中。 It is important to note that the short dwell time t of the line image 182L (via the laser beam) prevents the flow of the photoresist layer 30, thereby maintaining the photoresist pattern 50. It can be seen that the surface temperature of the photoresist layer 30 is increased by the laser beam 182, thereby causing the ALD-form material to be deposited in the top surface 32 or the photoresist layer 30 of the photoresist layer 30.

當雷射光束182以線形圖像182L的方式完成掃描光阻層30之頂面32(請參照第5圖),下一步為步驟4。步驟4為移除光阻層30周圍所剩餘的第一處理氣體152A。移除的做法可透過真空系統160,將製程腔體110之內部空間112抽空(evacuate)。另一種選擇是,或者與真空 系統160合作,啟動惰性氣體來源170,以使用惰性氣體172對製程腔體110的內部空間112進行吹淨。 When the laser beam 182 completes scanning the top surface 32 of the photoresist layer 30 in the form of a line image 182L (please refer to FIG. 5), the next step is step 4. Step 4 is to remove the first process gas 152A remaining around the photoresist layer 30. The removal may evacuate the interior space 112 of the process chamber 110 through the vacuum system 160. Another option is, or with vacuum The system 160 cooperates to activate the inert gas source 170 to purge the interior space 112 of the process chamber 110 using the inert gas 172.

然後,步驟5(非必要,其根據所使用的第一處理氣體之類型而定)係在製程腔體110之內部空間112注入第二處理氣體152B。如前述所註,在一範例中,第二處理氣體152B為含水蒸氣(H2O)的分子氣體。 Then, step 5 (optionally, depending on the type of first process gas used) is injected into the interior space 112 of the process chamber 110 to inject the second process gas 152B. As noted above, in one example, the second process gas 152B is a molecular vapor containing water vapor (H 2 O).

接著,於步驟6,雷射光束182以線形圖像182L的方式對光阻層30之頂面32進行掃描,導致水分子(H2O)注入光阻層30。於步驟7,藉由以上所描述的一種技巧,將製程腔體110之內部空間112中殘餘的第二處理氣體152B進行移除。 Next, in step 6, the laser beam 182 scans the top surface 32 of the photoresist layer 30 in the form of a line image 182L, causing water molecules (H 2 O) to be injected into the photoresist layer 30. In step 7, the residual second process gas 152B in the interior space 112 of the process chamber 110 is removed by a technique as described above.

步驟2至步驟7可重複執行,直到光阻層30之抗蝕刻性(etch resistance)與線邊緣粗糙度(LER)當中至少一項或雙特性獲得想要程度的改善。 Steps 2 to 7 can be repeatedly performed until at least one of the etch resistance and the line edge roughness (LER) of the photoresist layer 30 is improved to a desired degree.

在實施例中,可使用以下類型的第一處理氣體152A及第二處理氣體152B:(1)三甲基鋁(Al2(CH3)6)及水蒸氣以注入鋁或藍寶石(Al2O3);(2)四氯化鈦(TiCl4)及水蒸氣以注入鈦(Ti)或一氧化鈦(TiO);(3)及二乙基鋅((C2H5)2Zn)及水蒸氣以注入鋅或一氧化鋅(ZnO)。 In an embodiment, the following types of first process gas 152A and second process gas 152B may be used: (1) trimethylaluminum (Al 2 (CH 3 ) 6 ) and water vapor to inject aluminum or sapphire (Al 2 O) 3 ); (2) titanium tetrachloride (TiCl 4 ) and water vapor to inject titanium (Ti) or titanium oxide (TiO); (3) and diethyl zinc ((C 2 H 5 ) 2 Zn) and Water vapor is injected into zinc or zinc oxide (ZnO).

水蒸氣型態之第二處理氣體152B是用以形成金屬氧化物。舉例來說,若要形成蝕刻阻擋層,可將三甲基鋁(Al2(CH3)6)、四氯化鈦(TiCl4)或二乙化鋅((C2H5)2Zn)注入光阻層30,但不注入第二處理氣體152B。 The second process gas 152B of the water vapor type is used to form a metal oxide. For example, to form an etch barrier, trimethylaluminum (Al 2 (CH 3 ) 6 ), titanium tetrachloride (TiCl 4 ) or zinc dichloride ((C 2 H 5 ) 2 Zn) The photoresist layer 30 is implanted, but the second process gas 152B is not implanted.

請參照第6圖,係與第3圖類似,並呈現雷射處理系統100的另一實施例。此實施例中的製程腔體110以微製程腔體的型態呈現, 如同美國專利5,997,963之“Microchamber”及美國專利申請號13/690,132之“Movable microchamber with gas curtain”所揭露。在此實施例中,晶圓平台130支撐卡盤132。卡盤132再支撐圖案化產品晶圓10。可移動的晶圓平台130是由拖板136移動性的支撐。頂壁114則包括窗體116,其中窗體116的尺寸足以使雷射光束182穿透窗體116。在一範例中,雷射光束182打在光阻層30的入射角度非垂直入射。 Referring to Figure 6, it is similar to Figure 3 and presents another embodiment of a laser processing system 100. The process chamber 110 in this embodiment is presented in the form of a micro-process chamber. It is disclosed in "Microchamber" of U.S. Patent No. 5,997,963 and "Movable microchamber with gas curtain" of U.S. Patent Application Serial No. 13/690,132. In this embodiment, the wafer platform 130 supports the chuck 132. The chuck 132 further supports the patterned product wafer 10. The movable wafer platform 130 is supported by the mobility of the carriage 136. The top wall 114 includes a window 116 that is sized to pass the laser beam 182 through the window 116. In one example, the laser beam 182 strikes the incident angle of the photoresist layer 30 at a non-normal incidence.

在一範例中,雷射處理系統100亦採用氣簾220,以防止周邊環境104的氣體(如氧氣)進入製程腔體110的內部空間112。相較之下,在一範例中,製程腔體110未與周邊環境做隔絕。若製程腔體110的構造是微製程腔體,可將內部空間112充滿特定的氣體(第一或第二處理氣體152A或152B),排出內部空間112中之原有氣體。在一範例中,雷射處理系統100使用的是惰性氣體來源170的惰性氣體172,以移除原有氣體(如空氣)或處理過程中的第一處理氣體152A或第二處理氣體152B。 In one example, the laser processing system 100 also employs a curtain 220 to prevent gases (such as oxygen) from the surrounding environment 104 from entering the interior space 112 of the process chamber 110. In contrast, in one example, the process chamber 110 is not isolated from the surrounding environment. If the configuration of the process chamber 110 is a micro-machining chamber, the internal space 112 can be filled with a specific gas (the first or second process gas 152A or 152B) to discharge the original gas in the internal space 112. In one example, the laser processing system 100 uses an inert gas 172 of inert gas source 170 to remove the original gas (e.g., air) or the first process gas 152A or the second process gas 152B during processing.

當圖案化產品晶圓10透過以上所描述之一種方法處理後,相較於未經過處理的圖案化產品晶圓10,於光阻層30之抗蝕刻性(etch resistance)及線邊緣粗操度(LER)當中的至少一項特性可獲得改善。於此,經過處理過的圖案化產品晶圓10,可進入標準化的半導體蝕刻程序,以形成半導體裝置。 When the patterned product wafer 10 is processed by one of the methods described above, the etch resistance and the line edge roughness of the photoresist layer 30 compared to the unprocessed patterned product wafer 10. At least one of the characteristics of (LER) can be improved. Here, the processed patterned product wafer 10 can enter a standardized semiconductor etching process to form a semiconductor device.

對於熟知相關技藝者,對本說明書所揭示的較佳實施例進行各種改變,而不違背本發明之精神與範圍如所附之專利範圍,是顯而易見的。因此,本發明所包括所附專利範圍之概念所涵蓋之變化與改變 以及同等之概念。 It will be apparent to those skilled in the art that various modifications of the preferred embodiments of the invention may be made without departing from the spirit and scope of the invention. Therefore, variations and modifications encompassed by the concepts of the appended claims are included in the present invention. And the same concept.

10‧‧‧產品晶圓 10‧‧‧Product Wafer

20‧‧‧基板 20‧‧‧Substrate

30‧‧‧光阻層 30‧‧‧Photoresist layer

32‧‧‧頂面 32‧‧‧ top surface

100‧‧‧雷射處理系統 100‧‧‧ Laser Processing System

104‧‧‧週邊環境 104‧‧‧Environmental environment

110‧‧‧製程腔體 110‧‧‧Processing cavity

112‧‧‧內部空間 112‧‧‧Internal space

114‧‧‧頂壁 114‧‧‧ top wall

116‧‧‧窗體 116‧‧‧Form

130‧‧‧晶圓平台 130‧‧‧ Wafer Platform

134‧‧‧平台引動器 134‧‧‧ platform actuator

150A‧‧‧第一處理氣體來源 150A‧‧‧First process gas source

150B‧‧‧第二處理氣體來源 150B‧‧‧second source of process gas

152A‧‧‧第一處理氣體 152A‧‧‧First process gas

152B‧‧‧第二處理氣體 152B‧‧‧second process gas

160‧‧‧真空系統 160‧‧‧vacuum system

170‧‧‧惰性氣體來源 170‧‧‧Inert gas source

172‧‧‧惰性氣體 172‧‧‧Inert gas

180‧‧‧雷射系統 180‧‧‧Laser system

182‧‧‧雷射光束 182‧‧‧Laser beam

182L‧‧‧線形圖像 182L‧‧‧ linear image

200‧‧‧控制器 200‧‧‧ controller

AR‧‧‧箭頭 AR‧‧‧ arrow

Claims (33)

一種圖案化產品晶圓的改善方法,該晶圓包括一光阻層,該光阻層具有一表面用以改善該光阻層的抗蝕刻性(etch resistance)及線邊緣粗糙度(line-edge roughness/LER)當中的至少其中之一,該改善方法包括:a)曝露該光阻層於至少一第一處理氣體中,其中該至少一第一處理氣體選自於由三甲基鋁氣體(Al2(CH3)6)、四氯化鈦氣體(TiCl4)及二乙基鋅氣體((C2H5)2Zn)所構成的群組;b)以雷射照射該光阻層及該至少一第一處理氣體,使該至少一第一處理氣體注入該光阻層,其中該表面的溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃;c)移除該光阻層周圍所剩餘的該至少一第一處理氣體;d)曝露該光阻層於含水(H2O)的一第二處理氣體中;以及e)以雷射照射該光阻層及該第二處理氣體,使水份(H2O)注入該光阻層,其中該光阻層之該表面的溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃。 A method of improving a patterned product wafer, the wafer comprising a photoresist layer having a surface for improving etch resistance and line edge roughness of the photoresist layer At least one of roughness/LER), the improvement method comprises: a) exposing the photoresist layer to at least one first process gas, wherein the at least one first process gas is selected from the group consisting of trimethylaluminum gas ( a group of Al 2 (CH 3 ) 6 ), titanium tetrachloride gas (TiCl 4 ), and diethylzinc gas ((C 2 H 5 ) 2 Zn); b) irradiating the photoresist layer with a laser And the at least one first processing gas, the at least one first processing gas is injected into the photoresist layer, wherein the temperature of the surface is raised to 300 ° C ~ 500 ° C, and the temperature uniformity is +/- 5 ° C; c) shift Excepting the at least one first process gas remaining around the photoresist layer; d) exposing the photoresist layer to a second process gas containing water (H 2 O); and e) irradiating the photoresist layer with a laser and said second process gas, a moisture (H 2 O) was injected into the photoresist layer, wherein the temperature of the surface of the resist layer to lift 300 ℃ ~ 500 ℃, and temperature A uniformity of +/- 5 ℃. 如請求項1所述之改善方法,其中於步驟b)與步驟e)中,雷射照射包括使用一雷射光束對該光阻層之該表面進行掃描。 The improvement method of claim 1, wherein in the step b) and the step e), the laser irradiation comprises scanning the surface of the photoresist layer using a laser beam. 如請求項2所述之改善方法,其中掃描包括移動該雷射光束、移動該圖案化產品晶圓或共同移動該雷射光束及該圖案化產品晶圓。 The improvement method of claim 2, wherein scanning comprises moving the laser beam, moving the patterned product wafer, or moving the laser beam and the patterned product wafer together. 如請求項2所述之改善方法,其中該雷射光束在該光阻層之該表面形成一線形圖像。 The improvement method of claim 2, wherein the laser beam forms a line image on the surface of the photoresist layer. 如請求項4所述之改善方法,其中該線形圖像的停留時間為t,其中1mst100ms。 The improvement method of claim 4, wherein the linear image has a dwell time of t, wherein 1 ms t 100ms. 如請求項4所述之改善方法,其中該線形圖像具有寬度W及長度L,其中0.2mmW2mm且10mmL100mm。 The improvement method of claim 4, wherein the linear image has a width W and a length L, wherein 0.2 mm W 2mm and 10mm L 100mm. 如請求項4所述之改善方法,其中該線形圖像的掃描速度為vs,其中20mm/svs 5000mm/s。 The improvement method of claim 4, wherein the scanning speed of the linear image is v s , wherein 20 mm/s v s 5000mm/s. 如請求項2所述之改善方法,其中該雷射光束的功率密度為P,其中50watts/mm2 P150watts/mm2The improvement method of claim 2, wherein the laser beam has a power density of P, wherein 50 watts/mm 2 P 150watts/mm 2 . 如請求項1所述之改善方法,其中該圖案化產品晶圓容納於一製程腔體的內部空間。 The improvement method of claim 1, wherein the patterned product wafer is housed in an internal space of a process chamber. 如請求項1所述之改善方法,更包括對處理過的該圖案化產品晶圓進行蝕刻。 The improvement method of claim 1, further comprising etching the processed patterned product wafer. 如請求項1至10任何一項所述之改善方法,其中步驟a)至e)在整個該晶圓製程時間中,所佔用的處理時間為30~120秒。 The improvement method according to any one of claims 1 to 10, wherein steps a) to e) occupy the processing time of 30 to 120 seconds throughout the wafer processing time. 如請求項1所述之改善方法,其中步驟a)至e)的重複次數為一次以上,並且於每一次步驟e)之後增加一新步驟,該新步驟係移除該光阻層周圍的該第二處理氣體。 The improvement method of claim 1, wherein the number of repetitions of steps a) to e) is one or more, and a new step is added after each step e), the new step is to remove the periphery of the photoresist layer Second process gas. 如請求項1所述之改善方法,其中該圖案化產品晶圓容納於一製程腔體的內部空間,並且移除該光阻層周圍之該第一處理氣體的步驟包括從該製程腔體之該內部空間抽除該第一處理氣體;及以一惰性氣體以吹淨該製程腔體的內部空間的至少其中之一。 The improvement method of claim 1, wherein the patterned product wafer is housed in an internal space of a process cavity, and the step of removing the first process gas around the photoresist layer comprises from the process cavity The interior space evacuates the first process gas; and an inert gas purges at least one of the interior spaces of the process chamber. 一種產品晶圓的處理方法,其中該晶圓具有一圖案化光阻層,該圖案化光阻層具有一表面,且該晶圓位於一製程腔體的內部空間,該處理方法用以改善該光阻層之抗蝕刻性(etch resistance)及線邊緣粗糙度(line-edge roughness/LER)當中的至少其中之一,該處理方法包括:a)曝露該圖案化光阻層之該表面於一第一分子處理氣體中;b)使用雷射光束掃描該圖案化光阻層之該表面,使該第一分子處理氣體的分子注入該圖案化光阻層,其中該圖案化光阻層之該表面的溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃;c)移除該製程腔體之該內部空間中所剩餘該第一分子處理氣體;以及d)曝露該圖案化光阻層於一第二分子處理氣體中,並且對該第二分子處理氣體重複步驟b),其中該第一分子處理氣體為選自於由三甲基鋁氣體(Al2(CH3)6)、四氯化鈦氣體(TiCl4)及二乙基鋅氣體((C2H5)2Zn)所構成之群組的至少其中之一,而該第二分子處裡氣體包含水份(H2O)。 A method for processing a product wafer, wherein the wafer has a patterned photoresist layer, the patterned photoresist layer has a surface, and the wafer is located in an internal space of a process cavity, and the processing method is used to improve the At least one of an etch resistance and a line-edge roughness/LER of the photoresist layer, the processing method comprising: a) exposing the surface of the patterned photoresist layer to a surface a first molecular processing gas; b) scanning the surface of the patterned photoresist layer with a laser beam, and injecting molecules of the first molecular processing gas into the patterned photoresist layer, wherein the patterned photoresist layer The surface temperature is raised to 300 ° C ~ 500 ° C, and the temperature uniformity is +/- 5 ° C; c) the first molecular processing gas remaining in the internal space of the process chamber is removed; and d) the pattern is exposed The photoresist layer is in a second molecular processing gas, and step b) is repeated for the second molecular processing gas, wherein the first molecular processing gas is selected from the group consisting of trimethyl aluminum gas (Al 2 (CH 3 ) 6 ), titanium tetrachloride gas (TiCl 4 ) and diethyl zinc gas ( At least one of the group consisting of (C 2 H 5 ) 2 Zn), and the gas in the second molecule contains moisture (H 2 O). 如請求項14所述之處理方法,其中雷射光束形成一線形圖像於該光阻層之該表面,並且該線形圖像的停留時間為t,其中1mst100ms。 The processing method of claim 14, wherein the laser beam forms a line image on the surface of the photoresist layer, and the line image has a d time of t, wherein 1 ms t 100ms. 如請求項15之處理方法,其中該線形圖像具有寬度W及長度L,其中0.2mmW2mm且10mmL100mm。 The processing method of claim 15, wherein the linear image has a width W and a length L, wherein 0.2 mm W 2mm and 10mm L 100mm. 如請求項15之處理方法,其中該線形圖像的掃描速度為vs,其中20mm/svs 5000mm/s。 The processing method of claim 15, wherein the scanning speed of the line image is v s , wherein 20 mm/s v s 5000mm/s. 如請求項14之處理方法,其中該雷射光束的功率密度為P,其中50watts/mm2 P150watts/mm2The processing method of claim 14, wherein the power density of the laser beam is P, wherein 50 watts/mm 2 P 150watts/mm 2 . 如請求項14之處理方法,更包括對處理過的該圖案化產品晶圓進行蝕刻。 The processing method of claim 14, further comprising etching the processed patterned product wafer. 如請求項14之處理方法,其中步驟a)至d)在整個該晶圓製程時間中,所佔用的處理時間為30~120秒。 The processing method of claim 14, wherein the processing time occupied by steps a) to d) is 30 to 120 seconds throughout the wafer processing time. 如請求項14之處理方法,其中移除該製程腔體之該內部空間中之該第一分子處理氣體包括從該製程腔體之該內部空間抽除該第一分子處理氣體;及以一惰性氣體以吹淨該製程腔體之該內部空間當中的至少其中之一。 The processing method of claim 14, wherein the removing the first molecular processing gas in the internal space of the processing chamber comprises extracting the first molecular processing gas from the internal space of the processing chamber; The gas purges at least one of the interior spaces of the process chamber. 一種產品晶圓的處理方法,該晶圓具有一圖案化光阻層,該圖案化光阻層具有一表面,且該晶圓位於一製程腔體的內部空間,該處理方法用以改善該光阻層的抗蝕刻性(etch resistance)及線邊緣粗糙度(line-edge roughness)當中的至少其中之一,該處理方法包括:a)依序地的注入一第一分子處理氣體及一第二分子處理氣體於該製程腔體之該內部空間,並包括在注入後續的該第一或第二分子處理氣體前,移除先前注入的第一或第二分子處理氣體;b)使用雷射光束對該圖案化光阻層之該表面進行掃描,使第一及第二分子處理氣體依序地注入該圖案化光阻層;及c)多次重複步驟a)與b),其中第一分子處理氣體選自於由三甲基鋁氣體(Al2(CH3)6)、四氯化鈦氣體(TiCl4)及二乙基鋅氣體((C2H5)2Zn)所構成之群組當中的至少一其中之一,而第二分子處理氣體包括水蒸氣。 A method for processing a product wafer, the wafer having a patterned photoresist layer having a surface, and the wafer is located in an internal space of a process cavity, the processing method for improving the light At least one of an etch resistance and a line-edge roughness of the resist layer, the processing method comprising: a) sequentially injecting a first molecular processing gas and a second The molecular processing gas is in the internal space of the processing chamber, and includes removing the previously injected first or second molecular processing gas before injecting the subsequent first or second molecular processing gas; b) using the laser beam Scanning the surface of the patterned photoresist layer to sequentially inject the first and second molecular processing gases into the patterned photoresist layer; and c) repeating steps a) and b) a plurality of times, wherein the first molecule The treatment gas is selected from the group consisting of trimethylaluminum gas (Al 2 (CH 3 ) 6 ), titanium tetrachloride gas (TiCl 4 ), and diethylzinc gas ((C 2 H 5 ) 2 Zn). At least one of the group, and the second molecular processing gas comprises water vapor. 如請求項22之處理方法,其中雷射掃描藉由一雷射光束形成一線形圖像,並且該線形圖像的停留時間為t,其中1mst100ms。 The processing method of claim 22, wherein the laser scanning forms a line image by a laser beam, and the line image has a d time of t, wherein 1 ms t 100ms. 如請求項23之處理方法,其中該線形圖像具有寬度W及長度L,其中0.2mmW2mm且10mmL100mm。 The processing method of claim 23, wherein the linear image has a width W and a length L, wherein 0.2 mm W 2mm and 10mm L 100mm. 如請求項23之處理方法,其中該線形圖像的掃描速度為vs其中20mm/svs 5000mm/s。 The processing method of claim 23, wherein the scanning speed of the line image is v s of which 20 mm/s v s 5000mm/s. 如請求項23之處理方法,其中該雷射光束的功率密度為P,其中50watts/mm2 P150watts/mm2The processing method of claim 23, wherein the power density of the laser beam is P, wherein 50 watts/mm 2 P 150watts/mm 2 . 如請求項23之處理方法,其中移除該製程腔體之該內部空間中的該第一或第二分子氣體之步驟包括:i)從該製程腔體之該內部空間抽除該第一或第二分子處理氣體;及ii)以惰性氣體以吹淨該製程腔體之該內部空間的至少其中之一。 The processing method of claim 23, wherein the step of removing the first or second molecular gas in the internal space of the processing chamber comprises: i) extracting the first or the internal space from the processing chamber a second molecular processing gas; and ii) an inert gas to purge at least one of the interior spaces of the process chamber. 一種產品晶圓處理方法,該晶圓具有一圖案化光阻層,該圖案化光阻層具有一表面,且該晶圓位於一製程腔體的內部空間,該處理方法用以改善該光阻層之抗蝕刻性(etch resistance)及線邊緣粗糙度(line-edge roughness/LER)當中的至少其中之一,該處理方法包括:a)曝露該圖案化光阻層之該表面於第一處理氣體中,該第一處理氣體包含複數個分子,該等分子選自於至少一由三甲基鋁氣體(Al2(CH3)6)、四氯化鈦氣體(TiCl4)及二乙基鋅氣體((C2H5)2Zn)所構成的群組的至少其中之一;及 b)使用雷射光束對該圖案化光阻之該表面進行掃描,使該第一處理氣體的該等分子注入該圖案化光阻層,其中該光阻層之該表面的溫度提升至300℃~500℃,並且溫度均勻性為+/- 5℃。 A product wafer processing method, the wafer has a patterned photoresist layer, the patterned photoresist layer has a surface, and the wafer is located in an internal space of a process cavity, and the processing method is used to improve the photoresist At least one of an etch resistance and a line-edge roughness/LER of the layer, the processing method comprising: a) exposing the surface of the patterned photoresist layer to the first process In the gas, the first processing gas comprises a plurality of molecules selected from at least one of trimethyl aluminum gas (Al 2 (CH 3 ) 6 ), titanium tetrachloride gas (TiCl 4 ), and diethyl At least one of the group consisting of zinc gas ((C 2 H 5 ) 2 Zn); and b) scanning the surface of the patterned photoresist using a laser beam to cause the first process gas The molecules are injected into the patterned photoresist layer, wherein the temperature of the surface of the photoresist layer is raised to 300 ° C to 500 ° C, and the temperature uniformity is +/- 5 ° C. 如請求項28之處理方法,步驟b)之後更包括以下步驟:c)移除該製程腔體之該內部空間中的該第一處理氣體;d)曝露該光阻層於一第二處理氣體中,其中該第二處理氣體包括水分子(H2O);及e)使用雷射光束掃描該光阻層之該表面,使水分子(H2O)注入該光阻層。 The processing method of claim 28, after step b), further comprising the steps of: c) removing the first processing gas in the internal space of the processing chamber; and d) exposing the photoresist layer to a second processing gas Wherein the second process gas comprises water molecules (H 2 O); and e) scanning the surface of the photoresist layer with a laser beam to inject water molecules (H 2 O) into the photoresist layer. 如請求項29之處理方法,其中移除該製程腔體之該內部空間中的該第一處理氣體包括以下的至少其中之一:i)抽除該製程腔體之該內部空間中的該第一處理氣體;及ii)以惰性氣體吹淨該製程腔體之該內部空間。 The processing method of claim 29, wherein the removing the first processing gas in the internal space of the processing chamber comprises at least one of: i) extracting the first space in the internal space of the processing chamber a process gas; and ii) blowing the interior space of the process chamber with an inert gas. 如請求項28之處理方法,其中該雷射光束形成一線形圖像,並且該線形圖像的停留時間為t,其中1mst100ms。 The processing method of claim 28, wherein the laser beam forms a line image, and the line image has a dwell time of t, wherein 1 ms t 100ms. 如請求項31之處理方法,其中該線形圖像具有寬度W及長度L、該雷射光束之掃描速度為vs、該雷射光束之功率密度為P,其中0.2mmW2mm、10mmL100mm、20mm/svs 5000mm/s及50watts/mm2 P150watts/mm2The processing method of claim 31, wherein the linear image has a width W and a length L, a scanning speed of the laser beam is v s , and a power density of the laser beam is P, wherein 0.2 mm W 2mm, 10mm L 100mm, 20mm/s v s 5000mm/s and 50watts/mm 2 P 150watts/mm 2 . 如請求項28之處理方法,其中步驟a)與b)在整個該晶圓的製程時間中,所佔用的處理時間為30~120秒。 The processing method of claim 28, wherein the processing time occupied by steps a) and b) during the entire processing time of the wafer is 30 to 120 seconds.
TW103133027A 2014-09-24 2014-09-24 Methods of laser processing photoresist in a gaseous environment TWI556068B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103133027A TWI556068B (en) 2014-09-24 2014-09-24 Methods of laser processing photoresist in a gaseous environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103133027A TWI556068B (en) 2014-09-24 2014-09-24 Methods of laser processing photoresist in a gaseous environment

Publications (2)

Publication Number Publication Date
TW201612658A TW201612658A (en) 2016-04-01
TWI556068B true TWI556068B (en) 2016-11-01

Family

ID=56360859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103133027A TWI556068B (en) 2014-09-24 2014-09-24 Methods of laser processing photoresist in a gaseous environment

Country Status (1)

Country Link
TW (1) TWI556068B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690838A (en) * 1986-08-25 1987-09-01 International Business Machines Corporation Process for enhancing the resistance of a resist image to reactive ion etching and to thermal flow
TW200407941A (en) * 2002-11-11 2004-05-16 Taiwan Semiconductor Mfg Method to improve photoresist profile
US20100248476A1 (en) * 2009-03-24 2010-09-30 Elpida Memory, Inc. Method of manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690838A (en) * 1986-08-25 1987-09-01 International Business Machines Corporation Process for enhancing the resistance of a resist image to reactive ion etching and to thermal flow
TW200407941A (en) * 2002-11-11 2004-05-16 Taiwan Semiconductor Mfg Method to improve photoresist profile
US20100248476A1 (en) * 2009-03-24 2010-09-30 Elpida Memory, Inc. Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TW201612658A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
US8986562B2 (en) Methods of laser processing photoresist in a gaseous environment
US10607845B1 (en) Patterned atomic layer etching and deposition using miniature-column charged particle beam arrays
JP5779210B2 (en) Charged particle beam inspection method and apparatus
CN1333436C (en) Process for making sub-lithographic photoresist features
JP2004537758A (en) Electron beam processing
KR101720991B1 (en) Method and system for manufacturing exposure mask, and method for manufacturing semiconductor device
JP2001345310A (en) Method for forming pattern and correction method, nitride pattern and semiconductor device
US10061208B2 (en) Photonic activation of reactants for sub-micron feature formation using depleted beams
US9952503B2 (en) Method for repairing a mask
KR20160036911A (en) Methods of laser processing photoresist in a gaseous environment
TWI556068B (en) Methods of laser processing photoresist in a gaseous environment
TW202013069A (en) Method of manufacturing photo mask and etching apparatus for etching target layer of photo mask
JP4546902B2 (en) Scanning electron microscope
US11054746B2 (en) Portion of layer removal at substrate edge
US9298085B2 (en) Method for repairing a mask
US10429747B2 (en) Hybrid laser and implant treatment for overlay error correction
RU2654313C1 (en) Method for forming three-dimensional structures of topological elements of functional layers on the surface of the substrates
CN105261559A (en) Method for laser processing of photoresist agent in gaseous environment
JP2012054362A (en) Charged particle beam lithography apparatus and charged particle beam lithography method
Paracha et al. Evaluation of dry technology for removal of pellicle adhesive residue on advanced optical reticles
KR20240015588A (en) Method for electron beam-induced processing of a defect of a microlithographic photomask
JPH04155339A (en) Pattern correction method and its device
JPS60165723A (en) Forming method for fine pattern
JP2005167213A (en) Device manufacturing method and lithographic apparatus
JPH038320A (en) Formation of pattern

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees