TWI551539B - Processing method of transition metal dichalcogenide - Google Patents
Processing method of transition metal dichalcogenide Download PDFInfo
- Publication number
- TWI551539B TWI551539B TW104132207A TW104132207A TWI551539B TW I551539 B TWI551539 B TW I551539B TW 104132207 A TW104132207 A TW 104132207A TW 104132207 A TW104132207 A TW 104132207A TW I551539 B TWI551539 B TW I551539B
- Authority
- TW
- Taiwan
- Prior art keywords
- transition metal
- preparing
- chalcogen
- metal chalcogenide
- layer
- Prior art date
Links
Landscapes
- Photovoltaic Devices (AREA)
- Physical Vapour Deposition (AREA)
Description
本發明是有關於一種過渡金屬硫族化物製備方法,且特別是有關於一種可於低溫常壓下製備渡金屬硫族化物的方法。 The invention relates to a method for preparing a transition metal chalcogenide, and in particular to a method for preparing a metal chalcogenide at a low temperature and a normal pressure.
近年來,由於二維材料-石墨烯(Graphene)其卓越的電學特性、光學特性及物理特性影響,使其成為科學家們最熱門的研究課題之一。不僅如此,在實際產業應用方面上,包含鋰離子電池及太陽能電池等新能源電池,以及可彎曲顯示器、電容器及傳感器等各類電子元件上皆產生令人矚目的高效能。 In recent years, due to its excellent electrical, optical and physical properties, the two-dimensional material Graphene has become one of the most popular research topics for scientists. Not only that, but in terms of practical industrial applications, new energy batteries including lithium-ion batteries and solar cells, as well as various types of electronic components such as bendable displays, capacitors and sensors, have produced remarkable high-performance.
然而,石墨烯不存在直接能隙、難以與目前矽製程相容的缺點,使得具有類似石墨烯二維結構的過渡金屬硫族化物(Transition Metal Dichalcogenide,TMD)成為新一波的研究方向。 However, graphene has no direct energy gap and is difficult to be compatible with the current tantalum process, making Transition Metal Dichalcogenide (TMD), which is similar to the two-dimensional structure of graphene, a new wave of research direction.
目前過渡金屬硫族化物的製備方法常用的有剝離法(Exfoliation)以及化學氣相沉積法(Chemical Vapor Deposition,CVD)。其中剝離法雖然製備方法簡易,且可提 供高品質的二維材料,但其剝離後的薄膜層數難以控制,且難以適用於大規模生產。而現有化學氣相沉積法的缺點是必須在超過攝氏500度高溫以及高於25托耳(torr)之中真空度之環境才可製備出二維材料,且最令人詬病的是硫族元素的來源為具有劇毒的硫化氫氣體(H2S)。 At present, the preparation methods of transition metal chalcogenides are commonly used in Exfoliation and Chemical Vapor Deposition (CVD). Among them, although the stripping method is simple in preparation method and can provide a high-quality two-dimensional material, the number of layers after peeling is difficult to control, and it is difficult to apply to mass production. The disadvantage of the existing chemical vapor deposition method is that a two-dimensional material must be prepared in an environment exceeding a vacuum of 500 degrees Celsius and a vacuum of more than 25 torr, and the most reproducible is chalcogen. The source is highly toxic hydrogen sulfide gas (H 2 S).
本發明之目的是在於提供一種製備過渡金屬硫族化物之方法,其可於低製程溫度以及低真空度至常壓的環境下量產過渡金屬硫族化物,如此一來將可於製程當中避免使用有毒氣體,並且大幅節省真空設備的支出成本。 The object of the present invention is to provide a method for preparing a transition metal chalcogenide, which can mass-produce transition metal chalcogenide in a low process temperature and a low vacuum to atmospheric environment, so that it can be avoided in the process. The use of toxic gases and significant savings in the cost of vacuum equipment.
根據本發明一實施方式是在提供一種製備過渡金屬硫族化物之方法,其步驟包含: 一準備步驟,提供一過渡金屬基板、一反應氣體源及一硫族元素固體源;一汽化步驟,加熱硫族元素固體源而產生一硫族元素氣體;以及一沉積步驟,通入反應氣體源以輔助離子化硫族元素氣體產生一硫族元素電漿,並加熱過渡金屬基板使硫族元素電漿於過渡金屬基板之表面生成一過渡金屬硫族化物層;其中沉積步驟中,反應氣體源及硫族元素氣體係由上而下通入於過渡金屬基板之上方,沉積步驟之一製程真空度為低真空度至常壓,沉積步驟之一製程溫度為攝氏150至500度,分別執行汽化步驟及沉積步驟於相異製程空間內,使加熱硫族元素固體源之汽化步驟並不影響沉積步驟之製程溫度。 According to an embodiment of the invention, there is provided a method of preparing a transition metal chalcogenide, the steps comprising: a preparation step of providing a transition metal substrate, a reactive gas source, and a chalcogen solid source; a vaporization step of heating the chalcogen solid source to produce a chalcogen gas; and a deposition step of introducing the reactant gas source A chalcogen element plasma is generated by assisting ionized chalcogen gas, and the transition metal substrate is heated to form a transition metal chalcogenide layer on the surface of the transition metal substrate by the chalcogen element plasma; wherein the reaction gas source is in the deposition step And the chalcogen gas system is introduced above the transition metal substrate from top to bottom, and one of the deposition steps is a vacuum degree from a low vacuum to a normal pressure, and one of the deposition steps is a process temperature of 150 to 500 degrees Celsius, respectively performing vaporization. The steps and deposition steps are carried out in the dissimilar process space such that the vaporization step of heating the chalcogen solid source does not affect the process temperature of the deposition step.
根據前述製備過渡金屬硫族化物之方法之一實施例,更包含一氧化步驟,於準備步驟後氧化過渡金屬基板之表面。 According to one embodiment of the method for preparing a transition metal chalcogenide, an oxidation step is further included to oxidize the surface of the transition metal substrate after the preparation step.
根據本發明另一實施方式是在提供一種製備過渡金屬硫族化物之方法,其步驟包含: 一準備步驟,提供一承載基板、一過渡金屬固體源、一反應氣體源及一硫族元素固體源;一預鍍步驟,加熱過渡金屬固體源於承載基板上預鍍一氧化過渡金屬層;一汽化步驟,加熱硫族元素固體源而產生一硫族元素氣體;以及一沉積步驟,通入反應氣體源以輔助離子化硫族元素氣體產生一硫族元素電漿,並加熱承載基板使硫族元素電漿與氧化過渡金屬層反應為一過渡金屬硫族化物層;其中沉積步驟中,反應氣體源及硫族元素氣體係由上而下通入於氧化過渡金屬層之上方,沉積步驟之一製程真空度為低真空度至常壓,沉積步驟之一製程溫度為攝氏150至500度,且分別執行預鍍步驟、汽化步驟及沉積步驟於相異製程空間內,使預鍍氧化過渡金屬層之預鍍步驟及加熱硫族元素固體源之汽化步驟不影響沉積步驟之製程溫度。 According to another embodiment of the present invention, there is provided a method of preparing a transition metal chalcogenide, the steps comprising: a preparation step of providing a carrier substrate, a transition metal solid source, a reactive gas source, and a chalcogen solid source; a pre-plating step of heating the transition metal solids from the pre-plated transition metal layer on the carrier substrate; a step of heating a source of chalcogen solids to produce a chalcogen element gas; and a deposition step of introducing a source of reactive gas to assist in ionizing the chalcogen element gas to produce a chalcogenide plasma and heating the carrier substrate to the chalcogen The elemental plasma reacts with the oxidized transition metal layer to form a transition metal chalcogenide layer; wherein, in the deposition step, the reaction gas source and the chalcogen gas system pass from top to bottom over the oxidized transition metal layer, and one of the deposition steps The process vacuum degree is from low vacuum to normal pressure, and one of the deposition steps is a process temperature of 150 to 500 degrees Celsius, and the pre-plating step, the vaporization step and the deposition step are respectively performed in the dissimilar process space to make the pre-plated oxide transition metal layer The pre-plating step and the vaporization step of heating the chalcogen solid source do not affect the process temperature of the deposition step.
根據前述製備過渡金屬硫族化物之方法之一實施例,其中承載基板可為聚亞醯胺(Polyimide)、不銹鋼、玻璃、氮化矽(Si3N4)、二氧化矽(SiO2)、三氧化二鋁(Al2O3)或二氧化鉿(HfO2)。過渡金屬固體源可為鎢(W)、鉬(Mo)、鎳(Ni)、銅(Cu)、銦(In)、鍺(Ge)、鉭(Ta)、鐵(Fe)、鈷(Co)或鈦(Ti)。於汽化步驟中,硫族元素固體源可為硫(S), 且加熱硫於攝氏90到150度使硫汽化。硫族元素固體源可為硒(Se),且加熱硒於攝氏150到300度使硒汽化。硫族元素固體源可為碲(Te),且加熱碲於攝氏400到650度使碲汽化。沉積步驟之製程真空度為大於等於2托耳,且小於等於760托耳,沉積步驟之一電漿功率可為0到500瓦,氧化過渡金屬層之厚度可為1到10奈米。當氧化過渡金屬層之厚度低於7奈米,且製程溫度大於等於攝氏500度時,電漿功率可為0瓦。製備過渡金屬硫族化物之方法中更包含一控制厚度步驟,改變氧化過渡金屬層之厚度以對應改變過渡金屬硫族化物層之原子層數。當氧化過渡金屬層之厚度為1奈米時,可對應生成1原子層之過渡金屬硫族化物層。製備過渡金屬硫族化物之方法中更包含一控制轉換步驟,控制反應氣體源之一流量比率以改變硫族元素電漿與氧化過渡金屬層反應為過渡金屬硫族化物層之一轉換效率,反應氣體源可為氮氣及氫氣。於控制轉換步驟中,氮氣及氫氣之流量比率可為1:1、1:2、2:1或0:1。預鍍步驟可採用原子層沉積技術、濺鍍技術或電子束蒸鍍技術。製備過渡金屬硫族化物之方法更包含一傳輸步驟以及一量產步驟,傳輸步驟係當沉積步驟完成後,帶動承載基板往外傳輸,且承載基板由一可撓性材質製成。量產步驟係依序重複實施預鍍步驟、汽化步驟、沉積步驟及傳輸步驟。 According to one embodiment of the method for preparing a transition metal chalcogenide, the carrier substrate may be polyimide, stainless steel, glass, tantalum nitride (Si 3 N 4 ), cerium oxide (SiO 2 ), Aluminum oxide (Al 2 O 3 ) or hafnium oxide (HfO 2 ). The transition metal solid source may be tungsten (W), molybdenum (Mo), nickel (Ni), copper (Cu), indium (In), germanium (Ge), tantalum (Ta), iron (Fe), cobalt (Co). Or titanium (Ti). In the vaporization step, the chalcogen solid source may be sulfur (S), and the sulfur is heated to vaporize the sulfur at 90 to 150 degrees Celsius. The chalcogen solid source may be selenium (Se), and the heated selenium vaporizes selenium at 150 to 300 degrees Celsius. The chalcogen solid source may be neodymium (Te) and heated to a temperature of 400 to 650 degrees Celsius to vaporize the crucible. The deposition process has a process vacuum of 2 Torr or more and 760 Torr or less. One of the deposition steps may have a plasma power of 0 to 500 watts, and the oxidized transition metal layer may have a thickness of 1 to 10 nm. When the thickness of the oxidized transition metal layer is less than 7 nm and the process temperature is greater than or equal to 500 degrees Celsius, the plasma power may be 0 watt. The method for preparing a transition metal chalcogenide further comprises a step of controlling the thickness, changing the thickness of the oxidized transition metal layer to correspond to changing the number of atomic layers of the transition metal chalcogenide layer. When the thickness of the oxidized transition metal layer is 1 nm, a transition metal chalcogenide layer of 1 atomic layer can be formed. The method for preparing a transition metal chalcogenide further comprises a control conversion step of controlling a flow rate ratio of the reaction gas source to change a conversion efficiency of the transition between the chalcogenide plasma and the oxidized transition metal layer into a transition metal chalcogenide layer, the reaction The gas source can be nitrogen and hydrogen. In the control conversion step, the flow ratio of nitrogen and hydrogen may be 1:1, 1:2, 2:1 or 0:1. The pre-plating step may employ an atomic layer deposition technique, a sputtering technique, or an electron beam evaporation technique. The method for preparing a transition metal chalcogenide further comprises a transport step and a mass production step. After the deposition step is completed, the carrier substrate is driven to be transported outward, and the carrier substrate is made of a flexible material. The mass production step repeats the pre-plating step, the vaporization step, the deposition step, and the transfer step in sequence.
根據本發明再一實施方式是在提供一種製備過渡金屬硫族化物之方法,其步驟包含: 一準備步驟,提供一承載基板、一過渡金屬固體源、一反應氣體源及一硫族元素固體源;一預鍍步驟,加熱過渡金 屬固體源於承載基板上預鍍一未氧化過渡金屬層;一汽化步驟,加熱硫族元素固體源而產生一硫族元素氣體;以及一沉積步驟,通入反應氣體源以輔助離子化硫族元素氣體產生一硫族元素電漿,並加熱承載基板使硫族元素電漿與未氧化過渡金屬層反應為一過渡金屬硫族化物層;其中沉積步驟中,反應氣體源及硫族元素氣體係由上而下通入於未氧化過渡金屬層之上方,沉積步驟之一製程真空度為低真空度至常壓,沉積步驟之一製程溫度為攝氏150至500度,且分別執行預鍍步驟、汽化步驟及沉積步驟於相異製程空間內,使預鍍氧化過渡金屬層之預鍍步驟及加熱硫族元素固體源之汽化步驟不影響沉積步驟之製程溫度。 According to still another embodiment of the present invention, there is provided a method of preparing a transition metal chalcogenide, the steps comprising: a preparation step of providing a carrier substrate, a transition metal solid source, a reactive gas source, and a chalcogen solid source; a pre-plating step, heating the transition gold The solid source is pre-plated with an unoxidized transition metal layer on the carrier substrate; a vaporization step is performed to heat the chalcogen solid source to generate a chalcogen element gas; and a deposition step is passed to the reaction gas source to assist the ionized chalcogenide The elemental gas generates a chalcogenide plasma, and heats the carrier substrate to react the chalcogenide plasma with the unoxidized transition metal layer into a transition metal chalcogenide layer; wherein the reaction gas source and the chalcogen gas system are in the deposition step Passing from top to bottom over the unoxidized transition metal layer, one of the deposition steps is a vacuum degree from a low vacuum to a normal pressure, and one of the deposition steps is a process temperature of 150 to 500 degrees Celsius, and performing a pre-plating step, The vaporization step and the deposition step are performed in the dissimilar process space, and the pre-plating step of the pre-plated oxidized transition metal layer and the vaporization step of heating the chalcogen solid source do not affect the process temperature of the deposition step.
根據前述製備過渡金屬硫族化物之方法之一實施例,其中承載基板可為聚亞醯胺(Polyimide)、不銹鋼、玻璃、氮化矽(Si3N4)、二氧化矽(SiO2)、三氧化二鋁(Al2O3)或二氧化鉿(HfO2)。過渡金屬固體源可為鉑(Pt)。於汽化步驟中,硫族元素固體源可為硫(S),且加熱硫於攝氏90到150度使硫汽化。硫族元素固體源可為硒(Se),且加熱硒於攝氏150到300度使硒汽化。硫族元素固體源可為碲(Te),且加熱碲於攝氏400到650度使碲汽化。沉積步驟之製程真空度為大於等於2托耳,且小於等於760托耳,沉積步驟之一電漿功率可為0到500瓦,未氧化過渡金屬層之厚度可為1到50奈米。當未氧化過渡金屬層之厚度低於7奈米,且製程溫度大於等於攝氏500度時,電漿功率可為0瓦。製備過渡金屬硫族化物之方法中更包含一控制厚度步驟,改變未氧化過渡金屬層之厚 度以對應改變過渡金屬硫族化物層之原子層數。當未氧化過渡金屬層之厚度為1奈米時,可對應生成1原子層之過渡金屬硫族化物層。製備過渡金屬硫族化物之方法中更包含一控制轉換步驟,控制反應氣體源之一流量比率以改變硫族元素電漿與未氧化過渡金屬層反應為過渡金屬硫族化物層之一轉換效率,反應氣體源可為氮氣及氫氣。於控制轉換步驟中,氮氣及氫氣之流量比率可為1:1、1:2、2:1或0:1。預鍍步驟可採用原子層沉積技術、濺鍍技術或電子束蒸鍍技術。製備過渡金屬硫族化物之方法更包含一傳輸步驟以及一量產步驟,傳輸步驟係當沉積步驟完成後,帶動承載基板往外傳輸,且承載基板由一可撓性材質製成。量產步驟係依序重複實施預鍍步驟、汽化步驟、沉積步驟及傳輸步驟。 According to one embodiment of the method for preparing a transition metal chalcogenide, the carrier substrate may be polyimide, stainless steel, glass, tantalum nitride (Si 3 N 4 ), cerium oxide (SiO 2 ), Aluminum oxide (Al 2 O 3 ) or hafnium oxide (HfO 2 ). The source of transition metal solids can be platinum (Pt). In the vaporization step, the chalcogen solid source may be sulfur (S), and the sulfur is heated to vaporize the sulfur at 90 to 150 degrees Celsius. The chalcogen solid source may be selenium (Se), and the heated selenium vaporizes selenium at 150 to 300 degrees Celsius. The chalcogen solid source may be neodymium (Te) and heated to a temperature of 400 to 650 degrees Celsius to vaporize the crucible. The process of the deposition step has a vacuum of 2 Torr or more and 760 Torr or less. One of the deposition steps may have a plasma power of 0 to 500 watts, and the unoxidized transition metal layer may have a thickness of 1 to 50 nm. When the thickness of the unoxidized transition metal layer is less than 7 nm and the process temperature is greater than or equal to 500 degrees Celsius, the plasma power may be 0 watt. The method for preparing a transition metal chalcogenide further comprises a step of controlling the thickness, changing the thickness of the unoxidized transition metal layer to correspond to changing the number of atomic layers of the transition metal chalcogenide layer. When the thickness of the unoxidized transition metal layer is 1 nm, a transition metal chalcogenide layer of 1 atomic layer can be formed correspondingly. The method for preparing a transition metal chalcogenide further comprises a control conversion step of controlling a flow rate ratio of the reaction gas source to change a conversion efficiency of the chalcogenide plasma to the unoxidized transition metal layer to one of the transition metal chalcogenide layers, The source of the reactive gas can be nitrogen and hydrogen. In the control conversion step, the flow ratio of nitrogen and hydrogen may be 1:1, 1:2, 2:1 or 0:1. The pre-plating step may employ an atomic layer deposition technique, a sputtering technique, or an electron beam evaporation technique. The method for preparing a transition metal chalcogenide further comprises a transport step and a mass production step. After the deposition step is completed, the carrier substrate is driven to be transported outward, and the carrier substrate is made of a flexible material. The mass production step repeats the pre-plating step, the vaporization step, the deposition step, and the transfer step in sequence.
因此,本發明製備過渡金屬硫族化物之方法,其可於攝氏150至500度的低溫狀態下生產過渡金屬硫族化物,且於沉積步驟當中所採用的硫族元素來源是採用加熱固體源並對其離子化的方式以取得硫族元素電漿,所以在本發明中可避免使用習知製備過渡金屬硫族化物技術常用的劇毒硫化氫氣體。更重要的是,本發明可採用可撓性薄膜當作基板,並以傳輸滾輪帶動可撓性薄膜移動至各製程設備位置,搭配常壓電漿(Atmospheric-pressure plasma)技術,藉此於低溫常壓下完成可量產過渡金屬硫族化物的連續製程。 Therefore, the present invention provides a method for preparing a transition metal chalcogenide which can produce a transition metal chalcogenide at a low temperature of 150 to 500 degrees Celsius, and the source of the chalcogen element used in the deposition step is a heated solid source and The manner in which it is ionized is to obtain a chalcogenide plasma, so that it is possible to avoid the use of the highly toxic hydrogen sulfide gas conventionally used in the preparation of transition metal chalcogenide techniques in the present invention. More importantly, the present invention can use a flexible film as a substrate, and the transfer roller drives the flexible film to move to the position of each process equipment, and is matched with Atmospheric-pressure plasma technology, thereby lowering the temperature. The continuous process of mass production of transition metal chalcogenide is completed under normal pressure.
100、300‧‧‧電漿輔助製程系統 100, 300‧‧‧ Plasma Auxiliary Process System
110‧‧‧反應腔體 110‧‧‧Reaction chamber
111、320‧‧‧第一氣體入口 111, 320‧‧‧ first gas inlet
112、330‧‧‧第二氣體入口 112, 330‧‧‧second gas inlet
120‧‧‧射頻產生器 120‧‧‧RF generator
130‧‧‧電極 130‧‧‧electrode
140、340‧‧‧加熱器 140, 340‧‧‧ heater
150‧‧‧真空幫浦 150‧‧‧vacuum pump
210‧‧‧承載基板 210‧‧‧bearing substrate
220‧‧‧氧化過渡金屬層 220‧‧‧Oxidized transition metal layer
230‧‧‧過渡金屬硫族化物層 230‧‧‧Transition metal chalcogenide layer
310‧‧‧常壓電漿產生器 310‧‧‧Normal piezoelectric slurry generator
350‧‧‧傳輸滾輪 350‧‧‧Transport wheel
420‧‧‧氧化過渡金屬層 420‧‧‧Oxidized transition metal layer
410‧‧‧可撓性基板 410‧‧‧Flexible substrate
S01、S02、S03、S04、S05、S06、S11、S12、S13、S14、S21、S22、S23、S24、S25、S26‧‧‧步驟 S01, S02, S03, S04, S05, S06, S11, S12, S13, S14, S21, S22, S23, S24, S25, S26‧‧
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示依照本發明一實施方式的一種製備過渡金屬硫族化物之方法的流程圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A flow chart of the method.
第2圖係繪示第1圖中製備過渡金屬硫族化物之製備示意圖。 Figure 2 is a schematic view showing the preparation of the transition metal chalcogenide in Figure 1.
第3圖係繪示依照本發明另一實施方式的一種製備過渡金屬硫族化物之方法的流程圖。 3 is a flow chart showing a method of preparing a transition metal chalcogenide according to another embodiment of the present invention.
第4圖係繪示二硒化鎢之拉曼頻譜圖。 Figure 4 is a diagram showing the Raman spectrum of tungsten selenide.
第5圖係繪示二硒化鉬之拉曼頻譜圖。 Figure 5 is a diagram showing the Raman spectrum of molybdenum diselenide.
第6圖係繪示二硒化鉑之拉曼頻譜圖。 Figure 6 is a diagram showing the Raman spectrum of platinum selenide.
第7A圖係繪示成長二硒化鎢時採用不同比例氮氣及氫氣之拉曼頻譜圖。 Figure 7A shows the Raman spectrum of different ratios of nitrogen and hydrogen when growing tungsten selenide.
第7B圖係繪示成長二硒化鎢時採用不同比例氮氣及氫氣之X光光電子能譜圖。 Figure 7B shows the X-ray photoelectron spectroscopy of nitrogen and hydrogen in different proportions when growing tungsten selenide.
第7C圖係繪示成長二硒化鎢時採用不同比例氮氣及氫氣之X光光電子能譜圖。 Figure 7C shows the X-ray photoelectron spectroscopy of nitrogen and hydrogen in different proportions when growing tungsten selenide.
第8A圖係繪示利用穿透式電子顯微鏡觀察2奈米厚度之三氧化鎢之剖面圖。 Fig. 8A is a cross-sectional view showing a tungsten oxide having a thickness of 2 nm observed by a transmission electron microscope.
第8B圖係繪示對應第8A圖利用穿透式電子顯微鏡觀察於2奈米厚度之三氧化鎢上成長二硒化鎢之剖面圖。 Fig. 8B is a cross-sectional view showing the growth of tungsten selenide on tungsten trioxide having a thickness of 2 nm as observed in Fig. 8A by a transmission electron microscope.
第8C圖係繪示利用穿透式電子顯微鏡觀察4到5奈米厚度之三氧化鎢之剖面圖。 Fig. 8C is a cross-sectional view showing the thickness of tungsten trioxide having a thickness of 4 to 5 nm observed by a transmission electron microscope.
第8D圖係繪示對應第8C圖利用穿透式電子顯微鏡觀察於4到5奈米厚度之三氧化鎢上成長二硒化鎢之剖面圖。 Fig. 8D is a cross-sectional view showing the growth of tungsten selenide on tungsten trioxide having a thickness of 4 to 5 nm as observed in Fig. 8C by a transmission electron microscope.
第8E圖係繪示利用穿透式電子顯微鏡觀察5到7奈米厚度之三氧化鎢之剖面圖。 Fig. 8E is a cross-sectional view showing the thickness of tungsten trioxide having a thickness of 5 to 7 nm by a transmission electron microscope.
第8F圖係繪示對應第8C圖利用穿透式電子顯微鏡觀察於5到7奈米厚度之三氧化鎢上成長二硒化鎢之剖面圖。 Fig. 8F is a cross-sectional view showing the growth of tungsten selenide on tungsten trioxide having a thickness of 5 to 7 nm as observed by a transmission electron microscope in accordance with Fig. 8C.
第9A圖係繪示7奈米厚度之三氧化鎢上成長二硒化鎢之電漿功率對應基板溫度之數據圖。 Fig. 9A is a graph showing the data of the plasma power of the tungsten selenide grown on the 7 nm thickness of the tungsten trioxide corresponding to the substrate temperature.
第9B圖係繪示5奈米厚度之三氧化鎢上成長二硒化鎢之電漿功率對應基板溫度之數據圖。 Fig. 9B is a graph showing the data of the plasma power corresponding to the substrate temperature of the tungsten di-selenide grown on the tungsten nanometer thickness of 5 nm.
第9C圖係繪示2奈米厚度之三氧化鎢上成長二硒化鎢之電漿功率對應基板溫度之數據圖。 Fig. 9C is a graph showing the data of the plasma power corresponding to the substrate temperature of the tungsten di-selenide grown on the tungsten dioxide of 2 nm thickness.
第10圖係繪示依照本發明又一實施方式的一種製備過渡金屬硫族化物之方法的流程圖。 Figure 10 is a flow chart showing a method of preparing a transition metal chalcogenide according to still another embodiment of the present invention.
第11圖係繪示第10圖中製備過渡金屬硫族化物之製備示意圖。 Figure 11 is a schematic view showing the preparation of a transition metal chalcogenide in Figure 10.
請參照第1圖及第2圖,其中第1圖係繪示製備過渡金屬硫族化物之方法的流程圖。第2圖係繪示第1圖中製備過渡金屬硫族化物之製備示意圖。本實施方式是採用一電漿輔助製程系統100來製備過渡金屬硫族化物,故在此先敘明在第2圖中所繪示電漿輔助製程系統100之架構,其包含一反應腔體110、一射頻產生器120、一電極130、一加熱器140及一真空幫浦150。反應腔體110具有一第一氣體入口111及一第二氣體入口112,第一氣體入口111用以輸送硫族元素固體源 加熱後產生之氣體以及氮氣,第二氣體入口112則用以輸送氫氣,以作為輔助產生電漿的來源。 Please refer to FIG. 1 and FIG. 2 , wherein FIG. 1 is a flow chart showing a method for preparing a transition metal chalcogenide. Figure 2 is a schematic view showing the preparation of the transition metal chalcogenide in Figure 1. In the present embodiment, a plasma assisted process system 100 is used to prepare a transition metal chalcogenide. Therefore, the structure of the plasma assisted process system 100 illustrated in FIG. 2 is included, which includes a reaction chamber 110. An RF generator 120, an electrode 130, a heater 140, and a vacuum pump 150. The reaction chamber 110 has a first gas inlet 111 and a second gas inlet 112 for transporting a chalcogen solid source. The gas produced after heating, as well as nitrogen, and the second gas inlet 112 are used to transport hydrogen as a source of auxiliary plasma.
製備過渡金屬硫族化物之方法,其步驟包含如下:步驟S01:準備步驟,提供一承載基板、一過渡金屬固體源、一反應氣體源及一硫族元素固體源;步驟S02:預鍍步驟,加熱過渡金屬固體源於承載基板上預鍍一氧化過渡金屬層;步驟S03:汽化步驟,加熱硫族元素固體源而產生一硫族元素氣體;步驟S04:沉積步驟,通入反應氣體源以輔助離子化硫族元素氣體產生一硫族元素電漿,並加熱承載基板使硫族元素電漿與氧化過渡金屬層反應為一過渡金屬硫族化物層;步驟S05:控制厚度步驟,改變氧化過渡金屬層之厚度以對應改變過渡金屬硫族化物層之原子層數;步驟S06:控制轉換步驟,控制反應氣體源之一流量比率以改變硫族元素電漿與氧化過渡金屬層反應為過渡金屬硫族化物層之一轉換效率。 The method for preparing a transition metal chalcogenide comprises the following steps: Step S01: preparing a substrate, a transition metal solid source, a reactive gas source and a chalcogen solid source; step S02: a pre-plating step, Heating the transition metal solid from the pre-plated transition metal layer on the carrier substrate; step S03: vaporizing step, heating the chalcogen solid source to generate a chalcogen element gas; step S04: depositing step, introducing a reaction gas source to assist The ionized chalcogen gas generates a chalcogenide plasma, and heats the carrier substrate to react the chalcogenide plasma and the oxidized transition metal layer into a transition metal chalcogenide layer; step S05: controlling the thickness step to change the oxidized transition metal The thickness of the layer corresponds to changing the number of atomic layers of the transition metal chalcogenide layer; step S06: controlling the conversion step, controlling a flow rate ratio of the reactive gas source to change the reaction between the chalcogenide plasma and the oxidized transition metal layer to form a transition metal chalcogenide One of the chemical layers conversion efficiency.
藉此利用電漿輔助製程系統100製備過渡金屬硫族化物層230之方法,先於承載基板210上生成氧化過渡金屬層220,接著一併通入硫族元素氣體以及氮氣與氫氣等反應氣體源,讓反應氣體源輔助硫族元素氣體離子化成硫族元素電漿,硫族元素電漿與氧化過渡金屬層220進行反應而形成過渡金屬硫族化物層230。 The method for preparing the transition metal chalcogenide layer 230 by using the plasma assisted process system 100, the oxidized transition metal layer 220 is formed on the carrier substrate 210, and then the chalcogen gas and the reaction gas source such as nitrogen and hydrogen are simultaneously introduced. The reaction gas source assists the ionization of the chalcogen element gas into a chalcogenide plasma, and the chalcogenide plasma reacts with the oxidized transition metal layer 220 to form the transition metal chalcogenide layer 230.
必須注意的是步驟S02的預鍍步驟,其中加熱過渡金屬固體源於承載基板210上預鍍氧化過渡金屬層220是在反應腔體110之外的製程空間事先完成,而完成步驟S02的預鍍步驟後再將具有氧化過渡金屬層220之承載基板210放入反應腔體110內,這是為了不讓加熱過渡金屬固體源所產生之溫度變化影響反應腔體110內之製程溫度。 It should be noted that the pre-plating step of step S02, wherein heating the transition metal solids from the pre-plated oxidized transition metal layer 220 on the carrier substrate 210 is done in advance in the process space outside the reaction chamber 110, and the pre-plating in step S02 is completed. After the step, the carrier substrate 210 having the oxidized transition metal layer 220 is placed in the reaction chamber 110 in order to prevent the temperature change caused by heating the transition metal solid source from affecting the process temperature in the reaction chamber 110.
而步驟S03的汽化步驟也是如此,加熱硫族元素固體源而產生硫族元素氣體一樣是在反應腔體110外的製程空間完成,而完成步驟S03的汽化步驟後再將硫族元素氣體以及反應氣體源一起通入到反應腔體110內,這是為了不讓加熱硫族元素固體源所產生之溫度變化影響反應腔體110內之製程溫度。 The same is true of the vaporization step of step S03. The heating of the chalcogen solid source to generate the chalcogen gas is completed in the process space outside the reaction chamber 110, and the chalcogen gas and the reaction are completed after the vaporization step of step S03 is completed. The gas sources are introduced into the reaction chamber 110 together in order to prevent the temperature changes generated by heating the chalcogen solid source from affecting the process temperature within the reaction chamber 110.
且於步驟S04的沉積步驟,其中反應氣體源及硫族元素氣體係由上而下通入於氧化過渡金屬層之上方,沉積步驟之一製程真空度為低真空度至常壓,沉積步驟之一製程溫度為攝氏150至500度,且整個製程當中必須分別執行步驟S02的預鍍步驟、步驟S03的汽化步驟及步驟S04的沉積步驟於相異製程空間內,使預鍍氧化過渡金屬層之步驟S02的預鍍步驟及加熱硫族元素固體源之步驟S03的汽化步驟不影響步驟S04的沉積步驟之製程溫度。 And in the deposition step of step S04, wherein the reaction gas source and the chalcogen gas system pass from top to bottom over the oxidized transition metal layer, and one of the deposition steps has a process vacuum ranging from a low vacuum to a normal pressure, and the deposition step A process temperature is 150 to 500 degrees Celsius, and the pre-plating step of step S02, the vaporization step of step S03, and the deposition step of step S04 must be separately performed in the dissimilar process space during the entire process to make the pre-plated oxidized transition metal layer The pre-plating step of step S02 and the vaporization step of step S03 of heating the chalcogen solid source do not affect the process temperature of the deposition step of step S04.
且前述承載基板210可為聚亞醯胺、不銹鋼、玻璃、氮化矽、二氧化矽、三氧化二鋁或二氧化鉿。過渡金屬固體源可為鎢、鉬、鎳、銅、銦、鍺、鉭、鐵、鈷或鈦。且硫族元素固體源可為硫、硒或碲,故於步驟S04的沉積步驟 中,若硫族元素固體源為硫,則加熱硫於攝氏90到150度使硫汽化。若硫族元素固體源為硒,則加熱硒於攝氏150到300度使硒汽化。若硫族元素固體源為碲,則加熱碲於攝氏400到650度使碲汽化。理論上來說,硫、硒或碲須達到熔點才會汽化,然而實際加熱溫度僅需接近各別的熔點溫度,即可分別製備過渡金屬硫族化物層230。步驟S02的預鍍步驟可採用原子層沉積技術、濺鍍技術或電子束蒸鍍技術等氧化金屬鍍膜技術來達成。 The carrier substrate 210 may be polyimide, stainless steel, glass, tantalum nitride, hafnium oxide, aluminum oxide or hafnium oxide. The transition metal solid source can be tungsten, molybdenum, nickel, copper, indium, bismuth, antimony, iron, cobalt or titanium. And the chalcogen solid source may be sulfur, selenium or tellurium, so the deposition step in step S04 In the case where the chalcogen solid source is sulfur, the sulfur is heated to vaporize at 90 to 150 degrees Celsius. If the solid source of the chalcogen element is selenium, the selenium is heated at 150 to 300 degrees Celsius to vaporize the selenium. If the solid source of the chalcogen element is cerium, the enthalpy is vaporized at a temperature of 400 to 650 degrees Celsius. In theory, sulfur, selenium or niobium must reach the melting point to vaporize, but the actual heating temperature only needs to be close to the respective melting point temperatures, and the transition metal chalcogenide layer 230 can be separately prepared. The pre-plating step of step S02 can be achieved by an oxidized metal coating technique such as atomic layer deposition technique, sputtering technique or electron beam evaporation technique.
前述電漿輔助製程系統100所處之製程真空度可為大於等於2托耳,且小於等於760托耳,且離子化硫族元素氣體之電漿功率可為0到500瓦,承載基板210的溫度可為攝氏150到500度,氧化過渡金屬層220之厚度可為1到10奈米。而當氧化過渡金屬層220之厚度低於7奈米,且承載基板210的溫度高達攝氏500度時,其離子化硫族元素氣體之所使用的電漿功率可為0瓦,這是因為加熱溫度已足以使硫、硒或碲等硫族元素離子化,而不需額外使用射頻產生器120對其施加電場。 The plasma-assisted processing system 100 may have a process vacuum of 2 Torr or more and 760 Torr or less, and the plasma power of the ionized chalcogen gas may be 0 to 500 watts, and the substrate 210 is loaded. The temperature may range from 150 to 500 degrees Celsius, and the thickness of the oxidized transition metal layer 220 may range from 1 to 10 nanometers. When the thickness of the oxidized transition metal layer 220 is less than 7 nm and the temperature of the carrier substrate 210 is as high as 500 degrees Celsius, the plasma power of the ionized chalcogen gas can be 0 watt, because heating The temperature is sufficient to ionize chalcogen elements such as sulfur, selenium or tellurium without the need to additionally apply an electric field to the RF generator 120.
特別的是步驟S05的控制厚度步驟中,若改變氧化過渡金屬層220之厚度將會影響後續過渡金屬硫族化物層230可生成之原子層數。因此,當氧化過渡金屬層220之厚度為1奈米時,可對應生成1原子層之過渡金屬硫族化物層230,藉由控制氧化過渡金屬層220之厚度來達到使用者欲取得過渡金屬硫族化物層230的原子層數。 In particular, in the controlling thickness step of step S05, changing the thickness of the oxidized transition metal layer 220 will affect the number of atomic layers that the subsequent transition metal chalcogenide layer 230 can form. Therefore, when the thickness of the oxidized transition metal layer 220 is 1 nm, the transition metal chalcogenide layer 230 of 1 atomic layer can be correspondingly formed, and the thickness of the oxidized transition metal layer 220 is controlled to achieve the transition metal sulphur. The number of atomic layers of the family layer 230.
本實施方式之製備過渡金屬硫族化物230之方法除了可以有效控制生長的過渡金屬硫族化物層230的原子層數以外,於步驟S06的控制轉換步驟中,也可透過改變氮氣及氫氣之流量比率來決定氧化過渡金屬層220轉變為過渡金屬硫族化層230之轉換效率,且反應氣體源為氮氣及氫氣,氮氣及氫氣之流量比率可為1:1、1:2、2:1或0:1。 The method for preparing the transition metal chalcogenide 230 of the present embodiment can also change the flow rate of nitrogen and hydrogen in the control conversion step of step S06, in addition to effectively controlling the number of atomic layers of the grown transition metal chalcogenide layer 230. The ratio determines the conversion efficiency of the transition metal transition layer 220 to the transition metal chalcogenization layer 230, and the reaction gas source is nitrogen and hydrogen, and the flow ratio of nitrogen and hydrogen may be 1:1, 1:2, 2:1 or 0:1.
此外,若可以找到氧化過渡金屬基板或是過渡金屬基板再經氧化,即可省略前述成長氧化過渡金屬層之預鍍步驟。 In addition, if the oxidized transition metal substrate or the transition metal substrate can be found and oxidized, the pre-plating step of the growth oxidized transition metal layer can be omitted.
請參照第3圖,其係繪示依照本發明另一實施方式的一種製備過渡金屬硫族化物之方法的流程圖,其係用以製造二硒化鉬及二硒化鎢等硒化物,製備過渡金屬硫族化物之步驟如下:步驟S11:準備步驟,提供一二氧化矽基板、一過渡金屬固體源、一反應氣體源及一硒固體源,其中過渡金屬固體源可為鉬或鎢;步驟S12:預鍍步驟,加熱過渡金屬固體源而於二氧化矽基板上形成一氧化過渡金屬層,氧化過渡金屬層之厚度為1至20奈米;步驟S13:汽化步驟,加熱硒元素固體源於攝氏150至300度而產生一硒氣體;步驟S14:沉積步驟,通入氫氣及氮氣等反應氣體源以輔助離子化硫族元素氣體產生一硒電漿,並加熱二氧化矽使硒電漿與氧化過渡金屬層反應為一過渡金屬硒化物層,過渡 金屬硒化物層之厚度對應氧化過渡金屬層之厚度為1至20奈米。 Please refer to FIG. 3 , which is a flow chart of a method for preparing a transition metal chalcogenide according to another embodiment of the present invention, which is used for preparing a selenium selenide and a selenide such as tungsten selenide. The step of transition metal chalcogenide is as follows: Step S11: preparing step, providing a cerium oxide substrate, a transition metal solid source, a reactive gas source, and a selenium solid source, wherein the transition metal solid source may be molybdenum or tungsten; S12: a pre-plating step of heating a transition metal solid source to form an oxidized transition metal layer on the ceria substrate, the oxidized transition metal layer having a thickness of 1 to 20 nm; and a step S13: a vaporization step of heating the selenium solid source a selenium gas is generated at 150 to 300 degrees Celsius; step S14: a deposition step, a reaction gas source such as hydrogen and nitrogen is introduced to assist the ionization of the chalcogen element gas to produce a selenium plasma, and the cerium oxide is heated to make the selenium plasma The oxidized transition metal layer reacts as a transition metal selenide layer, transition The thickness of the metal selenide layer corresponds to a thickness of the oxidized transition metal layer of 1 to 20 nm.
同樣在本實施方式中,可根據使用者需求於步驟S14的沉積步驟後再實施第1圖之步驟S05的控制厚度步驟以及步驟S06的控制轉換步驟,以分別控制過渡金屬硒化物層之厚度或轉換效率。本實施方式同前個實施方式,硒氣體及反應氣體源必須由上而下通入於氧化過渡金屬層之上方,且過渡金屬硒化物層之製程真空度介於低真空度至常壓時。成長過渡金屬硒化物層時,製程溫度即二氧化矽基板的溫度可為攝氏150至500度,電漿功率可為0至500瓦。同樣的,必須分別執行步驟S12的預鍍步驟、步驟S13的汽化步驟及步驟S14的沉積步驟於相異製程空間內,使預鍍氧化過渡金屬層之步驟S12的預鍍步驟及加熱硫族元素固體源之步驟S13的汽化步驟不影響步驟S14的沉積步驟之製程溫度。 Also in this embodiment, the control thickness step of step S05 of FIG. 1 and the control conversion step of step S06 may be performed after the deposition step of step S14 according to user requirements to separately control the thickness of the transition metal selenide layer or Conversion efficiency. In the embodiment, as in the previous embodiment, the selenium gas and the reaction gas source must pass from above to above the oxidized transition metal layer, and the transition metal selenide layer has a process vacuum ranging from a low vacuum to a normal pressure. When the transition metal selenide layer is grown, the process temperature, that is, the temperature of the ruthenium dioxide substrate may be 150 to 500 degrees Celsius, and the plasma power may be 0 to 500 watts. Similarly, the pre-plating step of step S12, the vaporization step of step S13, and the deposition step of step S14 must be separately performed in the dissimilar process space, the pre-plating step of step S12 of pre-plating the oxidized transition metal layer, and the heating of chalcogen elements. The vaporization step of step S13 of the solid source does not affect the process temperature of the deposition step of step S14.
此外,前述的步驟可以用來生成二硒化鉑。但特別注意的是如果是要生成二硒化鉑,則在前述步驟S12的預鍍步驟中需鍍純的鉑金屬層,而非氧化的金屬層。 Additionally, the foregoing steps can be used to generate platinum di-selenide. However, it is particularly noted that if platinum selenide is to be formed, a pure platinum metal layer, rather than an oxidized metal layer, needs to be plated in the pre-plating step of the aforementioned step S12.
請參照第4圖至第6圖,其係分別繪示前述二硒化鎢、二硒化鉬及二硒化鉑之拉曼頻譜圖。二硒化鎢二硒化鉬二硒化鉑可由第4圖中之247公分-1及250公分-1位置看到代表二硒化鎢的拉曼吸收峰(由於兩者過於接近,故於圖中相結合而顯示為一較寬之吸收峰),第5圖中之243公分-1及290公分-1位置看到代表二硒化鉬的拉曼吸收峰,第6圖中之177公分-1及205公分-1位置看到代表二硒化鉑的拉曼吸收峰。而第4 圖中及第5圖中可見到300公分-1位置的二氧化矽基板訊號,第7圖則是因為二硒化鉑厚度較厚,拉曼量測的入射光無法穿透二硒化鉑,故於圖中無法見到二氧化矽基板之拉曼訊號。在此詳細地列出二硒化鎢、二硒化鉬及二硒化鉑的製程條件如下。 Please refer to FIG. 4 to FIG. 6 , which respectively show the Raman spectrum diagrams of the aforementioned tungsten selenide, molybdenum diselenide and platinum disel selenide. The tungsten selenide diselenide diselenide selenide selenide can be seen from the position of 247 cm -1 and 250 cm -1 in Fig. 4 to represent the Raman absorption peak of tungsten selenide (since the two are too close, so The middle phase is combined to show a broad absorption peak. The Raman absorption peak representing molybdenum diselenide is shown at 243 cm -1 and 290 cm -1 in Fig. 5, and 177 cm in Fig. 6 - The Raman absorption peak representing platinum di-selenide was observed at positions 1 and 205 cm -1 . In Figure 4 and Figure 5, the ceria substrate signal at 300 cm -1 is visible. Figure 7 is because the thickness of platinum selenide is thick. Raman measurement of incident light cannot penetrate selenium. Platinum is etched, so the Raman signal of the ruthenium dioxide substrate cannot be seen in the figure. The process conditions for the detailed description of tungsten diselenide, molybdenum diselenide and platinum disel selenide are as follows.
二硒化鎢製程條件:二氧化矽基板加熱溫度為攝氏200度。電漿功率為500瓦特。預鍍之三氧化鎢厚度為7奈米。硒固體源之加熱溫度為攝氏200度。 Process conditions of tungsten selenide: The temperature of the ruthenium dioxide substrate is 200 degrees Celsius. The plasma power is 500 watts. The pre-plated tungsten trioxide has a thickness of 7 nm. The heating temperature of the selenium solid source is 200 degrees Celsius.
二硒化鉬製程條件:二氧化矽基板加熱溫度為攝氏250度。電漿功率為400瓦特。預鍍之氧化鉬厚度為7奈米。硒固體源之加熱溫度為攝氏150度。 Molybdenum diselenide process conditions: the ruthenium dioxide substrate heating temperature is 250 degrees Celsius. The plasma power is 400 watts. The pre-plated molybdenum oxide has a thickness of 7 nm. The heating temperature of the selenium solid source is 150 degrees Celsius.
二硒化鉑製程條件:二氧化矽基板加熱溫度為攝氏250度。電漿功率為400瓦特。預鍍之鉑厚度為50奈米。硒固體源之加熱溫度為攝氏150度。 Platinum diselenide process conditions: the ruthenium dioxide substrate heating temperature is 250 degrees Celsius. The plasma power is 400 watts. The pre-plated platinum has a thickness of 50 nm. The heating temperature of the selenium solid source is 150 degrees Celsius.
請參照第7A圖、第7B圖及第7C圖,其係分別繪示成長二硒化鎢時採用不同比例氮氣及氫氣之拉曼頻譜圖及X光光電子能譜圖。第7A圖可以看到隨著氫氣的比例越高,則二硒化鎢的吸收峰越明顯且訊號越強烈,代表氧鎢轉變為二硒化鎢之轉換效率越高,其中氮氣及氫氣之流量比率由上至下為1:0、2:1、1:1、1:2及0:1,其對應三氧化鎢轉變為二硒化鎢之轉換效率分別為0%、40%、60%、82%及85%。如此一來也驗證本實施方式之利用電漿輔助製程系統製備過渡金屬硫族化物之方法,可改變氮氣及氫氣之流量比率控制氧化過渡金屬層轉變為過渡金屬硫族化物之轉換效率,且很顯 然地在氮氣及氫氣之流量比率為1:0時,並沒有出現二硒化鎢及三氧化二鎢之吸收峰。 Please refer to FIG. 7A, FIG. 7B and FIG. 7C, which respectively show Raman spectrograms and X-ray photoelectron spectra of nitrogen and hydrogen in different proportions when growing tungsten selenide. It can be seen from Fig. 7A that as the proportion of hydrogen is higher, the absorption peak of tungsten diselenide is more obvious and the signal is stronger, which represents the higher conversion efficiency of tungsten to tungsten diselenide, and the flow rate of nitrogen and hydrogen. The ratios are 1:0, 2:1, 1:1, 1:2, and 0:1 from top to bottom, and the conversion efficiencies corresponding to the conversion of tungsten trioxide to tungsten diselenide are 0%, 40%, and 60%, respectively. , 82% and 85%. In this way, the method for preparing the transition metal chalcogenide by the plasma assisted process system of the present embodiment is also verified, and the flow ratio of the nitrogen gas and the hydrogen gas can be changed to control the conversion efficiency of the transition metal transition layer into the transition metal chalcogenide, and Display However, when the flow ratio of nitrogen to hydrogen is 1:0, the absorption peaks of tungsten diselenide and tungsten trioxide do not appear.
對於不同材料間的鍵結能而言,X光光電子能譜(XPS)的頻譜位置是相當特別的。而第7B圖及第7C圖中,二硒化鎢中鎢的鍵結能為32.1eV及34eV,硒的鍵結能為55eV。三氧化鎢中鎢的鍵結能為35.3eV及37.4eV。且第7B圖及第7C圖中,根據不同氮氣及氫氣之流量比率曲線下的總面積用來分別估計不同氮氣及氫氣之流量比率中二硒化鎢及三氧化鎢的百分比,以解釋前述轉換效率。 The spectral position of the X-ray photoelectron spectroscopy (XPS) is quite special for the bonding energy between different materials. In Figures 7B and 7C, the bonding energy of tungsten in tungsten diselenide is 32.1 eV and 34 eV, and the bonding energy of selenium is 55 eV. The bonding energy of tungsten in tungsten trioxide is 35.3 eV and 37.4 eV. And in Figures 7B and 7C, the total area under the flow ratio curves of different nitrogen and hydrogen flows is used to estimate the percentage of tungsten disulfide and tungsten trioxide in the flow ratios of different nitrogen and hydrogen, respectively, to explain the above conversion. effectiveness.
請參照第8A圖、第8B圖、第8C圖、第8D圖、第8E圖及第8F圖,其中第8A圖、第8C圖及第8E圖為分別利用穿透式電子顯微鏡觀察2奈米、4到5奈米以及5到7奈米厚度之三氧化鎢的剖面圖,第8B圖、第8D圖及第8F圖則分別對應第8A圖、第8C圖及第8E圖利用穿透式電子顯微鏡觀察於2奈米、4到5奈米以及5到7奈米厚度之三氧化鎢上成長二硒化鎢之剖面圖。隨著三氧化鎢厚度越高,則可生成的二硒化鎢原子層數越多,且兩者具有一定對應比例。如此一來也驗證本實施方式之利用電漿輔助製程系統製備過渡金屬硫族化物之方法,可改變氧化過渡金屬層之厚度控制過渡金屬硫族化物層成長之原子層數。 Please refer to FIG. 8A, FIG. 8B, FIG. 8C, FIG. 8D, FIG. 8E and FIG. 8F, wherein FIG. 8A, FIG. 8C and FIG. 8E are respectively used to observe 2 nm by using a transmission electron microscope. Sectional view of tungsten trioxide having a thickness of 4 to 5 nm and 5 to 7 nm, and Figs. 8B, 8D, and 8F are corresponding to the 8A, 8C, and 8E, respectively. An electron microscope was used to observe a profile of tungsten di-selenide grown on tungsten trioxide having a thickness of 2 nm, 4 to 5 nm, and 5 to 7 nm. As the thickness of the tungsten trioxide is higher, the number of atomic layers of tungsten disilicide can be generated, and the two have a certain proportion. In this way, the method for preparing the transition metal chalcogenide by the plasma assisted process system of the present embodiment is also verified, and the thickness of the oxidized transition metal layer can be changed to control the number of atomic layers in which the transition metal chalcogenide layer grows.
請參照第9A圖、第9B圖及第9C圖,其係分別繪示7奈米、5奈米及2奈米厚度之三氧化鎢上成長二硒化鎢之電漿功率對應基板溫度之數據圖。第9A圖、第9B圖及第9C圖中,實心方點代表較佳成長之二硒化鎢,而空心圓點代表三 氧化鎢及二硒化鎢同時存在。因此,隨著二氧化矽基板溫度越低,則所需的電漿功率相對越高,而使用厚度越厚的三氧化鎢來成長二硒化鎢所需的電漿功率同樣也較高。 Please refer to FIG. 9A, FIG. 9B and FIG. 9C, which respectively show the data of the plasma power corresponding to the substrate temperature of the tungsten selenide grown on the tungsten dioxide of 7 nm, 5 nm and 2 nm thickness. Figure. In Figures 9A, 9B and 9C, the solid square points represent the better-growing tungsten di-selenide, while the hollow dots represent three Tungsten oxide and tungsten disilicide exist simultaneously. Therefore, as the temperature of the ruthenium dioxide substrate is lower, the required plasma power is relatively higher, and the plasma power required to grow tungsten diselenide using the thicker tungsten trioxide is also higher.
請參照第10圖及第11圖,其中第10圖係繪示依照本發明另一實施方式的一種製備過渡金屬硫族化物之方法的流程圖,第11圖係繪示第10圖中製備過渡金屬硫族化物之製備示意圖。本實施方式所採用之電漿輔助製程系統300包含一常壓電漿產生器310、一第一氣體入口320、一第二氣體入口330、一加熱器340及一傳輸滾輪350。其中,第一氣體入口320用以輸送氫氣,第二氣體入口330則用以輸送硫族元素固體源加熱後產生之氣體以及氮氣。 Please refer to FIG. 10 and FIG. 11 , wherein FIG. 10 is a flow chart showing a method for preparing a transition metal chalcogenide according to another embodiment of the present invention, and FIG. 11 is a schematic diagram showing the transition in FIG. 10 . Schematic diagram of the preparation of metal chalcogenides. The plasma assisted process system 300 used in the present embodiment includes a normal piezoelectric slurry generator 310, a first gas inlet 320, a second gas inlet 330, a heater 340, and a transfer roller 350. The first gas inlet 320 is used to transport hydrogen gas, and the second gas inlet 330 is used to transport the gas generated by heating the chalcogen solid source and nitrogen.
製備過渡金屬硫族化物之方法的步驟如下:步驟S21:準備步驟,提供一可撓性基板、一過渡金屬固體源、一反應氣體源及一硫族元素固體源;步驟S22:預鍍步驟,加熱過渡金屬固體源於可撓性基板上預鍍一氧化過渡金屬層;步驟S23:汽化步驟,加熱硫族元素固體源而產生一硫族元素氣體;步驟S24:沉積步驟,通入反應氣體源以輔助於常壓下離子化硫族元素氣體產生一硫族元素電漿,並加熱可撓性基板使硫族元素電漿與氧化過渡金屬層反應為一過渡金屬硫族化物層;步驟S25:傳輸步驟,當沉積步驟完成時,使一傳輸滾輪帶動可撓性基板往外傳輸; 步驟S26:量產步驟,依序重複實施預鍍步驟、汽化步驟、沉積步驟及傳輸步驟。 The method for preparing a transition metal chalcogenide is as follows: Step S21: preparing a flexible substrate, a transition metal solid source, a reactive gas source, and a chalcogen solid source; Step S22: a pre-plating step, Heating the transition metal solid from the pre-plated transition metal layer on the flexible substrate; step S23: vaporizing step, heating the chalcogen solid source to generate a chalcogen element gas; step S24: depositing step, introducing the reaction gas source To assist the ionization of the chalcogen gas at normal pressure to generate a chalcogenide plasma, and heating the flexible substrate to react the chalcogenide plasma with the oxidized transition metal layer into a transition metal chalcogenide layer; step S25: a transport step of causing a transport roller to drive the flexible substrate outward when the deposition step is completed; Step S26: The mass production step, the pre-plating step, the vaporization step, the deposition step, and the transfer step are repeatedly performed in sequence.
基本上,本實施方式製備過渡金屬硫族化物之方法中步驟S21的準備步驟、步驟S22的預鍍步驟及步驟S23的沉積步驟相同於第1圖的步驟S01的準備步驟、步驟S02的預鍍步驟及步驟S03的沉積步驟,其與第1圖的差異僅在於本實施方式所採用的為可撓性基板410。此外,本實施方式所採用的電漿輔助製程系統300在整個過渡金屬硫族化物製程當中是處於常壓的環境下。 Basically, in the method for preparing a transition metal chalcogenide in the present embodiment, the preparation step of step S21, the pre-plating step of step S22, and the deposition step of step S23 are the same as the preparation step of step S01 of FIG. 1 and the pre-plating of step S02. The steps of step S03 and the deposition step of step S03 differ from FIG. 1 only in that the flexible substrate 410 is employed in the present embodiment. In addition, the plasma assisted process system 300 employed in the present embodiment is in a normal pressure environment throughout the transition metal chalcogenide process.
在此省略步驟S21的準備步驟、步驟S22的預鍍步驟以及步驟S23的汽化步驟的說明。在步驟S24的沉積步驟中,第11圖中所繪示可撓性基板410之上都已經利用蒸鍍或濺鍍等方式預鍍氧化過渡金屬層420,而硫族元素氣體及反應氣體源係垂直透過常壓電漿產生器310通入於氧化過渡金屬層420之上方,配合加熱器340加熱於可撓性基板410,使其成長過渡金屬硫族化物層(未圖式)。而當完成步驟S24的沉積步驟後實施步驟S25的傳輸步驟,傳輸滾輪350帶動可撓性基板210往外移動。接著實施步驟S26的量產步驟,依序重複實施預鍍步驟、沉積步驟及傳輸步驟,如此一來,由於傳輸滾輪350持續帶動可撓性基板410,固定位置的常壓電漿產生器310可不斷地針對未成長過渡金屬硫族化物層的部分,進行分區且連續的過渡金屬硫族化物量產過程。 The description of the preparation step of step S21, the pre-plating step of step S22, and the vaporization step of step S23 are omitted here. In the deposition step of step S24, the oxidized transition metal layer 420 has been pre-plated on the flexible substrate 410 by vapor deposition or sputtering, and the chalcogen gas and the reactive gas source system are shown in FIG. The vertical transmission through the normal piezoelectric slurry generator 310 is introduced above the oxidized transition metal layer 420, and is heated by the heater 340 to the flexible substrate 410 to grow a transition metal chalcogenide layer (not shown). When the deposition step of step S25 is completed after the deposition step of step S24 is completed, the transport roller 350 drives the flexible substrate 210 to move outward. Then, the mass production step of step S26 is performed, and the pre-plating step, the deposition step, and the transfer step are repeatedly performed in sequence. Thus, since the transport roller 350 continuously drives the flexible substrate 410, the fixed-position normal piezoelectric slurry generator 310 can be A zonal and continuous transition metal chalcogenide mass production process is continuously performed for the portion of the un-transitioned transition metal chalcogenide layer.
此外,前述製備過渡金屬硫族化物之方法當然可再增加控制厚度步驟以及控制轉換步驟。而在其於實施方式 當中,前述的氧化過渡金屬層取決於過渡金屬特性亦可替換為未氧化過渡金屬層。 Furthermore, the aforementioned method of preparing a transition metal chalcogenide can of course add a step of controlling the thickness and controlling the conversion step. And in its implementation Among them, the aforementioned oxidized transition metal layer may be replaced by an unoxidized transition metal layer depending on the transition metal property.
因此,本發明之利用電漿輔助製程系統製備過渡金屬硫族化物之方法,對比習知過渡金屬硫族化物生產技術,不僅採用較低的基板溫度以及製程真空度,更無需使用劇毒的硫化氫氣體,如此簡易的製程方式可大幅減少生產過渡金屬硫族化物的製造成本,對於促進渡金屬硫族化物相關產業的發展更產生莫大幫助。最重要的是,本發明若採用可撓性基板以及常壓電漿技術,將可建立量產過渡金屬硫族化物的連續製程。 Therefore, the method for preparing a transition metal chalcogenide using the plasma assisted process system of the present invention compares the conventional transition metal chalcogenide production technology with not only a lower substrate temperature and a process vacuum, but also eliminates the use of highly toxic hydrogen sulfide. Gas, such a simple process can greatly reduce the manufacturing cost of producing transition metal chalcogenide, and it is of great help to promote the development of metal-chalcogenide-related industries. Most importantly, if the present invention employs a flexible substrate and a normal piezoelectric slurry technology, a continuous process for mass production of a transition metal chalcogenide can be established.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.
S01、S02、S03、S04、S05、S06‧‧‧步驟 S01, S02, S03, S04, S05, S06‧‧ steps
Claims (34)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104132207A TWI551539B (en) | 2015-09-30 | 2015-09-30 | Processing method of transition metal dichalcogenide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104132207A TWI551539B (en) | 2015-09-30 | 2015-09-30 | Processing method of transition metal dichalcogenide |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI551539B true TWI551539B (en) | 2016-10-01 |
TW201711953A TW201711953A (en) | 2017-04-01 |
Family
ID=57848080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104132207A TWI551539B (en) | 2015-09-30 | 2015-09-30 | Processing method of transition metal dichalcogenide |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI551539B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104817114A (en) * | 2015-04-17 | 2015-08-05 | 山东大学 | Layer structure transition metal chalcogenide nano-sheet preparation method |
CN104846428A (en) * | 2015-04-13 | 2015-08-19 | 山东大学 | Method used for growth of transition metal chalcogenide crystals via metal fluxing agent method |
CN104894530A (en) * | 2015-06-09 | 2015-09-09 | 国家纳米科学中心 | Two-dimensional transition metal sulfur compound film and preparation method and application thereof |
-
2015
- 2015-09-30 TW TW104132207A patent/TWI551539B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104846428A (en) * | 2015-04-13 | 2015-08-19 | 山东大学 | Method used for growth of transition metal chalcogenide crystals via metal fluxing agent method |
CN104817114A (en) * | 2015-04-17 | 2015-08-05 | 山东大学 | Layer structure transition metal chalcogenide nano-sheet preparation method |
CN104894530A (en) * | 2015-06-09 | 2015-09-09 | 国家纳米科学中心 | Two-dimensional transition metal sulfur compound film and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201711953A (en) | 2017-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9840764B2 (en) | Method of fabricating transition metal dichalcogenide | |
Shi et al. | Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal–semiconductor transition | |
Huang et al. | Large‐area 2D layered MoTe2 by physical vapor deposition and solid‐phase crystallization in a tellurium‐free atmosphere | |
Hernandez Ruiz et al. | Chemical vapor deposition mediated phase engineering for 2D transition metal dichalcogenides: Strategies and applications | |
CN111349907B (en) | MoS2/WS2Method for preparing vertical heterojunction | |
CN109868454B (en) | Preparation method of two-dimensional chromium sulfide material | |
KR102325522B1 (en) | Method for manufacturing metal chalcogenide film | |
JP2011102231A (en) | Method of fabricating graphene using catalyst alloy | |
KR101273695B1 (en) | Method for forming graphene pattern and method for manufacturing electronic element having graphene pattern | |
US20150167148A1 (en) | Method for Synthesis of Uniform Bi-Layer and Few-Layer Hexagonal Boron Nitride Dielectric Films | |
US20230114347A1 (en) | Method of forming transition metal dichalcogenide thin film | |
Yang et al. | Metal-induced solid-phase crystallization of amorphous TiO2 thin films | |
Li et al. | Controllable p-type doping of monolayer MoS 2 with tantalum by one-step chemical vapor deposition | |
CN112442734A (en) | Hexagonal boron nitride, method for producing same, electric device, and semiconductor device | |
Panwar et al. | Few layer graphene synthesized by filtered cathodic vacuum arc technique | |
US20170218498A1 (en) | Process for depositing metal or metalloid chalcogenides | |
Cadot et al. | Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates | |
CN111206230B (en) | Preparation method of novel two-dimensional chromium sulfide material | |
CN106555167B (en) | The method for preparing transition metal chalcogenide | |
JP2013159521A (en) | Method for producing graphene film | |
KR20150133088A (en) | Electronic device having graphene-semiconductor multi junction and method of manufacturing the same | |
TWI551539B (en) | Processing method of transition metal dichalcogenide | |
García et al. | Growth of out-of-plane standing MoTe2 (1-x) Se2x/MoSe2 composite flake films by sol–gel nucleation of MoOy and isothermal closed space telluro-selenization | |
KR102576569B1 (en) | Preparing method of transition metal dichalcogenide | |
Singh et al. | Wafer-scale synthesis of two-dimensional ultrathin films |