TWI551059B - MULTI-CODE CHIEN'S SEARCH CIRCUIT FOR BCH CODES WITH VARIOUS VALUES OF M IN GF(2m) - Google Patents

MULTI-CODE CHIEN'S SEARCH CIRCUIT FOR BCH CODES WITH VARIOUS VALUES OF M IN GF(2m) Download PDF

Info

Publication number
TWI551059B
TWI551059B TW103123959A TW103123959A TWI551059B TW I551059 B TWI551059 B TW I551059B TW 103123959 A TW103123959 A TW 103123959A TW 103123959 A TW103123959 A TW 103123959A TW I551059 B TWI551059 B TW I551059B
Authority
TW
Taiwan
Prior art keywords
qin
value
search
matrix
search circuit
Prior art date
Application number
TW103123959A
Other languages
Chinese (zh)
Other versions
TW201603500A (en
Inventor
洪瑞徽
顏池男
Original Assignee
衡宇科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 衡宇科技股份有限公司 filed Critical 衡宇科技股份有限公司
Priority to TW103123959A priority Critical patent/TWI551059B/en
Publication of TW201603500A publication Critical patent/TW201603500A/en
Application granted granted Critical
Publication of TWI551059B publication Critical patent/TWI551059B/en

Links

Landscapes

  • Error Detection And Correction (AREA)

Description

用於具有不同GF(2 m )中m值的BCH碼之多模式秦 式搜尋電路Multi-mode Qin search circuit for BCH codes with different m values in GF(2 m )

本發明關於一種多模秦式搜尋電路,特別是關於一種用於具有不同GF(2m)中m值的BCH碼之多模秦式搜尋電路。 The present invention relates to a multimode Qin search circuit, and more particularly to a multimode Qin search circuit for BCH codes having m values in different GF(2 m ).

Bose-Chaudhuri-Hocquenghem(BCH)碼是非常普遍使用於儲存與通訊設備的錯誤更正碼,BCH碼能偵測及修正由於儲存設備通道中的噪聲和缺陷,隨機發生的錯誤。對於BCH碼的編碼,常利用線性反饋移位暫存器與某些邏輯積體電路的組合來實現。而對於BCH碼的解碼而言,相較於編碼是複雜了許多。請見第1圖,解碼流程可解說如下:在接收一碼字後(S01),依照特定的多項式計算該碼字的?狀值(S02)。接著,依照該徵狀值,可以找到一錯誤位置多項式(S03)。接下來,藉由計算該錯誤位置多項式的根,可以得到錯誤位置數字(S04)。最後,修正該錯誤碼字以獲得正確訊號資料(S05)。 The Bose-Chaudhuri-Hocquenghem (BCH) code is a very common error correction code used in storage and communication equipment. The BCH code can detect and correct random errors due to noise and defects in the storage device channel. The encoding of the BCH code is often implemented by a combination of a linear feedback shift register and some logic integrated circuits. For the decoding of BCH codes, it is much more complicated than coding. Please refer to Fig. 1. The decoding process can be explained as follows: After receiving a codeword (S01), the codeword is calculated according to a specific polynomial? Value (S02). Then, according to the symptom value, an error position polynomial can be found (S03). Next, by calculating the root of the error position polynomial, an error position number can be obtained (S04). Finally, the error code word is corrected to obtain the correct signal data (S05).

傳統上,Peterson-Gorenstein-Zierler(PGZ)演算法或Berlekamp-Massey(BM)演算法可被用來找出上述錯誤位置多項式。因為PGZ演算法的複雜度高於BM演算法且BM演算法能達成較快的解碼速度,BM演算法在硬體實作中較受歡迎。但由於BM演算法中需要用到乘法反元素,這大大地增加了電路硬體的複雜度。 Traditionally, the Peterson-Gorenstein-Zierler (PGZ) algorithm or the Berlekamp-Massey (BM) algorithm can be used to find the above error location polynomial. Because the complexity of the PGZ algorithm is higher than that of the BM algorithm and the BM algorithm can achieve faster decoding speed, the BM algorithm is more popular in hardware implementation. However, due to the need to use multiplicative inverse elements in the BM algorithm, this greatly increases the complexity of the circuit hardware.

依照該錯誤位置多項式λ(x)=λ01x+...+λtxt,λ(x)的根能以1,α,α2,...,αn-1(n=2m-1)取代至λ(x)中而簡易地尋獲。因為αn=1且α-1n-1,是故,如果α1為一錯誤位置數字,αn-1為另一錯誤位置數字。傳統上,這種取代過程能由秦式搜尋迭代地運算,但這種序列式的電路,每一時脈僅能找出一個錯誤位置數字。為了改善每一時脈中BCH解碼步驟中的吞吐量,秦式搜尋可以利用平行計算架構,如第2圖所示,在一個時脈中檢測出p個錯誤位置。 According to the error position polynomial λ(x)=λ 01 x+...+λ t x t , the root energy of λ(x) can be 1,α,α 2 ,...,α n-1 (n =2 m -1) is simply found in place of λ(x). Since α n =1 and α -1 = α n-1 , if α 1 is an incorrect position number, α n-1 is another wrong position number. Traditionally, this substitution process can be iteratively operated by Qin-style search, but this sequential circuit can only find one wrong position number per clock. In order to improve the throughput in the BCH decoding step in each clock, Qin search can utilize the parallel computing architecture. As shown in Figure 2, p error locations are detected in one clock.

令錯誤位置多項式λ(x)中λ1x+...+λtxt為Y(x),如果αi是λ(x)的一個根,Y(αi)=1。在p個平行運算的架構下,Y(αup+i)的關係式可以改寫成以下: ,由於平行化的緣故,迭代運算的次數變成[n/p]個。其中u表示當下迭代運算的次數,ωj表示每次迭代運算時的更新值,1ip且1jt。當伽羅瓦域的階數為2m時,第2圖中的秦式搜 尋平行計算架構包含了pt個有限域乘法器、p個t次輸入m位元有限域加法器、t個m位元暫存器,及t個m位元多工器。 Let λ 1 x+...+λ t x t in the error position polynomial λ(x) be Y(x), and if α i is one root of λ(x), Y(α i )=1. Under the structure of p parallel operations, the relation of Y(α up+i ) can be rewritten as follows: Due to the parallelization, the number of iteration operations becomes [n/p]. Where u represents the number of iterations of the current iteration, and ω j represents the updated value for each iteration of the operation, 1 i p and 1 j t. When the order of the Galois field is 2 m , the Qin search parallel computing architecture in Fig. 2 contains pt finite field multipliers, p t input m finite field adders, t m bits. Register, and t m-bit multiplexers.

若將上式中ωjαij改以以下的矩陣式表示: ,其中Ωj與Aij各表示一二進位的m x m矩陣與一二進位的1 x m矩陣。ωjαij代表的是來自第2圖中,第i列及第j行有限域乘法器的運算結果,故,Y(αup+i)可以推導為: ,請注意Y(αup+i)是一個1 x m矩陣。為了可以表示所有於第2圖中的輸出,必須得產生一矩陣,一次表示出在第u次迭代運算中所有的輸出,Y(u)。故Y(u)能以以下的矩陣式表示: 其中Ω(u)為一1 x mt的二進位矩陣,代表第u次迭代運算中的中間計算值,Ay是定值的,和迭代運算無關。值得注意的是在p個平行運算架構的秦式搜尋計算,通通公式化於Ω(u)及Ay相乘的單一矩陣中。 If ω j α ij in the above formula is changed to the following matrix: Where Ω j and A ij each represent a binary mxm matrix and a binary 1 xm matrix. ω j α ij represents the operation result from the finite field multiplier of the i-th column and the j-th row in Fig. 2, so Y(α up+i ) can be derived as: , please note that Y(α up+i ) is a 1 xm matrix. In order to be able to represent all of the outputs in Figure 2, a matrix must be generated, one at a time representing all outputs in the u-th iteration, Y(u). Therefore, Y(u) can be expressed in the following matrix: Where Ω(u) is a binary matrix of 1 x mt, representing the intermediate calculated value in the u-th iteration operation, A y is fixed, independent of the iterative operation. It is worth noting that the Qin search calculations in p parallel computing architectures are formulated in a single matrix of Ω(u) and A y multiplication.

進一步,更新的Ω(u)值可以被使用在下一次的迭代運算中,得到如下:Ω(u+1)=[ω1αp ω2α2p...ωtαtp]因而, 最終可得[Y(u)Ω(u+1)]=Ω(u)[Ay AΩ]。實現前式的p個平行運算架構的秦式搜尋電路如第3圖所示。此電路設計由Youngjoo Lee等人於2011年8月,揭露於IEEE Transactions on circuits and systems-II:Express Briefs期刊第58卷第8號,篇名為”Low Complexity Parallel Chien’s Search Structure Using Two-Dimensional Optimization”的論文中。輸出的錯誤值向量可藉由將Y(u)的各個輸出與λ0進行XOR運算而獲得。 Further, the updated Ω(u) value can be used in the next iterative operation, resulting in Ω(u+1)=[ω 1 α p ω 2 α 2p ... ω t α tp ] Finally, [Y(u)Ω(u+1)]=Ω(u)[A y A Ω ] is obtained. The Qin search circuit that implements the p parallel computing architectures of the previous form is shown in Figure 3. This circuit design was published by Youngjoo Lee et al. in August 2011 and is disclosed in IEEE Transactions on circuits and systems-II: Express Briefs, Vol. 58, No. 8, entitled "Low Complexity Parallel Chien's Search Structure Using Two-Dimensional Optimization". In the paper. The output error value vector can be obtained by XORing each output of Y(u) with λ 0 .

上述的電路設計,僅能使用於相同GF(2m)中固定的碼率與碼長。對於某些應用,需要使用到不同碼率、碼長甚至是不同GF(2m)中的m值時,就不適用。因而需要一種新的秦式搜尋電路,滿足以上的需求。 The circuit design described above can only be used for fixed code rates and code lengths in the same GF (2 m ). For some applications, it is not applicable when you need to use m values with different code rates, code lengths or even different GF(2 m ). Therefore, a new Qin-style search circuit is needed to meet the above requirements.

如上所述,在現有BCH碼的編碼的電路設計中,僅能使用於相同GF(2m)中固定的碼率與碼長。因此需要一種新的秦式搜尋電路,能應用於不同碼率、碼長甚至是不同GF(2m)中的m值。 As described above, in the circuit design of the encoding of the existing BCH code, only the fixed code rate and code length in the same GF (2 m ) can be used. Therefore, a new Qin search circuit is needed, which can be applied to m values of different code rates, code lengths and even different GF(2 m ).

故,依照本發明的一種態樣,提出了一種用於具有不同GF(2m)中m值的BCH碼之多模式秦式搜尋電路。該電路包含:一結合矩陣單元,用以提供複數個秦式搜尋矩陣、接收複數個輸入值、將該些輸入值與一個或更多秦式搜尋矩陣中的部分或全部元素相乘而得到第一運算值與第二運算值、輸出該第一運算值,並依照不同輸入值屬性,於複數個線路組之一輸出該些第二運算值;複數個第一多工器,每一第一多工器與每一線路組中的一線路相連並接收一特定的第二運算值,用以依照不同輸入值屬性,選擇來自對應線路組的第二運算值,並將該第二運算值輸出;複數個暫存器,每一暫存器各與一特定的第一多工器相連,用以接收該第二運算值,並於下一時脈中輸出該第二運算值;及複數個第二多工器,每一第二多工器與一特定暫存器連接,接收一錯誤位置多項式非常數項的一特定係數值與來自該暫存器的第二運算值,用以於一秦式搜尋運算開始的第一個迭代運算中,向該結合矩陣單元輸出該特定係數值作為該輸入值,及於其餘秦式搜尋運算的迭代運算中,向該結合矩陣單元輸出該第二運算值 作為該輸入值。用於相同秦式搜尋矩陣之錯誤位置多項式的特定係數值及因該特定係數值運算所得的第二運算值,具有相同的輸入值屬性。 Therefore, in accordance with an aspect of the present invention, a multi-mode Qin search circuit for BCH codes having m values in different GF(2 m ) is proposed. The circuit comprises: a combination matrix unit for providing a plurality of Qin search matrices, receiving a plurality of input values, multiplying the input values by one or all elements of one or more Qin search matrices to obtain a first An operation value and a second operation value, outputting the first operation value, and outputting the second operation values in one of the plurality of line groups according to different input value attributes; the plurality of first multiplexers, each first The multiplexer is connected to a line in each line group and receives a specific second operation value for selecting a second operation value from the corresponding line group according to different input value attributes, and outputting the second operation value a plurality of registers, each of the registers being connected to a specific first multiplexer for receiving the second operation value, and outputting the second operation value in the next clock; and a plurality of a second multiplexer, each of the second multiplexers being connected to a specific register, receiving a specific coefficient value of a polynomial non-linear number of the error location and a second operational value from the temporary register for use in a Qin The first iteration of the search operation In operation, this unit outputs the specific binding matrix coefficient value as the input value, and to the remaining iterative computation formula Qin search operation, a binding matrix to the second computing unit to output the value as an input value. The specific coefficient value for the error position polynomial of the same Qin search matrix and the second operation value calculated for the specific coefficient value have the same input value attribute.

上述秦式搜尋矩陣具有以下的形式:[Ay AΩ],其中,及,其中p為該秦式搜尋電路具有平行運算的數量;t為對應BCH碼的錯誤修正能力;α0、α1、...及αm-1為GF(2m)中的一標準基底;1ip;1jt。 The above-mentioned Qin search matrix has the following form: [A y A Ω ], wherein , ,and Where p is the number of parallel operations of the Qin search circuit; t is the error correction capability of the corresponding BCH code; α 0 , α 1 , ... and α m-1 are a standard base in GF(2 m ) ;1 i p;1 j t.

依照本案構想,不同的秦式搜尋矩陣對應不同的m及/或t值。每一秦式搜尋矩陣於列方向,等分為同對應BCH碼的錯誤修正能力數量之複數個部分,每一部分各含對應Ay與AΩ等分之子矩陣。一秦式搜尋矩陣的各部分依序與另一秦式搜尋矩陣的各部分以一方式對齊排列。其中該方式為一側對齊、中央對齊或自一側偏移一定量對齊。結合矩陣單元中未為該些秦式搜尋矩陣各部分所涵蓋之位置以0補足。 According to the concept of the case, different Qin search matrices correspond to different m and / or t values. Each Qin search matrix is divided into a plurality of parts of the number of error correction capabilities corresponding to the corresponding BCH code in the column direction, and each part contains sub-matrices corresponding to Ay and AΩ. The parts of a Qin search matrix are sequentially aligned with the parts of another Qin search matrix in a manner. The mode is one-side alignment, center-aligned, or offset from the side by a certain amount. The positions in the combination matrix unit that are not covered by the parts of the Qin search matrix are complemented by zeros.

又該些秦式搜尋矩陣間以0分開,二秦式搜尋矩陣間的部分元素具有共同子表達式,其一秦式搜尋矩陣使用另一秦式搜尋矩陣的共同子表達式。該第一運算值進一步與 該錯誤位置多項式的常數項數值相加,若相加值為0,則對應的元素αup+i,1ip,為該錯誤位置多項式的一個根。 Moreover, the Qin search matrices are separated by 0, and some elements between the two Qin search matrices have a common subexpression, and one Qin search matrix uses a common subexpression of another Qin search matrix. The first calculated value is further added to the constant term value of the error position polynomial. If the added value is 0, the corresponding element α up+i , 1 i p, which is a root of the polynomial of the error location.

因此,依照以上所述,藉由設計具有數個秦式搜尋矩陣的秦式搜尋電路,配合周邊元件,可以達成應用於不同碼率、碼長與不同GF(2m)中的m值的使用目的。同時,秦式搜尋電路的硬體複雜度也可減低。 Therefore, according to the above, by designing a Qin search circuit with several Qin search matrices, and using peripheral components, the use of m values for different code rates, code lengths, and different GF(2 m ) can be achieved. purpose. At the same time, the hardware complexity of the Qin-style search circuit can also be reduced.

100‧‧‧秦式搜尋電路 100‧‧‧ Qin search circuit

120‧‧‧結合矩陣單元 120‧‧‧Combined matrix unit

140‧‧‧第一多工器 140‧‧‧First multiplexer

160‧‧‧暫存器 160‧‧‧ register

180‧‧‧第二多工器 180‧‧‧Second multiplexer

200‧‧‧秦式搜尋電路 200‧‧‧ Qin search circuit

220‧‧‧結合矩陣單元 220‧‧‧Combined matrix unit

240‧‧‧第一多工器 240‧‧‧First multiplexer

260‧‧‧暫存器 260‧‧‧ register

280‧‧‧第二多工器 280‧‧‧Second multiplexer

A‧‧‧秦式搜尋矩陣A A‧‧‧Qin search matrix A

B‧‧‧秦式搜尋矩陣B B‧‧‧Qin search matrix B

C‧‧‧秦式搜尋矩陣C C‧‧‧Qin search matrix C

A1-A7‧‧‧秦式搜尋矩陣A的各部分 A1-A7‧‧‧Parts of the Qin search matrix A

B1-B4‧‧‧秦式搜尋矩陣B的各部分 B1-B4‧‧‧Parts of the Qin search matrix B

C1-C5‧‧‧秦式搜尋矩陣C的各部分 C1-C5‧‧‧Parts of the Qin search matrix C

第1圖為一BCH碼的傳統解碼方法流程圖。 Figure 1 is a flow chart of a conventional decoding method for a BCH code.

第2圖為一傳統秦式搜尋實現的電路。 Figure 2 shows the circuit implemented by a traditional Qin search.

第3圖為另一傳統秦式搜尋實現的電路。 Figure 3 shows the circuit implemented by another traditional Qin search.

第4圖為依照本發明,多模式秦式搜尋電路的一實施例。 Figure 4 is an embodiment of a multi-mode Qin search circuit in accordance with the present invention.

第5圖繪示該實施例中的結合矩陣單元配置。 Fig. 5 is a diagram showing a combination matrix unit configuration in this embodiment.

第6圖繪示該實施例中的另一結合矩陣單元配置。 Figure 6 illustrates another combined matrix unit configuration in this embodiment.

第7圖為依照本發明,多模式秦式搜尋電路的又一實施例。 Figure 7 is a further embodiment of a multi-mode Qin search circuit in accordance with the present invention.

第8圖繪示該實施例中的結合矩陣單元配置。 Fig. 8 is a diagram showing a combination matrix unit configuration in this embodiment.

本發明將藉由參照下列的實施例而更具體地描述。 The invention will be more specifically described by reference to the following examples.

請參閱第4圖至第6圖,藉以說明依照本發明的一實施例。一多模式秦式搜尋電路100,可用於具有不同GF(2m)中m值的BCH碼。在本實施例中,用兩種不同的m值,m1及m2,(m1>m2)來做說明。基於這兩個m值所得到的BCH碼,碼長與碼率並不相同(因為m1>m2,所以相對的碼長2m1>2m2,但碼率關係不一定),但各具有t1與t2個錯誤修正能力。在本實施例中設定t1>t2。如第4圖所示,秦式搜尋電路100包含了1個結合矩陣單元120、t個第一多工器140、t個暫存器160,及t個第二多工器180。以下各自描述該些元件的作用。 Please refer to Figures 4 through 6, to illustrate an embodiment in accordance with the present invention. A multi-mode Qin search circuit 100 can be used for BCH codes having m values in different GF(2 m ). In the present embodiment, two different m values, m 1 and m 2 , (m 1 &gt ; m 2 ) are used for explanation. The BCH code obtained based on these two m values has different code lengths and code rates (because m 1 > m2 , the relative code length is 2 m1 >2 m2 , but the code rate relationship is not necessarily), but each has t 1 and t 2 error correction capabilities. In the present embodiment, t 1 &gt ; t 2 is set. As shown in FIG. 4, the Qin type search circuit 100 includes one combining matrix unit 120, t first multiplexers 140, t register 160, and t second multiplexers 180. Each of the following describes the role of these elements.

結合矩陣單元120是最主要的核心元件,它可用來提供2個以上的秦式搜尋矩陣。在本實施例中,結合矩陣單元120包含兩個秦式搜尋矩陣,秦式搜尋矩陣A與秦式搜尋矩陣B。秦式搜尋矩陣A用來找出錯誤位置多項式a的解,而錯誤位置多項式a的係數是藉由接收具有t1個錯誤修正能力BCH編碼C1、找出其徵狀值,及藉由伯利坎普-梅西演算法而找出。相似地,秦式搜尋矩陣B用來找出錯誤位置多項式b的解,而錯誤位置多項式b的係數是藉由接收具有t2個錯誤修正能力BCH編碼C2、找出其徵狀值,及藉由伯利坎普-梅西演算法而找出。秦式搜尋矩陣A與秦式搜尋矩陣B的結構稍後介紹。但應注意的是該結合矩陣單元120能為任何的電子元件,比如唯讀記憶體(ROM)陣列,以記憶該秦式搜尋矩陣的元素(0或1)。 The combining matrix unit 120 is the most important core component and can be used to provide more than two Qin search matrices. In this embodiment, the combining matrix unit 120 includes two Qin search matrices, a Qin search matrix A and a Qin search matrix B. Qin type search matrix A is used to find the solution of the error position polynomial a, and the coefficient of the error position polynomial a is obtained by receiving the BCH code C 1 with t 1 error correction ability, finding the symptom value, and Licam-Messi algorithm to find out. Similarly, the Qin search matrix B is used to find the solution of the error position polynomial b, and the coefficient of the error position polynomial b is obtained by receiving the BCH code C 2 with t 2 error correction capabilities, and finding the syndrome value, and Find out by the Berkamp-Messi algorithm. The structure of Qin-style search matrix A and Qin-style search matrix B will be introduced later. It should be noted, however, that the bonding matrix unit 120 can be any electronic component, such as a read only memory (ROM) array, to memorize the elements (0 or 1) of the Qin search matrix.

結合矩陣單元120可以接收複數個輸入值。如第4圖所示,該些輸入值由第二多工器180而來。結合矩陣單元120將該些輸入值與一個或更多秦式搜尋矩陣中的部分或全部元素相乘而得到第一運算值與第二運算值。在本實施例中,雖然秦式搜尋矩陣A是用於BCH編碼C1,秦式搜尋矩陣B主要是用於BCH編碼C2,但由於秦式搜尋矩陣A和秦式搜尋矩陣B有著共同子表達式,秦式搜尋矩陣B可以使用秦式搜尋矩陣A的部分元素。 The combining matrix unit 120 can receive a plurality of input values. As shown in FIG. 4, the input values are derived from the second multiplexer 180. The combining matrix unit 120 multiplies the input values by some or all of the elements in one or more Qin search matrices to obtain a first operational value and a second operational value. In this embodiment, although the Qin search matrix A is used for BCH coding C 1 , the Qin search matrix B is mainly used for BCH coding C 2 , but since the Qin search matrix A and the Qin search matrix B have common elements. The expression, Qin type search matrix B can use the Qin type to search for some elements of matrix A.

此處所說的第一運算值,即在先前技術中所提到的Y(αup+i),每一迭代運算後的結果輸出(u為迭代次數、p為結合矩陣單元120具有平行運算架構的數量,αup+i為秦式搜尋之一可能解,1ip),藉由判斷與錯誤位置多項式的常數項數值λ0相加是否為0,來決定對應的元素αup+i是否為該錯誤位置多項式的一個根。第二運算值則為遞歸運算過程中的中間值,會再輸入結合矩陣單元120中進行運算。結合矩陣單元120可輸出該第一運算值,並依照不同輸入值屬性,於二個線路組之一輸出該些第二運算值。用於相同秦式搜尋矩陣之錯誤位置多項式的特定係數值及因該特定係數值運算所得的第二運算值,即具有相同的輸入值屬性。也就是當用於相同秦式搜尋矩陣的各係數值經由第二多工器180於第一次遞歸運算的時脈中輸入時,包含其後因該些係數值而運算出的第二運算值,都具有同一輸入值屬性。而為了第一多工器140運作方 便起見,每一個第二運算值的輸出,針對不同輸入值屬性的第二運算值,都有其特定的線路,即第4圖中第一多工器140所連接的上下兩組線路,輸入由秦式搜尋矩陣A運算後的第二運算值ΩA1(u)、ΩA2(u)...ΩAt(u)的通路即是屬於一組線路組,輸入由秦式搜尋矩陣B運算後的第二運算值ΩB1(u)、ΩB2(u)...ΩBt(u)的通路即是為另一組線路組。值得注意的是,線路組的數量不限於2個,任何數量的可行,但是得等同或大於秦式搜尋矩陣的數量。 The first operational value referred to herein, that is, Y(α up+i ) mentioned in the prior art, the result output after each iterative operation (u is the number of iterations, p is the parallel matrix structure of the combining matrix unit 120) The number of α up+i is one of the possible solutions of Qin style search, 1 i p), by determining whether the addition of the constant term value λ 0 of the error position polynomial is 0, determines whether the corresponding element α up+i is one root of the error position polynomial. The second operation value is an intermediate value in the recursive operation process, and is input to the combination matrix unit 120 for calculation. The combining matrix unit 120 may output the first operational value and output the second operational values in one of the two line groups according to different input value attributes. The specific coefficient value for the error location polynomial of the same Qin search matrix and the second operation value calculated for the specific coefficient value have the same input value attribute. That is, when the coefficient values for the same Qin search matrix are input through the second multiplexer 180 in the clock of the first recursive operation, the second operation value calculated by the coefficient values is included. , all have the same input value attribute. For the convenience of operation of the first multiplexer 140, the output of each second operational value has a specific line for the second operational value of the different input value attributes, that is, the first multiplexer in FIG. The two upper and lower two lines connected to the 140 are input to the second operation value ΩA 1 (u) and ΩA 2 (u)... ΩA t (u) calculated by the Qin search matrix A. For the group, the path for inputting the second operational value ΩB 1 (u), ΩB 2 (u), ΩB t (u) calculated by the Qin search matrix B is another set of circuit groups. It is worth noting that the number of line groups is not limited to two, and any number is feasible, but it is equal to or larger than the number of Qin search matrices.

在本實施例中,第一多工器140的數量有t個,t要大於或等於t1與t2中較大者,以便能實現最大修正能力的BCH碼,同時t也是運算的錯誤位置多項式之最高項次。如前所述,每一第一多工器140與每一線路組中的一線路相連並接收來自結合矩陣單元120的特定的第二運算值。第一多工器140可依照不同輸入值屬性,選擇來自對應線路組的第二運算值,並將該第二運算值輸出至連接的暫存器160中。 In this embodiment, the number of the first multiplexers 140 is t, and t is greater than or equal to the larger of t 1 and t 2 so that the maximum correction capability of the BCH code can be realized, and t is also the error position of the operation. The highest order of the polynomial. As previously mentioned, each first multiplexer 140 is coupled to a line in each line group and receives a particular second operational value from the combining matrix unit 120. The first multiplexer 140 may select a second operational value from the corresponding line group according to different input value attributes, and output the second operational value to the connected register 160.

t個暫存器160中,每一暫存器160各與一特定的第一多工器140相連,可接收該第二運算值,並於下一時脈中輸出該第二運算值至連接的第二多工器180。由於暫存器160的運作,秦式搜尋電路100可於每一時脈中,進行一次迭代運算。 Each of the registers 160 is connected to a specific first multiplexer 140, and receives the second calculated value, and outputs the second calculated value to the connected terminal in the next clock. The second multiplexer 180. Due to the operation of the register 160, the Qin search circuit 100 can perform an iterative operation in each clock.

每一第二多工器180與一特定的暫存器160連接,可接收一錯誤位置多項式非常數項的一個特定係數值(即第4 圖中的λ1、λ2...λn),與來自該暫存器160的第二運算值。第二多工器180的功用是於一個秦式搜尋運算開始的第一個迭代運算中,向結合矩陣單元120輸出該特定係數值作為該輸入值;及於其餘秦式搜尋運算的迭代運算中,向結合矩陣單元120輸出該第二運算值作為輸入值。 Each second multiplexer 180 is coupled to a particular register 160 to receive a particular coefficient value of a polynomial non-linear term of the error location (ie, λ 1 , λ 2 ... λ n in FIG. 4 ) And a second operational value from the register 160. The function of the second multiplexer 180 is to output the specific coefficient value to the combining matrix unit 120 as the input value in the first iterative operation starting from a Qin-type search operation; and in the iterative operation of the remaining Qin-style search operations. The second operational value is output to the combining matrix unit 120 as an input value.

此處說明秦式搜尋矩陣A與秦式搜尋矩陣B的結構。秦式搜尋矩陣A具有以下的形式:[Ay AΩ],其中 ,其中p為該秦式搜尋電路具有平行運算的數量,t1為BCH碼C1的錯誤修正能力,α0、α1、...及為GF()中的一標準基底,1ip,1jt1。秦式搜尋矩陣B具有以下的形式:[By BΩ],其中 ,其中t2為BCH碼C2的錯誤修正能力,α0、α1、...及為GF()中的一標準基底,1jt1The structure of the Qin search matrix A and the Qin search matrix B is described here. The Qin-style search matrix A has the following form: [A y A Ω ], where Where p is the number of parallel operations of the Qin search circuit, t 1 is the error correction capability of the BCH code C 1 , α 0 , α 1 , ... and For GF ( a standard substrate, 1 i p,1 j t 1 . The Qin-style search matrix B has the following form: [B y B Ω ], where , where t 2 is the error correction capability of BCH code C 2 , α 0 , α 1 , ... and For GF ( a standard substrate, 1 j t 1 .

由於t1大於t2,矩陣Ay與AΩ必然大於By與BΩ。由於秦式搜尋矩陣B要共用秦式搜尋矩陣A的部分元素,為了運作方便,排列上就得有特別的設計。請見第5圖。每一秦式搜尋矩陣於列方向,等分為同對應BCH碼的錯誤修正能力數量(t1與t2)之數個部分,秦式搜尋矩陣A的每一部分各含對應Ay與AΩ等分之子矩陣,秦式搜尋矩陣B的每一部分各含對應By與BΩ等分之子矩陣。此處更進一步令t1=7,t2=4,則秦式搜尋矩陣A分為A1、A2...A7等7個部分,秦式搜尋矩陣B分為B1、B2...B4等4個部分。秦式搜尋矩陣A的每一部分在長度方面,包含了m1個bit的元素,秦式搜尋矩陣B的每一部分則含了m2個bit的元素。 Since t 1 is greater than t 2 , the matrices A y and A Ω are necessarily greater than B y and B Ω . Since the Qin type search matrix B needs to share some elements of the Qin search matrix A, in order to facilitate the operation, the arrangement has a special design. See Figure 5. Each Qin search matrix is divided into several parts of the number of error correction capabilities (t 1 and t 2 ) of the corresponding BCH code in the column direction. Each part of the Qin search matrix A contains a corresponding A y and A Ω . For the sub-matrix matrix, each part of the Qin-style search matrix B contains sub-matrices corresponding to B y and B Ω . Here further let t 1 =7, t 2 =4, then the Qin search matrix A is divided into 7 parts, such as A1, A2...A7, and the Qin search matrix B is divided into B1, B2...B4, etc. 4 parts. Each part of the Qin-style search matrix A contains m 1 bit elements in terms of length, and each part of the Qin-style search matrix B contains m 2 bit elements.

要注意的是本圖連同排序在之後所有描述秦式搜尋矩陣的圖式,長寬不一定按是按照實際的比例繪製,僅以說明適用為其目的。 It should be noted that this figure, together with the sorting of all the patterns describing the Qin search matrix, does not necessarily have to be drawn according to the actual scale, only for the purpose of its application.

秦式搜尋矩陣B的各部分依序與秦式搜尋矩陣A的各部分以一種特定方式對齊排列。如第5圖所示,秦式搜尋矩陣B的各部分的上方側,與秦式搜尋矩陣A對應的某一部分的上方側對齊。比如A1的上方側與B1的上方側對齊,A2的上方側與B2的上方側對齊等等。要注意的是,由於秦式搜尋矩陣B小於秦式搜尋矩陣A,故秦式搜尋矩陣B的各部分基本上是分離的,但秦式搜尋矩陣A的各部分還實質連在一起(虛線用以標示各部分)。基於電路設計考量,該結合矩陣單元120 中未為該些秦式搜尋矩陣各部分所涵蓋之位置以0補足。然而,秦式搜尋矩陣A與秦式搜尋矩陣B間也可以0分開,以便於識別,如第6圖所繪示。上述的特定方式除了一側對齊,亦可為中央對齊或自一側偏移一定量對齊。值得注意的是秦式搜尋矩陣A與秦式搜尋矩陣B間的共同子表達式,有許多現有的方法可以找到,因不為本發明的範疇,故省略不提。 The parts of the Qin-style search matrix B are sequentially aligned with the parts of the Qin-style search matrix A in a specific manner. As shown in Fig. 5, the upper side of each part of the Qin search matrix B is aligned with the upper side of a portion corresponding to the Qin search matrix A. For example, the upper side of A1 is aligned with the upper side of B1, the upper side of A2 is aligned with the upper side of B2, and the like. It should be noted that since the Qin search matrix B is smaller than the Qin search matrix A, the parts of the Qin search matrix B are basically separated, but the parts of the Qin search matrix A are also substantially connected together (dotted line To mark each part). The bonding matrix unit 120 is based on circuit design considerations. The positions not covered by the various parts of the Qin search matrix are supplemented by 0. However, the Qin search matrix A and the Qin search matrix B can also be separated by 0 for easy identification, as shown in FIG. The specific manner described above may be center aligned or offset from the side by a certain amount, except for one side alignment. It is worth noting that there are many common methods that can be found between the Qin-style search matrix A and the Qin-style search matrix B. Since it is not within the scope of the invention, it is omitted.

由以上可得知,在秦式搜尋電路100中,不同的秦式搜尋矩陣對應不同的m值(m1與m2)或t值(t1與t2)。但實作上,也可以是其中之一相異。此外,結合矩陣單元120可以以下步驟完成設計:首先建立Ay與AΩ;其次建立By與BΩ;最後尋找共同子表達式,以建立結合矩陣。 It can be seen from the above that in the Qin type search circuit 100, different Qin search matrices correspond to different m values (m 1 and m 2 ) or t values (t 1 and t 2 ). But in practice, it can be one of them. In addition, the combination matrix unit 120 can complete the design by first establishing A y and A Ω ; secondly establishing B y and B Ω ; finally finding a common sub-expression to establish a binding matrix.

依照本發明的精神,秦式搜尋電路亦可包含三組或以上的線路組。在這種情況下,秦式搜尋矩陣的排列也會不同。請見以下另一實施例的說明。 In accordance with the spirit of the present invention, the Qin search circuit may also include three or more sets of lines. In this case, the arrangement of the Qin search matrix will be different. Please see the description of another embodiment below.

請參閱第7圖,另一多模式秦式搜尋電路200,可用於具有不同GF(2m)中m值的BCH碼。在本實施例中,使用除了前述實施例之外的第三種不同的m值,m3,(m1>m3>m2)因為m1>m3>m2,所以相對的碼長2m1>2m3>2m2。與m1、m2與m3對應的BCH碼各具有t1、t2與t3個錯誤修正能力。在本實施例中設定t1>t3>t2,令t1=7,t2=4,t3=5。秦式搜尋電路200亦同包含了1個結合矩陣單元220、t個第一多工器240、t個暫 存器260,及t個第二多工器280,以下各自描述該些元件異於對應於前述實施例元件的功用。 Referring to Figure 7, another multi-mode Qin search circuit 200 can be used for BCH codes having m values in different GF(2 m ). In the present embodiment, a third different m value other than the foregoing embodiment, m 3 , (m 1 > m 3 > m 2 ) is used, since m 1 > m 3 &gt ; m 2 , the relative code length 2 m1 >2 m3 >2 m2 . The BCH codes corresponding to m 1 , m 2 and m 3 each have t 1 , t 2 and t 3 error correction capabilities. In the present embodiment, t 1 > t 3 > t 2 is set such that t 1 = 7, t 2 = 4, and t 3 = 5. The Qin-type search circuit 200 also includes a combination matrix unit 220, t first multiplexers 240, t registers 260, and t second multiplexers 280, each of which describes the differences between the components. Corresponds to the function of the elements of the previous embodiments.

結合矩陣單元220是最主要的核心元件,它包含三個秦式搜尋矩陣,秦式搜尋矩陣A、秦式搜尋矩陣B及秦式搜尋矩陣C。秦式搜尋矩陣A與秦式搜尋矩陣B同上一實施例所述,秦式搜尋矩陣C是用來找出錯誤位置多項式c的解,而錯誤位置多項式c的係數是藉由接收具有t3個錯誤修正能力BCH編碼C3、找出其徵狀值,及藉由伯利坎普一梅西演算法而找出。結合矩陣單元220可以接收來自第二多工器280的數個輸入值,並將該些輸入值與一個或更多秦式搜尋矩陣中的部分或全部元素相乘而得到第一運算值與第二運算值。在本實施例中,秦式搜尋矩陣A和秦式搜尋矩陣B有著共同子表達式,秦式搜尋矩陣A和秦式搜尋矩陣C亦有著共同子表達式。故秦式搜尋矩陣B與秦式搜尋矩陣C都可以使用秦式搜尋矩陣A的部分元素,然而兩者間沒有共同子表達式。 The combining matrix unit 220 is the most important core component, and includes three Qin search matrices, a Qin search matrix A, a Qin search matrix B, and a Qin search matrix C. The Qin search matrix A and the Qin search matrix B are the same as the previous embodiment. The Qin search matrix C is used to find the solution of the error location polynomial c, and the error location polynomial c is obtained by receiving t 3 coefficients. The error correction capability BCH encodes C 3 , finds its syndrome value, and finds it by the Berkamp-Messi algorithm. The combining matrix unit 220 can receive a plurality of input values from the second multiplexer 280 and multiply the input values by one or all of the elements in the one or more Qin search matrices to obtain the first calculated value and the first The second operation value. In this embodiment, the Qin search matrix A and the Qin search matrix B have common subexpressions, and the Qin search matrix A and the Qin search matrix C also have a common subexpression. Therefore, both the Qin search matrix B and the Qin search matrix C can use some elements of the Qin search matrix A, but there is no common subexpression between the two.

此處所說的第一運算值及第二運算值,相似於前面實施例所定義的即在先前技術中所提到的。不同的是,結合矩陣單元220取代了結合矩陣單元120。結合矩陣單元220可輸出該第一運算值,並依照不同輸入值屬性,於三個線路組之一輸出該些第二運算值。當用於相同秦式搜尋矩陣的各係數值經由第二多工器280於第一次遞歸運算的時脈中輸入時,包含其後因該些係數值而運算出的第二運算值,都具有同一 輸入值屬性。而為了第一多工器240運作方便起見,每一個第二運算值的輸出,針對不同輸入值屬性的第二運算值,都有其特定的線路,即第7圖中第一多工器140所連接的上、中、下三組線路,輸入由秦式搜尋矩陣A運算後的第二運算值ΩA1(u)、ΩA2(u)...ΩAt(u)的通路即是屬於同一組線路組,輸入由秦式搜尋矩陣B運算後的第二運算值ΩB1(u)、ΩB2(u)...ΩBt(u)的通路即是為另一組線路組,輸入由秦式搜尋矩陣C運算後的第二運算值ΩC1(u)、ΩC2(u)...ΩCt(u)的通路即是為又一組線路組。 The first operational value and the second operational value referred to herein are similar to those defined in the previous embodiments, which are mentioned in the prior art. The difference is that the bonding matrix unit 220 replaces the bonding matrix unit 120. The combining matrix unit 220 may output the first operational value and output the second operational values in one of the three line groups according to different input value attributes. When the coefficient values for the same Qin search matrix are input through the second multiplexer 280 in the clock of the first recursive operation, the second operation value calculated by the coefficient values is then included. Has the same input value attribute. For the convenience of operation of the first multiplexer 240, the output of each second operational value has a specific line for the second operational value of the different input value attributes, that is, the first multiplexer in FIG. The upper, middle and lower three lines connected to the 140 are input to the second operational value ΩA 1 (u) and ΩA 2 (u)... ΩA t (u) calculated by the Qin search matrix A. Belong to the same group of lines, input the path of the second operation value ΩB 1 (u), ΩB 2 (u)... ΩB t (u) calculated by the Qin search matrix B is another group of lines. The path for inputting the second operational value ΩC 1 (u), ΩC 2 (u)... ΩC t (u) calculated by the Qin search matrix C is another set of circuit groups.

在本實施例中,第一多工器240的數量有t個,t要大於或等於t1、t2與t3中較大者,以便能實現最大修正能力的BCH碼,同時t也是運算的錯誤位置多項式之最高項次。如前所述,每一第一多工器240與每一線路組中的一線路相連並接收來自結合矩陣單元220的特定的第二運算值。第一多工器240可依照不同輸入值屬性,選擇來自對應線路組的第二運算值,並將該第二運算值輸出至連接的暫存器260中。 In this embodiment, the number of the first multiplexers 240 is t, and t is greater than or equal to the larger of t 1 , t 2 , and t 3 , so that the maximum correction capability of the BCH code can be realized, and t is also an operation. The highest order of the error location polynomial. As previously mentioned, each first multiplexer 240 is coupled to a line in each line group and receives a particular second operational value from the combining matrix unit 220. The first multiplexer 240 may select a second operational value from the corresponding line group according to different input value attributes, and output the second operational value to the connected register 260.

t個暫存器260中,每一暫存器260各與一特定的第一多工器240相連,可接收該第二運算值,並於下一時脈中輸出該第二運算值至連接的第二多工器280。每一第二多工器280與一特定的暫存器260連接,可接收一錯誤位置多項式非常數項的一個特定係數值(即第7圖中的λ1、λ2...λn),與來自該暫存器260的第二運算值。第二多工器280的功用是於一個 秦式搜尋運算開始的第一個迭代運算中,向結合矩陣單元220輸出該特定係數值作為該輸入值。這裡所說的;及於其餘秦式搜尋運算的迭代運算中,向結合矩陣單元220輸出該第二運算值作為輸入值。 Each of the registers 260 is connected to a specific first multiplexer 240, and receives the second calculated value, and outputs the second calculated value to the connected terminal in the next clock. The second multiplexer 280. Each second multiplexer 280 is coupled to a particular register 260 for receiving a particular coefficient value of a polynomial non-linear term of an error location (ie, λ 1 , λ 2 ... λ n in FIG. 7) And a second operational value from the register 260. The function of the second multiplexer 280 is to output the specific coefficient value to the combining matrix unit 220 as the input value in the first iterative operation starting from a Qin-style search operation. As described herein; and in the iterative operation of the remaining Qin-style search operations, the second operational value is output to the combining matrix unit 220 as an input value.

此實施例中秦式搜尋矩陣A與秦式搜尋矩陣B的結構同前一實施例。秦式搜尋矩陣C具有以下的形式:[Cy CΩ],其中 ,其中p為該秦式搜尋電路具有平行運算的數量,t3為BCH碼C3的錯誤修正能力,α0、α1、...及為GF()中的一標準基底,1ip,1jt3The structure of the Qin search matrix A and the Qin search matrix B in this embodiment is the same as the previous embodiment. The Qin-style search matrix C has the following form: [C y C Ω ], where Where p is the number of parallel operations of the Qin search circuit, t 3 is the error correction capability of the BCH code C 3 , α 0 , α 1 , ... and For GF ( a standard substrate, 1 i p,1 j t 3 .

由於t1大於t3,t3又大於t2,矩陣Ay與AΩ必然大於Cy與CΩ,Cy與CΩ大於By與BΩ。秦式搜尋矩陣排列方式請見第8圖。每一秦式搜尋矩陣於列方向,等分為同對應BCH碼的錯誤修正能力數量(t1、t2與t3)之數個部分,秦式搜尋矩陣A的每一部分各含對應Ay與AΩ等分之子矩陣,秦式搜尋矩陣B的每一部分各含對應By與BΩ等分之子矩陣,秦式搜尋矩陣C的每一 部分各含對應Cy與CΩ等分之子矩陣。如上所述t1=7,t2=4,t3=5,則秦式搜尋矩陣A分為A1、A2...A7等7個部分,秦式搜尋矩陣B分為B1、B2...B4等4個部分,秦式搜尋矩陣C分為C1、C2...C5等5個部分。長度方面,秦式搜尋矩陣A與秦式搜尋矩陣B如上所述不再重複,秦式搜尋矩陣C包含了m3個bit的元素。 Since t 1 is greater than t 3 and t 3 is greater than t 2 , the matrices A y and A Ω are necessarily greater than C y and C Ω , and C y and C Ω are greater than B y and B Ω . See Figure 8 for the arrangement of the Qin search matrix. Each Qin search matrix is divided into several parts of the error correction capability (t 1 , t 2 and t 3 ) of the corresponding BCH code in the column direction. Each part of the Qin search matrix A contains a corresponding A y . With the sub-matrix of A Ω , each part of the Qin search matrix B contains sub-matrices corresponding to B y and B Ω, and each part of the Qin search matrix C contains sub-matrices corresponding to C y and C Ω . As described above, t 1 =7, t 2 =4, and t 3 =5, then the Qin search matrix A is divided into seven parts, A1, A2, ..., A7, and the Qin search matrix B is divided into B1, B2. In the four parts of .B4, the Qin-style search matrix C is divided into five parts: C1, C2...C5. In terms of length, the Qin search matrix A and the Qin search matrix B are not repeated as described above, and the Qin search matrix C contains m 3 bit elements.

秦式搜尋矩陣C的各部分與秦式搜尋矩陣B的各部分相同,依序與秦式搜尋矩陣A的各部分以一種特定方式對齊排列。如第8圖所示,秦式搜尋矩陣C的各部分的上方側,與秦式搜尋矩陣A對應的部分的上緣上方側對齊。比如A1的上方側與C1的上方側對齊,A5的上方側與C5的上方側對齊等等。由於秦式搜尋矩陣A小於秦式搜尋矩陣A,故秦式搜尋矩陣C的各部分基本上是分離的,該結合矩陣單元220中未為該些秦式搜尋矩陣各部分所涵蓋之位置以0補足。 The parts of the Qin-style search matrix C are the same as the parts of the Qin-style search matrix B, and the parts of the Qin-style search matrix A are sequentially aligned in a specific manner. As shown in Fig. 8, the upper side of each part of the Qin search matrix C is aligned with the upper side of the upper edge of the portion corresponding to the Qin type search matrix A. For example, the upper side of A1 is aligned with the upper side of C1, the upper side of A5 is aligned with the upper side of C5, and the like. Since the Qin search matrix A is smaller than the Qin search matrix A, the parts of the Qin search matrix C are basically separated, and the positions of the combination matrix unit 220 that are not covered by the parts of the Qin search matrix are 0. Make up.

在本實施例中,二秦式搜尋矩陣(秦式搜尋矩陣A與秦式搜尋矩陣B,或秦式搜尋矩陣A與秦式搜尋矩陣C)間的部分元素具有共同子表達式,其一秦式搜尋矩陣可使用另一秦式搜尋矩陣的共同子表達式。然秦式搜尋矩陣B與秦式搜尋矩陣C沒有共同子表達式。實作上,秦式搜尋矩陣B與秦式搜尋矩陣C間亦可以有共同子表達式。甚至,三秦式搜尋矩陣間任二者具有共同子表達式,但三者全部沒有共同子表達式。 In this embodiment, some elements between the two-Qin search matrix (Qin search matrix A and Qin search matrix B, or Qin search matrix A and Qin search matrix C) have common sub-expressions, one Qin The search matrix can use a common subexpression of another Qin search matrix. However, the Qin-style search matrix B and the Qin-style search matrix C have no common sub-expressions. In practice, the Qin-style search matrix B and the Qin-style search matrix C can also have a common sub-expression. Even, there is a common subexpression between the three Qin search matrices, but all three have no common subexpression.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧秦式搜尋電路 100‧‧‧ Qin search circuit

120‧‧‧結合矩陣單元 120‧‧‧Combined matrix unit

140‧‧‧第一多工器 140‧‧‧First multiplexer

160‧‧‧暫存器 160‧‧‧ register

180‧‧‧第二多工器 180‧‧‧Second multiplexer

Claims (10)

用於具有不同GF(2m)中m值的BCH碼之多模式秦式搜尋電路,包含:一結合矩陣單元,用以提供複數個秦式搜尋矩陣、接收複數個輸入值、將該些輸入值與一個或更多秦式搜尋矩陣中的部分或全部元素相乘而得到第一運算值與第二運算值、輸出該第一運算值,並依照不同輸入值屬性,於複數個線路組之一輸出該些第二運算值;複數個第一多工器,每一第一多工器與每一線路組中的一線路相連並接收一特定的第二運算值,用以依照不同輸入值屬性,選擇來自對應線路組的第二運算值,並將該第二運算值輸出;複數個暫存器,每一暫存器各與一特定的第一多工器相連,用以接收該第二運算值,並於下一時脈中輸出該第二運算值;及複數個第二多工器,每一第二多工器與一特定暫存器連接,接收一錯誤位置多項式非常數項的一特定係數值與來自該暫存器的第二運算值,用以於一秦式搜尋運算開始的第一個迭代運算中,向該結合矩陣單元輸出該特定係數值作為該輸入值,及於其餘秦式搜尋運算的迭代運算中,向該結合矩陣單元輸出該第二運算值作為該輸入值,其中用於相同秦式搜尋矩陣之錯誤位置多項式的特定係 數值及因該特定係數值運算所得的第二運算值,具有相同的輸入值屬性。 A multi-mode Qin search circuit for a BCH code having different m values in GF(2 m ), comprising: a combining matrix unit for providing a plurality of Qin search matrices, receiving a plurality of input values, inputting the inputs Multiplying a value with one or more elements of one or more Qin search matrices to obtain a first operational value and a second operational value, outputting the first operational value, and according to different input value attributes, in a plurality of line groups Outputting the second calculated values; a plurality of first multiplexers, each of the first multiplexers being connected to a line in each line group and receiving a specific second operation value for different input values Attribute, selecting a second operation value from the corresponding line group, and outputting the second operation value; a plurality of registers, each register being connected to a specific first multiplexer for receiving the a second operation value, and outputting the second operation value in a next clock; and a plurality of second multiplexers, each of the second multiplexers being connected to a specific register, receiving a polynomial of a wrong position polynomial a specific coefficient value and the number from the register The operation value is used to output the specific coefficient value to the binding matrix unit as the input value in the first iterative operation starting from a Qin-type search operation, and in the iterative operation of the remaining Qin-style search operations, to the combination The matrix unit outputs the second operational value as the input value, wherein the specific coefficient value for the error location polynomial of the same Qin search matrix and the second operational value calculated for the specific coefficient value have the same input value property. 如申請專利範圍第1項所述的秦式搜尋電路,其中該秦式搜尋矩陣具有以下的形式:[Ay AΩ],其中 ,其中p為該秦式搜尋電路具有平行運算的數量;t為對應BCH碼的錯誤修正能力;α0、α1、...及αm-1為GF(2m)中的一標準基底;1ip;1jt。 For example, the Qin type search circuit described in claim 1 wherein the Qin search matrix has the following form: [A y A Ω ], wherein Where p is the number of parallel operations of the Qin search circuit; t is the error correction capability of the corresponding BCH code; α 0 , α 1 , ... and α m-1 are a standard base in GF(2 m ) ;1 i p;1 j t. 如申請專利範圍第2項所述的秦式搜尋電路,其中不同的秦式搜尋矩陣對應不同的m及/或t值。 For example, the Qin type search circuit described in claim 2, wherein different Qin search matrices correspond to different m and/or t values. 如申請專利範圍第2項所述的秦式搜尋電路,其中每一秦式搜尋矩陣於列方向,等分為同對應BCH碼的錯誤修正能力數量之複數個部分,每一部分各含對應Ay與AΩ等分之子矩陣。 For example, in the Qin type search circuit described in claim 2, each of the Qin search matrices is divided into a plurality of parts of the number of error correction capabilities corresponding to the corresponding BCH code in the column direction, and each part contains a corresponding A y Submatrix equal to A Ω . 如申請專利範圍第4項所述的秦式搜尋電路,其中一秦式搜尋矩陣的各部分依序與另一秦式搜尋矩陣的各部分以一方式對齊排列。 For example, in the Qin type search circuit described in claim 4, each part of a Qin search matrix is sequentially aligned with each part of another Qin search matrix in a manner. 如申請專利範圍第5項所述的秦式搜尋電路,其中該方式為一側對齊、中央對齊或自一側偏移一定量對齊。 The Qin type search circuit as described in claim 5, wherein the mode is one side aligned, center aligned or offset from the side by a certain amount. 如申請專利範圍第5項所述的秦式搜尋電路,其中該結合矩陣單元中未為該些秦式搜尋矩陣各部分所涵蓋之位置以0補足。 The Qin-type search circuit of claim 5, wherein the position of the combination matrix unit that is not covered by the parts of the Qin search matrix is complemented by zero. 如申請專利範圍第5項所述的秦式搜尋電路,其中該些秦式搜尋矩陣間以0分開。 For example, the Qin type search circuit described in claim 5, wherein the Qin search matrices are separated by 0. 如申請專利範圍第1項所述的秦式搜尋電路,其中二秦式搜尋矩陣間的部分元素具有共同子表達式,其一秦式搜尋矩陣使用另一秦式搜尋矩陣的共同子表達式。 For example, in the Qin type search circuit described in claim 1, wherein some elements between the two Qin search matrices have a common sub-expression, and one Qin search matrix uses a common sub-expression of another Qin search matrix. 如申請專利範圍第1項所述的秦式搜尋電路,其中該第一運算值進一步與該錯誤位置多項式的常數項數值相加,若相加值為0,則對應的元素αup+i,1ip,為該錯誤位置多項式的一個根,其中α為錯誤位置數字,u為迭代運算的次數,且α及u分別為正整數。 The Qin type search circuit of claim 1, wherein the first operation value is further added to the constant term value of the error position polynomial, and if the addition value is 0, the corresponding element α up+i , 1 i p is a root of the polynomial of the error location, where α is the number of error positions, u is the number of iterations, and α and u are positive integers, respectively.
TW103123959A 2014-07-11 2014-07-11 MULTI-CODE CHIEN'S SEARCH CIRCUIT FOR BCH CODES WITH VARIOUS VALUES OF M IN GF(2m) TWI551059B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103123959A TWI551059B (en) 2014-07-11 2014-07-11 MULTI-CODE CHIEN'S SEARCH CIRCUIT FOR BCH CODES WITH VARIOUS VALUES OF M IN GF(2m)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103123959A TWI551059B (en) 2014-07-11 2014-07-11 MULTI-CODE CHIEN'S SEARCH CIRCUIT FOR BCH CODES WITH VARIOUS VALUES OF M IN GF(2m)

Publications (2)

Publication Number Publication Date
TW201603500A TW201603500A (en) 2016-01-16
TWI551059B true TWI551059B (en) 2016-09-21

Family

ID=55641730

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103123959A TWI551059B (en) 2014-07-11 2014-07-11 MULTI-CODE CHIEN'S SEARCH CIRCUIT FOR BCH CODES WITH VARIOUS VALUES OF M IN GF(2m)

Country Status (1)

Country Link
TW (1) TWI551059B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067825B (en) * 2016-07-01 2017-10-13 建荣集成电路科技(珠海)有限公司 BCH pre-searchs circuit, BCH decoding circuits, BCH pre-searching methods and BCH error correction methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208815A (en) * 1988-11-04 1993-05-04 Sony Corporation Apparatus for decoding bch code
US7206992B2 (en) * 2003-03-04 2007-04-17 Broadcom Corporation Decoding a received BCH encoded signal
US7447982B1 (en) * 2001-03-30 2008-11-04 Cisco Technology, Inc. BCH forward error correction decoder
US8607128B2 (en) * 2007-12-05 2013-12-10 Densbits Technologies Ltd. Low power chien-search based BCH/RS decoding system for flash memory, mobile communications devices and other applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208815A (en) * 1988-11-04 1993-05-04 Sony Corporation Apparatus for decoding bch code
US7447982B1 (en) * 2001-03-30 2008-11-04 Cisco Technology, Inc. BCH forward error correction decoder
US7206992B2 (en) * 2003-03-04 2007-04-17 Broadcom Corporation Decoding a received BCH encoded signal
US8607128B2 (en) * 2007-12-05 2013-12-10 Densbits Technologies Ltd. Low power chien-search based BCH/RS decoding system for flash memory, mobile communications devices and other applications

Also Published As

Publication number Publication date
TW201603500A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
JP5483875B2 (en) Method and apparatus for LDPC code block and rate independent decoding
JP4320418B2 (en) Decoding device and receiving device
US8327241B2 (en) Reduced processing in high-speed Reed-Solomon decoding
JP2005218098A (en) Reed-solomon decoder circuit of a forward directional chain search system
US7941734B2 (en) Method and apparatus for decoding shortened BCH codes or reed-solomon codes
JP2011522502A (en) Turbo LDPC decoding
JP2011165026A (en) Error detection correction system
Wilhelm A new scalable VLSI architecture for Reed-Solomon decoders
WO2017113507A1 (en) Set decoding method and set decoder
US8977938B2 (en) Parallel decomposition of Reed Solomon umbrella codes
CN108141227B (en) Check node and corresponding method for non-binary LDPC decoder
US9065482B1 (en) Circuit for forward error correction encoding of data blocks
US7613988B1 (en) Degree limited polynomial in Reed-Solomon decoding
Zhang VLSI architectures for Reed–Solomon codes: Classic, nested, coupled, and beyond
TWI551059B (en) MULTI-CODE CHIEN'S SEARCH CIRCUIT FOR BCH CODES WITH VARIOUS VALUES OF M IN GF(2m)
US10218386B1 (en) Methods and apparatus for performing variable and breakout Reed Solomon encoding
US10009041B2 (en) BCH decorder in which folded multiplier is equipped
US20180006664A1 (en) Methods and apparatus for performing reed-solomon encoding by lagrangian polynomial fitting
US9467173B2 (en) Multi-code Chien's search circuit for BCH codes with various values of m in GF(2m)
US10067821B2 (en) Apparatus and method for cyclic redundancy check
KR100963015B1 (en) method and circuit for error location Processing of the discrepancy-computationless Reformulated inversionless Berlekamp-Massey algorithm for high-speed low-complexity BCH decoder
Mohammed et al. FPGA implementation of 3 bits BCH error correcting codes
US8583994B2 (en) Coding apparatus and method for handling quasi-cyclical codes
TWI523437B (en) Encoding and syndrome computing co-design circuit for bch code and method for deciding the same
Chang et al. VLSI architecture of modified Euclidean algorithm for Reed–Solomon code