TWI550529B - Dynamical event neuron and synapse models for learning spiking neural networks - Google Patents

Dynamical event neuron and synapse models for learning spiking neural networks Download PDF

Info

Publication number
TWI550529B
TWI550529B TW102142291A TW102142291A TWI550529B TW I550529 B TWI550529 B TW I550529B TW 102142291 A TW102142291 A TW 102142291A TW 102142291 A TW102142291 A TW 102142291A TW I550529 B TWI550529 B TW I550529B
Authority
TW
Taiwan
Prior art keywords
state
neuron
event
time
model
Prior art date
Application number
TW102142291A
Other languages
Chinese (zh)
Other versions
TW201435757A (en
Inventor
杭茲格爾傑森法蘭克
Original Assignee
高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/081,777 external-priority patent/US20140074761A1/en
Application filed by 高通公司 filed Critical 高通公司
Publication of TW201435757A publication Critical patent/TW201435757A/en
Application granted granted Critical
Publication of TWI550529B publication Critical patent/TWI550529B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs

Description

用於學習尖峰神經網路的動態事件神經元和突觸模型 Dynamic event neurons and synaptic models for learning spiking neural networks 【根據專利法的優先權請求】[Priority Request under the Patent Law]

本專利申請案主張於2012年11月20日提出申請的臨時申請案第61/728,409號以及於2013年1月31日提出申請的臨時申請案第61/759,181號的權益,該等臨時申請案被轉讓給本案受讓人並由此藉由援引明確納入於此。 This patent application claims the rights of the provisional application No. 61/728,409 filed on November 20, 2012 and the provisional application No. 61/759,181 filed on January 31, 2013, the provisional application It was assigned to the assignee of the case and is hereby explicitly incorporated by reference.

本案的某些態樣一般係關於神經網路,特定而言係關於用於神經元和突觸的基於事件的連續時間模型。 Certain aspects of the present case are generally related to neural networks, and in particular to event-based continuous time models for neurons and synapses.

可包括一群互連的人工神經元(亦即神經元模型)的人工神經網路是一種計算設備或者表示將由計算設備執行的方法。人工神經網路可具有生物學神經網路中的對應的結構及/或功能。然而,人工神經網路可為其中傳統計算技術是麻煩的、不切實際的或不勝任的某些應用提供創新且有用的計算技術。由於人工神經網路能從觀察中推斷出功能,因此此種網路在因任務或資料的複雜度使得藉由習知技術來設計 該功能較為麻煩的應用中是特別有用的。 An artificial neural network that can include a group of interconnected artificial neurons (i.e., a neuron model) is a computing device or a method that will be performed by a computing device. Artificial neural networks may have corresponding structures and/or functions in a biological neural network. However, artificial neural networks can provide innovative and useful computing techniques for certain applications where traditional computing techniques are cumbersome, impractical, or incompetent. Since artificial neural networks can infer functions from observations, such networks are designed by conventional techniques due to the complexity of tasks or data. This feature is particularly useful in applications that are more cumbersome.

一種類型的人工神經網路是尖峰(spiking)神經網 路,尖峰神經網路將時間概念以及神經元狀態和突觸狀態納入到尖峰神經網路工作模型中,由此提供了豐富的行為集,在神經網路中能從該行為集湧現出計算功能。尖峰神經網路基於以下概念:神經元基於該神經元的狀態在一或多個特定的時間激發或「發放尖峰」,並且該時間對於神經元功能而言是重要的。當神經元激發時,神經元產生一尖峰,該尖峰行進至其他神經元,該等其他神經元繼而可基於接收到該尖峰的時間來調整神經元的狀態。換言之,資訊可被編碼在神經網路中的尖峰的相對或絕對時序中。 One type of artificial neural network is a spiking neural network Road, the spiking neural network incorporates time concepts and neuronal and synaptic states into the spiking neural network working model, thereby providing a rich set of behaviors from which the computational functions can emerge from the neural network. . The spiking neural network is based on the concept that a neuron fires or "sends a spike" at one or more specific times based on the state of the neuron, and that time is important for neuronal function. When a neuron is excited, the neuron produces a spike that travels to other neurons, which in turn can adjust the state of the neuron based on the time at which the spike was received. In other words, the information can be encoded in the relative or absolute timing of the spikes in the neural network.

本案的某些態樣提供了用於更新人工神經元的狀態的方法。該方法一般包括:決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相;及至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態。 Some aspects of the present invention provide a method for updating the state of an artificial neuron. The method generally includes determining a first state of an artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the state dynamics of the neuron model is divided into two or more states Determining an operational phase of the artificial neuron from the two or more phases based at least in part on the first state; and based at least in part on the first state of the artificial neuron and the determined operational state Update the state of the artificial neuron.

本案的某些態樣提供了用於更新人工神經元的狀態的裝置。該裝置一般包括處理系統,處理系統被配置成:決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態 動態被劃分成兩個或更多個態相;至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相;及至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態。 Some aspects of the present invention provide means for updating the state of an artificial neuron. The apparatus generally includes a processing system configured to: determine a first state of an artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in a continuous time and wherein the state of the neuron model Dynamically being divided into two or more states; determining an operational phase of the artificial neuron from the two or more phases based at least in part on the first state; and based at least in part on the artificial neuron The first state and the determined operational state update the state of the artificial neuron.

本案的某些態樣提供了用於更新人工神經元的狀態 的設備。該設備一般包括:用於決定人工神經元的第一狀態的手段,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;用於至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相的手段;及用於至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態的手段。 Some aspects of the case provide a state for updating artificial neurons device of. The apparatus generally includes means for determining a first state of an artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the state dynamics of the neuron model are divided into two or a plurality of states; means for determining an operational phase of the artificial neuron from the two or more states based at least in part on the first state; and for at least partially based on the artificial neuron A means of updating the state of the artificial neuron in response to a state and a determined operational state.

本案的某些態樣提供了用於更新人工神經元的狀態 的電腦程式產品。該電腦程式產品一般包括具有用於以下動作的代碼的電腦可讀取媒體:決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相;及至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態。 Some aspects of the case provide a state for updating artificial neurons Computer program product. The computer program product generally includes a computer readable medium having code for: determining a first state of an artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in a continuous time and wherein the nerve The state dynamics of the metamodel is divided into two or more states; the operating phase of the artificial neuron is determined from the two or more states based at least in part on the first state; and based at least in part on the The first state of the artificial neuron and the determined working state are used to update the state of the artificial neuron.

本案的某些態樣提供了用於產生人工神經元的神經 行為的方法。該方法一般包括:決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形 式解並且該神經元模型的線性動態被劃分成兩個或更多個態相;至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相;至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態;及藉由利用該神經元模型的線性動態來產生該人工神經元的多種神經行為。 Some aspects of the case provide nerves for generating artificial neurons The method of behavior. The method generally includes determining a first state of an artificial neuron, wherein the neuron model of the artificial neuron has a closed shape in continuous time And the linear dynamics of the neuron model are divided into two or more states; the working phase of the artificial neurons is determined from the two or more states based at least in part on the first state; Updating the state of the artificial neuron based in part on the first state of the artificial neuron and the determined operational state phase; and generating a plurality of neural behaviors of the artificial neuron by utilizing linear dynamics of the neuron model.

本案的某些態樣提供了用於產生人工神經元的神經 行為的裝置。該裝置一般包括處理系統,處理系統被配置成:決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的線性動態被劃分成兩個或更多個態相;至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相;至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態;及藉由利用該神經元模型的線性動態來產生該人工神經元的多種神經行為。 Some aspects of the case provide nerves for generating artificial neurons The device of behavior. The apparatus generally includes a processing system configured to: determine a first state of an artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the linear dynamics of the neuron model are divided Determining an operational phase of the artificial neuron from at least a portion of the two or more states based at least in part on the first state; based at least in part on the first state of the artificial neuron and Determining the state of the working state to update the state of the artificial neuron; and generating a plurality of neural behaviors of the artificial neuron by utilizing the linear dynamics of the neuron model.

本案的某些態樣提供了用於產生人工神經元的神經 行為的設備。該設備一般包括:用於決定人工神經元的第一狀態的手段,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的線性動態被劃分成兩個或更多個態相;用於至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相的手段;用於至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態的手段;及用於藉由利用該神經元模型的線性動態來產生該人工神經元的多種神經行為的 手段。 Some aspects of the case provide nerves for generating artificial neurons Behavioral equipment. The apparatus generally includes means for determining a first state of an artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the linear dynamics of the neuron model are divided into two or a plurality of states; means for determining an operational phase of the artificial neuron from the two or more states based at least in part on the first state; for first, based at least in part on the artificial neuron Means of updating the state of the artificial neuron by the state and the determined operational state; and for generating a plurality of neural behaviors of the artificial neuron by utilizing linear dynamics of the neuron model means.

本案的某些態樣提供了用於產生人工神經元的神經 行為的電腦程式產品。該電腦程式產品一般包括具有用於以下動作的代碼的電腦可讀取媒體:決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的線性動態被劃分成兩個或更多個態相;至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相;至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態;及藉由利用該神經元模型的線性動態來產生該人工神經元的多種神經行為。 Some aspects of the case provide nerves for generating artificial neurons The behavior of computer program products. The computer program product generally includes a computer readable medium having code for: determining a first state of an artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in a continuous time and wherein the nerve The linear dynamics of the metamodel are divided into two or more states; the working phase of the artificial neurons is determined from the two or more states based at least in part on the first state; based at least in part on the artificial The first state of the neuron and the determined working state are used to update the state of the artificial neuron; and various neural behaviors of the artificial neuron are generated by utilizing the linear dynamics of the neuron model.

本案的某些態樣提供了用於更新人工神經元的狀態 的方法。該方法一般包括:至少部分地基於事件來更新人工神經元的狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;按時間間隔更新該人工神經元的狀態;及若在時刻處或在時刻之間發生事件,則更新該人工神經元的狀態。 Some aspects of the case provide a state for updating artificial neurons Methods. The method generally includes updating a state of an artificial neuron based at least in part on an event, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the state dynamics of the neuron model are divided into two or More states; updating the state of the artificial neuron at intervals; and updating the state of the artificial neuron if an event occurs at or between times.

本案的某些態樣提供了用於更新人工神經元的狀態 的手段。該手段一般包括處理系統,處理系統被配置成:至少部分地基於事件來更新人工神經元的狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;按時間間隔更新該人工神經元的狀態;及若在時刻處或在時刻之間 發生事件,則更新該人工神經元的狀態。 Some aspects of the case provide a state for updating artificial neurons s method. The means generally includes a processing system configured to: update a state of an artificial neuron based at least in part on an event, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the neuron model State dynamics are divided into two or more states; the state of the artificial neuron is updated at time intervals; and if at time or between times When an event occurs, the state of the artificial neuron is updated.

本案的某些態樣提供了用於更新人工神經元的狀態 的設備。該設備一般包括:用於至少部分地基於事件來更新人工神經元的狀態的手段,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;用於按時間間隔更新該人工神經元的狀態的手段;及用於若在時刻處或在時刻之間發生事件,則更新該人工神經元的狀態的手段。 Some aspects of the case provide a state for updating artificial neurons device of. The apparatus generally includes means for updating a state of an artificial neuron based at least in part on an event, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the state dynamics of the neuron model are divided Two or more states; means for updating the state of the artificial neuron at time intervals; and means for updating the state of the artificial neuron if an event occurs at or between times .

本案的某些態樣提供了用於更新人工神經元的狀態 的電腦程式產品。該電腦程式產品一般包括具有用於以下動作的代碼的電腦可讀取媒體:至少部分地基於事件來更新人工神經元的狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;按時間間隔更新該人工神經元的狀態;及若在時刻處或在時刻之間發生事件,則更新該人工神經元的狀態。 Some aspects of the case provide a state for updating artificial neurons Computer program product. The computer program product generally includes computer readable media having code for updating a state of an artificial neuron based at least in part on an event, wherein the neuron model of the artificial neuron has a closed form solution in continuous time And wherein the state dynamics of the neuron model is divided into two or more states; the state of the artificial neuron is updated at time intervals; and if an event occurs at a time or between times, the artificial nerve is updated The state of the yuan.

100‧‧‧神經系統 100‧‧‧Nervous system

102‧‧‧神經元級 102‧‧‧ neuron

104‧‧‧突觸連接網路 104‧‧‧Synaptic connection network

106‧‧‧神經元 106‧‧‧ neurons

108‧‧‧信號 108‧‧‧ signal

110‧‧‧輸出尖峰 110‧‧‧ Output spikes

200‧‧‧實例 200‧‧‧Instance

202‧‧‧神經元 202‧‧‧ neurons

2041‧‧‧信號 2041‧‧‧ signal

204i‧‧‧信號 204i‧‧‧ signal

204N‧‧‧信號 204N‧‧‧ signal

2061‧‧‧突觸權重 2061‧‧ ‧ synaptic weight

206i‧‧‧突觸權重 206i‧‧‧ synaptic weight

206N‧‧‧突觸權重 206N‧‧‧ synaptic weight

208‧‧‧輸出信號 208‧‧‧ output signal

300‧‧‧圖表 300‧‧‧ Chart

302‧‧‧部分 Section 302‧‧‧

304‧‧‧部分 Section 304‧‧‧

306‧‧‧交越點 306‧‧‧Crossover

402‧‧‧負態相 402‧‧‧Negative phase

404‧‧‧正態相 404‧‧‧ Normal phase

500‧‧‧實例 500‧‧‧Instances

502‧‧‧圓圈 502‧‧‧ circle

504‧‧‧箭頭 504‧‧‧ arrow

506‧‧‧箭頭 506‧‧‧ arrow

600‧‧‧實例 600‧‧‧Instance

602‧‧‧實例 602‧‧‧Instance

604‧‧‧實例 604‧‧‧Instance

606‧‧‧狀態 606‧‧‧ Status

700‧‧‧行為 700‧‧‧Activity

702‧‧‧第一輸入事件 702‧‧‧ first input event

704‧‧‧狀態蹤跡 704‧‧‧ State trail

706‧‧‧第二輸入 706‧‧‧second input

708‧‧‧閾值 708‧‧‧ threshold

800‧‧‧行為 800‧‧‧ acts

802‧‧‧圖表 802‧‧‧ chart

804‧‧‧圖表 804‧‧‧ Chart

900‧‧‧實例 900‧‧‧Instance

902‧‧‧值 902‧‧‧ value

904‧‧‧值 904‧‧‧ value

1000‧‧‧反例 1000‧‧‧counter

1002‧‧‧值 1002‧‧‧ value

1004‧‧‧值 1004‧‧‧ value

1100‧‧‧實例 1100‧‧‧Instance

1102‧‧‧閾值 1102‧‧‧ threshold

1200‧‧‧比較 Comparison of 1200‧‧

1202‧‧‧閾值 1202‧‧‧ threshold

1204‧‧‧第一輸入事件 1204‧‧‧First input event

1206‧‧‧輸入事件 1206‧‧‧ Input events

1302‧‧‧圖表 1302‧‧‧ Chart

1304‧‧‧圖表 1304‧‧‧ Chart

1400‧‧‧實例 1400‧‧‧Instance

1402‧‧‧事件 1402‧‧‧ events

1404‧‧‧事件 1404‧‧‧ events

1406‧‧‧事件 1406‧‧‧ events

1500‧‧‧實例 1500‧‧‧Instance

1502‧‧‧情形 1502‧‧‧ Situation

1504‧‧‧情形 1504‧‧‧ Situation

1600‧‧‧實例 1600‧‧‧Instance

1602‧‧‧事件 1602‧‧‧ events

1604‧‧‧事件 1604‧‧‧ events

1606‧‧‧事件 1606‧‧‧ events

1608‧‧‧時間 1608‧‧‧Time

1700‧‧‧實例 1700‧‧‧Instance

1702‧‧‧人工事件 1702‧‧‧Manual events

1704‧‧‧人工事件 1704‧‧‧Manual events

1706‧‧‧時間 1706‧‧‧Time

1802‧‧‧圖表 1802‧‧‧ Chart

1804‧‧‧圖表 1804‧‧‧ Chart

1806‧‧‧電壓進化 1806‧‧‧Voltage evolution

1808‧‧‧電壓進化 1808‧‧‧Voltage evolution

1810‧‧‧電壓進化 1810‧‧‧Voltage evolution

1812‧‧‧電壓進化 1812‧‧‧Voltage evolution

1902‧‧‧實例 1902‧‧‧Instance

1904‧‧‧實例 1904‧‧‧Instance

1906‧‧‧電壓零傾線 1906‧‧‧Voltage zero inclination

1908‧‧‧零傾線 1908‧‧‧ Zero inclination

1910‧‧‧零傾線 1910‧‧‧ Zero inclination

1912‧‧‧零傾線 1912‧‧‧ Zero inclination

1914‧‧‧零傾線 1914‧‧‧ Zero inclination

2002‧‧‧尖峰結果 2002‧‧‧ spike results

2004‧‧‧尖峰結果 2004‧‧‧ spike results

2100‧‧‧實例 2100‧‧‧Instance

2102‧‧‧電壓零傾線 2102‧‧‧Voltage zero inclination

2104‧‧‧電流零傾線 2104‧‧‧current zero inclination

2200‧‧‧實例 2200‧‧‧Instance

2300‧‧‧實例 2300‧‧‧Instance

2302‧‧‧狀態軌跡 2302‧‧‧ State track

2402‧‧‧軌道 2402‧‧‧ Track

2404‧‧‧向外螺旋 2404‧‧‧ outward spiral

2500‧‧‧實例 2500‧‧‧Instances

2502‧‧‧零傾線 2502‧‧‧ Zero inclination

2504‧‧‧第一狀態 2504‧‧‧First state

2506‧‧‧水平箭頭 2506‧‧‧ horizontal arrows

2508‧‧‧零傾線 2508‧‧‧ Zero inclination

2510‧‧‧第二事件 2510‧‧‧Second event

2600‧‧‧實例 2600‧‧‧Instances

2602‧‧‧靜息點 2602‧‧‧ Resting point

2702‧‧‧衰退軌道 2702‧‧‧Degraded orbit

2800‧‧‧電壓導數 2800‧‧‧Voltage Derivative

2900‧‧‧電壓導數 2900‧‧‧Voltage Derivative

3000‧‧‧極限循環 3000‧‧‧ extreme cycle

3102‧‧‧軌跡 3102‧‧‧Track

3104‧‧‧軌跡 3104‧‧‧Track

3200‧‧‧實例 3200‧‧‧Instance

3202‧‧‧區域 3202‧‧‧Area

3204‧‧‧區域 3204‧‧‧Area

3206‧‧‧零傾線 3206‧‧‧ Zero inclination

3208‧‧‧零傾線 3208‧‧‧ Zero inclination

3300‧‧‧實例 3300‧‧‧Instance

3302‧‧‧輸入事件 3302‧‧‧ Input events

3304‧‧‧圖表 3304‧‧‧Chart

3402‧‧‧曲線 3402‧‧‧ Curve

3502‧‧‧尖峰蹤跡 3502‧‧ 尖 spike trail

3504‧‧‧狀態軌跡 3504‧‧‧ State track

3506‧‧‧尖峰蹤跡 3506‧‧‧ spikes

3508‧‧‧狀態軌跡 3508‧‧‧ State track

3600‧‧‧實例 3600‧‧‧Instance

3602‧‧‧第一對尖峰 3602‧‧‧The first pair of peaks

3604‧‧‧第一對尖峰 3604‧‧‧The first pair of peaks

3606‧‧‧第二對尖峰 3606‧‧‧Second pair of peaks

3608‧‧‧第二對尖峰 3608‧‧‧Second pair of peaks

3610‧‧‧行為 3610‧‧‧Activity

3702‧‧‧曲線 3702‧‧‧ Curve

3800‧‧‧實例 3800‧‧‧Instance

3802‧‧‧圖表 3802‧‧‧ Chart

3902‧‧‧興奮性輸入 3902‧‧‧Excitatory input

3904‧‧‧抑制性輸入 3904‧‧‧Suppressed input

3906‧‧‧興奮性輸入 3906‧‧‧Excitatory input

3908‧‧‧電壓 3908‧‧‧ voltage

4002‧‧‧實例 4002‧‧‧Instance

4004‧‧‧回彈尖峰 4004‧‧‧Rebound spikes

4006‧‧‧抑制性輸入 4006‧‧‧Suppressed input

4008‧‧‧實例 4008‧‧‧Instance

4010‧‧‧回彈短脈衝 4010‧‧‧Rebound short pulse

4012‧‧‧抑制性輸入 4012‧‧‧Suppressed input

4100‧‧‧實例 4100‧‧‧Instance

4102‧‧‧狀態空間軌跡 4102‧‧‧ State space trajectory

4200‧‧‧實例 4200‧‧‧Instance

4202‧‧‧圖表 4202‧‧‧ Chart

4204‧‧‧興奮性輸入 4204‧‧‧Excitatory input

4206‧‧‧興奮性輸入 4206‧‧‧Excitatory input

4300‧‧‧實例 4300‧‧‧Instance

4302‧‧‧狀態空間軌跡 4302‧‧‧State space trajectory

4400‧‧‧實例 4400‧‧‧Instance

4402‧‧‧閾下振盪 4402‧‧‧ Under-threshold oscillation

4404‧‧‧輸入 4404‧‧‧Enter

4500‧‧‧實例 4500‧‧‧Instance

4502‧‧‧圖表 4502‧‧‧ Chart

4504‧‧‧輸入 4504‧‧‧ Input

4600‧‧‧實例 4600‧‧‧Instance

4602‧‧‧實線 4602‧‧‧solid line

4604‧‧‧虛線 4604‧‧‧dotted line

4700‧‧‧實例 4700‧‧‧Instance

4702‧‧‧圖表 4702‧‧‧Chart

4704‧‧‧輸入 4704‧‧‧ Input

4800‧‧‧實例 4800‧‧‧Instance

4802‧‧‧第一斜坡 4802‧‧‧First slope

4804‧‧‧第二斜坡 4804‧‧‧second slope

4806‧‧‧尖峰 4806‧‧‧ spike

4900‧‧‧實例 4900‧‧‧Instance

4902‧‧‧狀態空間軌跡 4902‧‧‧State space trajectory

5000‧‧‧實例 5000‧‧‧Instance

5002‧‧‧尖峰發放速率 5002‧‧‧ spike rate

5004‧‧‧興奮性輸入 5004‧‧‧Excitatory input

5100‧‧‧實例 5100‧‧‧Instance

5102‧‧‧發放尖峰 5102‧‧‧Distribution spikes

5104‧‧‧興奮性輸入 5104‧‧‧Excitatory input

5200‧‧‧實例 5200‧‧‧Instance

5202‧‧‧強直性尖峰發放行為 5202‧‧‧Toughness spikes

5204‧‧‧輸入階躍 5204‧‧‧Input step

5300‧‧‧實例 5300‧‧‧Instance

5302‧‧‧位相型尖峰 5302‧‧‧ phase spike

5304‧‧‧輸入階躍 5304‧‧‧Input step

5400‧‧‧實例 5400‧‧‧Instance

5402‧‧‧強直性短脈衝 5402‧‧‧Tangzhi short pulse

5404‧‧‧輸入階躍 5404‧‧‧Input step

5500‧‧‧實例 5500‧‧‧Instance

5502‧‧‧位相型短脈衝行為 5502‧‧‧ phase short pulse behavior

5504‧‧‧輸入階躍 5504‧‧‧Input step

5600‧‧‧實例 5600‧‧‧Instance

5602‧‧‧混合模式行為 5602‧‧‧ Mixed mode behavior

5604‧‧‧輸入階躍 5604‧‧‧Input step

5700‧‧‧實例 5700‧‧‧Instance

5702‧‧‧尖峰 5702‧‧‧ spike

5704‧‧‧輸入階躍 5704‧‧‧Input step

5800‧‧‧實例 5800‧‧‧Instance

5802‧‧‧抑制 5802‧‧‧ Suppression

5804‧‧‧興奮性輸入 5804‧‧‧Excitatory input

5806‧‧‧尖峰 5806‧‧‧ spike

5900‧‧‧實例 5900‧‧‧Instances

5902‧‧‧狀態軌跡 5902‧‧‧ State track

6000‧‧‧實例 6000‧‧‧Instance

6002‧‧‧抑制 6002‧‧‧ suppression

6004‧‧‧興奮性輸入 6004‧‧‧Excitatory input

6006‧‧‧短脈衝 6006‧‧‧short pulse

6300‧‧‧操作 6300‧‧‧ operation

6300A‧‧‧組件 6300A‧‧‧ components

6302‧‧‧步驟 6302‧‧‧Steps

6302A‧‧‧手段 6302A‧‧‧ means

6304‧‧‧步驟 6304‧‧‧Steps

6306‧‧‧步驟 6306‧‧‧Steps

6400‧‧‧操作 6400‧‧‧ operation

6400A‧‧‧組件 6400A‧‧‧ components

6402‧‧‧步驟 6402‧‧‧Steps

6404‧‧‧步驟 6404‧‧‧Steps

6406‧‧‧步驟 6406‧‧‧Steps

6408‧‧‧步驟 6408‧‧‧Steps

6500‧‧‧操作 6500‧‧‧ operation

6500A‧‧‧組件 6500A‧‧‧ components

6502‧‧‧步驟 6502‧‧‧Steps

6504‧‧‧步驟 6504‧‧‧Steps

6506‧‧‧步驟 6506‧‧‧Steps

6600‧‧‧實現 6600‧‧‧ realized

6602‧‧‧通用處理器 6602‧‧‧General Processor

6604‧‧‧記憶體塊 6604‧‧‧ memory block

6606‧‧‧程式記憶體 6606‧‧‧Program memory

6700‧‧‧實現 6700‧‧‧ realized

6702‧‧‧記憶體 6702‧‧‧ memory

6704‧‧‧互連網路 6704‧‧‧Internet

6706‧‧‧處理單元 6706‧‧‧Processing unit

6800‧‧‧實現 6800‧‧‧ realized

6802‧‧‧記憶體組 6802‧‧‧ memory group

6804‧‧‧處理單元 6804‧‧‧Processing unit

6900‧‧‧神經網路 6900‧‧‧Neural Network

6902‧‧‧局部處理單元 6902‧‧‧Local Processing Unit

6904‧‧‧局部狀態記憶體 6904‧‧‧Local state memory

6906‧‧‧局部參數記憶體 6906‧‧‧Local parameter memory

6908‧‧‧記憶體 6908‧‧‧ memory

6910‧‧‧記憶體 6910‧‧‧ memory

6912‧‧‧局部連接記憶體 6912‧‧‧Locally connected memory

6914‧‧‧單元 Unit 6914‧‧‧

6916‧‧‧元件 6916‧‧‧ components

為了能詳細理解本案的以上陳述的特徵所用的方式,可參照各態樣來對以上簡要概述的內容進行更具體的描述,其中一些態樣在附圖中圖示。然而應該注意,附圖僅圖示了本案的某些典型態樣,故不應被認為限定其範圍,因為本描述可允許有其他等同有效的態樣。 To more clearly understand the manner in which the above-described features of the present disclosure are used, the above briefly summarized aspects may be more specifically described with reference to the various aspects, some of which are illustrated in the drawings. It should be noted, however, that the drawings are only illustrative of certain aspects of the present invention and are not to be considered as limiting.

圖1圖示根據本案的某些態樣的神經元的示例網路。 FIG. 1 illustrates an example network of neurons in accordance with certain aspects of the present disclosure.

圖2圖示根據本案的某些態樣的計算網路(神經系統 或神經網路)的處理單元(神經元)的實例。 Figure 2 illustrates a computing network (neural system) according to certain aspects of the present case Or an instance of a processing unit (neuron) of a neural network.

圖3圖示根據本案的某些態樣的尖峰時序依賴可塑性(STDP)曲線的實例。 3 illustrates an example of a spike timing dependent plasticity (STDP) curve in accordance with certain aspects of the present disclosure.

圖4圖示根據本案的某些態樣的用於定義神經元模型的行為的正態相和負態相的實例。 4 illustrates an example of a normal phase and a negative phase for defining the behavior of a neuron model, in accordance with certain aspects of the present disclosure.

圖5圖示根據本案的某些態樣的示例抽象事件狀態機。 FIG. 5 illustrates an example abstract event state machine in accordance with certain aspects of the present disclosure.

圖6圖示了根據本案的某些態樣的引發神經元模型動態上的改變的事件的實例。 Figure 6 illustrates an example of an event that triggers a dynamic change in a neuron model in accordance with certain aspects of the present disclosure.

圖7圖示了根據本案的某些態樣的能夠偵測與帶洩漏積分激發(LIF)神經元模型的一致性的情況的實例。 Figure 7 illustrates an example of a situation in which consistency with a Leaky Integral Excitation (LIF) neuron model can be detected in accordance with certain aspects of the present disclosure.

圖8圖示了根據本案的某些態樣的不能/難以偵測與其他神經元模型的一致性的情況的實例。 Figure 8 illustrates an example of a situation in which certain aspects of the present case are not/difficult to detect consistency with other neuron models.

圖9圖示了根據本案的某些態樣的LIF神經元模型的狀態差異呈單調遞減的實例。 Figure 9 illustrates an example of a monotonically decreasing state difference of a LIF neuron model in accordance with certain aspects of the present disclosure.

圖10圖示了根據本案的某些態樣的LIF神經元模型的狀態差異並非呈單調遞減的實例。 Figure 10 illustrates an example of a state difference in a LIF neuron model according to certain aspects of the present disclosure that is not monotonically decreasing.

圖11圖示根據本案的某些態樣的不能區分閾下輸入時序的情況的實例。 Figure 11 illustrates an example of a situation in which certain sub-threshold input timings cannot be distinguished in accordance with certain aspects of the present disclosure.

圖12圖示根據本案的某些態樣的能夠區分閾上輸入時序的情況的實例。 Figure 12 illustrates an example of a situation in which it is possible to distinguish between on-threshold input timings in accordance with certain aspects of the present disclosure.

圖13圖示根據本案的某些態樣的能夠區分閾下輸入時序的情況的實例。 Figure 13 illustrates an example of a situation in which certain sub-threshold input timings can be distinguished, in accordance with certain aspects of the present disclosure.

圖14圖示根據本案的某些態樣的在事件處的瞬間耦 合以及在事件之間的解耦的實例。 Figure 14 illustrates an instant coupling at an event in accordance with certain aspects of the present disclosure. And examples of decoupling between events.

圖15圖示根據本案的某些態樣的正態相和負態相中的動態的示例比較。 Figure 15 illustrates an example comparison of dynamics in a normal phase and a negative phase in accordance with certain aspects of the present disclosure.

圖16圖示了根據本案的某些態樣的事件之間的狀態動態獨立於事件間(inter-event)更新的實例。 16 illustrates an example of state dynamics independent of inter-event updates between events according to certain aspects of the present disclosure.

圖17圖示了根據本案的某些態樣的儘管沒有輸入或輸出亦影響動態的人工事件的實例。 Figure 17 illustrates an example of a human event that affects dynamics, although there is no input or output, in accordance with certain aspects of the present disclosure.

圖18圖示根據本案的某些態樣的在有和無週期性人工事件的情況下的基本動態的示例比較。 Figure 18 illustrates an example comparison of basic dynamics with and without periodic human events in accordance with certain aspects of the present disclosure.

圖19圖示了根據本案的某些態樣的Hunzinger Cold神經元模型的典型零傾線的實例。 Figure 19 illustrates an example of a typical zero-tilt of a Hunzinger Cold neuron model in accordance with certain aspects of the present disclosure.

圖20圖示根據本案的某些態樣的反覆運算簡單模型和動態事件模型的示例尖峰結果。 20 illustrates example spike results for a repetitive computational simple model and a dynamic event model in accordance with certain aspects of the present disclosure.

圖21圖示了根據本案的某些態樣的在負態相中跨零傾線的狀態軌跡的實例。 21 illustrates an example of a state trajectory across a zero tilt line in a negative phase in accordance with certain aspects of the present disclosure.

圖22圖示根據本案的某些態樣的狀態軌跡幾何的實例。 Figure 22 illustrates an example of state trajectory geometry in accordance with certain aspects of the present disclosure.

圖23圖示根據本案的某些態樣的阻尼振盪的實例。 Figure 23 illustrates an example of damped oscillations in accordance with certain aspects of the present disclosure.

圖24圖示根據本案的某些態樣的軌道變動的實例。 Figure 24 illustrates an example of a track change in accordance with certain aspects of the present disclosure.

圖25圖示了根據本案的某些態樣的事件間動態與零傾線之間的關係的實例。 Figure 25 illustrates an example of the relationship between inter-event dynamics and zero-tilt according to certain aspects of the present disclosure.

圖26圖示根據本案的某些態樣的由於事件間間隔造成的振盪的實例。 Figure 26 illustrates an example of oscillations due to inter-event intervals in accordance with certain aspects of the present disclosure.

圖27圖示根據本案的某些態樣的由於事件間間隔造 成的軌道的實例。 Figure 27 illustrates the creation of an interval between events according to certain aspects of the present invention. An example of a track.

圖28圖示根據本案的某些態樣的跨態相閾值的電壓導數加速的實例。 28 illustrates an example of voltage derivative acceleration of a trans-state phase threshold in accordance with certain aspects of the present disclosure.

圖29圖示根據本案的某些態樣的跨態相閾值的電壓導數減速的實例。 29 illustrates an example of voltage derivative deceleration of a trans-state phase threshold in accordance with certain aspects of the present disclosure.

圖30圖示根據本案的某些態樣的由於正有限返回態相造成的極限循環的實例。 Figure 30 illustrates an example of a limit cycle due to a positive finite return phase in accordance with certain aspects of the present disclosure.

圖31圖示根據本案的某些態樣的負有限返回態相中的行為的實例。 Figure 31 illustrates an example of behavior in a negative finite return phase according to certain aspects of the present disclosure.

圖32圖示了根據本案的某些態樣的Hunzinger Cold神經元模型的向量場狀態態相的實例。 Figure 32 illustrates an example of a vector field state phase of a Hunzinger Cold neuron model in accordance with certain aspects of the present disclosure.

圖33圖示根據本案的某些態樣的尖峰等待時間的實例。 Figure 33 illustrates an example of spike latency in accordance with certain aspects of the present disclosure.

圖34圖示根據本案的某些態樣的尖峰等待時間狀態軌跡的實例。 Figure 34 illustrates an example of a spike latency state trajectory in accordance with certain aspects of the present disclosure.

圖35圖示根據本案的某些態樣的有耦合和無耦合的情況下的尖峰等待時間的實例。 Figure 35 illustrates an example of spike latency in the presence and absence of coupling in accordance with certain aspects of the present disclosure.

圖36圖示根據本案的某些態樣的示例諧振器。 FIG. 36 illustrates an example resonator in accordance with certain aspects of the present disclosure.

圖37圖示根據本案的某些態樣的諧振器狀態軌跡的實例。 Figure 37 illustrates an example of a resonator state trajectory in accordance with certain aspects of the present disclosure.

圖38圖示根據本案的某些態樣的示例積分器。 FIG. 38 illustrates an example integrator in accordance with certain aspects of the present disclosure.

圖39圖示根據本案的某些態樣的閾值可變性的實例。 Figure 39 illustrates an example of threshold variability in accordance with certain aspects of the present disclosure.

圖40圖示根據本案的某些態樣的示例回彈尖峰和回 彈短脈衝。 Figure 40 illustrates an example rebound spike and back according to certain aspects of the present case. Short pulses.

圖41圖示根據本案的某些態樣的回彈狀態軌跡的實例。 Figure 41 illustrates an example of a rebound state trajectory in accordance with certain aspects of the present disclosure.

圖42圖示根據本案的某些態樣的雙穩態的實例。 Figure 42 illustrates an example of bistable state in accordance with certain aspects of the present disclosure.

圖43圖示根據本案的某些態樣的雙穩態狀態軌跡的實例。 Figure 43 illustrates an example of a bistable state trajectory in accordance with certain aspects of the present disclosure.

圖44圖示根據本案的某些態樣的閾下振盪的實例。 Figure 44 illustrates an example of sub-threshold oscillations in accordance with certain aspects of the present disclosure.

圖45圖示根據本案的某些態樣的尖峰後閾下振盪的實例。 Figure 45 illustrates an example of post-peak sub-threshold oscillations in accordance with certain aspects of the present disclosure.

圖46圖示根據本案的某些態樣的在尖峰之前和之後的靜息軌道路徑的實例。 Figure 46 illustrates an example of a resting orbital path before and after a spike, in accordance with certain aspects of the present disclosure.

圖47圖示根據本案的某些態樣的電位後去極化的實例。 Figure 47 illustrates an example of post-potential depolarization in accordance with certain aspects of the present disclosure.

圖48圖示根據本案的某些態樣的容適的實例。 Figure 48 illustrates an example of a suitable aspect in accordance with certain aspects of the present disclosure.

圖49圖示根據本案的某些態樣的容適狀態軌跡的實例。 Figure 49 illustrates an example of a accommodative state trajectory in accordance with certain aspects of the present disclosure.

圖50圖示根據本案的某些態樣的類1興奮的實例。 Figure 50 illustrates an example of class 1 excitement in accordance with certain aspects of the present disclosure.

圖51圖示根據本案的某些態樣的類2興奮的實例。 Figure 51 illustrates an example of class 2 excitement in accordance with certain aspects of the present disclosure.

圖52圖示根據本案的某些態樣的強直性尖峰的實例。 Figure 52 illustrates an example of a tonic spike in accordance with certain aspects of the present disclosure.

圖53圖示根據本案的某些態樣的位相型尖峰的實例。 Figure 53 illustrates an example of phase-type spikes in accordance with certain aspects of the present disclosure.

圖54圖示根據本案的某些態樣的強直性短脈衝的實例。 Figure 54 illustrates an example of a tonic short pulse in accordance with certain aspects of the present disclosure.

圖55圖示根據本案的某些態樣的位相型短脈衝的實 例。 Figure 55 illustrates the phase-type short pulse in accordance with certain aspects of the present disclosure. example.

圖56圖示了根據本案的某些態樣的混合模式行為的 實例。 Figure 56 illustrates mixed mode behavior in accordance with certain aspects of the present disclosure. Example.

圖57圖示根據本案的某些態樣的尖峰頻率自我調整 的實例。 Figure 57 illustrates peak frequency self-adjustment according to certain aspects of the present disclosure. An example.

圖58圖示根據本案的某些態樣的由抑制引起的尖峰 的實例。 Figure 58 illustrates spikes caused by inhibition in accordance with certain aspects of the present disclosure An example.

圖59圖示根據本案的某些態樣的由抑制引起的尖峰 的狀態軌跡的實例。 Figure 59 illustrates spikes caused by inhibition according to certain aspects of the present disclosure An example of a state track.

圖60圖示根據本案的某些態樣的由抑制引起的短脈 衝的狀態軌跡的實例。 Figure 60 illustrates a short pulse caused by inhibition according to certain aspects of the present disclosure An example of a rushed state trajectory.

圖61圖示根據本案的某些態樣的標稱示例行為的匯 總。 Figure 61 illustrates a summary of nominal example behaviors in accordance with certain aspects of the present disclosure. total.

圖62圖示根據本案的某些態樣的Hunzinger Cold神 經元模型行為示例參數。 Figure 62 illustrates the Hunzinger Cold god according to certain aspects of the present case. The meta model behavior example parameters.

圖63圖示了根據本案的某些態樣的用於更新人工神 經元的狀態的示例操作。 Figure 63 illustrates the use of certain aspects of the present invention for updating artificial gods. An example operation of the state of the meta.

圖63A圖示能夠執行圖63中圖示的操作的示例組件 。 FIG. 63A illustrates example components capable of performing the operations illustrated in FIG. 63. .

圖64圖示了根據本案的某些態樣的用於產生人工神經元的各種神經行為的示例操作。 Figure 64 illustrates example operations for generating various neural behaviors of artificial neurons in accordance with certain aspects of the present disclosure.

圖64A圖示能夠執行圖64中圖示的操作的示例組件。 FIG. 64A illustrates example components capable of performing the operations illustrated in FIG.

圖65圖示了根據本案的某些態樣的用於更新人工神 經元的狀態的其他示例操作。 Figure 65 illustrates an update of an artificial god in accordance with certain aspects of the present disclosure. Other example operations of the state of the meta.

圖65A圖示能夠執行圖65中圖示的操作的示例組件 。 FIG. 65A illustrates example components capable of performing the operations illustrated in FIG. 65. .

圖66圖示了根據本案的某些態樣的使用通用處理器 來更新人工神經元的狀態的方法的示例方塊圖。 Figure 66 illustrates the use of a general purpose processor in accordance with certain aspects of the present disclosure. An example block diagram of a method to update the state of an artificial neuron.

圖67圖示了根據本案的某些態樣的用於更新人工神 經元的狀態的方法的示例方塊圖,其中記憶體可與個體分散式處理單元對接。 Figure 67 illustrates the use of certain aspects of the present invention for updating artificial gods. An example block diagram of a method of transiting a state in which a memory can interface with an individual decentralized processing unit.

圖68圖示了根據本案的某些態樣的用於基於分散式 記憶體和分散式處理單元來更新人工神經元的狀態的方法的示例方塊圖。 Figure 68 illustrates a decentralized version in accordance with certain aspects of the present disclosure. An example block diagram of a method of memory and decentralized processing unit to update the state of an artificial neuron.

圖69圖示根據本案的某些態樣的神經網路的示例實 現。 Figure 69 illustrates an example of a neural network in accordance with certain aspects of the present disclosure. Now.

以下參照附圖更全面地描述本案的各個態樣。然而,本案可用許多不同形式來實施並且不應解釋為被限定於本案通篇提供的任何具體結構或功能。確切而言,提供該等態樣是為了使得本案將是透徹和完整的,並且其將向本領域技藝人士完全傳達本案的範圍。基於本文中的教導,本領域技藝人士應領會,本案的範圍意欲覆蓋本文中所披露的本案的任何態樣,不論其是與本案的任何其他態樣相獨立地還是組合地實現的。例如,可使用本文所闡述的任何數目個態樣來實現裝置或實踐方法。另外,本案的範圍意欲覆蓋使用作為 本文中所闡述的本案的各種態樣的補充或者與之不同的其他結構、功能性或者結構及功能性來實踐的此類裝置或方法。 應當理解,本文中所披露的本案的任何態樣可由申請專利範圍的一或多個元素來實施。 Various aspects of the present invention are described more fully hereinafter with reference to the accompanying drawings. However, the present invention may be embodied in many different forms and should not be construed as being limited to any specific structure or function. Rather, these aspects are provided so that this disclosure will be thorough and complete, and the scope of the invention will be fully conveyed by those skilled in the art. Based on the teachings herein, those skilled in the art will appreciate that the scope of the present invention is intended to cover any aspect of the present disclosure as disclosed herein, regardless of whether it is implemented independently or in combination with any other aspect of the present invention. For example, any number of aspects set forth herein can be used to implement an apparatus or a method of practice. In addition, the scope of the case is intended to cover the use as Such an apparatus or method of practicing the various aspects of the present invention as set forth herein, or other structural, functional, or structural and functional aspects of the present invention. It should be understood that any aspect of the present disclosure disclosed herein may be implemented by one or more elements of the scope of the patent application.

措辭「示例性」在本文中用於表示「用作實例、例 子或圖示」。本文中描述為「示例性」的任何態樣不必被解釋為優於或勝過其他態樣。 The wording "exemplary" is used in this document to mean "used as an example. Sub or graphic". Any aspect described herein as "exemplary" is not necessarily to be construed as preferred or advantageous.

儘管本文中描述了特定態樣,但該等態樣的眾多變 體和置換落在本案的範圍之內。儘管提到了較佳態樣的一些益處和優點,但本案的範圍並非意欲被限定於特定益處、用途或目標。確切而言,本案的各態樣意欲能寬泛地應用於不同的技術、系統組態、網路和協定,其中一些作為實例在附圖以及以下對較佳態樣的詳細描述中圖示。詳細描述和附圖僅僅圖示本案而非限定本案,本案的範圍由所附申請專利範圍及其等效技術方案來定義。 Although specific aspects are described herein, many variations of such aspects Body and replacement fall within the scope of this case. Although some benefits and advantages of the preferred aspects are mentioned, the scope of the present invention is not intended to be limited to a particular benefit, use, or objective. Rather, the various aspects of the present invention are intended to be broadly applied to various techniques, system configurations, networks, and protocols, some of which are illustrated in the drawings and the detailed description of the preferred aspects. The detailed description and drawings are merely illustrative of the present invention, and the scope of the present invention is defined by the scope of the appended claims.

示例神經系統、訓練及操作 Example nervous system, training and operation

圖1圖示根據本案的某些態樣的具有多級神經元的示例神經系統100。神經系統100可包括神經元級102,該級神經元102藉由突觸連接網路104(亦即,前饋連接)來連接到另一級神經元106。為簡單起見,圖1中僅圖示了兩級神經元,但在典型的神經系統中可存在更少或更多級神經元。應注意,一些神經元可經由側向連接來連接至同層中的其他神經元。此外,一些神經元可經由回饋連接來後向連接至先前層中的神經元。 FIG. 1 illustrates an example nervous system 100 having multiple levels of neurons in accordance with certain aspects of the present disclosure. The nervous system 100 can include a neuron level 102 that is coupled to another level of neurons 106 by a synaptic connection network 104 (ie, a feedforward connection). For simplicity, only two levels of neurons are illustrated in Figure 1, but fewer or more levels of neurons may be present in a typical nervous system. It should be noted that some neurons may be connected to other neurons in the same layer via lateral connections. In addition, some neurons may be connected back to neurons in the previous layer via a feedback connection.

如圖1所圖示的,級102中的每一神經元可接收輸入 信號108,該輸入信號108可由前級(圖1中未圖示)的複數個神經元所產生。信號108可表示級102的神經元的輸入電流。 該電流可在神經元膜上累積以對膜電位進行充電。當膜電位達到膜電位閾值時,該神經元可激發並產生輸出尖峰,該輸出尖峰將被傳遞到下級神經元(例如,級106)。此類行為可在硬體及/或軟體(包括類比和數位實現)中進行模擬或模仿。 As illustrated in Figure 1, each neuron in stage 102 can receive input Signal 108, which may be generated by a plurality of neurons of a previous stage (not shown in FIG. 1). Signal 108 may represent the input current of the neurons of stage 102. This current can accumulate on the neuron membrane to charge the membrane potential. When the membrane potential reaches the membrane potential threshold, the neuron can excite and produce an output spike that will be passed to the inferior neuron (eg, stage 106). Such behavior can be simulated or mimicked in hardware and/or software, including analog and digital implementations.

在生物學神經元中,在神經元激發時產生的輸出尖 峰被稱為動作電位。該電信號是相對迅速、瞬態、全有或全無的神經脈衝,該脈衝具有約為100mV的振幅和約為1ms的歷時。在具有一系列連通的神經元(例如,尖峰從圖1中的一級神經元傳遞至另一級)的神經系統的特定實施例中,每個動作電位皆具有基本上相同的振幅和歷時,因此該信號中的資訊僅由尖峰的頻率和數目或尖峰的時間來表示,而不由振幅來表示。動作電位所攜帶的資訊由尖峰、發放尖峰的神經元以及該尖峰相對於一或多個其他尖峰的時間來決定。 In biological neurons, the output tip produced when a neuron is excited The peak is called the action potential. The electrical signal is a relatively rapid, transient, all or none of the nerve pulses having an amplitude of about 100 mV and a duration of about 1 ms. In a particular embodiment of a nervous system having a series of connected neurons (e.g., a peak is transferred from a first order neuron in FIG. 1 to another stage), each action potential has substantially the same amplitude and duration, thus The information in the signal is represented only by the frequency and number of spikes or the time of the peak, not by the amplitude. The information carried by the action potential is determined by the peak, the spiked neuron, and the time of the spike relative to one or more other spikes.

尖峰從一級神經元到另一級神經元的傳遞可經由突觸連接(或簡稱「突觸」)網路104來達成,如圖1所圖示的。突觸104可從級102神經元(相對於突觸104而言的突觸前神經元)接收輸出信號(亦即,尖峰),並且根據可調節突觸權重,...,(其中P是級102和級106的神經元之間的突觸連接的總數)來按比例縮放彼等信號。此外,經按比例縮放的信號可被組合以作為級106中每一神經元(相對於突觸104 而言的突觸後神經元)的輸入信號。級106之每一者神經元可基於對應的經組合輸入信號來產生輸出尖峰110。隨後可使用另一突觸連接網路(圖1中未圖示)將該等輸出尖峰110傳遞到另一級神經元。 The transfer of spikes from primary neurons to another level of neurons can be achieved via a synaptic connection (or simply "synaptic") network 104, as illustrated in FIG. Synapse 104 can receive an output signal (ie, a spike) from stage 102 neurons (presynaptic neurons relative to synapse 104), and according to adjustable synaptic weights ,..., (where P is the total number of synaptic connections between neurons of stage 102 and stage 106) to scale their signals. Moreover, the scaled signals can be combined to be an input signal for each neuron in stage 106 (post-synaptic neuron relative to synapse 104). Each of the stages 106 neurons can generate an output spike 110 based on the corresponding combined input signal. The output spikes 110 can then be passed to another level of neurons using another synaptic connection network (not shown in Figure 1).

生物學突觸可被分類為電的或化學的。電突觸主要 用於發送興奮性信號,而化學突觸可調停突觸後神經元中的興奮性或抑制性(超極化)動作,並且亦可用於放大神經元信號。興奮性信號通常使膜電位去極化(亦即,相對於靜息電位增大膜電位)。若在某個時間段內接收到足夠的興奮性信號以使膜電位去極化到高於閾值,則在突觸後神經元中發生動作電位。相反,抑制性信號一般使膜電位超極化(亦即,降低膜電位)。抑制性信號若足夠強則可抵消掉興奮性信號之和並阻止膜電位到達閾值。除了抵消掉突觸興奮,突觸抑制亦可對自發活動神經元施加強力的控制。自發活動神經元是指在沒有進一步輸入的情況下(例如,由於神經元動態或回饋而)發放尖峰的神經元。藉由壓制該等神經元中的動作電位的自發產生,突觸抑制可對神經元中的激發模式進行定形,此一般被稱為雕刻。取決於期望的行為,各種突觸104可充當興奮性或抑制性突觸的任何組合。 Biological synapses can be classified as electrical or chemical. Electrical synapse Used to send excitatory signals, while chemical synapses regulate excitatory or inhibitory (hyperpolarized) actions in postsynaptic neurons and can also be used to amplify neuronal signals. The excitatory signal typically depolarizes the membrane potential (i.e., increases the membrane potential relative to the resting potential). An action potential occurs in a post-synaptic neuron if a sufficient excitatory signal is received during a certain period of time to depolarize the membrane potential above a threshold. In contrast, inhibitory signals generally hyperpolarize the membrane potential (i.e., decrease membrane potential). If the inhibitory signal is strong enough, it cancels out the sum of the excitatory signals and prevents the membrane potential from reaching the threshold. In addition to counteracting synaptic excitability, synaptic inhibition can also exert strong control over spontaneously active neurons. Spontaneous activity neurons are neurons that emit spikes without further input (eg, due to neuronal dynamics or feedback). By suppressing the spontaneous production of action potentials in these neurons, synaptic inhibition can shape the excitation pattern in neurons, which is commonly referred to as engraving. The various synapses 104 can act as any combination of excitatory or inhibitory synapses, depending on the desired behavior.

神經系統100可藉由通用處理器、數位訊號處理器( DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或其他可程式設計邏輯手段(PLD)、個別閘門或電晶體邏輯、個別的硬體元件、由處理器執行的軟體模組或其任何組合來模擬。神經系統100可用在大範圍的應用中,諸如 圖像和模式辨識、機器學習、電機控制及類似應用等。神經系統100中的每一神經元可被實現為神經元電路。被充電至發起輸出尖峰的閾值的神經元膜可被實現為例如對流經神經元膜的電流進行積分的電容器。 The nervous system 100 can be implemented by a general purpose processor and a digital signal processor ( DSP), Special Application Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic (PLD), individual gate or transistor logic, individual hardware components, executed by the processor The software module or any combination thereof is used for simulation. The nervous system 100 can be used in a wide range of applications, such as Image and pattern recognition, machine learning, motor control and similar applications. Each neuron in the nervous system 100 can be implemented as a neuron circuit. A neuron membrane that is charged to a threshold that initiates an output spike can be implemented, for example, as a capacitor that integrates the current flowing through the neuron membrane.

在態樣中,作為神經元電路的電流積分裝置的電容 器可被除去,並且可使用較小的憶阻器(memristor)元件來替代之。此種辦法可應用於神經元電路,以及其中大容量電容器被用作電流積分器的各種其他應用中。另外,每個突觸104可基於憶阻器元件來實現,其中突觸權重改變可與憶阻器電阻的變化有關。使用奈米特徵尺寸的憶阻器,可顯著地減小神經元電路和突觸的面積,此可使得實現極大規模神經系統硬體實現變得可行。 In the aspect, the capacitance of the current integrator as a neuron circuit The device can be removed and replaced with a smaller memristor element. This approach can be applied to neuron circuits, as well as to a variety of other applications where bulk capacitors are used as current integrators. Additionally, each synapse 104 can be implemented based on a memristor element, where synaptic weight changes can be related to changes in memristor resistance. The use of nanometer-sized memristors significantly reduces the area of neuronal circuits and synapses, which makes it possible to implement extremely large-scale neural system hardware implementations.

對神經系統100進行模擬的神經處理器的功能性可 取決於突觸連接的權重,該等權重可控制神經元之間的連接的強度。突觸權重可儲存在非揮發性記憶體中以在掉電之後保留該處理器的功能性。在態樣中,突觸權重記憶體可實現在與主神經處理器晶片分開的外部晶片上。突觸權重記憶體可與神經處理器晶片分開地封裝成可更換的儲存卡。此可向神經處理器提供多種多樣的功能性,其中特定功能性可基於當前附連至神經處理器的儲存卡中所儲存的突觸權重。 The functionality of the neural processor that simulates the nervous system 100 can be Depending on the weight of the synaptic connections, these weights control the strength of the connections between the neurons. Synaptic weights can be stored in non-volatile memory to preserve the functionality of the processor after power down. In the aspect, the synaptic weight memory can be implemented on an external wafer separate from the main nerve processor wafer. The synaptic weight memory can be packaged as a replaceable memory card separately from the neural processor chip. This can provide a variety of functionality to the neural processor, where the particular functionality can be based on the synaptic weights stored in the memory card currently attached to the neural processor.

圖2圖示根據本案的某些態樣的計算網路(例如,神 經系統或神經網路)的處理單元(例如,神經元或神經元電路)202的實例200。例如,神經元202可對應於來自圖1的級102和106的任一個神經元。神經元202可接收多個輸入信號 2041-204N(x1-xN),該等輸入信號可以是該神經系統外部的信號或是由同一神經系統的其他神經元所產生的信號或此兩者。輸入信號可以是實數值或複數值的電流或電壓。輸入信號可包括具有定點或浮點表示的數值。可藉由突觸連接將該等輸入信號遞送到神經元202,該等突觸連接根據可調節突觸權重2061-206N(w1-wN)對該等信號進行按比例縮放,其中N可以是神經元202的輸入連接的總數。 2 illustrates an example 200 of a processing unit (eg, a neuron or neuron circuit) 202 of a computing network (eg, a nervous system or neural network) in accordance with certain aspects of the present disclosure. For example, neuron 202 may correspond to any of the neurons from stages 102 and 106 of FIG. The neuron 202 can receive a plurality of input signals 204 1 - 204 N (x 1 - x N ), which can be signals external to the nervous system or signals generated by other neurons of the same nervous system or Both. The input signal can be a real or complex value of current or voltage. The input signal can include a value having a fixed point or floating point representation. The input signals can be delivered to neurons 202 by synaptic connections that scale the signals according to adjustable synaptic weights 206 1 - 206 N (w 1- w N ), wherein N can be the total number of input connections for neuron 202.

神經元202可組合該等經按比例縮放的輸入信號,並 且使用組合的經按比例縮放的輸入來產生輸出信號208(亦即,信號y)。輸出信號208可以是實數值或複數值的電流或電壓。輸出信號可包括具有定點或浮點表示的數值。隨後該輸出信號208可作為輸入信號傳遞至同一神經系統的其他神經元或作為輸入信號傳遞至同一神經元202或作為該神經系統的輸出傳遞。 Neuron 202 can combine the scaled input signals and And using the combined scaled input to produce an output signal 208 (ie, signal y). Output signal 208 can be a real or complex value current or voltage. The output signal can include a value having a fixed point or floating point representation. The output signal 208 can then be passed as an input signal to other neurons of the same nervous system or as an input signal to the same neuron 202 or as an output of the nervous system.

處理單元(神經元)202可藉由電路來模擬,並且電 路輸入和輸出連接可藉由導線用突觸電路來模擬。處理單元202、處理單元202輸入和輸出連接亦可藉由軟體代碼來模擬。處理單元202亦可藉由電路來模擬,而電路輸入和輸出連接可藉由軟體代碼來模擬。在態樣中,計算網路中的處理單元202可包括類比電路。在另一態樣中,處理單元202可包括數位電路。在又一態樣中,處理單元202可包括具有類比和數位元件兩者的混合信號電路。計算網路可包括任何前述形式的處理單元。使用此種處理單元的計算網路(神經系統或神經網路)可用在大範圍的應用中,諸如圖像和模式辨識、機器 學習、電機控制等。 Processing unit (neuron) 202 can be simulated by circuitry and The input and output connections of the circuit can be simulated by a synapse circuit using wires. The input and output connections of the processing unit 202 and the processing unit 202 can also be simulated by software code. Processing unit 202 can also be simulated by circuitry, while circuit input and output connections can be simulated by software code. In an aspect, processing unit 202 in the computing network can include an analog circuit. In another aspect, processing unit 202 can include a digital circuit. In yet another aspect, processing unit 202 can include a mixed signal circuit having both analog and digital components. The computing network can include any of the aforementioned forms of processing units. Computational networks (neural systems or neural networks) using such processing units can be used in a wide range of applications, such as image and pattern recognition, machines Learning, motor control, etc.

在神經網路的訓練程序期間,突觸權重(例如,來 自圖1的權重,...,及/或來自圖2的權重2061-206N)可用隨機值來初始化並根據學習規則而增大或減小。學習規則的某些實例是尖峰時序依賴型可塑性(STDP)學習規則、Hebb規則、Oja規則、Bienenstock-Copper-Munro(BCM)規則等。很多時候,該等權重可穩定至兩個值(亦即,權重的雙峰分佈)之一。該效應可被用於減少每突觸權重的位數、提高從/向儲存突觸權重的記憶體讀取和寫入的速度以及降低突觸記憶體的功耗。 Synaptic weights during training procedures of neural networks (eg, weights from Figure 1) ,..., And/or the weights 206 1 - 206 N from Figure 2 can be initialized with random values and increased or decreased according to learning rules. Some examples of learning rules are peak timing dependent plasticity (STDP) learning rules, Hebb rules, Oja rules, Bienenstock-Copper-Munro (BCM) rules, and the like. Many times, these weights can be stabilized to one of two values (ie, a bimodal distribution of weights). This effect can be used to reduce the number of bits per synaptic weight, increase the speed of reading and writing from/to memory that stores synaptic weights, and reduce the power consumption of synaptic memory.

突觸類型Synaptic type

在神經網路的硬體和軟體模型中,突觸相關功能的處理可基於突觸類型。突觸類型可包括非可塑突觸(對權重和延遲沒有改變)、可塑突觸(權重可改變)、結構化延遲可塑突觸(權重和延遲可改變)、全可塑突觸(權重、延遲和連通性可改變)以及基於此的變型(例如,延遲可改變,但在權重或連通性方面沒有改變)。此舉的優點在於處理可以被細分。例如,非可塑突觸不會要求執行可塑性功能(或等待此類功能完成)。類似地,延遲和權重可塑性可被細分成可一起或分開地、順序地或並行地運作的操作。不同類型的突觸對於適用的每一種不同的可塑性類型可具有不同的查閱資料表或公式以及參數。因此,該等方法將存取針對該突觸的類型的相關的表。 In hardware and software models of neural networks, the processing of synaptic related functions can be based on synaptic types. Synaptic types can include non-plastic synapses (no change in weight and delay), plastic synapses (weights can be changed), structured delay plastic synapses (weight and delay can be changed), all plastic synapses (weights, delays, and Connectivity can vary) and variants based thereon (eg, the delay can change, but there is no change in weight or connectivity). The advantage of this is that the processing can be subdivided. For example, a non-plastic synapse does not require a plasticity function to be performed (or wait for such a function to complete). Similarly, delay and weight plasticity can be subdivided into operations that can operate together or separately, sequentially or in parallel. Different types of synapses may have different look-up tables or formulas and parameters for each of the different types of plasticity that are applicable. Therefore, the methods will access the relevant tables for the type of synapse.

亦進一步牽涉到以下事實:尖峰時序依賴型結構化 可塑性可獨立於突觸可塑性而執行。結構化可塑性即使在權重幅值沒有改變的情況下(例如,若權重已達最小或最大值或者其由於某種其他原因而未改變)亦可執行,因為結構化可塑性(亦即,延遲改變的量)可以是前-後尖峰時間差的直接函數。替換地,結構化可塑性可被設為權重改變量的函數或者可基於與權重或權重改變的界限有關的條件來設置。例如,突觸延遲可僅在權重改變發生時或者在權重到達0的情況下才改變,但在權重達到最大極限時不改變。然而,具有獨立函數以使得該等程序可以並行化從而減少記憶體存取的次數和重疊可能是有利的。 It further involves the following facts: peak timing-dependent structuring Plasticity can be performed independently of synaptic plasticity. Structural plasticity can be performed even if the weight magnitude does not change (for example, if the weight has reached a minimum or maximum value or if it has not changed for some other reason) because of structural plasticity (ie, delay-changing The amount) can be a direct function of the front-to-back spike time difference. Alternatively, the structural plasticity may be set as a function of the amount of weight change or may be set based on conditions related to the weight or the limit of the weight change. For example, synaptic delays may only change when a weight change occurs or when the weight reaches zero, but do not change when the weight reaches a maximum limit. However, it may be advantageous to have independent functions such that the programs can be parallelized to reduce the number and overlap of memory accesses.

突觸可塑性的決定 Synaptic plasticity decision

神經元可塑性(或簡稱「可塑性」)是大腦中的神經元和神經網路回應於新的資訊、感官刺激、發展、損壞或機能障礙而改變神經元和神經網路突觸連接和行為的能力。可塑性對於生物學中的學習和記憶以及對於計算神經元科學和神經網路是重要的。已經研究了各種形式的可塑性,諸如突觸可塑性(例如,根據赫佈理論)、尖峰時序依賴型可塑性(STDP)、非突觸可塑性、活動性依賴型可塑性、結構化可塑性和自身穩態可塑性。 Neuronal plasticity (or simply "plasticity") is the ability of neurons and neural networks in the brain to alter neuronal and neural network synaptic connections and behaviors in response to new information, sensory stimuli, development, damage, or dysfunction. . Plasticity is important for learning and memory in biology and for computing neuron science and neural networks. Various forms of plasticity have been investigated, such as synaptic plasticity (eg, according to Herb theory), spike-time-dependent plasticity (STDP), non-synaptic plasticity, mobility-dependent plasticity, structural plasticity, and homeostasis plasticity.

STDP是調節神經元之間的突觸連接的強度的學習程序。連接強度是基於特定神經元的輸出與收到輸入尖峰(亦即,動作電位)的相對時序來調節的。在STDP程序下,若至某個神經元的輸入尖峰平均而言傾向於緊挨在該神經元的輸出尖峰之前發生,則可發生長期增強(LTP)。於是使得該 特定輸入在一定程度上更強。另一方面,若輸入尖峰平均而言傾向於緊接在輸出尖峰之後發生,則可發生長期抑壓(LTD)。於是使得該特定輸入在一定程度上更弱,並由此得名為「尖峰時序依賴型可塑性」。因此,使得可能是突觸後神經元興奮原因的輸入甚至更有可能在將來作出貢獻,而使得不是突觸後尖峰的原因的輸入更不大可能在將來作出貢獻。該程序繼續,直至初始連接集的子集保留,而所有其他連接的影響減輕至0或接近0。 STDP is a learning program that regulates the strength of synaptic connections between neurons. The connection strength is adjusted based on the relative timing of the output of a particular neuron and the received input spike (ie, the action potential). Under the STDP procedure, long-term enhancement (LTP) can occur if the input spike to a neuron tends to occur on average just before the output spike of the neuron. So make this Specific inputs are somewhat stronger. On the other hand, long-term suppression (LTD) can occur if the input spike average tends to occur immediately after the output spike. This makes the particular input somewhat weaker and is hence called "spike timing dependent plasticity." Thus, inputs that may be the cause of post-synaptic neuronal excitation are even more likely to contribute in the future, making inputs that are not the cause of post-synaptic spikes less likely to contribute in the future. The program continues until a subset of the initial connection set is retained, while the impact of all other connections is mitigated to zero or close to zero.

由於神經元一般在其許多輸入皆在短時段內發生( 亦即,累積到足以引起輸出)時產生輸出尖峰,因此通常保留下來的輸入子集包括傾向於在時間上相關的彼等輸入。另外,由於在輸出尖峰之前發生的輸入被加強,因此提供對相關性的最早充分累積指示的輸入將最終變成至該神經元的最後輸入。 Because neurons generally occur in many of their inputs in a short period of time ( That is, an output spike is generated when accumulated enough to cause an output, so the input subset that is typically retained includes those inputs that tend to be correlated in time. In addition, since the input that occurs before the output spike is boosted, the input that provides the earliest sufficient cumulative indication of the correlation will eventually become the last input to the neuron.

STDP學習規則可因變於突觸前神經元的尖峰時間 t pre 與突觸後神經元的尖峰時間t post 之間的時間差(亦即,t=t post -t pre )來有效地適配將該突觸前神經元連接到該突觸後神經元的突觸的突觸權重。STDP的典型公式化是若該時間差為正(突觸前神經元在突觸後神經元之前激發)則增大突觸權重(亦即,增強該突觸),以及若該時間差為負(突觸後神經元在突觸前神經元之前激發)則減小突觸權重(亦即,抑壓該突觸)。 The STDP learning rule can be effectively adapted by the time difference between the spike time t pre of the presynaptic neuron and the spike time t post of the postsynaptic neuron (ie, t = t post - t pre ) The presynaptic neuron is connected to the synaptic weight of the synapse of the postsynaptic neuron. A typical formulation of STDP is to increase the synaptic weight (ie, to enhance the synapse if the time difference is positive (pre-synaptic neurons are excited before the postsynaptic neuron), and if the time difference is negative (synapse) Post-neurons are stimulated before presynaptic neurons) to reduce synaptic weights (ie, suppress the synapse).

在STDP程序中,突觸權重隨時間推移的改變可通常 使用指數衰退來達成,如由下式提供的: 其中k +k -分別是針對正和負時間差的時間常數,a +a -是對應的按比例縮放幅值,以及μ是可應用於正時間差及/或負時間差的偏移。 In STDP procedures, changes in synaptic weight over time can often be achieved using exponential decay, as provided by: Where k + and k - are time constants for positive and negative time differences, respectively, a + and a - are corresponding scaled magnitudes, and μ is an offset applicable to positive time differences and/or negative time differences.

圖3圖示了根據STDP,突觸權重因變於突觸前(pre )和突觸後(post)尖峰發放的相對時序而改變的示例圖表示圖300。若突觸前神經元在突觸後神經元之前激發,則可使對應的突觸權重增大,如圖表300的部分302中所圖示的。該權重增大可被稱為突觸的LTP。從圖表部分302可觀察到,LTP的量可因變於突觸前和突觸後尖峰時間之差而大致呈指數地下降。相反的激發次序可減小突觸權重,如圖表300的部分304中所圖示的,從而導致突觸的LTD。 Figure 3 illustrates that synaptic weight changes to presynaptic (pre) according to STDP An example diagram that changes with the relative timing of post-synaptic spikes represents a graph 300. If the presynaptic neurons are excited before the postsynaptic neurons, the corresponding synaptic weights can be increased, as illustrated in section 302 of graph 300. This weight increase can be referred to as the synaptic LTP. As can be observed from chart section 302, the amount of LTP can decrease substantially exponentially as a function of the difference between pre- and post-synaptic spike times. The opposite firing order may reduce synaptic weights, as illustrated in section 304 of graph 300, resulting in a LTD of the synapse.

如圖3的圖表300中所圖示的,負偏移μ可應用於 STDP圖表的LTP(因果性)部分302。x軸的交越點306(y=0)可被配置成與最大時間滯後相重合以用於考慮來自層i-1的因果性輸入的相關性。在基於訊框的輸入(亦即,輸入是包括尖峰或脈衝的特定歷時的訊框的形式)的情形中,偏移值μ可被計算為反映訊框邊界。該訊框中的第一輸入尖峰(脈衝)可被視為要麼如直接由突觸後電位所建模的一般要麼在對神經狀態的影響態樣隨時間推移而衰退。若該訊框中的第二輸入尖峰(脈衝)被認為與特定的時間訊框是相關或有關的,則可將該訊框之前的有關時間和該訊框之後的有關時間在該時間訊框邊界處分開,並且藉由使STDP曲線的一或多個部 分偏移以使得在該等有關時間上的值可以不同(例如,對於大於一個訊框的時間為負而對於小於一個訊框的時間為正)來在可塑性方面對訊框進行不同地對待。例如,可設置負偏移μ以偏移LTP,使得該曲線實際上在大於訊框時間的pre(前)-post(後)時間處去到0以下並且曲線因此是LTD的一部分而非LTP的一部分。 As illustrated in graph 300 of FIG. 3, the negative offset μ can be applied to the LTP (causality) portion 302 of the STDP chart. The x-axis crossing point 306 (y = 0) can be configured to coincide with the maximum time lag for considering the correlation of the causal input from layer i-1. In the case of frame-based input (ie, the input is in the form of a frame of a particular duration including spikes or pulses), the offset value μ can be calculated to reflect the frame boundary. The first input spike (pulse) in the frame can be considered to either decay as a function of the post-synaptic potential directly or in a state of influence on the neural state over time. If the second input spike (pulse) in the frame is considered to be related or related to a specific time frame, the relevant time before the frame and the relevant time after the frame may be in the time frame. The boundaries are separated and the values at the relevant times may be different by shifting one or more portions of the STDP curve (eg, for times greater than one frame and negative for less than one frame) Positive) to treat the frame differently in terms of plasticity. For example, a negative offset μ can be set to offset LTP such that the curve actually goes below zero at a pre (post)-post (post) time greater than the frame time and the curve is therefore part of the LTD rather than the LTP portion.

神經元模型及操作 Neuron model and operation

存在一些用於設計有用的尖峰神經元模型的一般原理。良好的神經元模型在以下兩個計算態相(regime)方面可具有豐富的潛在行為:一致性偵測和功能計算。而且,良好的神經元模型應當具有兩個要素以允許時間編碼:輸入的抵達時間影響輸出時間,以及一致性偵測能具有窄時間窗。最後,為了在計算上是有吸引力的,良好的神經元模型在連續時間上可具有封閉形式解,並且具有穩定的行為,包括在靠近吸引子和鞍點之處。換言之,有用的神經元模型是可實踐且可被用於建模豐富的、現實的且生物學一致的行為並且可被用於對神經電路進行工程設計和反向工程兩者的神經元模型。 There are some general principles for designing useful spike neuron models. A good neuron model can have a rich potential behavior in two computational states: consistency detection and functional computation. Moreover, a good neuron model should have two elements to allow time coding: the arrival time of the input affects the output time, and the consistency detection can have a narrow time window. Finally, in order to be computationally attractive, a good neuron model can have closed-form solutions in continuous time and have stable behavior, including near attractors and saddle points. In other words, useful neuron models are neuron models that are practicable and can be used to model rich, realistic, and biologically consistent behaviors and can be used to engineer and reverse engineer neural circuits.

神經元模型可取決於事件,諸如輸入抵達、輸出尖峰或其他事件,無論該等事件是內部的還是外部的。為了達成豐富的行為技能集合,能展現複雜行為的狀態機可能是期望的。若事件本身的發生在撇開輸入貢獻(若有)的情況下能影響狀態機並約束在該事件之後的動態,則該系統的將來狀態並非僅是狀態和輸入的函數,而是狀態、事件和輸入的 函數。 The neuron model can depend on events, such as input arrivals, output spikes, or other events, whether the events are internal or external. In order to achieve a rich set of behavioral skills, a state machine that can exhibit complex behaviors may be desirable. If the event itself occurs in the case of an input contribution (if any) that affects the state machine and constrains the dynamics after the event, the future state of the system is not just a function of state and input, but a state, an event, and Input function.

在態樣中,神經元n可被建模為尖峰帶洩漏積分激發(LIF)神經元,神經元膜電壓v n (t)由以下動態來支配: 其中αβ是參數,w m,n 是將突觸前神經元m連接至突觸後神經元n的突觸的突觸權重,以及y m (t)是神經元m的尖峰輸出,神經元m可根據△t m,n 被延遲達樹突或軸突延遲才抵達神經元n的胞體。 In the aspect, neuron n can be modeled as a spike-leaked integral excitation (LIF) neuron, and the neuron membrane voltage v n ( t ) is governed by the following dynamics: Wherein α and β are parameters, W m, n is connected to a presynaptic neuron m postsynaptic neuron synapse weight of the synapse weight of n, and y m (t) m is the peak output neurons, nerve The element m can reach the cell body of the neuron n according to Δ t m,n delayed by dendritic or axonal delay.

應注意,從建立了對突觸後神經元的充分輸入的時 間直至突觸後神經元實際上激發的時間之間存在延遲。在動態尖峰神經元模型(諸如Izhikevich簡單模型)中,若在去極化閾值v t 與峰值尖峰電壓v peak 之間有差量,則可引發時間延遲。例如,在該簡單模型中,神經元胞體動態可由關於電壓和復原的微分方程對來支配,亦即: 其中v是膜電位,u是膜復原變數,k是描述膜電位v的時間尺度的參數,a是描述復原變數u的時間尺度的參數,b是描述復原變數u對膜電位v的閾下波動的敏感度的參數,v r 是膜靜息電位,I是突觸電流,以及C是膜的電容。根據該模型,神經元被定義為在v>v peak 時發放尖峰。 It should be noted that there is a delay from the time when sufficient input to the postsynaptic neuron is established until the time when the postsynaptic neuron actually fires. In the dynamic model of neuron spikes (such as a simple model Izhikevich) there between when depolarization threshold t v v Peak peak spike voltage difference, a time delay may be caused. For example, in this simple model, neuronal cell dynamics can be governed by pairs of differential equations about voltage and recovery, namely: Wherein v is the membrane potential, u is a membrane recovery variable, k is the parameters describing the time scale membrane potential v, a is a parameter describes restoration variables u time scale, b is described recovery variable u fluctuation of the threshold membrane potential v. The sensitivity parameter, v r is the membrane resting potential, I is the synaptic current, and C is the membrane capacitance. According to this model, neurons are defined to issue spikes when v > v peak .

Hunzinger Cold模型 Hunzinger Cold model

Hunzinger Cold神經元模型是能再現豐富多樣的各 種神經行為的最小雙態相尖峰線性動態模型。該模型的一維或二維線性動態可具有兩個態相,其中時間常數(以及耦合)可取決於態相。在閾下態相中,時間常數(按照慣例為負)表示洩漏通道動態,時間常數一般作用於以生物學一致的線性方式使細胞返回到靜息。閾上態相中的時間常數(按照慣例為正)反映抗洩漏通道動態,時間常數一般驅動細胞發放尖峰,而同時在尖峰產生中引發等待時間。 The Hunzinger Cold neuron model is capable of reproducing a rich variety of The minimum bimodal phase peak linear dynamic model of the neural behavior. The one- or two-dimensional linear dynamics of the model can have two phases, where the time constant (and coupling) can depend on the phase. In the subliminal phase, the time constant (which is negative by convention) represents the leakage channel dynamics, which generally acts to return the cells to rest in a biologically consistent linear manner. The time constant in the upper-threshold phase (positive by convention) reflects the dynamics of the anti-leakage channel, which typically drives the cell to issue spikes while simultaneously causing latency in spike generation.

如圖4中所示,該模型的動態可被劃分成兩個(或更 多個)態相。該等態相可被稱為負態相402(亦可互換地稱為帶洩漏積分激發(LIF)態相,勿與LIF神經元模型混淆)以及正態相404(亦可互換地稱為抗洩漏積分激發(ALIF)態相,勿與ALIF神經元模型混淆)。在負態相402中,狀態在將來事件的時間趨向於靜息(v -)。在該負態相中,該模型一般展現出時間輸入偵測性質及其他閾下行為。在正態相404中,狀態趨向於尖峰發放事件(v s )。在該正態相中,該模型展現出計算性質,諸如取決於後續輸入事件而引發發放尖峰的等待時間。在事件方面對動態進行公式化以及將動態分成此兩個態相是該模型的基礎特性。 As shown in Figure 4, the dynamics of the model can be divided into two (or more) states. The isomorphic phase may be referred to as a negative phase 402 (also interchangeably referred to as a Leaked Integral Excitation (LIF) phase, not to be confused with a LIF neuron model) and a normal phase 404 (also interchangeably referred to as an anti-interference) Leak-integrated excitation (ALIF) phase, not to be confused with the ALIF neuron model). In the negative phase 402, the state tends to rest ( v - ) at a time of future events. In this negative phase, the model generally exhibits time input detection properties and other subliminal behaviors. In the normal phase 404, the state issuing tend to spike events (v s). In this normal phase, the model exhibits computational properties, such as latency that causes spikes to be issued depending on subsequent input events. The formulation of dynamics in terms of events and the division of dynamics into these two states are the fundamental characteristics of the model.

線性雙態相二維動態(對於狀態vu)可按照慣例 定義為: 其中q ρ r是用於耦合的線性變換變數。 Linear two-state phase two-dimensional dynamics (for states v and u ) can be defined by convention as: Where q ρ and r are linear transformation variables for coupling.

符號ρ在本文中用於標示動態態相,在論述或表達 具體態相的關係時,按照慣例對於負態相和正態相分別用符號「-」或「+」來替換符號ρThe symbol ρ is used herein to indicate the dynamic phase. When discussing or expressing the relationship of the specific phase, the symbol ρ is replaced by the symbol "-" or "+" for the negative phase and the normal phase, respectively.

模型狀態藉由膜電位(電壓)v和復原電流u來定義 。在基本形式中,態相在本質上是由模型狀態來決定的。該精確和通用的定義存在一些細微卻重要的方面,但目前考慮該模型在電壓v高於閾值(v +)的情況下處於正態相404中,否則處於負態相402中。 The model state is defined by the membrane potential (voltage) v and the recovery current u . In the basic form, the phase is essentially determined by the state of the model. There are some subtle but important aspects of this precise and general definition, but it is currently considered that the model is in the normal phase 404 if the voltage v is above the threshold ( v + ), otherwise it is in the negative phase 402.

態相依賴型時間常數包括負態相時間常數τ -和正態 相時間常數τ +。復原電流時間常數τ u 通常是與態相無關的。出於方便起見,負態相時間常數τ - 通常被指定為反映衰退的負量,從而用於電壓演變的相同運算式可用於正態相,在正態相中指數和τ +將一般為正,正如τ u 一般。 The phase dependent time constants include a negative phase time constant τ - and a normal phase time constant τ + . The recovery current time constant τ u is usually independent of the state. For convenience, the negative phase time constant τ - is usually specified to reflect the negative of the decay, so that the same equation for voltage evolution can be used for the normal phase. In the normal phase, the exponent and τ + will generally be Positive, just like τ u .

此兩個狀態元素的動態可在發生事件之際藉由使狀態偏離其零傾線(null-cline)的變換來耦合,其中變換變數為:q ρ =-τ ρ βu-v ρ (7) The dynamics of these two state elements can be coupled by shifting the state away from its null-cline transformation, where the transformation variables are: q ρ =- τ ρ βu - v ρ (7)

r=δ(v+ε) (8)其中δ是耦合電導率-時間參數,ε是耦合偏移電壓,而β是耦合電阻。v ρ 的兩個值是此兩個態相的參考電壓的基數。參數v -是負態相的基電壓,並且膜電位在負態相中一般將朝向v -衰退。參數v +是正態相的基電壓,並且膜電位在正態相中一般將趨向於背離v + r = δ ( v + ε ) (8) where δ is the coupling conductivity-time parameter, ε is the coupling offset voltage, and β is the coupling resistance. The two values of v ρ are the cardinality of the reference voltages of the two states. The parameter v - is the base voltage of the negative phase, and the membrane potential will generally deviate towards v - in the negative phase. The parameter v + is the base voltage of the normal phase, and the membrane potential will generally tend to deviate from v + in the normal phase.

vu的零傾線分別由變換變數q ρ r的負數提供。參數δ是控制u零傾線的斜率的比例縮放因數。參數ε通常被設為 等於-v -。參數β是控制兩個態相中的v零傾線的斜率的阻力值。τ ρ 時間常數參數不僅控制指數衰退,亦單獨地控制每個態相中的零傾線斜率。 The zero inclinations of v and u are provided by the negative of the transformation variables q ρ and r , respectively. The parameter δ is a scaling factor that controls the slope of the u- zero tilt. The parameter ε is usually set equal to -v - . The parameter β is the resistance value that controls the slope of the v- zero inclination in the two states. The τ ρ time constant parameter not only controls the exponential decay, but also controls the zero tilt slope in each phase separately.

該模型被定義為在電壓v達值v S (尖峰電壓)時發放 尖峰。隨後,狀態通常在發生重定事件(重定事件在技術上可以與尖峰事件完全相同)之際被復位: This model is defined as a spike that is issued when the voltage v reaches the value v S (spike voltage). Subsequently, the state is usually reset on the occasion of a rescheduled event (the rescheduled event can be technically identical to the spike event):

u=u+△u (10)其中是重定電壓,且△u是復原電流復位偏移。重定電壓通常被設為v - u = u +△ u (10) where It is the reset voltage, and Δ u is the reset current reset offset. Re-voltage Usually set to v - .

依照暫態耦合的原理,封閉形式解不僅對於狀態是 可能的(且具有單個指數項),而且對於到達特定狀態所需的時間亦是可能的。封閉形式狀態解為: According to the principle of transient coupling, closed-form solutions are not only possible for states (and have a single exponential term), but are also possible for the time required to reach a particular state. The closed form state solution is:

因此,模型狀態可僅在發生事件之際被更新,諸如基於輸入(突觸前尖峰)或輸出(突觸後尖峰)而被更新。亦可在任何特定的時間(無論是否有輸入或輸出)執行操作。 Thus, the model state can be updated only when an event occurs, such as based on an input (pre-synaptic spike) or an output (post-synaptic spike). You can also perform operations at any given time, with or without input or output.

而且,依照暫態耦合原理,可以預計突觸後尖峰的時間,因此到達特定狀態的時間可提前被決定而無需反覆運算技術或數值方法(例如,歐拉數值方法)。給定了先前電壓狀態v 0,直至到達電壓狀態v f 之前的時間延遲由下式提供: Moreover, according to the principle of transient coupling, the time of the post-synaptic spike can be predicted, so the time to reach a particular state can be determined in advance without the need for repeated arithmetic techniques or numerical methods (eg, Euler numerical methods). The time delay before the previous voltage state v 0 is given until the voltage state v f is reached is provided by:

若尖峰被定義為發生在電壓狀態v到達v S 的時間,則 從電壓處於給定狀態v的時間起測量的直至發生尖峰前的時間量或即相對延遲的封閉形式解為: 其中是態相閾值且通常被設為參數v +,但其他變型可以是可能的。 If the spike is defined as the time at which the voltage state v reaches v S , the closed form solution from the time the voltage is at a given state v until the peak occurs or the relative delay is: among them It is a phase threshold and is usually set to the parameter v + , but other variations may be possible.

模型動態的以上定義取決於該模型是在正態相還是 負態相中。如所提及的,耦合和態相ρ可基於事件來計算。出於狀態傳播的目的,態相和耦合(變換)變數可基於在上一個(先前)事件的時間的狀態來定義。出於隨後預計尖峰輸出時間的目的,態相和耦合變數可基於在下一個(當前)事件的時間的狀態來定義。 The above definition of model dynamics depends on whether the model is in the normal or negative phase. As mentioned, the coupling and phase ρ can be calculated based on the event. For the purpose of state propagation, the phase and coupling (transform) variables can be defined based on the state of the time of the previous (previous) event. For the purpose of subsequently estimating the peak output time, the phase and coupling variables can be defined based on the state of the time of the next (current) event.

存在對該Cold模型、與在時間上執行模擬、模仿或 模型的若干可能實現。此包括例如事件-更新、步點-事件更新以及步點-更新模式。事件更新是其中基於事件或「事件更新」(在特定時刻)來更新狀態的更新。步點更新是以間隔(例如,1ms)來更新模型的更新。此不一定要求反覆運算方法或數值方法。藉由僅在事件發生於步點處或步點間的情況下才更新模型或即藉由「步點-事件」更新,基於事件的實現以有限的時間解析度在基於步點的模擬器中亦是可能的。 Existence of the Cold model, execution of simulations, simulations, or Several possible implementations of the model. This includes, for example, event-updates, step-and-event updates, and step-and-update modes. An event update is an update in which the status is updated based on an event or "event update" (at a specific time). A step update is an update of the model that is updated at intervals (eg, 1 ms). This does not necessarily require repeated arithmetic methods or numerical methods. Event-based implementation with limited time resolution in a step-based simulator by updating the model only when the event occurs at or near the step or by "step-event" update It is also possible.

本案中接下來將是關於Hunzinger Cold模型和可能 實現的更多細節。 The next step in this case will be about the Hunzinger Cold model and possible More details of the implementation.

神經編碼 Neural coding

有用的神經網路模型(諸如包括圖1的人工神經元102、106的神經網路模型)可經由各種合適的神經編碼方案(諸如一致性編碼、時間編碼或速率編碼)中的任一種來編碼資訊。在一致性編碼中,資訊被編碼在神經元集群的動作電位(尖峰發放活動性)的一致性(或時間鄰近性)中。在時間編碼中,神經元藉由對動作電位(亦即,尖峰)的精決時序(無論是以絕對時間還是相對時間)來編碼資訊。資訊由此可被編碼在一群神經元間的相對尖峰時序中。相反,速率編碼涉及將神經資訊編碼在激發率或集群激發率中。 Useful neural network models, such as neural network models including the artificial neurons 102, 106 of Figure 1, can be encoded via any of a variety of suitable neural coding schemes, such as coherency coding, time coding, or rate coding. News. In coherent coding, information is encoded in the consistency (or temporal proximity) of the action potentials (spike release activity) of the neuron cluster. In time coding, neurons encode information by precise timing of action potentials (ie, spikes), whether in absolute time or relative time. The information can thus be encoded in a relative spike between a group of neurons. In contrast, rate coding involves encoding neural information in the excitation rate or cluster excitation rate.

若神經元模型能執行時間編碼,則神經元模型亦能執行速率編碼(因為速率正好是時序或尖峰間間隔的函數)。為了提供時間編碼,良好的神經元模型應當具有兩個要素:(1)輸入的抵達時間影響輸出時間;及(2)一致性偵測能具有窄時間窗。連接延遲提供了將一致性偵測擴展到時間模式解碼的一種手段,因為藉由合適地延遲時間模式的元素,可使該等元素達成時序一致性。 If the neuron model can perform time coding, the neuron model can also perform rate coding (because the rate is exactly a function of timing or inter-peak spacing). In order to provide time coding, a good neuron model should have two elements: (1) the arrival time of the input affects the output time; and (2) the consistency detection can have a narrow time window. Connection delay provides a means of extending consistency detection to temporal mode decoding because the elements are allowed to achieve timing consistency by appropriately delaying the elements of the time pattern.

抵達時間arrival time

在良好的神經元模型中,輸入的抵達時間應當對輸出時間有影響。突觸輸入--無論是狄拉克△函數還是經定形的突觸後電位(PSP)、無論是興奮性的(EPSP)還是抑制性的(IPSP)--具有抵達時間(例如,δ函數的時間或者階躍或其他輸入函數的開始或峰值的時間),抵達時間可被稱為輸 入時間。神經元輸出(亦即,尖峰)具有發生時間(無論抵達時間是在何處(例如在胞體處、在沿軸突的點處或在軸突末端處)測量的),抵達時間可被稱為輸出時間。該輸出時間可以是尖峰的峰值時間、尖峰的開始或與輸出波形有關的任何其他時間。普適原理是輸出時間取決於輸入時間。 In a good neuron model, the arrival time of the input should have an effect on the output time. Synaptic input - whether it is the Dirac △ function or the shaped post-synaptic potential (PSP), whether excitatory (EPSP) or inhibitory (IPSP) - has an arrival time (eg, the time of the delta function) Or the time of the start or peak of a step or other input function), the arrival time can be called loss Into the time. The neuron output (ie, the spike) has an occurrence time (regardless of where the arrival time is (eg at the cell body, at the point along the axon or at the end of the axon)), the arrival time can be called For output time. The output time can be the peak time of the spike, the beginning of the spike, or any other time associated with the output waveform. The universal principle is that the output time depends on the input time.

乍看起來可能認為所有神經元模型皆遵循該原理, 但一般並不是如此。例如,基於速率的模型不具有此特徵。 許多尖峰模型一般亦並不遵循此一點。帶洩漏積分激發(LIF)模型在有額外輸入(超過閾值)的情況下並不會更快一點地激發。此外,在以非常高的時序解析度來建模的情況下或許遵循此一點的模型在時序解析度受限(諸如限於1ms步長)時通常將不會遵循此一點。 At first glance, it may seem that all neuron models follow this principle. But generally it is not the case. For example, rate-based models do not have this feature. Many spike models generally do not follow this. The Leaky Integral Excitation (LIF) model does not excite faster when there is extra input (beyond the threshold). Furthermore, models that may follow this point in the case of modeling with very high timing resolution will typically not follow this point when timing resolution is limited, such as limited to 1 ms steps.

輸入Input

神經元模型的輸入可包括狄拉克△函數,諸如電流形式的輸入或基於電導率的輸入。在後一種情形中,對神經元狀態的貢獻可以是連續的或狀態依賴型的。 The input to the neuron model may include a Dirac delta function, such as an input in the form of a current or an input based on a conductivity. In the latter case, the contribution to the state of the neuron can be continuous or state dependent.

神經元模型的一般原理 General principles of neuron models

本案的某些態樣提供了用於設計有用的尖峰神經元模型的一般原理。有用的神經元模型是可實踐且可被用於建模豐富的、現實的且在生物學上一致的行為的神經元模型。此外,有用的神經元模型可被用於在定義完備的穩定計算關係的意義上對神經電路進行工程設計和反向工程(解讀)兩者。 Certain aspects of the present case provide general principles for designing useful spike neuron models. Useful neuron models are neuron models that are practicable and can be used to model rich, realistic, and biologically consistent behaviors. In addition, useful neuron models can be used to engineer and reverse engineer (interpret) neural circuits in the sense of defining a complete stable computational relationship.

來自事件的行為Behavior from the event

自然細胞看起來展現出各種行為,包括強直性(tonic )和位相型(phasic)尖峰和短脈衝、對輸入進行積分、適應於輸入、閾下振盪、諧振、回彈、容適輸入特徵以及更多行為。常常可藉由具有不同特性的輸入而在同一細胞中引發不同行為。在本案中,該等行為可從導致該等行為的事件的觀點來考慮。 Natural cells seem to exhibit a variety of behaviors, including tonic (tonic And phasic spikes and short pulses, integrating inputs, adapting to input, sub-threshold oscillations, resonance, springback, adaptive input characteristics, and more. Different behaviors can often be elicited in the same cell by inputs with different characteristics. In the present case, such actions may be considered from the point of view of the events leading to such acts.

相應地,細胞可被視作抽象事件狀態機,其中諸事 件之間的細胞動態由機器狀態來決定,並且諸機器狀態之間的轉變由事件來決定。在本上下文中,機器狀態是支配動態的特性的元狀態,而非模型狀態變數本身。模型狀態變數根據元狀態中的動態而進化。 Correspondingly, cells can be viewed as abstract event state machines, where things Cell dynamics between pieces are determined by machine state, and the transition between machine states is determined by events. In this context, the machine state is the meta state that governs the dynamic characteristics, not the model state variables themselves. Model state variables evolve based on dynamics in the meta state.

在此種觀點中,事件調動細胞動態,直至下一個事 件。先前事件與下一事件之間的動態取決於機器狀態來定義,而機器狀態是基於先前事件來決定的。然而,重要的是要辨別此並不阻止狀態在諸事件之間的任何時間被決定,而是其僅阻止動態定義發生改變。該抽象事件狀態機概念允許動態定義跨機器狀態有所不同。由此可針對機器狀態或態相的一個子集以一種方式來定義或參數化動態,並且針對機器狀態的另一子集獨立地以另一種方式來定義或參數化動態。此意味著不同機器狀態或態相中的動態可以獨立地定義。在態樣中,行為無需針對所有機器狀態皆有所不同,亦不必使每一個事件皆導致動態的顯著改變或甚至任何改變。 In this view, the event mobilizes cell dynamics until the next thing Pieces. The dynamics between the previous event and the next event are defined by the state of the machine, which is determined based on previous events. However, it is important to discern that this does not prevent the state from being determined at any time between events, but rather only prevents the dynamic definition from changing. This abstract event state machine concept allows for dynamic definitions to vary across machine states. Dynamics can thus be defined or parameterized in one way for a subset of machine states or states, and dynamically defined in another way for another subset of machine states. This means that the dynamics in different machine states or states can be defined independently. In the case, the behavior does not need to be different for all machine states, and it is not necessary for each event to result in a dynamic significant change or even any change.

圖5圖示根據本案的某些態樣的抽象事件狀態機概 念的實例500。機器狀態被圖示為圓圈502,而機器狀態內的 模型狀態變數的動態由圓圈502內的箭頭504來表示。諸機器狀態之間的轉變發生在如由圓圈502之間的箭頭506所指示的事件之處。 Figure 5 illustrates an abstract event state machine in accordance with certain aspects of the present disclosure. Example 500 of the reading. The machine state is illustrated as circle 502, while within the machine state The dynamics of the model state variables are represented by arrows 504 within circle 502. The transition between machine states occurs at the event as indicated by arrow 506 between circles 502.

在態樣中,可以考慮三個連貫事件,其中第一個和 最後一個事件包括在其發生之時顯著地更改細胞狀態的即時輸入。出於簡單性,該等事件可以是添加到電壓狀態上的狄拉克△函數,該電壓狀態代表影響細胞的膜電位的某種等效積分電流或基於電導率的輸入。然而,第一個和最後一個輸入事件之間的過渡事件可被認為不具有相關聯的輸入或輸出。根據本案的某些態樣,可考慮假設的神經元模型,其中該模型的行為被定義為取決於該過渡事件是被包括還是被省略而改變,即使該事件不具有相關聯的輸入或輸出。 In the aspect, three consecutive events can be considered, the first and The last event includes an immediate input that significantly changes the state of the cell as it occurs. For simplicity, the events may be a Dirac Δ function added to a voltage state that represents some equivalent integrated current or conductivity-based input that affects the membrane potential of the cell. However, a transition event between the first and last input events can be considered to have no associated input or output. According to some aspects of the present case, a hypothetical neuron model can be considered, wherein the behavior of the model is defined to vary depending on whether the transition event is included or omitted, even if the event does not have an associated input or output.

為了達成代表生物學細胞的豐富的行為彙集( behavioral repertoire),將需要能展現複雜行為的事件狀態機。而且,在計算上定義完備的、行為良好的低複雜度模型亦是期望目標。若事件本身的發生在撇開對狀態變數的任何貢獻(諸如輸入,若有)而言的情況下能影響狀態機並改變對該事件之後的動態的約束,則該系統的將來狀態不僅是先前狀態、時間和輸入的函數,而是狀態、時間、輸入和該事件的函數。給定了更多依存性,就能更自由地設計個體模型依存性關係以及在不同元狀態或態相中的動態。因此,模型元素可以潛在地是較低複雜度的,並且仍產生可達成較豐富的行為彙集的整體模型。 In order to achieve a rich collection of behaviors that represent biological cells ( Behavioral repertoire) will require an event state machine that exhibits complex behavior. Moreover, a well-defined, well-behaved, low-complexity model is also a desirable goal. If the event itself occurs in any case where any contribution to the state variable (such as input, if any) can affect the state machine and change the dynamic constraints on the event, then the future state of the system is not only the previous state. , time, and input function, but state, time, input, and function of the event. Given more dependencies, you can more freely design individual model dependencies and dynamics in different meta-states or states. Thus, model elements can potentially be less complex and still produce an overall model that can achieve a richer collection of behaviors.

此外,模型可在理論上用事件的形式來定義。由於 機器服從於基於事件的處理而非連續時間處理,因此該模型隨後可被實現為在理論上所定義的而不是由實現去逼近理論。本案提供了新的和諧辦法,和諧辦法包括事件作為模型的基礎而不是將事件作為不方便的實踐約束來對待。 In addition, the model can be theoretically defined in the form of events. due to The machine is subject to event-based processing rather than continuous time processing, so the model can then be implemented to be theoretically defined rather than implemented by the approximation theory. The case provides a new harmonious approach that includes events as the basis of the model rather than treating the event as an inconvenient practice constraint.

以上抽象原理可藉由定義單變數或多變數狀態S來在數學上表達,S在時間t 0t f 之間在不存在任何事件的情況下根據先前狀態和所流逝時間的某種函數而進化。時間t 0處的事件與時間t f >t處的事件之間的任何時間t處的狀態可表達為:S(t)=f(t-t 0,S(t 0))。 (15) Abstract principles expressed above may be defined by univariate or multivariate mathematically state S, S at time t 0 and t f between in the absence of any event in accordance with the previous state and some function of the elapsed time evolution. The state at any time t between the event at time t 0 and the event at time t f > t can be expressed as: S ( t ) = f ( t - t 0 , S ( t 0 )). (15)

根據定義,狀態隨著其在諸事件之間進化而具有封閉形式表達。然而,若在兩個事件之間的時間t處存在事件,則在時間t f >t處的狀態可為:S(t f )=f(t f -t,f(t-t 0,S(t 0)))≠f(t f -t 0,S(t 0))。 (16) By definition, a state has a closed form of expression as it evolves between events. However, if an event exists at the time t between two events, the state at time t f> at t can be: S (t f) = f (t f - t, f (t - t 0, S ( t 0 ))) ≠ f ( t f - t 0 , S ( t 0 )). (16)

此舉的重要性在於,模型的動態可沿不同的路徑而行而不管輸入如何或甚至是否存在輸入,此僅僅是因為事件的存在。圖6圖示了該特定情形的實例600,亦即引發動態上的改變的事件的實例602、604。在實例602中,時間t 0t f 之間沒有過渡事件。在實例604中,存在沒有輸入或輸出的過渡事件。然而,狀態606的軌跡可在時間t的過渡事件之處發生改變。 The importance of this is that the dynamics of the model can be routed along different paths regardless of how or even if there is input, simply because of the existence of the event. FIG. 6 illustrates an example 600 of the particular situation, ie, instances 602, 604 of events that cause dynamic changes. In instance 602, there is no transition event between times t 0 and t f . In instance 604, there are transition events that are not input or output. However, the trajectory of state 606 may change at the transition event at time t .

具有多變數狀態的神經元模型並非在根本上與此概念不相容。反直覺地,動態可針對諸狀態變數來獨立地定義。若諸動態是解耦的,則問題在於多變數狀態的優點是什麼 。在態樣中,多變數狀態可提供基於事件而轉變到新的元狀態的機會,其中該新的元狀態中的動態是基於在該事件的時間處的狀態來決定的。換言之,多變數狀態可提供用於決定在事件的時間處的行為改變的另一維。 A neuron model with multiple variables is not fundamentally incompatible with this concept. Counter-intuitively, dynamics can be defined independently for state variables. If the dynamics are decoupled, the question is what are the advantages of the multivariate state. . In an aspect, the multivariate state may provide an opportunity to transition to a new meta state based on the event, wherein the dynamics in the new meta state are determined based on the state at the time of the event. In other words, the multivariate state can provide another dimension for determining behavioral changes at the time of the event.

該基於事件的觀點可提供用於設計以較小的計算複 雜度具有豐富的行為能力的神經元模型的框架。該框架可以是可對尖峰神經元模型的設計進行定形的進一步原理的基礎。 This event-based view can be provided for design with smaller calculations A framework of neuronal models with abundant behavioral capabilities. The framework can be the basis for further principles for shaping the design of spiked neuron models.

一致性偵測和可塑性Consistency detection and plasticity

尖峰神經元模型偵測精細時序一致性的能力可取決於記憶特性。具有指數衰退的帶洩漏積分激發神經元模型能夠取決於洩漏(或衰退)速率在某種程度上偵測出時間一致性,洩漏(或衰退)速率決定了神經元多快會忘記先前輸入。此類模型可能在可被再現的其他計算性質或生物學行為方面受限。然而,在考慮替換的或更複雜的模型時,保留該帶洩漏積分激發行為的優點(包括期望的記憶特性)可能是有益的。 The ability of a spiked neuron model to detect fine temporal consistency may depend on memory characteristics. A leak-integrated-excited neuron model with exponential decay can detect temporal consistency to some extent depending on the rate of leakage (or decay), and the rate of leakage (or decay) determines how quickly the neuron forgets the previous input. Such models may be limited in other computational properties or biological behaviors that may be reproduced. However, while considering alternative or more complex models, it may be beneficial to retain the advantages of the leaky integrated excitation behavior, including the desired memory characteristics.

基本指數型帶洩漏積分激發模型可定義為具有在沒有任何輸入的情況下根據下式隨時間推移△t朝靜息(靜息可不失一般性地定義為0)衰退的狀態:v(t+△t)=v(t)e -△t/τ , (17)其中v是狀態(例如,電壓),而τ是時間常數。衰退速率是減速的,從而關於兩個不同起始狀態的衰退曲線的差異在起始點是最大的並且在此後收斂。因此,特定的時間的輸入幅值 (輸入幅值將在該時間更改狀態)上的任何改變對細胞的記憶具有單調遞減影響。 The basic exponential type with leakage integral excitation model can be defined as a state in which, with no input, the Δ t decays toward rest (the rest can be defined as 0 without loss) according to the following formula: v ( t + Δ t )= v ( t ) e −Δ t / τ , (17) where v is a state (eg, voltage) and τ is a time constant. The rate of decay is decelerated such that the difference in the decay curve for the two different starting states is greatest at the starting point and converges thereafter. Therefore, any change in the input amplitude at a particular time (the input amplitude will change state at that time) has a monotonically decreasing effect on the memory of the cell.

圖7圖示了具有指數型衰退的帶洩漏積分激發模型在兩種重疊情景中的示例行為700。例如,存在兩個輸入事件,其中輸入貢獻被建模為在相應事件之時被添加到狀態變數上的狄拉克△函數。第一輸入事件702可發生在時間t 0,從而使狀態蹤跡704增大一步長量。第二輸入706可以發生在稍後的時間,第二輸入706具有充分的輸入幅值以使得此兩個輸入量若加在一起則將把狀態帶到閾值(threshold)708以上以使該模型發放尖峰。然而,第二輸入是發生在時間t 1還是t 1'影響該狀態是否上升到高於該閾值。若第二輸入事件706在第一輸入事件702之後充分早地發生,則可超過閾值708。否則,對第一輸入702的記憶已衰退並且第二輸入706可能不足以觸發尖峰。由此,就有了偵測第一事件702和第二事件706是否在時間上接近或一致的手段。 Figure 7 illustrates an example behavior 700 of a leaky integrated excitation model with exponential decay in two overlapping scenarios. For example, there are two input events where the input contribution is modeled as a Dirac △ function that is added to the state variable at the time of the corresponding event. The first input event 702 can occur at time t 0 , thereby causing the status trace 704 to increase by one step. The second input 706 can occur at a later time, the second input 706 having sufficient input amplitude such that if the two inputs are added together, the state will be brought above a threshold 708 to cause the model to be issued peak. However, whether the second input occurs at time t 1 or t 1 'affects whether the state rises above the threshold. If the second input event 706 occurs sufficiently early after the first input event 702, the threshold 708 may be exceeded. Otherwise, the memory of the first input 702 has decayed and the second input 706 may not be sufficient to trigger a spike. Thus, there is a means of detecting whether the first event 702 and the second event 706 are temporally close or identical.

圖8圖示了演示反例(不能或難以偵測到一致性)的兩個替換模型的行為800。在圖表802上圖示的積分激發模型不能偵測到時序一致性,因為該模型不會遺忘。在圖表804上圖示的相對更複雜的模型(諸如具有關於狀態導數的二次運算式的模型)可能在根本上不具有精細的時序一致性偵測能力。關於狀態導數的二次運算式是dv/dt=v(v-v threshold )/τ形式的,類似於Izhievich簡單模型。儘管可以使更複雜的模型的參數變化以減小有效時間常數,但相同情況適用於帶洩漏積分激發模型。底層動態(形狀)作為根本性質保留,而不管時間尺 度如何。 Figure 8 illustrates the behavior 800 of two alternative models demonstrating a counterexample (which is not or difficult to detect consistency). The integral excitation model illustrated on chart 802 cannot detect temporal consistency because the model is not forgotten. The relatively more complex model illustrated on chart 804, such as a model with a quadratic expression on state derivatives, may not have sophisticated timing consistency detection capabilities at all. The quadratic expression on the state derivative is in the form of dv / dt = v ( v - v threshold ) / τ , similar to the Izhievich simple model. Although the parameters of more complex models can be varied to reduce the effective time constant, the same applies to models with leakage integral excitation. The underlying dynamics (shapes) are preserved as a fundamental property, regardless of the time scale.

圖9圖示了在輸入幅值從值902改變為值904的情況 下帶洩漏積分激發模型的狀態的單調遞減差異的實例900。如圖9中所示,該模型隨時間推移遺忘諸輸入之間的差異。 Figure 9 illustrates the situation where the input amplitude changes from value 902 to value 904. An example 900 of a monotonically decreasing difference in the state of the leaky integrated excitation model. As shown in Figure 9, the model forgets the difference between the inputs over time.

圖10圖示了在輸入幅值從值1002改變為值1004時的 基於二次模型的反例1000。狀態衰退上的差異對於改變的輸入幅值而言是非單調的。如圖10中所示,此兩種情形中的狀態首先發散,從而使得差異先增大再減小。因此,該模型在遺忘該等輸入之間的差異之前記得比(在輸入的時間t 0的)事實上更大的差異。 FIG. 10 illustrates a quadratic model based counterexample 1000 when the input magnitude changes from a value of 1002 to a value of 1004. The difference in state decay is non-monotonic for the changed input amplitude. As shown in Figure 10, the states in both cases first diverge, causing the difference to increase first and then decrease. Therefore, the model remembers a substantially larger difference (at the input time t 0 ) before forgetting the difference between the inputs.

該等記憶行為在學習中是有關的,因為輸入幅值在 學習期間由於應用於輸入的權重(強度)的自我調整故而通常是可變的。尖峰時序依賴可塑性通常涉及將突觸(連接)權重(強度)調節達取決於輸入事件與尖峰輸出事件之間的時間差的量。在單調遞減記憶行為的情況下,權重調節在隨時間推移影響減小的意義上具有穩定的影響。然而,在非單調記憶行為的情況下,權重調節在以下意義上將具有不穩定效應:權重調節取決於輸入事件與將來事件之間的等待時間可對將來事件具有更大或更小的影響。 These memory behaviors are relevant in learning because the input amplitude is The learning period is usually variable due to the self-adjustment applied to the weight (intensity) of the input. Peak timing dependent plasticity typically involves adjusting the synapse (connection) weight (intensity) by an amount that depends on the time difference between the input event and the spike output event. In the case of monotonically decreasing memory behavior, weight adjustment has a stable influence in the sense that the influence decreases over time. However, in the case of non-monotonic memory behavior, weight adjustment will have an unstable effect in the sense that the weight adjustment depends on the latency between the input event and the future event may have a greater or lesser impact on future events.

儘管如此,可以考慮在特定環境中期望的寬泛一致 性偵測能力。並非修改神經元模型動態以適合此類目標,而是可定義輸入或輸入濾波以適合此環境。存在許多方式來將輸入定形為更寬的形式。然而,將難以使得細胞偵測到比阻尼的動態所准許的更窄的一致性。鈍化神經元模型的時間一 致性偵測能力將限制對所有輸入的解析度。 Still, consider the broad expectations expected in a particular environment. Sexual detection capabilities. Rather than modifying the neuron model dynamics to fit such targets, an input or input filter can be defined to suit this environment. There are many ways to shape an input into a wider form. However, it will be difficult to cause the cells to detect a narrower consistency than is permitted by the dynamics of the damping. Time to passivate the neuron model The ability to detect is limited to the resolution of all inputs.

興奮性或抑制性突觸後電位(輸入效應)可建模為 指數的線性組合: Excitatory or inhibitory postsynaptic potentials (input effects) can be modeled as a linear combination of indices:

通常情況下,兩個指數之差可提供充分真實的波形 。在態樣中,可存在與輸入相關聯的一或多個事件。例如,輸入事件可被認為與波形的峰值或開始(或任何其他任意的一或多個參考點)一致。由於輸入本身可在時間上張開,因此可執行一致性偵測的時間窗可由輸入定義或濾波來控制。 In general, the difference between the two indices provides a fully realistic waveform . In an aspect, there may be one or more events associated with the input. For example, an input event can be considered to coincide with the peak or start of the waveform (or any other arbitrary reference point or points). Since the input itself can be opened in time, the time window in which the consistency detection can be performed can be controlled by input definition or filtering.

一個重要的特異性在於,抽象事件狀態機概念並不 阻止模型接收比狄拉克△函數更寬的輸入。無論輸入是以離散還是連續形式來定義的,等效輸入皆可在一或多個輸入事件之時被應用於模型。 An important specificity is that the abstract event state machine concept is not The model is prevented from receiving a wider input than the Dirac △ function. Whether the input is defined in discrete or continuous form, the equivalent input can be applied to the model at the time of one or more input events.

在神經元模型中保留精細時序一致性偵測能力(諸 如由帶洩漏積分行為所供應的)可允許窄和寬一致性偵測兩者。然而,時間一致性偵測能力提供了用於解碼被編碼在時間中的資訊並輸出被編碼在速率中(尖峰或無尖峰)的信息的框架。基本帶洩漏積分激發模型在輸入的最終元素抵達時(或此後的某個固定等待時間)激發。由此,輸出時間可由最終貢獻輸入來約束。此就是輸出資訊被編碼在速率中而非編碼在時間中的區別的原因所在。在所有其他條件相同的情況下,可被編碼在尖峰時序模式中的資訊比可被編碼在尖峰速率中的資訊要多。編碼在時間中的資訊是更一般性的。儘管尖峰速率是尖峰時間模式的特性,但對於任何給定的尖峰 速率並不存在唯一性的尖峰時間模式。因此,尖峰時序模式得出速率,但反之並不成立。 Preserving fine timing consistency detection capabilities in neuron models Both narrow and wide consistency detection can be allowed, as supplied by the leak-integrated behavior. However, the time consistency detection capability provides a framework for decoding information encoded in time and outputting information encoded in the rate (spikes or no spikes). The basic band leakage integral excitation model is fired when the final element of the input arrives (or a fixed waiting time thereafter). Thus, the output time can be constrained by the final contribution input. This is why the output information is encoded in the rate rather than the difference in encoding in time. All other things being equal, the information that can be encoded in the spike timing mode is more than the information that can be encoded in the spike rate. The information encoded in time is more general. Although the spike rate is characteristic of the spike time mode, for any given spike There is no unique spike time mode for rate. Therefore, the spike timing mode yields a rate, but the reverse is not true.

時間計算Time calculation

尖峰神經元模型常常以閾值的形式來定義。通常情況下,當超過閾值時,該模型發放尖峰(可能有某個等待時間)。產生的問題是等待時間-激發概念是否在計算上是有用的。 Spike neuron models are often defined in the form of thresholds. Typically, when a threshold is exceeded, the model issues a spike (may have some wait time). The problem that arises is the latency-inspired concept is computationally useful.

若一旦到達特定條件細胞就將立即激發或甚至以特定等待時間激發,則有用性可能受限,因為可藉由其他手段(諸如藉由軸突、突觸或樹突程序)來達成固定延遲。儘管如此,若引發事件(足以使機器狀態轉變的輸入)與尖峰事件(輸出)之間的相對延遲是可變的,則可能存在優點。具體而言,若該相對延遲取決於在引發事件之後(或之時或之前)的輸入或事件,則可能存在顯著優點。此類一般性計算能力將的確是有用的,若輸出時序是定義完備的函數則尤甚,此是因為定義完備的函數將不僅提供用於工程設計具有尖峰神經元的系統的框架,而且亦提供用於理解尖峰神經元網路正在計算什麼的框架。 The usefulness may be limited if a particular conditional cell is to be fired immediately or even with a specific waiting time, as a fixed delay can be achieved by other means, such as by axonal, synaptic or dendritic procedures. Nonetheless, there may be advantages if the relative delay between the event (enough to make the input of the machine state transition) and the spike event (output) is variable. In particular, if the relative delay depends on the input or event after (or before or before) the initiating event, there may be significant advantages. Such general computing power will indeed be useful, especially if the output timing is a well-defined function, because well-defined functions will not only provide a framework for engineering systems with spiked neurons, but also provide A framework for understanding what the spiked neural network is computing.

具體而言,若輸出尖峰的延遲是自參考事件和任何過渡事件(包括輸入)起的相對延遲的定義完備的函數,則將定義給定了相對輸出時間△t k,r 為相對輸入時間△t i,r 的函數的功能: 其中I k 是至細胞k的輸入集合。實質上,突觸後尖峰可被視為 以該尖峰相比於參考時間t r 的相對時間△t的形式來編碼資訊。參考時間可以是任意的或某個先前尖峰時間,諸如第一個突觸前尖峰或上一個突觸後尖峰的時間。 Specifically, if the delay of the output spike is a well-defined function of the relative delay from the reference event and any transition events (including inputs), the relative output time Δ t k,r is defined as the relative input time Δ The function of the function of t i,r : Where I k is the input set to cell k . Essentially, postsynaptic spike may be considered in this form as compared to a reference time t spike relative time △ t r of the encoded information. The reference time can be any or some previous spike time, such as the time of the first presynaptic spike or the last post-synaptic spike.

將資訊編碼在時間中呈現出某些挑戰。細胞對輸入 可能具有有限記憶,並且時序可能僅在特定有限解析度上是一致的。此意味著編碼更多的資訊需要更多時間。然而,資訊越重要,該資訊就應當被越快地傳達。相應地,本案的某些態樣支援不失一般性地將相對時間中的資訊視為具有正規化範圍[0,1]的x,其中用於傳達該資訊的時間延遲可表達為:△t=-α log x, (20)使得值x越大(更顯著的資訊),時間延遲(回應)就越短。 值1對應於即時回應(無延遲),而值0(無顯著性)對應於無限延遲(沒有輸入或從不輸出尖峰)。在該上下文中查看輸入和輸出時序兩者可啟示如下動態:其中輸入發生得越快或輸入越顯著,輸出就發生得越快。 Encoding information presents certain challenges in time. Cells may have limited memory for input, and timing may only be consistent over a particular limited resolution. This means that it takes more time to code more information. However, the more important the information, the faster the information should be conveyed. Accordingly, certain aspects of the case support without loss of generality in the relative time information is treated as normalized x has range [0,1], wherein the means for communicating delay time of the information may be expressed as: △ t =- α log x , (20) The larger the value x (more significant information), the shorter the time delay (response). A value of 1 corresponds to an immediate response (no delay), while a value of 0 (no significance) corresponds to an infinite delay (no input or never a spike). Viewing both input and output timing in this context can reveal a dynamic in which the faster the input occurs or the more significant the input, the faster the output occurs.

相對於上一個貢獻輸入或引發事件的可變輸出等待 時間可用抗洩漏動態(亦即,其中狀態朝向尖峰條件移動或具有正回饋的動態)來達成。根據前述資訊時間編碼原理,在較早發生的輸入對輸出時間有較大影響之處的動態可能是期望的。此不同於其中回饋為負(如在帶洩漏積分行為中)的動態。然而,並非嘗試將帶洩漏積分行為與抗洩漏積分行為相組合,而是由抽象事件狀態機概念提供了用於定義多個分開的行為態相或元狀態集的框架,從而不同機器狀態中的動態可獨立地定義或參數化。 Variable output wait relative to the last contributing input or throw event Time can be achieved with anti-leakage dynamics (i.e., where the state moves toward a spike condition or has a positive feedback). According to the aforementioned information time coding principle, it may be desirable to have dynamics where the earlier input has a large impact on the output time. This is different from the dynamics in which the feedback is negative (as in the case of leaky integration). However, instead of trying to combine the leak-integrated behavior with the anti-leakage integral behavior, the abstract event state machine concept provides a framework for defining multiple separate behavioral phase or meta-state sets, thus in different machine states. Dynamics can be defined or parameterized independently.

在簡單實例中,帶洩漏積分行為可在一個機器狀態 態相中定義,而抗洩漏積分行為可在另一個機器狀態態相中定義。該等可被稱為閾下和閾上行為。然而,術語閾值在抽象事件狀態機的上下文中可能是誤導性的,因為機器狀態之間的轉變基於事件而發生,而不是基於狀態條件本身而發生。如以上所論述的,狀態條件可能與機器狀態轉變無關,除非存在事件。 In a simple example, the behavior with leakage integral can be in a machine state The phase is defined in the phase, and the anti-leakage integral behavior can be defined in another machine state phase. These can be referred to as subthreshold and suprathreshold behavior. However, the term threshold may be misleading in the context of an abstract event state machine because the transition between machine states occurs based on the event rather than on the state condition itself. As discussed above, the state condition may be independent of the machine state transition unless there is an event.

可觀察到,帶洩漏積分激發模型是不足的。例如, 帶洩漏積分激發模型不是充分靈活的。在態樣中,輸入可被表達為離散輸入量子的線性組合,諸如狄拉克△函數。兩個輸入事件可被認為發生在時間t 0t 1,兩個輸入事件單獨皆不足以將帶洩漏積分激發模型帶到閾值以上。然而,若輸入幅值加總在一起,則電壓改變將把該模型帶到帶洩漏積分激發模型的閾值以上。圖11圖示了對於兩種情形(其中唯一差別在於第一輸入事件的時間,即時間t 0相對於時間t 0')的電壓狀態動態隨時間推移的實例1100。然而,應注意,無論第一輸入發生在t 0還是在t 0',該細胞皆在相同的時間t 1超過閾值1102,由此無法根據該細胞的輸出來區分此兩種輸入情形。 It can be observed that the model with leakage integral excitation is insufficient. For example, a model with a leaky integral excitation is not sufficiently flexible. In an aspect, the input can be expressed as a linear combination of discrete input quantum, such as a Dirac △ function. Two input events can be considered to occur at times t 0 and t 1 , and the two input events alone are not sufficient to bring the leaked integral excitation model above the threshold. However, if the input amplitudes are summed together, the voltage change will bring the model above the threshold with the leaky integral excitation model. Figure 11 illustrates an example 1100 of voltage state dynamics over time for two situations, where the only difference is the time of the first input event, time t 0 versus time t 0 '. However, it should be noted that regardless of whether the first input occurs at t 0 or at t 0 ', the cells exceed the threshold 1102 at the same time t 1 , thereby making it impossible to distinguish between the two input scenarios based on the output of the cell.

在另一態樣,輸入不是離散狄拉克△函數。在抽象 事件狀態機中,輸入僅在事件之際才可對機器狀態轉變作出貢獻。累積或等效積分輸入僅在事件時才可被應用於使機器狀態轉變。因此,相同的原理適用於輸入幅值以及輸入時序。 In another aspect, the input is not a discrete Dirac △ function. In abstraction In the event state machine, the input contributes to the machine state transition only at the time of the event. Cumulative or equivalent integral inputs can only be applied to make machine state transitions at the time of the event. Therefore, the same principle applies to the input amplitude as well as the input timing.

基本指數型抗洩漏積分激發模型可在習知建模意義 上定義為具有若其高於閾值(其可不失一般性地定義為0)則在沒有任何輸入的情況下根據下式隨時間△t朝峰值增大的狀態:v(t+△t)=v(t)e t/τ 。 (21) The basic exponential type anti-leakage integral excitation model can be defined in the sense of conventional modeling as having a higher than threshold value (which can be defined as 0 without loss of generality), without any input, according to the following formula Δ t The state of increasing toward the peak: v ( t + Δ t ) = v ( t ) e Δ t / τ . (twenty one)

術語「習知」是指並非嚴格根據所提議的抽象事件狀態機框架的公式化,公式化意欲演示基本原理。該模型可被視為演示性的,以將以閾值為參照物的時序行為立為要點。藉由此類抗洩漏積分激發模型,時序差異可得以區分,因為到達峰值的時間可取決於輸入時序。 The term "preferred" refers to a formulation that is not strictly based on the proposed abstract event state machine framework, which is intended to demonstrate the basic principles. This model can be considered as a demonstration to make the timing behavior of the reference value a priority. With this type of anti-leakage integration excitation model, timing differences can be distinguished because the time to peak can depend on the input timing.

圖12圖示根據本案的某些態樣的演示此一點的兩種情形的示例比較1200。在此兩種情形中,狀態在時間t 0高於閾值1202並且由此開始上升。然而,在第一種情形中,第一輸入事件1204發生在時間t 1並且朝向峰值的上升被加速。在第二種情形中,相同的輸入事件1206以相同的輸入貢獻(幅值)發生在稍晚的時間t 1'。然而,輸出時間作為結果而改變,因為較早的輸入加速了抗洩漏動態。若輸入在時間t 1'實質性地改變(增大),則可以達成相同的輸出時間。然而,此不是所期望的。在此種情形中,輸入幅值將是不同的,而非相同的。若輸入在時間t 1的幅值改變了,則自時間t 1起的趨勢亦將改變。此處的目標是用於區分時序的機制。 Figure 12 illustrates an example comparison 1200 of two scenarios demonstrating this point in accordance with certain aspects of the present disclosure. In both cases, the state at time t 0 and 1202 is above the threshold starts to rise. However, in the first case, the first input event 1204 occurs at time t 1 and the rise toward the peak is accelerated. In the second case, the same input event 1206 occurs with a similar input contribution (amplitude) at a later time t 1 '. However, the output time changes as a result because the earlier input accelerates the anti-leakage dynamics. If the input is substantially changed (increased) at time t 1 ', the same output time can be achieved. However, this is not desirable. In this case, the input amplitudes will be different, not the same. If the magnitude of the input at time t 1 changes, the trend from time t 1 will also change. The goal here is the mechanism used to distinguish timing.

與此相關的是,突觸權重(連接強度)的幅值範圍通常是受約束的。因此,不失一般性,權重可被定義為具有符號(興奮性的或抑制性的)和正規化範圍(例如,範圍[0,1])。而且,用於學習的可塑性規則可傾向於導致權重雙峰聚類 (亦即,靠近0和靠近1)。 Related to this, the magnitude range of synaptic weights (connection strength) is usually constrained. Thus, without loss of generality, weights can be defined as having symbols (excitatory or inhibitory) and normalized ranges (eg, range [0, 1]). Moreover, the plasticity rules for learning can tend to lead to weighted bimodal clustering. (ie, close to 0 and close to 1).

本案的某些態樣基於藉由分開地定義兩個態相中的 行為來組合帶洩漏積分激發模型與抗洩漏積分激發模型而支援本著抽象事件狀態機精神的概念模型。術語「閾值」可寬鬆地用於反映在從一個態相轉變到另一個態相的事件(亦即連結該事件前後的狀態的轉變事件)時應用的條件。 Some aspects of the case are based on defining two states in phase The behavior is combined with the leaky integral excitation model and the anti-leakage integral excitation model to support the conceptual model in the spirit of the abstract event state machine. The term "threshold" can be used loosely to reflect the conditions applied when an event transitions from one phase to another (ie, a transition event that links states before and after the event).

圖13圖示了在神經元模型構造的上下文中的兩個輸 入時序圖表1302和1304,其中展現出帶洩漏和抗洩漏行為兩者。值得注意的是,該模型構造能夠在輸出時間的意義上區分任一個態相中的輸入時序差異。圖12圖示了正(抗洩漏)態相中對輸入時序的區分,其中圖13圖示了在第一輸入事件時間從t 0改變為t 0'時在負(洩漏)態相中對輸入時序的區分。 作為結果,在第二輸入事件的時間t 1處的狀態(亦即,圖13中的標繪1302相對於標繪1304)是不同的。 Figure 13 illustrates two input timing diagrams 1302 and 1304 in the context of neuron model construction, in which both band leakage and anti-leakage behavior are exhibited. It is worth noting that the model construction can distinguish the input timing differences in any phase in the sense of output time. Figure 12 illustrates the differentiation of input timing in a positive (anti-leakage) phase, where Figure 13 illustrates the input to the negative (leakage) phase when the first input event time changes from t 0 to t 0 ' The distinction of timing. As a result, the state at time t 1 of the second input event (i.e., plot 1302 in Figure 13 is different relative to plot 1304).

本案中提供了基於以上概念的神經元模型。用於以 上描述的計算功能性的動態和數學運算式將在後續小節中關於根據本節中描述的原理來定義的此類模型(包括時間計算)作詳細論述。 A neuron model based on the above concepts is provided in this case. Used to The dynamic and mathematical expressions of the computational functionality described above will be discussed in detail in subsequent sections regarding such models (including time calculations) defined in accordance with the principles described in this section.

一個重要的問題是,抗洩漏積分激發行為是否可能 存在於生物學細胞中。生物學細胞具有產生電壓尖峰的再生式上衝程動態。A通道是快速啟動的電壓閘選瞬態鉀離子通道,該通道可抵消掉迅速的鈉流入並且減慢再生式上衝程。作為結果,有可能達成從引發上衝程的時間直至發生尖峰峰值的非常長的等待時間(數百毫秒或更長)。用於觸發A通道的 電壓位準可以略低於用於鈉通道鏈式反應的「閾值」,從而事件和輸入的實際時序亦可以更改等待時間性質。 An important question is whether the anti-leakage integration stimulating behavior is possible Present in biological cells. Biological cells have regenerative up-stroke dynamics that produce voltage spikes. The A channel is a fast-starting voltage gated transient potassium ion channel that counteracts rapid sodium influx and slows the regenerative upstroke. As a result, it is possible to achieve a very long waiting time (hundreds of milliseconds or longer) from the time when the upstroke is caused until the peak of the spike occurs. Used to trigger the A channel The voltage level can be slightly lower than the "threshold" used for the sodium channel chain reaction, so that the actual timing of events and inputs can also change the latency nature.

實踐理論Practical theory

應注意,不存在作為應當藉以評判所有其他模型或者所有其他模型力爭效仿的基線或度量的理想理論模型。模型是其設計者針對其建模者的目的所設計的構造。從生物學建模的觀點而言,期望能容易地決定神經元模型的參數以匹配生物學細胞在一條件範圍上的行為,亦即,行為能力上的豐富性是優點。 It should be noted that there is no ideal theoretical model as a baseline or measure by which all other models or all other models should be judged to be emulated. A model is a construct that its designer has designed for the purpose of its modeler. From a biological modeling point of view, it is desirable to be able to readily determine the parameters of a neuron model to match the behavior of a biological cell over a range of conditions, i.e., the abundance of behavioral capabilities is an advantage.

良好的模型將允許設計用於表示特定行為(諸如生物學上觀察到的行為)的實例。此外,每當嘗試設計一個態相中的行為時,良好的模型將不會使另一個態相中的動態發生偏離生物學上期望的行為的改變。除非在拐點的邊界上,否則行為將一般不會因較小的數值參數改變而急劇地改變。另外,良好的模型將是被理論上地定義的並且有可能如理論上所定義地一般被實現(並且便於如理論上所定義地一般高效地實現)而不會招致取決於實現的數值差異。換言之,良好的模型在不同實現中的行為將是相同的。另外,良好的模型可以能夠再現所設計的生物學行為而不必利用數值假像而非基於理論上定義的動態。 A good model will allow an example to be designed to represent a particular behavior, such as a biologically observed behavior. Moreover, whenever an attempt is made to design a behavior in a phase, a good model will not cause the dynamics in the other phase to deviate from the biologically expected behavior. Unless at the boundary of the inflection point, the behavior will generally not change drastically due to smaller numerical parameter changes. In addition, a good model will be theoretically defined and may be generally implemented as defined in theory (and facilitated to be generally efficiently implemented as defined in theory) without incurring numerical differences depending on the implementation. In other words, good models will behave the same in different implementations. In addition, a good model can reproduce the biological behavior of the design without having to use numerical artifacts rather than based on theoretically defined dynamics.

亦期望定義完備的實踐模型提供穩定的計算框架,從而可以設計細胞和網路而非設計搜索參數空間,並且從而可在計算意義上理解現有網路。期望所實現的模型如理論上定義的一般發生行為。 It is also expected that a well-defined practice model will provide a stable computational framework for designing cells and networks rather than designing search parameter spaces, and thus understanding existing networks in a computational sense. It is expected that the model implemented will be as generally defined in theory.

模型定義 Model definition

目標是神經元的遵循上述原理的在行為上豐富的、在生物學上一致的且在計算上方便的模型。本案的某些態樣支援能達成該等原理的神經元模型的設計。該一般神經元模型是獨特的,因為該一般神經元模型由在事件之時的狀態並且由支配該狀態從一個事件到下一個事件的改變的操作來定義。 The goal is a behaviorally rich, biologically consistent, and computationally convenient model of neurons that follows the above principles. Some aspects of the case support the design of a neuron model that achieves these principles. This general neuron model is unique in that the general neuron model is defined by the state at the time of the event and by the operation that governs the change of the state from one event to the next.

對大規模生物學尖峰神經網路的研究被驅使為依賴於具有電生理學行為的豐富表示且具有數學易處理性的神經元模型。近期,各種各樣的非線性模型已被證實會再現特性神經元計算性質的實質性集合。然而,儘管已提出二次模型可能是能夠再現此類性質的最簡單模型,但向該彙集添加維持的閾下振盪亦需要另一模型。而且,由於所耦合的非線性動態,求解此類模型可能需要數值方法。在有可塑性的情況下確保穩定性亦會約束建模參數。在本案中,採取不同的辦法,提議了新的簡約的線性尖峰神經元模型。線性尖峰神經元模型再現豐富的各種神經動態,包括維持的閾下振盪以及由非線性模型展現出的行為集合。該模型具有由閾下帶洩漏積分激發動態和閾上抗洩漏積分激發動態連同線性耦合來支配的雙態相。每個態相中的時間常數和耦合可以是獨立的,並且由此在每態相基礎上與生理學性質(例如,電壓閘選K+通道的行為;瞬態A電流)可建立關係。由於線性的性質,尖峰時序依賴可塑性(STDP)隨時間推移單調地更改突觸後電位,從而產生時間編碼穩定性優點。封閉形式解在給定了延 遲的情況下提供將來狀態,並且提供了用於達成給定的將來狀態(尖峰)的延遲。亦可應用瞬間耦合的原理。該模型獨特地服從於對具有任意精細時序的大規模生物學尖峰網路的理論分析和基於事件的硬體類比。線性的閾上動態被利用以表明尖峰網路能藉由將資訊編碼在尖峰時序中來計算一般線性方程組。 Research on large-scale biological spike neural networks has been driven by neuronal models that rely on rich representations of electrophysiological behavior and are mathematically manageable. Recently, a variety of nonlinear models have been shown to reproduce a substantial set of computational properties of characteristic neurons. However, while it has been suggested that a quadratic model may be the simplest model capable of reproducing such properties, adding a maintained subthreshold oscillation to the collection also requires another model. Moreover, due to the coupled nonlinear dynamics, solving such models may require numerical methods. Ensuring stability in the case of plasticity also constrains the modeling parameters. In this case, a new, simple linear peak neuron model was proposed in a different approach. The linear spike neuron model reproduces a rich variety of neural dynamics, including maintained sub-threshold oscillations and a set of behaviors exhibited by nonlinear models. The model has a bimodal phase dominated by subthreshold band leakage integral excitation dynamics and suprathreshold anti-leakage integral excitation dynamics along with linear coupling. The time constants and couplings in each phase can be independent, and thus can be related to physiological properties (eg, the behavior of voltage gate K + channels; transient A currents) on a per phase basis. Due to the linear nature, the spike timing dependent plasticity (STDP) monotonically changes the postsynaptic potential over time, resulting in time coding stability advantages. A closed form solution provides a future state given a delay and provides a delay for achieving a given future state (spike). The principle of instantaneous coupling can also be applied. This model is uniquely subject to theoretical analysis and event-based hardware analogy for large-scale biological spike networks with arbitrary fine timing. Linear on-threshold dynamics are utilized to indicate that the spike network can calculate general linear equations by encoding information in spike timing.

本案基於神經元計算動態原理來編制最小雙態相線 性尖峰神經元模型,並且演示了該模型能再現豐富的各種行為,包括諸如維持的振盪之類的閾下特徵。該模型的一維或兩位元線性動態可具有兩個態相。時間常數(以及耦合)可取決於態相。在閾下態相中,時間常數(按照慣例為負)表示洩漏通道動態,洩漏通道動態一般作用於以生物學一致的線性方式使細胞返回到靜息。閾上態相中的時間常數(按照慣例為正)反映抗洩漏通道動態,抗洩漏通道動態一般驅動細胞發放尖峰,同時由於電壓閘選K+通道和瞬態A電流的角色而在尖峰產生中招致等待時間。關於生物學證據來分析線性閾下和閾上動態並將其與先前非線性模型作比較。亦分析了長期增強(LTP)和長期抑壓(LTD)在時間編碼上下文中如何改變突觸後電位(PSP)的形狀。在該新模型中,對於給定的突觸強度改變的PSP差異隨時間推移是單調遞減的,從而揭示了在可塑性期間的潛在穩定性優點。 This case is based on the dynamic principle of neuron calculation to compile the minimum bimodal phase spiked neuron model, and demonstrates that the model can reproduce a rich variety of behaviors, including subliminal features such as maintained oscillations. The one- or two-element linear dynamics of the model can have two states. The time constant (and coupling) can depend on the phase of the phase. In the subliminal phase, the time constant (which is negative by convention) represents the leakage channel dynamics, which generally acts to return the cells to rest in a biologically consistent linear fashion. The time constant of the threshold phase state (as positive by convention) to reflect the anti-leak channel dynamic, dynamic general anti-leak channel drive spiking cells, and because the gate voltage is selected from K + channels and transient character A current spike is generated in the Inviting waiting time. The biological evidence is used to analyze linear subthreshold and suprathreshold dynamics and compare them to previous nonlinear models. Long-term enhancement (LTP) and long-term depression (LTD) were also analyzed for how to change the shape of the postsynaptic potential (PSP) in the context of time coding. In this new model, the PSP difference for a given change in synaptic strength is monotonically decreasing over time, revealing potential stability advantages during plasticity.

論述了使用該新模型對尖峰神經網路進行工程設計 和反向工程(解讀)的獨特方法。已提議了對基於速率的網路進行工程設計的方法。然而,無論是否發放尖峰,此類網 路中的資訊均可被編碼在激發速率中。而且,常常需要各種各樣的調諧曲線和濾波器。該模型的結果是對於將來狀態和尖峰等待時間兩者皆有封閉形式解。不同尋常的是,若將相對尖峰時序視為編碼了負對數資訊值,則在該模型的線性閾上態相中,突觸後尖峰等待時間中的資訊可變成相對突觸前尖峰時序中的資訊的線性函數。此意味著線性方程組實際上可由尖峰神經網路即時地計算出來。此在即使沒有精確的突觸權重的情況下亦是可能的,因為該線性方程組的係數可替換地由突觸延遲來表示。正和負係數可分別轉譯成興奮和抑制。方便地,較大的係數可轉譯成較短的延遲,從而顯著回應自然而然更快發生(尖峰)。精度可取決於時序解析度,並且該線性模型尤其服從於以任意精細的時間解析度對尖峰神經網路的大規模的基於事件的建模。 Discussing the engineering of the cusp neural network using this new model And a unique approach to reverse engineering (interpretation). A method of engineering a rate-based network has been proposed. However, regardless of whether or not a spike is issued, such a network Information in the road can be encoded in the excitation rate. Moreover, a wide variety of tuning curves and filters are often required. The result of this model is a closed-form solution for both future states and peak wait times. Unusually, if the relative spike timing is considered to encode a negative logarithmic information value, then in the linear threshold upper phase of the model, the information in the post-synaptic spike wait time can become relative to the pre-synaptic spike timing. A linear function of information. This means that the linear system of equations can actually be calculated instantaneously by the cusp neural network. This is possible even without precise synaptic weights, since the coefficients of the linear system of equations are alternatively represented by synaptic delays. Positive and negative coefficients can be translated into excitement and inhibition, respectively. Conveniently, larger coefficients can be translated into shorter delays, so that a significant response naturally occurs faster (spikes). Accuracy may depend on timing resolution, and the linear model is particularly subject to large-scale event-based modeling of spiked neural networks with arbitrarily fine temporal resolution.

模型動態Model dynamics

根據本案的某些態樣,所設計的模型是以事件的形式定義的,其中事件是所定義的行為的基礎。行為可取決於事件,且輸入和輸出可發生在事件之際,且動態在事件之處被耦合。 According to some aspects of the case, the model is designed in the form of an event, where the event is the basis of the defined behavior. The behavior may depend on the event, and the inputs and outputs may occur at the event and the dynamics are coupled at the event.

神經元模型的動態可被劃分成稱為負態相(亦稱為帶洩漏積分激發態相)和正態相(亦稱為抗洩漏積分激發態相)的兩個態相。以事件的形式對動態進行公式化以及將動態分成此兩個態相是所呈現的神經元模型的根本特性。在負態相中,狀態在將來事件之時一般趨向於目標狀況。在該負態相中,該神經元模型可展現出時間輸入偵測性質和其他所 謂的閾下行為以及其他更複雜的動態。在正態相中,狀態一般趨於背離反目標狀況。在該正態相中,該神經元模型可展現出計算性質,諸如取決於後續輸入事件而招致對尖峰的等待時間以及其他更複雜的動態。 The dynamics of the neuron model can be divided into two states called the negative phase (also known as the leaky integrated excited state phase) and the normal phase (also known as the anti-leakage integrated excited state phase). Formulating dynamics in the form of events and dividing the dynamics into these two states is the fundamental property of the presented neuron model. In the negative phase, the state generally tends to the target state at a time of future events. In the negative phase, the neuron model can exhibit temporal input detection properties and other Sub-threshold behavior and other more complex dynamics. In the normal phase, the state generally tends to deviate from the anti-target condition. In this normal phase, the neuron model can exhibit computational properties, such as waiting for spikes and other more complex dynamics depending on subsequent input events.

符號ρ在本案中將用於標示動態態相,在論述或表達具體態相的關係時,按照慣例對於負態相和正態相分別用符號「-」或「+」來替換符號ρ。該多變數模型狀態包括膜電位(電壓)v和抽象復原電流u。在基本形式中,態相ρ在本質上是由在事件之時的此狀態來決定的。該神經元模型被定義為若在先前事件處的電壓v高於閾值v>,則在下一事件之際處於正態相中,否則該神經元模型被定義為處於負態相中。目前,可考慮典型的設置,其中被設為等於常數v +The symbol ρ will be used to indicate the dynamic phase in this case. When discussing or expressing the relationship of the specific phase, the symbol ρ is replaced by the symbol "-" or "+" for the negative phase and the normal phase, respectively. The multivariate model state includes a membrane potential (voltage) v and an abstracted recovery current u . In the basic form, the phase ρ is essentially determined by this state at the time of the event. The neuron model is defined as above a threshold if the previous event at the voltage v v> , then in the normal phase at the next event, otherwise the neuron model is defined as being in the negative phase. Currently, typical settings can be considered, where Is set equal to the constant v + .

模型狀態的動態以經變換狀態對{v',u'}的動態的形式來方便地描述。在事件之時的狀態變換為:v'=v+q ρ , (22) The dynamics of the model state are conveniently described in the dynamic form of the transformed state versus { v ', u '}. The state at the time of the event is transformed into: v '= v + q ρ , (22)

u'=u+r, (23)其中q ρ r是線性變換變數。電壓變換可取決於態相ρ。亦取決於態相的模型動態由該經變換狀態對的形式由微分方程來定義: 其中如前所述,τ -是負態相電壓時間常數,τ +是正態相電壓時間常數,而τ u 是復原電流時間常數。該等是常數值,但可變時 間常數亦是可能的。出於方便性,負態相時間常數τ -可被指定為負量,從而電壓動態對於所有態相可用相同的形式來表達。指數τ +以及τ u 一般為正。 u '= u + r , (23) where q ρ and r are linear transformation variables. The voltage transformation can depend on the phase ρ of the state. The model dynamics, which also depend on the phase of the phase, are defined by the differential equation from the form of the transformed state pair: As mentioned above, τ - is the negative phase voltage time constant, τ + is the normal phase voltage time constant, and τ u is the recovery current time constant. These are constant values, but variable time constants are also possible. For convenience, the negative phase time constant τ - can be specified as a negative amount so that voltage dynamics can be expressed in the same form for all states. The indices τ + and τ u are generally positive.

該神經元模型的狀態動態在事件框架中定義。在諸事件之間,該等動態由以上的普通經解耦差分方程來定義。此兩個狀態元素的動態僅在事件處藉由在事件之時使狀態偏離於其零傾線的變換來耦合,其中變換變數為:q ρ =-τ ρ βu-v ρ ', (26) The state dynamics of this neuron model are defined in the event framework. Between events, these dynamics are defined by the above common decoupled difference equations. The dynamics of these two state elements are only coupled at the event by a transformation that deviates the state from its zero-tilt at the time of the event, where the transformation variables are: q ρ =- τ ρ βu - v ρ ', (26)

r=δ(v+ε), (27)其中如前所述,δ是耦合電導率-時間,ε是耦合偏移電壓,而β是耦合電阻。亦可採用帶有β ρ 的更一般的公式化(其中兩個態相中的變換以及時間常數是完全獨立的)。通常,β是跨諸態相共用的參數,但作為β ρ 則可針對每個態相ρ分開地配置。類似地,τ u 通常是跨諸態相共用的。v ρ '的兩個值通常是此兩個態相的基電壓或參考電壓,亦即,v ρ '=v ρ 。如前所述,參數v-是負態相的基電壓,並且膜電位在負態相中一般將趨向於v-。如前所述,參數v +是正態相的基電壓,並且膜電位在正態相中一般將趨於背離v +。參數ε可通常被設為-v - r = δ ( v + ε ), (27) where δ is the coupling conductivity-time, ε is the coupling offset voltage, and β is the coupling resistance. A more general formulation with β ρ can also be used (where the transformations in the two states and the time constant are completely independent). Typically, the phase state beta] across all common parameters, but with a β ρ [rho] may be arranged separately for each state. Similarly, τ u is usually shared across states. The two values of v ρ ' are usually the base voltage or reference voltage of the two states, that is, v ρ '= v ρ . As previously mentioned, the parameter v - is the base voltage of the negative phase, and the membrane potential will generally tend to v - in the negative phase. As previously mentioned, the parameter v + is the base voltage of the normal phase, and the membrane potential will generally tend to deviate from v + in the normal phase. The parameter ε can usually be set to -v - .

給定了時間t處的狀態{v',u'},該模型對於在時間t+△t的狀態進化具有封閉形式解: Given the state at time t {v ', u'}, that the model at time t + △ t evolutionary state has a closed form solution:

因此,模型狀態僅需要、並且被定義為基於事件而 被更新,諸如基於輸入(突觸前尖峰)或輸出(突觸後尖峰)而被更新。此可被一般化,因為操作亦可在人工事件之際執行(無論是否有輸入或輸出)。根據定義,變換被定義為在事件之處,而非在諸事件之間。此意味著除非存在事件,否則q ρ r以及甚至ρ不應當被重新計算。 Thus, the model state is only needed and is defined to be updated based on the event, such as based on input (pre-synaptic spikes) or output (post-synaptic spikes). This can be generalized because operations can also be performed at the time of a human event (whether there is input or output). By definition, a transformation is defined as being at the event, not between events. This means that q ρ and r and even ρ should not be recalculated unless there is an event.

於是,該模型僅在事件之處被耦合並且態相(無論 正負)僅在事件之處被決定。模型狀態變數vu一般如上所述地經由變數q ρ r來耦合,變數q ρ r僅在事件(或步長)之處被決定。變數q ρ r是基於先前狀態來計算的。該等狀態元素隨後獨立地進化至下一事件。實際上,此意味著該等狀態變數在諸事件之間「瞬間地解耦」。 Thus, the model is only coupled at the event and the phase (whether positive or negative) is only determined at the event. The model state variables v and u are generally coupled via the variables q ρ and r as described above, and the variables q ρ and r are determined only at the event (or step size). The variables q ρ and r are calculated based on the previous state. These state elements then evolve independently to the next event. In effect, this means that the state variables are "decoupled instantaneously" between events.

圖14圖示根據本案的某些態樣的在事件處的瞬間耦 合以及在事件之間的解耦的實例1400。如圖14中所圖示的,突觸前(輸入)事件1402之後跟隨著另一突觸前事件1404和突觸後(輸出)事件1406。狀態可使用經解耦的動態來從事件到事件地(亦即,從事件1402到事件1404並到事件1406地)進化。 Figure 14 illustrates an instant coupling at an event in accordance with certain aspects of the present disclosure. An example 1400 of decoupling and decoupling between events. As illustrated in FIG. 14, pre-synaptic (input) event 1402 is followed by another pre-synaptic event 1404 and post-synaptic (output) event 1406. The state can be evolved from event to event ground (ie, from event 1402 to event 1404 and to event 1406) using decoupled dynamics.

圖15圖示根據本案的某些態樣的正態相和負態相中 的動態的比較的實例1500。圖15圖示該模型的電壓(y軸)在兩個事件之間的行為取決於事件間間隔(x軸)。參數τ -=-14.3ms、τ +=2.6ms、τ u =33.3ms、v - =-60mV、v +=-40mV、ε=-v -β=0.01和δ=2近似地反映了針對新大腦皮質錐體細胞的設置。電壓偏移為ε +=ε -=1mV。初始電壓是第一事件之處的電壓。 Figure 15 illustrates an example 1500 of dynamic comparisons in a normal phase and a negative phase in accordance with certain aspects of the present disclosure. Figure 15 illustrates that the behavior of the model's voltage (y-axis) between two events depends on the inter-event interval (x-axis). The parameters τ - = -14.3ms, τ + = 2.6ms, τ u = 33.3ms, v - = -60mV, v + = -40mV, ε = - v - , β = 0.01 and δ = 2 approximately reflect The setting of new cerebral cortical pyramidal cells. The voltage offset is ε + = ε - =1mV. The initial voltage is the voltage at the first event.

在第一情形1502中,在第一事件之時的狀態為 v=v ++ε +u=0,其中ε +是小正電壓偏移。假定典型的設置,由於v>v +,該模型將處於正態相中。作為變換變數q +=-v +的結果,電壓將背離v +地增大。在第二情形1504中,在第一事件之時的狀態為v=v +-ε -u=0,其中ε -是小正電壓偏移。作為變換變數q -=-v -的結果,電壓將朝v -減小。 In the first case 1502, the state at the time of the first event is v = v + + ε + and u =0, where ε + is a small positive voltage offset. Assuming a typical setup, the model will be in the normal phase due to v > v + . As a result of the transformation variable q + = - v + , the voltage will increase away from v + . In the second scenario 1504, the state at the time of the first event is v = v + - ε - and u =0, where ε - is a small positive voltage offset. As a result of the transformation variable q - = - v - , the voltage will decrease towards v - .

該模型被定義為在電壓v到達閾值v S 時發放尖峰(亦 即,產生輸出事件)。隨後,狀態通常在重定事件(重定事件在技術上可以與尖峰輸出事件完全相同)處被復位: The model is defined as a threshold spiking v S (i.e., generating an output event) at the voltage v reaches. The state is then typically reset at the retargeting event (the retargeting event can technically be identical to the spike output event):

u=u+△u, (31)其中△u是復原電流重定電壓。重定電壓可通常被設為v - u = u + △ u , (31) where Δ u is the recovery current re-voltage. Re-voltage Can usually be set to v - .

此外,可以預計突觸後尖峰的時間,從而到達特定狀態的時間可提前以封閉形式來決定。給定了先前電壓狀態v 0,(從電壓狀態v 0)直至到達電壓狀態v f 之前的時間延遲由下式提供: In addition, the time of the post-synaptic spike can be predicted so that the time to reach a particular state can be determined in advance in a closed form. Given the previous voltage state v 0 , the time delay from (from voltage state v 0 ) until the voltage state v f is reached is provided by:

若尖峰被定義為發生在電壓狀態v到達值v S (尖峰電壓)之時,則從電壓處在給定狀態v之時起測得的直至發生尖峰前的時間量或相對延遲的封閉形式解為: 其中是態相閾值且通常設為v +。應注意,態相閾值不是零傾 線。 If the spike is defined as occurring when the voltage state v reaches the value v S (spike voltage), then the closed-form solution of the amount of time or relative delay measured from the voltage at the given state v until the occurrence of the spike for: among them Is the phase threshold and is usually set to v + . It should be noted that the phase threshold is not zero tilt.

模型動態的以上定義取決於該模型在正態相還是負 態相中。如前所述,耦合和態相ρ是基於事件被計算的。出於狀態傳播的目的,態相和耦合(變換)變數是基於在上一個(先前)事件之時的狀態來定義。然而,一旦該狀態傳播到當前事件,則對尖峰輸出時間(下一事件)的預計、態相和耦合變數皆是基於納入了輸入之後在當前事件之時的狀態來定義的。 The above definition of model dynamics depends on whether the model is in the normal or negative phase. As mentioned earlier, the coupling and phase ρ are calculated based on the event. For the purpose of state propagation, the phase and coupling (transform) variables are defined based on the state at the time of the previous (previous) event. However, once the state propagates to the current event, the predicted, phase, and coupled variables for the peak output time (next event) are defined based on the state at the time of the current event after the input is included.

對於具有事件或步長-事件更新的瞬間耦合,從事件 時間t到事件時間t+△t的狀態進化可如以上在式(11)、(12)、(28)和(29)中一般定義。基於步長的更新可任選地配置成等效於事件/步長-事件(藉由僅基於事件來更新qr),或者藉由在每個步長處定義事件/時刻(計算qr)來不同地配置。差別通常是可忽略的。為了使計算高效,事件更新(或者若限於基於步長的模擬器則為步長-事件更新)實現可能是較佳的。在此類情形中,可使用以上封閉形式運算式(14)和(32)來預計尖峰事件。在步長更新中,△t是常數(模擬步長)並且相應地將式(26)-(27)代入式(28)-(29): For a event or step - COUPLED updated event, t from the event time to the event time t + △ t state evolution may be as described above in formula (11), (12), (28) and (29) in the general definition of . The step-based update can optionally be configured to be equivalent to an event/step-time event (by updating q and r based only on events), or by defining an event/time at each step (calculating q and r) ) to configure differently. The difference is usually negligible. In order to make the calculations efficient, it may be preferable to implement an event update (or step-to-event update if limited to a step-based simulator). In such cases, the above closed form equations (14) and (32) can be used to predict spike events. In the update step, △ t is a constant (simulation step) and, accordingly, the formula (26) - (27) into equation (28) - (29):

由此,將事件更新或步長-事件更新實現轉換成步長更新形式可包括:(i)移除基於事件更新的條件(在每個步長 處更新)以及移除對尖峰的預計,以及(ii)如上所述地在給定了固定△t的情況下可任選地對等式進行簡化。 Thus, converting an event update or step-event update implementation to a step-update form can include: (i) removing event-based update conditions (updated at each step) and removing predictions of spikes, and ( optionally simplified equation for the case of ii) described above in a given △ t is fixed.

電流和電導率模型可類似地從事件到事件地定義和計算,並且可被納入到尖峰預計中。替換地,輸入模型可在不同於神經元模型的實現中計算(例如,具有步長-事件更新式神經元模型的步長更新式電導率模型)。 Current and conductivity models can be similarly defined and calculated from event to event and can be incorporated into spike predictions. Alternatively, the input model can be computed in an implementation other than a neuron model (eg, a step-updated conductivity model with a step-event-updated neuron model).

該線性模型的另一性質是記憶上的單調差異。在膜電位的程序中的該差異隨時間推移而減少,因此例如在負(LIF)域中(為清楚起見而忽略或省卻第二狀態),該差異單調遞減: 因此,尖峰時序依賴可塑性的作用隨時間推移是穩定的:由於尖峰時序依賴可塑性而造成的突觸權重改變對細胞的後續行為具有隨時間推移遞減的影響。 Another property of this linear model is the monotonic difference in memory. This difference in the procedure of the membrane potential decreases over time, so for example in the negative (LIF) domain (ignoring or eliminating the second state for clarity), the difference monotonically decreases: Thus, the effect of peak timing-dependent plasticity is stable over time: changes in synaptic weight due to peak timing-dependent plasticity have a diminishing effect on subsequent behavior of cells over time.

該線性模型的另一性質是:相對尖峰等待時間可表達為相對輸入尖峰時序的函數,此是由式(14)和(32)得出的。出於概念演示的簡化,可考慮使用閾值在v ρ '=0處(亦即,q=0)的具有一維狀態β=0(或即無u)的heavy-side(赫維賽德)函數θ的簡單狄拉克電流尖峰輸入(權重為1或0): 其中τ i 是來自突觸前神經元i的輸入尖峰的時間,而△τ i 是來自突觸前神經元i的連接延遲。因此,從增量至電壓膜狀態v 0到尖峰的時間為: Another property of this linear model is that the relative spike latency can be expressed as a function of the relative input spike timing, which is derived from equations (14) and (32). For the simplification of the conceptual demonstration, consider using a heavy-side with a one-dimensional state β =0 (or no u ) with a threshold at v ρ '=0 (ie q =0). Simple Dirac current spike input for function θ (weight 1 or 0): Where τ i is the time from the input spike of presynaptic neuron i , and Δ τ i is the connection delay from presynaptic neuron i . Therefore, the time from the increment to the voltage film state v 0 to the spike is:

定義,提供了近線性關係: 其中,且△w=v 0/v S 。對於充分小的△w,該關係是近似線性的。因此,可考慮編碼在相對尖峰時序τ i 中的對數資訊(x i 的負對數),以及類似地與在線性域中的係數w i 有關的連接延遲△τ i τ i =-log b x i ;△τ i =-log b (w i v S )。 (40) definition , providing a near linear relationship: among them And Δ w = v 0 / v S . For sufficiently small Δ w , the relationship is approximately linear. Therefore, the logarithmic information (the negative logarithm of x i ) encoded in the relative peak timing τ i and the connection delay Δ τ i similarly related to the coefficient w i in the linear domain can be considered: τ i =-log b x i ; Δ τ i = -log b ( w i v S ). (40)

因此,作為輸入尖峰時序的函數的神經元尖峰等待時間等效於在負對數域中的線性方程組。電壓狀態到達v 0的時間在以上用作輸入和輸出尖峰時間的參考,但可對任一者使用任何時間參考。線性域中的值的形式的計算的精度將取決於神經尖峰時序域中的時序解析度。 Thus, the neuron spike latency as a function of the input spike timing is equivalent to a linear system of equations in the negative log domain. The time at which the voltage state reaches v 0 is used above as a reference for the input and output spike times, but any time reference can be used for either. The accuracy of the calculation of the form of the values in the linear domain will depend on the temporal resolution in the neural spike timing domain.

輸入和可塑性Input and plasticity

輸入可僅在事件處應用於該模型。在典型的公式化中,輸入可在狀態已經從先前事件進展到輸入事件之時後被應用於模型狀態。由此,更一般地: 其中h v h u 是輸入通道函數。在簡單情形中,即時電流輸入可被建模為應用於電壓狀態的離散狄拉克△函數,亦即,i=θ(t)。在該情形中,對模型狀態的輸入在事件之時應用,並且:h v (x,i)=x+h u (x,i)=x, (43)其中β是膜電阻。 Inputs can be applied to the model only at the event. In a typical formulation, the input can be applied to the model state after the state has progressed from the previous event to the input event. Thus, more generally: Where h v and h u are input channel functions. In a simple case, the instantaneous current input can be modeled as a discrete Dirac Δ function applied to the voltage state, ie, i = θ ( t ). In this case, the input to the state of the model is applied at the time of the event, and: h v ( x , i ) = x + ; h u ( x , i ) = x , (43) where β is the film resistance.

然而,輸入可替換地是連續的,諸如描述興奮性或 抑制性突觸後電位的加權指數衰退之和,無論是基於電流的還是基於電導率的。在該情形中,對模型狀態的輸入在事件之時適用,但亦潛在地在該事件之前或之後適用。因此,如在先前事件與下一事件之間累積的來自對下一事件的輸入和來自過去事件的輸入的等效總積分輸入貢獻可在下一事件之時被應用。因此,對於連續輸入貢獻的封閉形式解亦是一優點,但不是必需的。 However, the input is alternatively continuous, such as describing excitability or The sum of the weighted exponential decay of the inhibitory postsynaptic potential, whether current-based or conductivity-based. In this case, the input to the state of the model applies at the time of the event, but is also potentially applicable before or after the event. Thus, the equivalent total integration input contribution from the input to the next event and the input from the past event, as accumulated between the previous event and the next event, may be applied at the time of the next event. Therefore, a closed form solution for continuous input contributions is also an advantage, but is not required.

呈指數地衰退的連續的興奮性或抑制性輸入可由下 式定義: 其具有封閉形式解並且由此可與{v,u}狀態解耦地從事件到事件地進化。從時間t的先前事件到時間t+△t的下一事件的時間段上的總貢獻由下式提供: 其中對於抑制性貢獻g<0,而對於興奮性貢獻g<0,並且關於狄拉克輸入可使用相同的輸入通道函數。輸入和狀態進化是解耦的,並且此在期望的情況下可在事件之時被補償,但通常是不必要的。 A continuous excitatory or inhibitory input that decreases exponentially can be defined by: It has a closed form solution and can thus evolve from event to event decoupled from the { v , u } state. From time t to time t + previous event on the total contribution of the next event time period △ t is provided by the following formula: Wherein for the inhibitory contribution g < 0, and for the excitability contribution g < 0, and the same input channel function can be used for the Dirac input. Input and state evolution are decoupled, and this can be compensated for at the time of the event, but is usually unnecessary.

基於電導率的輸入亦可被積分: 其中E g 是對於輸入的基準電壓,且V是為補償從積分中移除 (v-E g )項而計算出的電壓位準。若v跨諸事件改變相對小量或者諸事件以較小的事件間間隔發生,則V=v(t)(先前事件處的電壓)的近似完全成立。若非如此,則以下論述的對V更複雜的公式化或者對人工事件的使用可被用於達成期望效果,同時遵守該模型的定義。 Conductivity-based inputs can also be integrated: Where E g is the reference voltage for the input and V is the voltage level calculated to compensate for the removal of the ( v - E g ) term from the integration. The approximation of V = v ( t ) (the voltage at the previous event) is fully true if v varies relatively small events across events or events occur at smaller inter-event intervals. If this is not the case, the more complex formulation of V or the use of artificial events discussed below can be used to achieve the desired effect while adhering to the definition of the model.

根據定義,該模型在尖峰時間預計中不考慮諸事件 之間的將來輸入。此舉的大致原因在於預計具有封閉形式解此一事實。即使封閉形式解對於一些連續輸入公式化可能是可用的,但是若事件的速率充分高則藉由替換地定義輸入或通道函數以及否則藉由使用人工事件,可達成等同效應。 By definition, the model does not consider events in peak time estimates. The future input between. The general reason for this is due to the fact that it is expected to have a closed form. Even if a closed form solution may be available for some continuous input formulation, if the rate of the event is sufficiently high, an equivalent effect can be achieved by alternatively defining the input or channel function and otherwise by using an artificial event.

根據定義,所有形式的可塑性皆在事件之處應用, 就像該模型中的其他一切一般。尖峰時序依賴可塑性尤其適合此一點,因為長期增強和長期抑壓可分別被視為由突觸後(輸出)事件之前或之後的突觸前(輸入)事件來觸發的。 任何形式的結構化可塑性亦將按定義在事件處應用。結構化可塑性可被認為是例如修改、建立或刪除突觸連接。等效地,抽象突觸的參數(諸如延遲和權重)可就像用於建模刪除掉的突觸的抽象突觸被重用於建模具有不同參數的新突觸一般地來改變。因此,多種形式的可塑性可以用可變突觸參數的形式來進行一般化。該可變性可以是在離散時刻的或是連續的,但是無論如何皆將在該模型中從事件到事件地進化。 By definition, all forms of plasticity are applied at the event, Just like everything else in the model. Peak timing dependent plasticity is particularly suitable for this because long-term enhancement and long-term suppression can be seen as triggered by pre-synaptic (input) events before or after a post-synaptic (output) event, respectively. Any form of structural plasticity will also be applied at the event as defined. Structural plasticity can be thought of as, for example, modifying, establishing, or deleting synaptic connections. Equivalently, the parameters of abstract synapses, such as delays and weights, can generally be changed as the abstract synapses used to model the deleted synapses are reused to model new synapses with different parameters. Thus, multiple forms of plasticity can be generalized in the form of variable synaptic parameters. This variability can be discrete or continuous, but will evolve from event to event in the model anyway.

演算法解Algorithmic solution

該模型的演算法解可包括:(i)使狀態從先前事件進展到下一事件;(ii)在給定了下一事件時間的輸入(或在下一 事件之時應用等效於在先前事件與下一事件之間所累積輸入的輸入)的情況下更新在下一事件時間處的狀態;及(iii)預計下一事件將在何時發生。事件可包括輸入事件,輸入事件通常被認為發生在突觸輸入傳播至神經元的胞體之時。事件亦可包括輸出事件,輸出事件通常被認為發生在尖峰由神經元的胞體發射並且開始沿軸突傳播之時。由於封閉形式解是可用的,因此模型狀態亦可在期望的情況下在事件之間決定,但除非存在事件,否則態相和耦合不會被更新。 The algorithmic solution of the model may include: (i) making the state progress from the previous event to the next event; (ii) giving the input of the next event time (or at the next The state at the next event time is updated when the event applies an input equivalent to the accumulated input between the previous event and the next event; and (iii) when the next event is expected to occur. An event can include an input event, which is generally considered to occur when the synaptic input propagates to the cell body of the neuron. Events can also include output events, which are generally thought to occur when spikes are emitted by the cell body of the neuron and begin to propagate along the axon. Since the closed form solution is available, the model state can also be determined between events if desired, but unless there is an event, the phase and coupling are not updated.

以下演算法描述通常基於事件而進行的操作。狀態 可取決於事件而進展。隨後,可使輸入進展並應用輸入(若事件或事件間間隔具有輸入),並預計下一事件(輸出)。使狀態進展所需的操作可能取決於事件是輸出事件還是其他事件(例如,輸入或人工事件)而有所不同。 The following algorithms describe the operations that are typically based on events. status It can progress depending on the event. The input can then be progressed and the input applied (if the event or interval between events has an input) and the next event (output) is expected. The operations required to make a state progress may vary depending on whether the event is an output event or another event (for example, an input or a human event).

若狀態基於非輸出事件而進展,則可首先決定自先 前事件時間t起的時間△t。態相可基於在先前事件處的先前狀態{v,u}來決定。在給定了態相和先前狀態的情況下,可決定變換q ρ r。經變換的狀態{v',u'}可在先前事件處決定。進展了的經變換的狀態可在時間t+△t處決定。進展了的狀態{v,u}可在時間t+△t處決定。若狀態基於輸出事件而進展,則狀態可被重定。 If the state of progress based on non-output events, you can first decide from time t from the previous event time △ t. The phase can be determined based on the previous state { v , u } at the previous event. Given the phase and previous states, it is possible to decide to transform q ρ and r . {V ', u'} can be determined by the previous state transition of the event. Advances in the state may be transformed at time t + △ t at the decision. Advances in the state {v, u} may be t + △ determined at time t. If the state progresses based on an output event, the state can be re-determined.

僅在事件處或在先前事件與下一事件之間的時間期 間有輸入的情況下才需要使輸入進展和應用輸入。對於使輸入進展和應用輸入,可能需要首先適配可塑的輸入參數。進展了的輸入可在時間t+△t處決定。任何新的輸入可在時間t被 納入(若存在任何新的輸入事件)。可以決定等效的事件間間隔積分輸入貢獻i。新的狀態{v,u}可藉由應用等效輸入i來決定。 Input progress and application input are only required if there is input during the event or during the time between the previous event and the next event. For input progress and application input, it may be necessary to first adapt the plastic input parameters. Progress of the input time can be determined at t + △ t. Any new input can be included at time t (if any new input events exist). It is possible to determine the equivalent event interval integral input contribution i . The new state { v , u } can be determined by applying the equivalent input i .

若存在下一輸出事件時間已改變的任何機會,則應 當預計到下一輸出事件的時間。為了預計下一輸出事件,可首先基於新狀態{v,u}來決定態相。可決定經更新的變換變數q ρ ,並且可預計直至下一輸出尖峰事件之前的相對延遲△t S 。無論事件是輸入事件以及輸出事件或人工事件,對下一輸出尖峰的預計一般皆是適用的,因為任何狀態更新皆可改變對尖峰的預計時間。 If there is any chance that the next output event time has changed, then the time of the next output event should be expected. To predict the next output event, the phase can be determined first based on the new state { v , u }. The updated transform variable q ρ can be determined and the relative delay Δ t S up to the next output spike event can be predicted. Whether the event is an input event or an output event or an artificial event, the prediction of the next output spike is generally applicable, as any state update can change the expected time for the spike.

人工事件Artificial event

根據定義,該模型僅基於事件被更新。人工事件表示為了定義模型動態行為而定義的事件,而非輸入或輸出事件本身。存在為何建模者可能希望定義人工事件的若干原因。 By definition, the model is only updated based on events. A human event represents an event defined to define the dynamic behavior of the model, not the input or output event itself. There are several reasons why a modeler may wish to define an artificial event.

建模者往往希望以精細的時間解析度看到電壓和電流狀態的蹤跡。彼等狀態可在諸事件之間週期性地計算,而無需定義人工事件。此將需要使用在先前事件處(而非先前週期)計算出的變換變數和態相來計算電壓和電流。此意味著在任何事件間時間,狀態皆可被決定,但是不存在耦合,因此在下一事件之時的狀態不會改變,無論是否在諸事件之間計算了狀態。 Modelers often want to see traces of voltage and current states with fine time resolution. Their states can be calculated periodically between events without the need to define artificial events. This would require the use of the transformed variables and phase calculated at the previous event (rather than the previous cycle) to calculate the voltage and current. This means that at any time between events, the state can be determined, but there is no coupling, so the state at the time of the next event does not change, whether or not the state is calculated between events.

圖16圖示了該概念,亦即,圖示了諸事件之間的獨立於事件間更新的狀態動態的實例1600。如圖16中所圖示的 ,突觸前(輸入)事件1602之後跟隨著另一突觸前事件1604 和突觸後(輸出)事件1606。狀態可獨立於事件間更新(亦即在事件間時間1608的更新)使用經解耦的動態來從事件到事件(亦即,從事件1602到事件1604並到事件1606)地進化。 Figure 16 illustrates this concept, that is, an example 1600 illustrating state dynamics between events that are independent of inter-event updates. As illustrated in Figure 16 Presynaptic (input) event 1602 followed by another presynaptic event 1604 And post-synaptic (output) event 1606. The state may evolve from event to event (ie, from event 1602 to event 1604 to event 1606) using decoupled dynamics independently of the inter-event update (ie, the update at inter-event time 1608).

根據定義,耦合變換被定義為在事件之處,而非在 諸事件之間。變換變數和態相僅在事件之處被計算。此意味著除非存在事件,否則q ρ r以及甚至ρ不應當被重新計算。 在技術上,可將人工事件定義為發生在電壓交越態相閾值之時,此是由於封閉形式運算式和諸事件之間的解耦而可提前計算出的時間。於是,假定尚未定義人工事件,電壓和電流狀態可在期望的情況下在諸事件之間被更新,但電壓和電流狀態更新是基於來自先前事件的參數和與先前事件的偏移。 換言之,根據定義,耦合應當僅發生在事件之處。 By definition, a coupled transformation is defined as being at the event, not between events. Transform variables and states are only calculated at the event. This means that q ρ and r and even ρ should not be recalculated unless there is an event. Technically, a human event can be defined as occurring at the voltage crossover phase threshold, which is a time that can be calculated in advance due to the decoupling between the closed form expression and the events. Thus, assuming that a human event has not been defined, the voltage and current states can be updated between events as desired, but the voltage and current state updates are based on parameters from previous events and offsets from previous events. In other words, by definition, coupling should only occur at the event.

定義人工事件允許建模者更改耦合。可能亦存在用 於在方便的時間定義人工事件的原因。定義或不定義人工事件皆沒有錯,但建模者應當理解,定義人工事件一般會改變模型的行為。 Defining artifacts allows the modeler to change the coupling. May also exist Define the cause of the artificial event at a convenient time. There is nothing wrong with defining or not defining human events, but the modeler should understand that defining artificial events generally changes the behavior of the model.

定義人工事件的一個原因是為了用具有較低事件率 的模型實例來達成具有高事件率的模型實例的行為特性。若存在高輸入事件率,則模型動態可按較小的時間間隔進展。 然而,若存在低輸入事件率,則模型動態在沒有人工事件的情況下可能按較大的時間間隔進展。一般而言,除非時間間隔大很多,否則行為上的差異可能是不顯著的。即使如此, 亦可作出對參數(諸如時間常數)的調節以進行補償。 One reason to define a human event is to use a lower event rate Model instances to achieve behavioral characteristics of model instances with high event rates. If there is a high input event rate, the model dynamics can progress at smaller time intervals. However, if there is a low input event rate, the model dynamics may progress at larger time intervals without human events. In general, unless the time interval is much larger, the difference in behavior may not be significant. even so, Adjustments to parameters such as time constants can also be made to compensate.

然而,作為替換方案,可定義人工事件。具體而言 ,若非人工事件之間的間隔較大,則人工事件可被定義為發生在非人工事件之間。在技術上,此可用若干方式來達成。 例如,可在每個非人工事件之後試驗性地以某個延遲排程人工事件。若另一非人工事件發生在該人工事件之前,則該人工事件在最晚非人工事件之後以某個延遲被重新排程。若人工事件沒有先發生,則人工事件以相同的延遲被再次重新排程。替換地,人工事件可週期性地被排程。人工事件亦可被定義為有條件地發生,諸如取決於狀態或尖峰發放率或者在提前計算出的時間發生。 However, as an alternative, an artificial event can be defined. in particular If the interval between non-artificial events is large, the artificial event can be defined as occurring between non-artificial events. Technically, this can be done in several ways. For example, an artificial event can be scheduled experimentally with a certain delay after each non-artificial event. If another non-artificial event occurs before the artificial event, the artificial event is rescheduled with a delay after the latest non-artificial event. If the human event does not occur first, the human event is rescheduled again with the same delay. Alternatively, human events may be scheduled periodically. Artificial events can also be defined to occur conditionally, such as depending on the state or spike rate or at a time calculated in advance.

人工事件對於在具有充分的扇入或扇出連通性的網 路中達成期望行為往往是不必要的,因為對於每個細胞存在大量輸入,每個輸入皆對接收方細胞貢獻輸入事件。因此,若期望需要週期性事件的特定行為,則輸入事件本身滿足該角色亦已綽綽有餘。 Artificial events for nets with sufficient fan-in or fan-out connectivity Achieving desired behavior on the road is often unnecessary because there is a large amount of input for each cell, and each input contributes an input event to the recipient cell. Therefore, if a specific behavior of a periodic event is desired, it is more than enough for the input event itself to satisfy the role.

圖17圖示了人工事件的概念,亦即,圖示了儘管不 存在輸入或輸出亦影響動態的人工事件1702和1704的實例1700。人工事件可僅改變模型的耦合。因此,在任何事件間時間,例如在事件間時間1706,狀態可自上一個事件起解耦地進化。再次,無論狀態是否是在事件間時間被決定,下一事件處的狀態將是相同的,如圖17中圖示的。 Figure 17 illustrates the concept of a human event, that is, illustrated although not There are instances 1700 of inputs or outputs that also affect dynamic human events 1702 and 1704. Artificial events can only change the coupling of the model. Thus, at any inter-event time, such as inter-event time 1706, the state may evolve decoupled from the previous event. Again, regardless of whether the state is determined during the inter-event time, the state at the next event will be the same, as illustrated in FIG.

圖18比較其間沒有人工事件的兩個事件之間的電壓 進化(標繪1806、1808)以及其間有週期性人工事件的兩個 事件之間的電壓進化(標繪1810、1812)。例如,圖18中的人工事件可按5ms間隔發生。在圖表1802中,可觀察到,差異很小從而很難區分。在圖表1804中,已發生三個改變以增大該差異。首先,在第一事件處的電壓已被移到非常靠近v +,因為此將增大到達特定電壓位準的時間延遲,並且此將增大該差異。第二,在第一事件處的u值被顯著減小。第三,人工事件以較短的間隔發生。差異仍非常小但取決於期望行為以及非人工事件的密度(或率)可能是顯著的。從該等行為亦可觀察到,時間常數上的改變將補償該等差異。 Figure 18 compares the voltage evolution between two events with no artifacts in between (plot 1806, 1808) and the two events between periodic events with periodic artifacts (plots 1810, 1812). For example, the human events in Figure 18 can occur at 5 ms intervals. In Figure 1802, it can be observed that the differences are small and thus difficult to distinguish. In chart 1804, three changes have occurred to increase the difference. First, the voltage at the first event has been moved very close to v + as this will increase the time delay to a particular voltage level and this will increase the difference. Second, the value of u at the first event is significantly reduced. Third, artificial events occur at shorter intervals. The difference is still very small but may be significant depending on the desired behavior and the density (or rate) of non-artificial events. It can also be observed from these behaviors that changes in the time constant will compensate for these differences.

一般而言,如上所述,該模型適合於在基於事件的 模擬中求解。然而,該模型亦可在習知的基於步長的模擬中求解。無論如何,根本上有兩種方式執行此操作:(i)無人工事件;及(ii)有人工事件。根據定義,存在該模型的不同實例。模型操作被定義為發生在事件(無論是人工的還是其他的事件)之處。由此,在沒有人工事件的情況下,在每一個步長處執行的代碼應當以事件在該時槽處的發生為條件(實際上,在沒有事件的步長處不可發生操作)。替換地,在有人工事件的情況下,人工事件可被定義為發生在每個時槽處。由於封閉形式解是可用的,因此無需數值方法,無論事件之間的時間是恆定的還是可變的。另一問題是事件的時間是否被量化。通常情況下,在基於步長的模擬中,時間被量化為步長時間。因此,該等實例將不同於(無論是否顯著)基於事件的公式化,無論是否使用人工事件。 In general, as described above, the model is suitable for event-based Solve in the simulation. However, the model can also be solved in conventional step-based simulations. In any case, there are basically two ways to do this: (i) no human events; and (ii) artificial events. By definition, there are different instances of the model. Model operations are defined as where an event occurs, whether it is an artificial or other event. Thus, in the absence of a human event, the code executed at each step should be conditional on the occurrence of the event at that time slot (actually, no operation can occur at the step without the event). Alternatively, in the case of a human event, a human event can be defined to occur at each time slot. Since closed-form solutions are available, no numerical methods are needed, regardless of whether the time between events is constant or variable. Another question is whether the time of the event is quantified. Typically, in a step-based simulation, time is quantized as a step. Therefore, these instances will be different (whether significant or not) based on event-based formulation, whether or not artificial events are used.

儘管週期性人工事件一般將需要更多計算並且因此 一般將是較不期望的,但存在一些潛在簡化。例如,自先前事件起的時間△t可以是常數(時間間隔)。由於該緣故,經變換的狀態更新可被簡化為對每個狀態元素的單乘。無限衝激回應濾波器隨後由下式提供:v'(t+△t)=c ρ v'(t), (47) u'(t+△t)=c u u'(t), (48)其中常數被定義為While periodic artificial events will generally require more computation and therefore will generally be less desirable, there are some potential simplifications. For example, the time Δ t since the previous event may be a constant (time interval). For this reason, the transformed state update can be simplified to a single multiplication for each state element. The infinite impulse response filter is then provided by: v '( t + Δ t ) = c ρ v '( t ), (47) u '( t + Δ t ) = c u u '( t ), ( 48) where the constant is defined as with .

另一簡化是尖峰預計可由在每個間隔處檢查是否v 來代替。尖峰條件被定義為了v v S 。然而,若人工事件被定義為發生在量化時間間隔△t處,則實際上可在諸間隔之間達到尖峰條件。結果,應確保尖峰發生在期望時間處,無論是發生在前面的事件處還是在後面的事件處。 Another simplification is expected to peak by checking whether or not at each interval v To replace. Spike conditions are defined as v v S . However, if the event is defined as occurring artificial quantization of the time interval △ t, the condition may actually reach the peak between the various intervals. As a result, it should be ensured that the spike occurs at the desired time, whether it occurs at the previous event or at a later event.

基礎行為控制Basic behavioral control

基礎模型行為由前述參數τ +τ -τ u v +v -v S βδ和△u來控制。時間常數控制電壓或電流朝向或背離零傾線衰退的速率,零傾線在態相的基電壓處與電流軸相交。在事件處的耦合由變換方程的斜率決定。對於電壓變換,斜率由參數τ +β提供,而對於電流變換,斜率由參數δ提供。此意味著,零傾線在正態相邊界中的斜率取決於正態相時間常數,但此可用β來補償。 The basic model behavior is controlled by the aforementioned parameters τ + , τ - , τ u , v + , v - , v S , β , δ and Δ u . The time constant controls the rate at which the voltage or current is directed toward or away from the zero-thrust decay, and the zero-tilt intersects the current axis at the base voltage of the phase. The coupling at the event is determined by the slope of the transformation equation. For voltage conversion, the slope is provided by the parameters τ + and β , and for current conversion, the slope is provided by the parameter δ . This means that the slope of the zero-thaw line in the normal phase boundary depends on the normal phase time constant, but this can be compensated by β .

在標準參數化中,可利用僅一個耦合電阻參數β,耦合電阻參數β對於此兩個態相是共用的。然而,亦可針對每個態相分開地配置β ρ 。藉由對前述派生參數ε的分開控制可達成額外的行為態樣。然而,通常情況下,可基於以 上基本參數來使用預設值。例如,參數ε通常被設為-v -In standard parameterization, only one coupling resistance parameter β can be utilized, and the coupling resistance parameter β is common to both phases. However, β ρ can also be configured separately for each state. By the above derived parameters , Separate control from ε can achieve additional behavioral aspects. However, in general, the preset value can be used based on the above basic parameters. For example, the parameter ε is usually set to -v - .

針對以上提供的態相閾值的典型設置為。然而,電壓零傾線在{v,u}狀態空間中不是垂直線。該特性可能是有利的,因為該特性允許更豐富的行為。另外,替換地,態相閾值可被定義為與正態相接壤的零傾線。 A typical setting for the phase threshold provided above is . However, the voltage zero tilt is not a vertical line in the { v , u } state space. This feature may be advantageous because it allows for richer behavior. Additionally, alternatively, the phase threshold may be defined as a zero-tilt that borders the normal.

給定了狀態變換,vu的零傾線分別由變換變數q ρ r的負數提供:v=-q ρ u=-rGiven the state transition, the zero inclinations of v and u are provided by the negative of the transformation variables q ρ and r , respectively: v =- q ρ and u =- r .

v=τ ρ βu+v ρ u=(v-v ρ )/τ ρ β, (49) v = τ ρ βu + v ρ or u =( v - v ρ )/ τ ρ β , (49)

u=-δ(v+ε)或v=-u/δ-ε。 (50) u =- δ ( v + ε ) or v = - u / δ - ε . (50)

參數δ是控制u零傾線的斜率的比例因數,該斜率可為正(對於δ<0)或為負(對於δ>0)。假定預設設置,u零傾線在v -處交越x軸。參數β是控制此兩個態相中的v零傾線的斜率的電阻值。τ ρ 時間常數參數不僅控制指數衰退,亦單獨地控制每個態相中的零傾線斜率。 The parameter δ is a scaling factor that controls the slope of the u- zero tilt, which may be positive (for δ <0) or negative (for δ >0). Assuming a preset setting, the u zero tilt line crosses the x-axis at v - . The parameter β is the resistance value that controls the slope of the v- zero tilt in the two states. The τ ρ time constant parameter not only controls the exponential decay, but also controls the zero tilt slope in each phase separately.

圖19圖示了對於負和正u零傾線斜率的電壓和電流的零傾線的兩個實例1902和1904。取決於參數可出現其他情形,但該等實例是演示性的。應注意電壓零傾線1906中在態相閾值(在該示例性情形中為v +)處的不連續性。應當回想起,在正態相v>v +中,電壓趨於背離零傾線-q +(標繪1908),而在負態相中,電壓趨向於零傾線-q -(標繪1910)。在此兩個態相中,若τ u >0,則電流趨向於零傾線-r(標繪1912、1914)。 Figure 19 illustrates two examples 1902 and 1904 of zero tilt of voltage and current for negative and positive u zero tilt slopes. Other situations may occur depending on the parameters, but such examples are exemplary. Attention should be paid to the discontinuity at the phase zero threshold 1906 at the phase threshold ( v + in this exemplary case). It should be recalled that in the normal phase v > v + , the voltage tends to deviate from the zero inclination - q + (plot 1908), while in the negative phase, the voltage tends to zero the inclination - q - (plot 1910 ). In these two states, if τ u >0, the current tends to zero inclination -r (plot 1912, 1914).

在本案的態樣中,該等變換控制該模型的時間行為。電壓變換偏移變數q ρ 由取決於復原電流的線性方程來定義。當電流為0時,該變換完全歸因於偏移v ρ 。由於該緣故,電 壓狀態可在經變換狀態中被平移,從而基電壓狀態為0。重訪用於預計尖峰時間的公式,可觀察到在u=0處的對數項為: In the aspect of the case, the transformations control the temporal behavior of the model. The voltage transformation offset variable q ρ is defined by a linear equation that depends on the recovery current. When the current is zero, the transformation is entirely due to the offset v ρ . For this reason, the voltage state can be translated in the transformed state such that the base voltage state is zero. Revisiting the formula used to estimate the peak time, we can observe that the logarithm at u =0 is:

因此,對狀態x的變換使狀態模型平移和正規化,以 在正態相中產生0和1之間的時間延遲。尖峰中的資訊是其相對時序的形式。從資訊理論觀點而言,正規化時間可被視為將具有範圍[0,1]的資訊值(或狀態)編碼為: 以使得該值越大,時間延遲(回應)就越短,並且值0對應於無限延遲(從不發放尖峰)。因此,該模型的參數化允許控制尖峰時序中的資訊表示。此態樣對於計算設計目的是尤其有利的。 Thus, the transformation of state x shifts and normalizes the state model to produce a time delay between 0 and 1 in the normal phase. The information in the spike is in the form of its relative timing. From an information theory point of view, the normalization time can be thought of as encoding the information value (or state) with the range [0, 1] as: So that the larger the value, the shorter the time delay (response), and the value 0 corresponds to an infinite delay (never a spike is issued). Therefore, the parameterization of the model allows control of the information representation in the peak timing. This aspect is particularly advantageous for computational design purposes.

最後,應注意,與電流狀態的耦合可能被減少或消 除。該耦合由參數β控制,因此,若β=0,則無需u變數。類似地,若u變數沒有動態,即△u=0且τ u →∞,則無需u變數。來自電壓的耦合由參數δ支配,其中較小的或為0的δ亦可減少或消除電壓狀態對電流狀態的影響。若經耦合的動態由於較小β、△u或較大τ u 而不顯著,則可省略u變數。然而,u變數提供了更豐富的模型動態的機會。 Finally, it should be noted that the coupling to the current state may be reduced or eliminated. This coupling is controlled by the parameter β , so if β = 0, no u variable is needed. Similarly, if the u variable is not dynamic, ie Δ u =0 and τ u → ∞, no u variable is needed. The coupling from the voltage is dominated by the parameter δ , where a smaller or δ of 0 can also reduce or eliminate the effect of the voltage state on the current state. If due to the small dynamic coupled β,u u [tau] or greater without significant, variable u may be omitted. However, u variables provide a richer opportunity for model dynamics.

Cold神經元-動態事件模型Cold neuron-dynamic event model

根本上而言重要的生物學神經行為可能是無法用典型的尖峰神經元模型來模擬或預測的,因為該等模型不捕捉:(i)精細的(連續)時序,或(ii)連續時間動態。甚至以連續 時間微分方程形式表達的模型亦不具有封閉形式解,並且因此往往是反覆運算地逼近的,例如使用歐拉方法。反覆運算模型的問題在只不過藉由僅改變時間步長解析度且僅改變較小量(例如,從1ms到0.1ms)來觀察尖峰時序可能如何急劇地改變(例如,改變幾十毫秒或更多)時已是顯而易見的了。儘管嘗試用精細的時間步長來逼近此類模型亦可能是在計算上繁重的,但更重要的是精細的時間步長一般不能計及連續時間動態,尤其是在該模型具有多個相互依存的狀態變數(諸如電壓和電流)和多個吸引子的情況下。因此,目標是能夠擷取生物學上真實的時間效應的連續時間動態神經元模型。 Fundamentally important biological neurobehavioral behaviors may not be simulated or predicted with typical spike neuron models because they do not capture: (i) fine (continuous) timing, or (ii) continuous time dynamics . Even in a row Models expressed in the form of time differential equations also do not have closed-form solutions, and therefore tend to be approximated by repeated operations, such as using the Euler method. The problem of repeating the computational model is to observe how the spike timing may change dramatically (by, for example, tens of milliseconds or more) by simply changing the time step resolution and changing only a small amount (eg, from 1 ms to 0.1 ms). More) The time is already obvious. Although attempting to approximate such a model with a fine time step may be computationally cumbersome, it is more important that a fine time step generally does not account for continuous time dynamics, especially if the model has multiple interdependencies. State variables (such as voltage and current) and multiple attractors. Therefore, the goal is a continuous-time dynamic neuron model that can capture biologically realistic temporal effects.

如前所述,動態事件神經元模型具有由分別表示膜 電位(電壓)和復原電流的變數{v,u}來定義的狀態。在給定了沒有進一步輸入的情況下,可使用以下條件式預計規則基於電流狀態來預期封閉形式(達到任何期望的時間精度)的尖峰事件: 其中q C =1/α C (-βu C +γ C ), (54)並且βv peak a +γ +是以上介紹的參數。該規則實際上是抗洩漏積分激發(ALIF)模型。值u C 是條件式參數並且可以是恆定的或者設為u的函數。在尖峰發生時,狀態如下地被更新:v=v postu=u+u post 。更複雜的版本包括用亦取決於復原電流u的 條件(v-v t )(v-v r )>u/k來取代條件v>v i ,其中v t v r 分別是去極化和靜息電位。 As described above, the dynamic event neuron model has a state defined by variables { v , u } representing the membrane potential (voltage) and the recovery current, respectively. Given no further input, the following conditional prediction rules can be used to anticipate a closed event (to any desired time accuracy) based on the current state: Where q C =1/ α C (- βu C + γ C ), (54) and β , v peak , a + , γ + are the parameters described above. This rule is actually an anti-leakage integral excitation (ALIF) model. The value u C is a conditional parameter and can be constant or set to a function of u . When a spike occurs, the state is updated as follows: v = v pos t and u = u + u post . A more complicated version involves replacing the condition v > v i with a condition ( v - v t )( v - v r ) > u / k which also depends on the recovery current u , where v t and v r are respectively depolarized and Resting potential.

該模型的將來狀態可使用獨立的條件式更新規則來 決定。該等規則包括獨立地傳播狀態變數: The future state of the model can be determined using independent conditional update rules. These rules include the independent propagation of state variables:

u(t+△t)=(u(t)+r)e -at -r, (56)其中r=δ(v -+ε), (57)並且δεa是參數。再次,該等是可計算到任何期望的時間精度的連續時間封閉形式方程。值v -是條件式參數並且可以是恆定的或者設為v的函數。若v>v t ,則因數c=+,否則c=-。在後一種情形中,q -的計算需要參數α -γ -。在c=+時,神經元處於去極化區域或即ALIF模式中。當c=-時,神經元處於LIF模式中,從而除非有輸入被供應,否則返回到靜息狀態。 u ( tt )=( u ( t )+ r ) e - at - r , (56) where r = δ ( v - + ε ), (57) and δ , ε , a are parameters. Again, these are continuous time closed form equations that can be calculated to any desired time accuracy. The value v - is a conditional parameter and can be a constant or a function of v . If v > v t , the factor c = +, otherwise c = -. In the latter case, the calculation of q - requires the parameters α - , γ - . At c = +, the neurons are in the depolarized region or in the ALIF mode. When c = -, the neuron is in LIF mode, returning to a resting state unless an input is supplied.

在有輸入時,狀態應當藉由使用狀態傳播被更新至該輸入事件的時間,並隨後被更新以計及該輸入v=v+i。狀態變數亦一般應當是有界的。 When there is an input, the state should be updated to the time of the input event by using state propagation and then updated to account for the input v = v + i . State variables should also generally be bounded.

演算法Algorithm

用於計算該模型的基於事件的演算法包括處理兩個事件:突觸輸入事件和預計尖峰事件。 The event-based algorithm used to calculate the model involves processing two events: a synaptic input event and an expected spike event.

在突觸輸入事件之際,可執行以下步驟。可決定自上一次狀態更新起的時間△t。若滿足電壓條件,則令c=+,否則令c=-,可使用式(54)來計算q C ,並且可使用式(55)來更新電壓。隨後,可使用式(57)來計算r,並且可使用式(56)來更 新復原電流。此後,該輸入可被添加到電壓上。若滿足電壓條件,則令c=+,否則令c=-,可使用式(54)來重新計算q C ,並且可使用式(53)來重新計算預計尖峰時間。最後,可重新排程預計尖峰事件。 At the time of the synaptic input event, the following steps can be performed. It may be determined since the last status update from time △ t. If the voltage condition is met, let c = +, otherwise let c = -, formula (54) can be used to calculate q C , and equation (55) can be used to update the voltage. Subsequently, equation (57) can be used to calculate r , and equation (56) can be used to update the recovery current. Thereafter, the input can be added to the voltage. If the voltage condition is met, let c = +, otherwise let c = -, use equation (54) to recalculate q C , and use equation (53) to recalculate the estimated spike time. Finally, the peak event can be rescheduled.

應注意,為了重新計算q C ,要添加到電位上的量i可 以不同於離散時間模擬操作,因為此處沒有時間步長。針對離散反覆運算模擬將使用的i值可由時間步長來進行比例縮放來為基於事件的建模獲得等效值。可任選地,若沒有輸入,則該等演算法步驟可至少每隔預定義週期T地被執行。 It should be noted that in order to recalculate q C , the amount i to be added to the potential may be different from the discrete time simulation operation because there is no time step. The i value that will be used for the discrete iteration simulation can be scaled by the time step to obtain an equivalent value for event-based modeling. Optionally, if there is no input, the algorithm steps can be performed at least every predefined period T.

在預計尖峰事件之際,可執行以下步驟。狀態可被 重定或更新(可任選的/如適用的)。若滿足電壓條件,則令c=+,否則令c=-,可使用式(54)來重新計算q C ,並且可使用式(53)來重新計算預計尖峰時間。此後,可重新排程預計尖峰事件。 The following steps can be performed as the peak event is expected. The status can be reset or updated (optional / as applicable). If the voltage condition is satisfied, so c = +, else let c = -, q C may be recalculated using the formula (54), and may use the formula (53) to recalculate the expected spike time. Thereafter, the peak event can be rescheduled.

為了配置模型參數,可考慮由Izhikevich描述的動態 神經元參數:膜電容C、閾值電位、靜息電位v r 、尖峰峰值電位v peak 、取決於神經元的基強度和輸入電阻的因數kb、在尖峰之後的重定電壓c、復原時間常數a以及在尖峰期間的淨電流dIn order to configure the model parameters, consider the dynamic neuron parameters described by Izhikevich: membrane capacitance C , threshold potential , Resting potential v r, spike peak level v peak, depending on neuronal factor k base strength and the input resistance, and B, the re-voltage c after the spike, the recovery time constant a and the net current d during a spike.

對於動態事件模型,設置:α C =k(△v C )/C, (58) For the dynamic event model, set: α C = k (△ v C ) / C , (58)

β=1/C, (59) β =1/ C , (59)

γ C =-v C α C 。 (60) γ C =- v C α C . (60)

應注意,γ C 取決於α C v C ,其中α C 取決於△v C 。對△v C 的選取可取決於條件,亦即,是c=+還是c=-。一般而言,若c=+,則: 否則: It should be noted that γ C depends on α C and v C , where α C depends on Δ v C . The choice of Δ v C may depend on the condition, ie, whether it is c = + or c = -. In general, if c = +, then: otherwise:

然而,不一定要使用電流值=v來計算以上參數。作 為代替,出於簡化可對使用恆定值,即對於c=+,可使用v peak v t 的均值。對於c=-,例如可使用v r v t 的均值。 However, it is not necessary to use the current value = v to calculate the above parameters. As an alternative, for simplicity A constant value is used, ie for c = +, the mean of v peak and v t can be used. For c = -, for example, the mean of v r and v t can be used.

該動態事件模型是真正的連續時間模型,因為沒有 對時間步長或時間解析度的依賴性。另一方面,在連續時間中準確地計算Izhikevich簡單模型是成問題的,因為找出兩個相互依存的微分方程的封閉形式解是不可能的。Izhikevich簡單模型的典型實現基於離散反覆運算模擬(或歐拉數值方法)。儘管根據定義可使用量化查閱資料表,但此亦不是連續時間的。 The dynamic event model is a true continuous time model because there is no Dependence on time step or time resolution. On the other hand, accurately calculating the Izhikevich simple model in continuous time is problematic because it is impossible to find closed-form solutions of two interdependent differential equations. A typical implementation of the Izhikevich simple model is based on discrete inverse arithmetic simulations (or Euler numerical methods). Although quantitative access to the data sheet can be used by definition, this is not continuous time.

在態樣中,該動態事件模型可被配置成產生理論上 的連續時間簡單模型的行為。可在連續時間中審視即時動態。式(53)可重排為以下形式: 若使用對電壓的變換v'=v+q +,則: In an aspect, the dynamic event model can be configured to produce a theoretically continuous time simple model of behavior. Instant dynamics can be reviewed in continuous time. Equation (53) can be rearranged into the following form: If you use the conversion of voltage v '= v + q + , then:

對時間t=△t spike 取拉普拉斯變換,操縱並取拉普拉斯逆 變換產生: 替代掉v'且隨後替代掉q +提供: 進一步代入參數提供根據Izhikevich簡單模型的電位元的微分方程(假定沒有輸入): Taking the Laplace transform for the time t = Δ t spike , manipulating and taking the Laplace inverse transform produces: Replace v ' and then replace q + to provide: Further substitution parameters provide a differential equation for the potential element according to the Izhikevich simple model (assuming no input):

因此,即時地,可達成連續時間行為。可以表明, 同樣的情況對於在c=-時的電位以及對於復原電流是成立的。圖20圖示了反覆運算簡單模型和動態事件模型的尖峰結果的相似性,亦即尖峰結果2002相對於尖峰結果2004。 Therefore, in a timely manner, continuous time behavior can be achieved. It can be shown that the same situation is true for the potential at c = - and for the recovery current. Figure 20 illustrates the similarity of the peak results of the repeated operation simple model and the dynamic event model, that is, the spike result 2002 relative to the spike result 2004.

在動態模型中,電壓狀態僅在存在事件(輸入或尖 峰)時被更新,而反覆運算簡單模型每毫秒地具有更新。兩者皆經歷嚴格相同的尖峰輸入。該實例是在沒有最小更新時間的情況下執行的。藉由使用最小更新時間,該相似性可增大甚至更多,更新時間越短則越相似。 In a dynamic model, the voltage state is only present in events (inputs or pointers) The peaks are updated, and the repeated simple model has updates every millisecond. Both experience the same exact spike input. This instance is executed without a minimum update time. By using the minimum update time, the similarity can be increased even more, and the shorter the update time, the more similar.

儘管可達成相同的或相似的行為(結果),但重要的 是理解該等模型是完全不同的。在動態事件模型中,狀態變數是獨立的並且行為是條件式的。實質上,簡單模型不能在連續時間中求解(執行)。另一方面,動態事件模型是完全連續時間模型。 Important, although the same or similar behavior (results) can be achieved It is understood that these models are completely different. In the dynamic event model, state variables are independent and the behavior is conditional. In essence, a simple model cannot be solved (executed) in continuous time. On the other hand, the dynamic event model is a fully continuous time model.

模型動態 Model dynamics

在本案中將以使得能良好地理解行為的方式來解釋該模型的動態。該模型的行為能力的豐富性源自於基於事件的公式化、在事件處的耦合以及在事件之間的解耦以及將動 態劃分成諸態相。此一般化模型在該等態樣是獨特的並且所得的行為態樣反映了此一點。 The dynamics of the model will be explained in this case in a way that enables a good understanding of the behavior. The richness of the model's behavioral capabilities stems from event-based formulation, coupling at events, and decoupling between events and moving The state is divided into states. This generalized model is unique in these aspects and the resulting behavioral aspects reflect this.

靜息軌道Resting track

圖21圖示了根據本案的某些態樣的在該模型的負態相中跨零傾線的狀態軌跡的實例2100。在沿電壓零傾線2102的任一點,電流狀態變數進化可以是非零的並且由此可將狀態拖離電壓零傾線2102。同樣,在沿電流零傾線2104的任一點,電壓狀態變數進化可以是非零的並且由此可將狀態拖離電流零傾線2104。儘管對於對應於零傾線的狀態變數而言,在零傾線處的狀態具有零導數,但另一狀態變數在該等點處的導數可以是非零的。結果,振盪在負態相中是可能的,其中狀態繞<v -,0>狀態旋轉。 21 illustrates an example 2100 of a state trajectory across a zero-tilt in a negative phase of the model, in accordance with certain aspects of the present disclosure. At any point along the voltage zero-tilt 2102, the current state variable evolution can be non-zero and thus the state can be dragged away from the voltage zero-tilt 2102. Likewise, at any point along the current zero-tilt 2104, the voltage state variable evolution can be non-zero and thus the state can be dragged away from the current zero-tilt 2104. Although the state at the zero-tilt has a zero derivative for a state variable corresponding to a zero-tilt, the derivative of the other state variable at the other points may be non-zero. As a result, the oscillation phase is possible in the negative state in which the state of about <v -, 0> state rotation.

即時狀態軌跡由差分方程提供。替代掉變換變數,負態相中的狀態軌跡為: 相對於靜息原點<v -,0>的狀態位置向量為: 狀態軌跡與該位置向量之間的角度由下式提供: 圖22圖示了由式(68)、(69)和(70)提供的狀態軌跡幾何的實例2200。 The immediate state trajectory is provided by the difference equation. Instead of transforming variables, the state trajectory in the negative phase is: The state position vector relative to the resting origin < v - , 0 > is: The angle between the state trajectory and the position vector is given by: Figure 22 illustrates an example 2200 of state trajectory geometry provided by equations (68), (69), and (70).

狀態軌跡在位置向量上的投影提供了該軌跡朝向靜息的分量,或即衰退分量。點積產生按位置向量的幅值進行 了比例縮放的該分量: The projection of the state trajectory on the position vector provides a component of the trajectory towards rest, or a decay component. The dot product produces this component scaled by the magnitude of the position vector:

式(71)中的左側項為負者指示朝向靜息原點的方向 。用於視覺化的簡單概念情形是若τ u =-τ -。則,式(71)中在左側方括號中的項等於。然而,由於該左側項按時間常數1/τ -進行了比例縮放,因此可觀察到,朝向原點的衰退是可能的。圖23圖示了狀態空間中繞靜息原點的狀態軌跡2302的實例2300。參數為v -=-70mV,τ -=-20ms,τ u =20ms,β=5,δ=-0.26,ε=-v -,參數具有初始狀態<-75mV,0>,在每隔0.1ms有事件的情況下標繪了1000ms的時間。由於事件間間隔很小,因此該行為逼近由連續時間狀態導數提供的行為。 The left term in equation (71) is negative indicating the direction toward the resting origin. A simple conceptual case for visualization is if τ u = - τ - . Then, the term in the left square bracket in equation (71) is equal to . However, since the left side term is scaled by the time constant 1 / τ - , it can be observed that the decay towards the origin is possible. FIG. 23 illustrates an example 2300 of a state trajectory 2302 around a resting origin in a state space. The parameters are v - = -70mV, τ - = -20ms, τ u = 20ms, β = 5, δ = -0.26, ε = - v - , and the parameters have an initial state <-75 mV , 0>, at every 0.1 In the case of ms, there is an event of 1000 ms plotted. Since the interval between events is small, this behavior approximates the behavior provided by the continuous time state derivative.

為了避免朝向原點衰退,式(71)中右側的第二項可 能需要為正。為了達成正u零傾線斜率,已知δ應當為負。然而,只要β>-δ/τ u ,分量β+δ/τ u 就為正。然而,u(v-v -)僅在u或(v-v -)之一為負(關於靜息原點的第二或第四象限)的情況下為負。因此,為了對抗朝向原點的衰退,存在若干可能性:(i)增大τ -的幅值;(ii)增大β+δ/τ u ;(iii)將軌道向內朝靜息原點移動,從而項(v-v -)2+u 2可小於u(v-v -);及(iv)更改事件間間隔。 In order to avoid fading towards the origin, the second term on the right side of equation (71) may need to be positive. In order to achieve a positive u- zero tilt slope, it is known that δ should be negative. However, as long as β > - δ / τ u , the component β + δ / τ u is positive. However, u ( v - v - ) is negative only if one of u or ( v - v - ) is negative (with respect to the second or fourth quadrant of the resting origin). Therefore, in order to counter the decline towards the origin, there are several possibilities: (i) increasing the magnitude of τ - ; (ii) increasing β + δ / τ u ; (iii) moving the orbit inward toward the resting origin Move, whereby the term ( v - v - ) 2 + u 2 can be less than u ( v - v - ); and (iv) change the interval between events.

因此,有可能不僅減少衰退以使該軌道不衰退,而 且亦可建立朝外盤旋且發放尖峰的振盪。例如,調節δ產生圖24中圖示的狀態路徑,亦即維持的軌道2402和向外螺旋2404。參數δ例如從-0.26改變為-4以維持該軌道(參見標繪2402),以及改變到-5以向外盤旋(參見標繪2404)。 Therefore, it is possible to not only reduce the recession so that the orbit does not degenerate, but also establish an oscillation that circulates outward and emits a spike. For example, adjusting δ produces the state path illustrated in FIG. 24, namely the maintained track 2402 and the outward spiral 2404. The parameter δ is changed, for example, from -0.26 to -4 to maintain the orbit (see plot 2402), and to -5 to circle outward (see plot 2404).

應注意,求解=0產生: 其在狀態空間中是直線。但是,此並不能阻止衰退的、維持的或爆炸式的軌道趨於靜息,因為可變化為正值和負值。 It should be noted that solving =0 generation: It is a straight line in the state space. However, this does not prevent a declining, sustained or explosive orbit from escaping because Can be changed to positive and negative values.

為了理解以上項(iv)以及為何事件間間隔是事關緊要的,本案深入研究了事件處的瞬間耦合問題。 In order to understand the above item (iv) and why the interval between events is critical, this case has thoroughly studied the transient coupling problem at the event.

瞬間耦合Instant coupling

事件可影響模型的行為,無論事件是否具有輸入。其原因在於模型動態變數在事件處被耦合且在事件之間是解耦的,如以上所定義的。以上分析了典型的參數化和空間,其中在沒有顯著輸入的情況下,電壓和電流進化在短時間段上幾乎察覺不到地改變,無論事件是何時發生的。 Events can affect the behavior of the model, whether or not the event has input. The reason for this is that the model dynamic variables are coupled at the event and decoupled between events, as defined above. The above analysis of typical parameterization and space, where without significant input, voltage and current evolution changes almost imperceptibly over a short period of time, regardless of when the event occurred.

在負態相中,在典型設置下,電壓和電流狀態變數可朝向相應的零傾線衰退。個體狀態將在無限的事件間間隔之後到達該等分開的零傾線。然而,由於此兩個狀態變數皆改變,因此在零傾線上的截點改變。此意味著,儘管電壓朝向在先前事件處定義的某個q -(t 0)衰退,但零傾線在下一事件之時已改變為q -(t 1)。 In the negative phase, under typical settings, the voltage and current state variables can decay toward the corresponding zero tilt. The individual state will arrive at the separate zero-tilt after an infinite interval of events. However, since both of these state variables change, the intercept point on the zero-tilt line changes. This means that although the voltage decays towards some q - ( t 0 ) defined at the previous event, the zero-tilt has changed to q - ( t 1 ) at the time of the next event.

圖25圖示了此類概念,亦即,圖示了事件間動態和零傾線之間的關係的實例2500。在實例2500中,電壓零傾線2502在(第一事件或即事件0處的)第一狀態2504的右側,因此電壓朝向該零傾線2502移動。在某個有限的事件間間隔時間t裡,電壓到達由水平箭頭2506所示的點(迫近於零傾線) 。然而,在相同的解耦間隔上,電流朝向零傾線2508移動。 因此,在第二事件2510(事件1)處,狀態將在該狀態空間中的右上方。然而,若電壓零傾線的斜率為負,則該第二狀態2510可在零傾線2502右邊(越過零傾線2502)。 FIG. 25 illustrates such a concept, that is, an example 2500 illustrating the relationship between inter-event dynamics and zero-tilt. In example 2500, voltage zero-tilt 2502 is to the right of first state 2504 (at the first event or event 0), so the voltage moves toward the zero-tilt 2502. During a certain inter-event interval t , the voltage reaches the point indicated by the horizontal arrow 2506 (approaching a zero-tilt). However, at the same decoupling interval, the current moves toward the zero-tilt 2508. Thus, at the second event 2510 (event 1), the state will be in the upper right of the state space. However, if the slope of the voltage zero tilt is negative, the second state 2510 can be to the right of the zero tilt 2502 (crossing the zero tilt 2502).

作為結果,在該模型完全位元於負態相中的情況下 ,僅由於充分的事件間間隔即導致振盪是可能的。振盪可在個體狀態變數中或甚至在兩個狀態變數中發生(若第一和第二狀態跨越此兩條零傾線)。此類振盪即使在具有短事件間間隔且不存在有益於繞軌道執行的參數的情況下亦可能發生。 圖26概念性地圖示了根據本案的某些態樣的該阻尼雙狀態變數振盪的實例2600。在該情景中,負態相中的該等零傾線的斜率兩者皆為負,從而在靜息點2602(靜息點2602為u=0和v=v -)相截。此振盪是阻尼的,因為事件間間隔是有限的(忽略時間常數等於0的可能性)。該振盪亦可被描述為狀態跨零傾線來回地跳躍。 As a result, in the case where the model is completely in the negative phase, oscillation is possible only due to sufficient inter-event intervals. Oscillation can occur in individual state variables or even in two state variables (if the first and second states span the two zero-tilt). Such oscillations may occur even with short inter-event intervals and without parameters that are beneficial for orbital execution. FIG. 26 conceptually illustrates an example 2600 of the damped dual state variable oscillations in accordance with certain aspects of the present disclosure. In this scenario, the slopes of the zero-tilt lines in the negative phase are both negative, thus intersecting at the resting point 2602 (the resting point 2602 is u =0 and v = v - ). This oscillation is damped because the interval between events is finite (ignoring the possibility that the time constant is equal to zero). This oscillation can also be described as a state that jumps back and forth across the zero tilt.

然而,事件間間隔亦對先前小節中論述的更習知軌 道的形狀作出貢獻。根本原因與上面相同,除了在與固有軌道效應組合時,小得多的事件間間隔效應就可足以更改該模型的行為以獲得期望的性質,諸如閾下振盪。 However, the interval between events is also a more familiar track as discussed in the previous section. The shape of the road contributes. The root cause is the same as above, except that when combined with the intrinsic orbital effect, a much smaller inter-event interval effect can be sufficient to modify the behavior of the model to achieve desired properties, such as sub-threshold oscillations.

若考慮事件間間隔,則軌跡可基於在事件間間隔△t 上的狀態改變來定義: 其細微地但重要地不同於(68),且因此: 其中 Considering inter-event interval, the track may be based on the inter-event interval △ t is defined change of state: It is subtly but importantly different from (68), and therefore: among them

由於通常τ -<0且τ u >0,則對於△t>0,τ u ><0且l u <0,並且式(74)中在上的投影的第一項△t>0由此為負,從而使軌道朝靜息原點衰退。用於視覺化的簡單概念情形是若τ u =-τ -=τ。則,l _=l u =l,並且: Since τ - <0 and τ u >0, then Δ t >0, τ u > <0 and l u <0, and in equation (74) The first term Δ t >0 of the upper projection is thus negative, causing the orbit to decay toward the resting origin. A simple conceptual case for visualization is if τ u = - τ - = τ . Then, l _ = l u = l , and:

從式(76)可觀察到,若βτ+δ充分大,則第二項 u(v-v -)(βτ+δ)可抵消掉第一項((v-v -)2+u 2)。此外可觀察到,由於l可作為公因數被提取出,因此△t控制軌跡向量與位置向量之間的角度θ。△t越大,l就變得越負,並且徑向方向上的軌跡分量就越大。作為結果,當第二項u(v-v -)(βτ+δ)具有與第一項((v-v -)2+u 2)相反的符號時,則較大的事件間間隔△t可將衰退的狀態推回到軌道中,或者若充分大則將衰退的狀態推成朝外盤旋。 It can be observed from equation (76) that if βτ + δ is sufficiently large, the second term u ( v - v - )( βτ + δ ) cancels out the first term (( v - v - ) 2 + u 2 ) . Also it observed, since l can be extracted as a common factor, so △ t control the angle θ between the vector and the position vector trajectory. The larger △ t, l becomes more negative, and the track in the radial direction component greater. As a result, when the second term u ( v - v - )( βτ + δ ) has a sign opposite to the first term (( v - v - ) 2 + u 2 ), the larger interval between events Δ t The state of the recession can be pushed back into the orbit, or if it is sufficiently large, the state of the recession can be pushed outwardly.

第一種情形在圖27中圖示。使用與圖23中相同的參 數,除了事件間間隔△t=1.55ms而非0.1ms。在圖27中,狀態在一些事件間間隔上具有衰退軌道2702,但在其中第二項u(v-v -)較大的其他事件間間隔中復原,並且此在該事件間間隔足夠大的情況下是顯著的。此就是為何圖27中的軌道標繪2702看起來較粗的原因,因為從事件到事件的諸軌跡在每個循環上具有略微不同的對應狀態並且彼此重疊或交越。 The first case is illustrated in FIG. The same parameters as in Fig. 23 were used except for the interval between events Δ t = 1.55 ms instead of 0.1 ms. In FIG. 27, the state has a decaying track 2702 at some inter-event intervals, but is restored in other inter-event intervals in which the second term u ( v - v - ) is large, and this is sufficiently large between the events. The situation is significant. This is why the track plot 2702 in Figure 27 appears to be thicker because the trajectories from the event to the event have slightly different corresponding states on each cycle and overlap or cross each other.

應注意,求解=0產生: 其在狀態空間中仍為直線。然而,此並不阻止衰退的、維持的或爆炸式的軌道趨於靜息,因為可變化為正值和負值。 It should be noted that solving =0 generation: It is still a straight line in the state space. However, this does not prevent a declining, sustained or explosive orbit from escaping because Can be changed to positive and negative values.

有限返回Limited return

乍看起來可能假定,在沒有進一步輸入的情況下,該模型在處於負態相中時將朝向靜息返回,並且在處於正態相中將最終發放尖峰。然而,此一般不是真的。事實上,即使沒有進一步輸入,該模型亦可從負態相發放尖峰以及從正態相返回靜息。 At first glance it may be assumed that without further input, the model will return towards rest when in the negative phase and will eventually issue a spike in the normal phase. However, this is generally not true. In fact, even without further input, the model can also issue spikes from the negative phase and return to the rest from the normal phase.

該模型在復原電流動態態樣的行為是直截了當的。 復原電流在處於電流零傾線-r之上時可減小並且在處於其之下時可增大(假定τ u >0,或者若τ u <0則為相反情況)。然而,電壓動態更複雜,因為電壓動態取決於態相並且由此取決於態相閾值。然而,態相閾值一般不是與電壓零傾線相同的(儘管可如此定義)。 The behavior of this model in restoring current dynamics is straightforward. The recovery current can decrease when it is above the current zero-tilt- r and can increase when it is below it (assuming τ u >0, or vice versa if τ u <0). However, the voltage dynamics are more complicated because the voltage dynamics depend on the phase of the phase and thus on the phase threshold. However, the phase threshold is generally not the same as the voltage zero tilt (although it can be so defined).

對態相閾值的典型定義為: 其中v +是常數。可假定在變換變數(零傾線運算式)中v ρ '=v ρ 。相應地,電壓零傾線對於正零傾線-q +=v +u=0處交越v +,並且對於負零傾線-q +=v -u=(v +-v -)/τ - β處交越v +。此兩條零傾線劃出了具有特定性質的兩個子態相。在該等子態相中(一個子態相在正態相中且一個子態相在負態相中),電壓在有限的時間中(而非在無限的時間中)朝向態相閾值返回。此外, 在沒有任何後續輸入的情況下,電壓實際上可跨越v +進入相反態相中,無論是從正態相到負態相還是反之。在與該等有限態相接壤的情況下,在閾值電壓,電壓導數是非連續的(儘管符號可能保持不變)。出於該等原因,此兩個態相可被標示為有限返回態相。 A typical definition of a phase threshold is: Where v + is a constant. It can be assumed that v ρ '= v ρ in the transformation variable (zero-limb expression). Accordingly, the voltage at zero line for the positive zero displacement line - q + = v + at u = at 0 crossover v +, and the negative zero displacement line - q + = v - at u = (v + - v - ) / τ - β is the more v + . These two zero-tilt lines draw two sub-states with specific properties. In these sub-states (one of the sub-states is in the normal phase and one of the sub-states is in the negative phase), the voltage returns to the phase threshold for a limited time (rather than in infinite time). Furthermore, without any subsequent inputs, the voltage can actually cross v + into the opposite phase, either from the normal phase to the negative phase or vice versa. In the case of bordering the finite states, at the threshold voltage, the voltage derivative is discontinuous (although the sign may remain the same). For these reasons, the two phases can be labeled as a finite return phase.

正有限返回態相Positive finite return phase

在正態相中,給定了τ +>0的情況下,電壓趨於背離正態相零傾線。然而,電壓趨於背離正態相零傾線不同於電壓背離態相閾值v +。確切而言,僅存在u的特定區域,在其中上述兩者在典型的態相閾值定義下才是等同的。 In the normal phase, given τ + >0, the voltage tends to deviate from the normal phase zero-tilt. However, the voltage tends to deviate from the normal phase zero tilt line different from the voltage back state phase threshold v + . Specifically, there is only a specific region of u in which the above two are equivalent under the definition of a typical phase threshold.

正返回定理Positive return theorem

在典型的態相閾值定義下,存在作為正態相的子空間的正有限返回態相,其中狀態趨向於負態相。 Under the definition of a typical phase threshold, there is a positive finite return phase as a subspace of the normal phase, where the state tends to a negative phase.

證明prove

在正態相v>v +中並且為了使狀態朝向負態相返回,要求dv/dt<0或即:v<-q +。 (79)由此,v<τ + βu+v +。 (80)此兩個條件一起定義了正態相內的區域,在其中電壓狀態趨向於負態相而非發放尖峰。 In the normal phase v > v + and in order to return the state towards the negative phase, dv / dt <0 or ie: v <- q + is required . (79) Thus, v < τ + βu + v + . (80) These two conditions together define a region within the normal phase in which the voltage state tends to a negative phase rather than a spike.

由於τ +>0且β>0,則u>(v-v +)/τ + β, (81)其為由斜率為1/τ + β且偏移為-v +/τ + β的直線來界定的非零區域 (只要|τ + β|>0)。 Since τ + >0 and β >0, u >( v - v + )/ τ + β , (81) is a straight line with a slope of 1/ τ + β and an offset of - v + / τ + β To define a non-zero region (as long as | τ + β | > 0).

例如,若τ +=1ms、β=1且v +=-40mV,則u=v+40。因此,在v=-30mV處(亦即,高於v +),具有u>10的任何狀態皆可產生朝向負態相的衰退。例如,在u=20處,-q +=-20。 For example, if τ + = 1ms, β = 1 and v + = -40mV, then u = v +40. Thus, at v = -30 mV (i.e., above v + ), any state with u > 10 can produce a decay toward the negative phase. For example, at u = 20, - q + = -20.

有限正返回定理Finite positive return theorem

在正有限返回態相中,狀態趨於在有限時間中進入負態相。 In a positive finite return phase, the state tends to enter a negative phase in a finite time.

證明prove

在正有限返回態相中,v +<v<-q +。為了抵達處於負態相中的狀態v f v f <v +<v。由此,v f +q +<v+q +<0。 (82)作為結果,對於有限v f 和有限非零τ + In the positive finite return phase, v + < v <- q + . In order to arrive at a negative phase state state v f, v f <v + <v. Thus, v f + q + < v + q + <0. (82) As a result, for finite v f and finite non-zero τ + ,

接以上實例,q +=-u+40。在u=5處,為了從處於正態相中的v=-35mV到達處於負態相中的v f =-45mV,△t 1.1ms。 Following the above example, q + = - u +40. At u = 5, in order to reach v f = -45 mV in the negative phase from v = -35 mV in the normal phase, Δ t 1.1ms.

正有限返回極限循環Positive finite return limit cycle

在該閾值的正態相側,v=v ++ε +,其中ε +是正電壓偏移,並且具有充分u>0的任何狀態在時間△t +上衰退到負態相中: On the normal phase side of the threshold, v = v + + ε + , where ε + is a positive voltage offset, and any state with sufficient u > 0 decays into the negative phase at time Δ t + :

在該閾值的負態相側,v=v +-ε -,其中ε -是正電壓偏移,並且具有充分的u的任何狀態在時間△t -上進一步衰退到負 態相中,亦即: On the negative phase side of the threshold, v = v + - ε - , where ε - is a positive voltage offset, and any state with sufficient u further decays into the negative phase at time Δ t - , ie:

由此,在導數的方向上,不連續點處的差異為: 其中 並且△v ±=(v +-v -)。應注意,對於所考慮的參數,△v ±k ρ 總是為正。隨著ε ρ →0,△v --△v +=-△v ± k _+βu(τ - k -+τ + k +)。 (88)為了移除不連續性將要求: Thus, in the direction of the derivative, the difference at the discontinuity is: among them And Δ v ± = ( v + - v - ). It should be noted that for the parameters considered, Δ v ± and k ρ are always positive. With ε ρ → 0, Δ v - - Δ v + = - Δ v ± k _ + βu ( τ - k - + τ + k + ). (88) In order to remove discontinuities will require:

然而,對不連續性是感興趣的。不連續性是負量, 除非βu項充分大且(τ - k -+τ + k +)為正量。通常情況下,(τ - k -+τ + k +)為正,即使τ +通常大於τ -亦然,因為對於顯著的△t ρ k -通常情況下遠小於k +。負階躍不連續性意味著電壓下降跨態相閾值加速。圖28圖示了此類情形中的電壓導數2800。參數與圖15相同,其中△t ρ =1ms且u=100。足以克服負態相中的電壓洩漏的任何恆定輸入將能夠克服正態相中的洩漏。 However, it is of interest to discontinuities. The discontinuity is a negative amount unless the βu term is sufficiently large and ( τ - k - + τ + k + ) is a positive amount. Normally, ( τ - k - + τ + k + ) is positive, even if τ + is usually greater than τ - because for significant Δ t ρ , k - is usually much smaller than k + . Negative step discontinuity means that the voltage drop across the phase threshold is accelerated. Figure 28 illustrates the voltage derivative 2800 in such a situation. And FIG. 15 are the same parameters, where △ t ρ = 1ms and u = 100. Any constant input sufficient to overcome the voltage leakage in the negative phase will be able to overcome the leakage in the normal phase.

然而,由於充分大的βu、大的事件間間隔△t ρ 、較高 的u或者較長的時間常數τ +(或較短的時間常數τ -),不連續性在電壓導數的方向上可能為正。圖29圖示了此類情形中的電壓導數2900。參數與圖15相同,除了β=0.02,△t ρ =5ms,τ -=-50ms和u=100。 However, because a sufficiently large βu, large inter-event interval △ t ρ, u or higher long time constant τ + (or shorter time constant τ -), may be a discontinuity in the direction of the voltage derivative Positive. Figure 29 illustrates the voltage derivative 2900 in such a situation. The parameters are the same as in Figure 15, except for β = 0.02, Δ t ρ = 5 ms, τ - = -50 ms and u = 100.

足以克服負態相中的電壓洩漏的恆定興奮性輸入可 能不足以克服正態相中的洩漏。由此,在恆定興奮性輸入下存在電壓循環的潛在可能性。若u零傾線與該循環的區域相交,則甚至存在極限循環的潛在可能性。 A constant excitatory input sufficient to overcome voltage leakage in the negative phase may not be sufficient to overcome leakage in the normal phase. Thus, there is a potential for voltage cycling under constant excitability inputs. If the u zero inclination intersects the area of the cycle, there is even a potential for a limit cycle.

圖30圖示了在(在事件處應用的)恆定興奮性輸入 下的極限循環3000。在先前事件(事件0)處,狀態處於負態相中。然而,在第一事件(事件1)處的輸入足以克服衰退。 在第二事件(事件2)處,輸入可將狀態帶入正態相。在第三事件(事件3)處的輸入不足以克服正態相中更強的衰退,並且因此狀態朝向負態相移回去,並且迄止下一事件的時間之前已進入負態相。 Figure 30 illustrates a constant excitatory input (applied at the event) The lower limit cycle 3000. At the previous event (event 0), the state is in the negative phase. However, the input at the first event (Event 1) is sufficient to overcome the recession. At the second event (Event 2), the input can bring the state into the normal phase. The input at the third event (Event 3) is not sufficient to overcome the stronger decay in the normal phase, and thus the state moves back towards the negative phase and has entered the negative phase before the time of the next event.

負有限返回態相Negative finite return phase

在負態相中,給定了τ -<0,電壓趨向於負態相零傾線。然而,電壓趨向於負態相零傾線不同於下降遠離態相閾值。確切而言,僅存在u的特定區域,在其中上述兩者在典型的態相閾值定義下才是等同的。 In the negative phase, given τ - <0, the voltage tends to a negative phase zero-tilt. However, the voltage tends to be negative for the phase zero and the other is different from the falling phase threshold. Specifically, there is only a specific region of u in which the above two are equivalent under the definition of a typical phase threshold.

負返回定理Negative return theorem

存在作為負態相的子空間的負有限返回態相,在其中若τ - β為負,則狀態趨向於正態相。 There is a negative finite return phase of the subspace as a negative phase, in which if τ - β is negative, the state tends to a normal phase.

證明prove

對於負態相,v<v +且負態相要求dv/dt>0。根據該定義,v<-q -。為了存在其中-q ->v +的區域,τ - βu>(v +-v -)。 (90)若τ - β<0,則: u<(v +-v -)/τ - β, (91)只要τ - β>-∞,其就是非零區域。該區域由在(v +-v -)/τ - β處交越電壓閾值v +的零斜率直線來界定。 For negative-phase state, v <v + and the negative phase state claim dv / dt> 0. According to this definition, v <- q - . In order to have a region where -q - > v + , τ - βu > ( v + - v - ). (90) If τ - β < 0, then: u <( v + - v - ) / τ - β , (91) is a non-zero region as long as τ - β > - 。. This region is defined by a zero slope straight line crossing the voltage threshold v + at ( v + - v - ) / τ - β .

電壓在負有限返回態相中的導數由此將為正。然而 ,僅僅由於狀態趨向於正態相,並不意味著狀態將到達正態相。圖31圖示了在負有限返回態相中的行為的實例3100。圖示了針對兩個初始狀態的軌跡3102和3104,此兩者皆初始趨向於正態相但只有一者到達正態相,亦即軌跡3104。對於τ -=-10ms、β=1和v +=-40mV以及v -=-60mV,負有限返回態相由v<v +u<-2來定義。在u<-2、-q ->v +處,由於v<v +,因此該導數為正,從而趨向於正態相。此兩個初始狀態<v,u>為<-45,-4>和<-45,-5>。 The derivative of the voltage in the negative finite return phase will thus be positive. However, simply because the state tends to the normal phase does not mean that the state will reach the normal phase. Figure 31 illustrates an example 3100 of behavior in a negative finite return phase. Trajectories 3102 and 3104 are illustrated for two initial states, both of which initially tend to the normal phase but only one arrives at the normal phase, i.e., trace 3104. For τ - = -10ms, β = 1 and v + = -40mV and v - = -60mV, the negative finite return phase is defined by v < v + and u <-2. At u <-2, -q - > v + , since v < v + , the derivative is positive and tends to be a normal phase. These two initial states < v , u > are <-45, -4> and <-45, -5>.

在該閾值的負態相側,v=v +-△v -,具有充分的u的任 何狀態均趨向於進入正態相,其電壓導數: 而在該閾值的正態相側,v=v ++△v + On the negative phase side of the threshold, v = v + - Δ v - , any state with sufficient u tends to enter the normal phase, its voltage derivative: On the normal phase side of the threshold, v = v + + Δ v + ,

電壓在導數方向上跨越此壁壘的加速度為: g(△v)=τ +v +-τ -(v +-v --△v -)。 (94)對於τ -<0,在極限△v -→0和△v +→0處,g(△v)<0,從而狀態一般朝向v S 加速。 The acceleration of the voltage across the barrier in the direction of the derivative is: gv ) = τ + Δ v + - τ - ( v + - v - - Δ v - ). (94) For τ - <0, gv ) < 0 at the limits Δ v - → 0 and Δ v + → 0, so that the state generally accelerates toward v S .

有限負返回定理Finite negative return theorem

在負有限返回態相中,對於有限負τ -,狀態趨於在 有限時間中進入正態相。 In the negative finite return phase, for a finite negative τ - , the state tends to enter the normal phase in a finite time.

證明prove

在負有限返回態相中,v<v +<-q -。為了抵達處於正態相中的狀態v f v f >v +>v。由此,v+q -<v f +q -。 (95) In the negative finite return phase, v < v + <- q - . In order to reach the state v f in the normal phase, v f > v + > v . Thus, v + q - < v f + q - . (95)

對於負態相,v+q -<0,但可選取v f <q -以使得作為結果,對於負有限非零τ -,下式成立: 接以上實例,在u=-10處,對於v=-45mV和v f =-35mV,△t 0.5ms。 For the negative phase, v + q - <0, but v f < q - can be chosen such that as a result, for a negative finite non-zero τ - , the following holds: Then the above example, at the u = -10, for v = -45mV and v f = -35mV,t 0.5ms.

高級控制Advanced control

圖32圖示了正態相和負態相的實例3200,其具有正有限返回態相和負有限返回態相(分別為區域3202和3204)、零傾線3206、3208以及針對其中δ<0、=v +ε=-v -的典型情形的概念向量場。 32 illustrates an example 3200 of a normal phase and a negative phase having a positive finite return phase and a negative finite return phase (regions 3202 and 3204, respectively), zero tilt 3206, 3208, and for δ <0 , Concept vector field for a typical case of = v + and ε = - v - .

態相閾值State threshold

然而,如上所述,對於態相閾值可能存在替換定義。例如,態相閾值可被定義為在u=0以上沿著電壓零傾線,或即=max(v +,q +)。此將消除正有限返回態相,但將不會消除負有限返回態相。替換定義將是設置=max(q -,q +),從而諸態相在最右端電壓零傾線處劃分開。然而,給定了典型斜率,正和負電壓零傾線在u=0以下交叉,且由此電壓微分將仍然一般不是連續的。確切而言,該情形將與以上情況相反,因為正 電壓零傾線在u=0以下時將在態相閾值的更左邊。存在建模者可定義的各種其他替換方案,並且應注意,以上論述的一般分析方法亦可應用於源自於其他或非典型設置的動態。 However, as noted above, there may be alternative definitions for the phase threshold. For example, the state threshold can be defined as a zero tilt along the voltage above u =0, or ie =max( v + , q + ). This will eliminate the positive finite return phase, but will not eliminate the negative finite return phase. The replacement definition will be the setting =max( q - , q + ), so that the states are divided at the rightmost voltage zero. However, given a typical slope, the positive and negative voltage zeros are crossed below u = 0, and thus the voltage differential will still generally not be continuous. Specifically, this situation will be the opposite of the above case because the positive voltage zero-tilt will be further to the left of the phase threshold when u = 0 or less. There are various other alternatives that the modeler can define, and it should be noted that the general analysis methods discussed above can also be applied to dynamics derived from other or atypical settings.

有限返回態相是態相閾值不同於電壓零傾線的結果 。為了移除正返回態相,可使態相閾值依賴於第二狀態變數,即等於正態相零傾線(當該零傾線適用時),否則等於預設值: The finite return phase is the result of a phase threshold different from the voltage zero. In order to remove the positive return phase, the phase threshold can be made dependent on the second state variable, ie equal to the normal phase zero tilt (when the zero tilt is applied), otherwise equal to the preset value:

然而,此仍留下了負有限返回態相。儘管此兩個有 限返回態相皆可能是有用的,但移除負有限返回態相在電流狀態充分為負的情況下將對任意大的電壓狀態均阻止細胞激發。對態相閾值的修改為: However, this still leaves a negative finite return phase. Although both of these finite return phase phases may be useful, removing the negative finite return phase phase will prevent cell excitation for any large voltage state if the current state is sufficiently negative. The modification of the phase threshold is:

此是由於負電壓零傾線跨越在v +'處的電壓零傾線不 連續性。然而,此亦可得到控制。為了移除此兩個有限返回態相, This is due to the negative voltage zero tilt across the voltage zero tilt discontinuity at v + '. However, this can also be controlled. In order to remove the two finite return phase phases,

解耦電壓零傾線斜率和時間常數Decoupling voltage zero tilt slope and time constant

藉由使用電壓零傾線定義的一般化版本可獲得進一步的設計自由度。應回想起,標準模型是用變換來定義的: q ρ =-τ ρ βu-v ρ ', (100) Further design freedom can be obtained by using a generalized version defined by the voltage zero-tilt. It should be recalled that the standard model is defined by transformation: q ρ =- τ ρ βu - v ρ ', (100)

r=δ(v+ε)。 (101) r = δ ( v + ε ). (101)

然而,由於電壓動態由下式支配, 因此該參數化在使諸電壓零傾線斜率藉由斜率因數β來關聯的意義上可能是限制性的。為了移除該限制,更一般化的定義是:q ρ =-β ρ u-v ρ ', (103)其中存在從βτ ρ β ρ 的細微改變。該一般化定義藉由以下設置而與標準定義相關:β ρ =τ ρ β。 (104)該一般化可在有或沒有以上論述的有限返回態相控制的情況下使用。 However, since the voltage dynamics are governed by the following formula, This parameterization may therefore be limiting in the sense that the voltage zero-tilt slopes are related by the slope factor β . To remove this limitation, a more general definition is: q ρ =- β ρ u - v ρ ', (103) where there is a subtle change from βτ ρ to β ρ . This generalized definition is related to the standard definition by the following settings: β ρ = τ ρ β . (104) This generalization can be used with or without the finite return phase control discussed above.

一維等效One-dimensional equivalent

該模型繼承了抗洩漏積分激發(ALIF)神經元模型的計算益處。本案中已表明,對於具有低耦合(小βδ)和高第二狀態時間常數(大τ u )的一些特定參數化,藉由對電壓時間常數進行按比例縮放以補償第二狀態零傾線吸引子對電壓衰退和上升時間的影響,第二狀態變數(u)可被省略同時保留近乎等效的行為。 This model inherits the computational benefits of the Anti-Leak Integral Stimulation (ALIF) neuron model. It has been shown in the present case that for some specific parameterizations with low coupling (small β and δ ) and high second state time constants (large τ u ), the voltage time constant is scaled to compensate for the second state zero tilt. The effect of the line attractor on voltage decay and rise time, the second state variable ( u ) can be omitted while retaining nearly equivalent behavior.

此舉的原因在於對模型動態的解(若假定了連續耦合)為以下形式: 其中,b=(a-τ ρ +τ u )/2τ u τ ρ ,c=(-a-τ ρ +τ u )/2τ u τ ρ , v'=v-v ρ '且u'=u+δε。若耦合較弱且τ u 較大,則在近似之後,可提議a τ u b 1/τ ρ ,而c 0。相應地, The reason for this is that the solution to the dynamics of the model (if continuous coupling is assumed) is of the form: among them , b =( a - τ ρ + τ u )/2 τ u τ ρ , c =(- a - τ ρ + τ u )/2 τ u τ ρ , v '= v - v ρ ' and u '= u + δε . If the coupling is weak and τ u is large, after the approximation, may propose a τ u and b 1/ τ ρ , and c 0. Correspondingly,

到達此狀態(例如發放尖峰或靜息或任何任意v(t))的時間由下式提供: The time to reach this state (such as issuing a spike or rest or any arbitrary v ( t )) is provided by:

為了用僅一個變數(亦即,僅v,而非vu)達成大致相同的效果,時間常數τ ρ 可被調節為τ ρ '以獲得等效的時間t,或即: In order to achieve substantially the same effect with only one variable (ie, only v , not v and u ), the time constant τ ρ can be adjusted to τ ρ ' to obtain an equivalent time t , or ie:

可回想起,預設地,ε=-v -,且由此對於δ<0,式(108)右側的對數中的分母較大,由此使得結果所得分數較小且該對數較小。出於此原因,τ ρ '需要小於(快於)τ ρ ,以計及對第二狀態的移除,第二狀態原本減慢了有效行為時間回應。 It can be recalled that, by default, ε = - v - , and thus for δ < 0, the denominator in the logarithm of the right side of equation (108) is larger, thereby making the resulting score smaller and the logarithm smaller. For this reason, τ ρ ' needs to be less than (faster than) τ ρ to account for the removal of the second state, which originally slows down the effective behavior time response.

本案的某些態樣支援源自於負(帶洩漏積分激發)態相和正(抗洩漏積分激發)態相以及在事件處的瞬間耦合的模型定義和基本模型動態。本案亦提供了額外動態特徵,包括驅動源自於包括瞬間耦合的模型定義的振盪或諧振行為的基礎態樣。以下,本案中將描述該等動態可如何產生各種各樣的生物學一致的細胞行為。 Some aspects of the case support model definitions and basic model dynamics derived from the negative (with leakage integral excitation) phase and the positive (anti-leakage integral excitation) phase and the instantaneous coupling at the event. The case also provides additional dynamic features, including driving the fundamentals derived from the oscillatory or resonant behavior of the model definition including transient coupling. In the following, it will be described in this context how these dynamics can produce a wide variety of biologically consistent cellular behaviors.

模型行為 Model behavior

在本節中,本案提供了以上描述的動態態樣以及類 似動態如何允許模型被設計成展現常用於表徵生物學細胞行為類型的豐富的各種行為的解釋,該等行為包括對尖峰時序模式、維持的或階躍輸入、斜坡以及其他輸入的回應。亦將提供具體參數化實例。然而,該等僅是實例,因為一般存在各種方式來設計模型以展現特定的行為特性。但是,在演示特定參數如何根據以上描述的動態原理來支配或影響行為差異時,特定實例可以是說明性的。給定了模型的靈活性,考慮所有組合和情形將是不切實際的,因此本案專注於演示性的行為集和達成彼等行為中的每一者的說明性手段的子集。 類似地,行為不限於先前章節中描述的具體動態,而是亦包括根據此處論述的一般原理的類似的或相關的動態。 In this section, the case provides the dynamic aspects and classes described above. How dynamics allow the model to be designed to exhibit an explanation of the rich variety of behaviors commonly used to characterize the type of biological cell behavior, including responses to spike timing patterns, sustained or step inputs, ramps, and other inputs. Specific parameterized examples will also be provided. However, these are merely examples, as there are generally various ways to design a model to exhibit specific behavioral characteristics. However, specific examples may be illustrative in demonstrating how certain parameters govern or influence behavioral differences in accordance with the dynamic principles described above. Given the flexibility of the model, it would be impractical to consider all combinations and situations, so the case focuses on a set of demonstrative behaviors and a subset of illustrative means of achieving each of their behaviors. Similarly, the behavior is not limited to the specific dynamics described in the previous sections, but also includes similar or related dynamics in accordance with the general principles discussed herein.

任意基準細胞Arbitrary reference cell

出於方便性,將使用標稱(任意)細胞參數化作為基準或基線。為了演示對輸入的各種回應,實例將通常使用其中τ -<0、τ +>0以及τ u >0且具有以標稱週期性發生的人工事件的參數化和配置。不失一般性的標稱設置可為:τ -=-20ms,τ +=2ms,τ u =10ms,v +=-60mV,v -=-70mV,v S =30mV,β=1,δ=-0.25以及△u=0,並且可考慮1ms的事件週期性。然而,選擇彼等標稱參數或設置而不是其他的標稱參數或設置並沒有特別的原因。可以使用其他參數化來獲得類似的或甚至相同的行為。選取具體標稱實例的目的僅是為了展示可如何在有(或沒有)對特定參數所作的改變的情況下達成各種行為。換言之,選取該具體標稱實例的目的是解決具有相同參數的細胞是否能演示多種行 為,以及是否能以多種/不同方式(例如,藉由一個參數或替換參數或參數組合的改變或藉由輸入的改變)達成行為改變的問題。 For convenience, nominal (arbitrary) cell parameterization will be used as a baseline or baseline. In order to demonstrate various responses to the input, examples will usually be used. , τ - <0, τ + >0, and τ u >0 and have parameterization and configuration of artificial events that occur at nominal periodicity. The nominal setting without loss of generality can be: τ - = -20ms, τ + = 2ms, τ u = 10ms, v + = -60mV, v - = -70mV, v S = 30mV, β =1, δ = -0.25 and Δ u =0, and event periodicity of 1 ms can be considered. However, there are no specific reasons for choosing their nominal parameters or settings other than the other nominal parameters or settings. Other parameterizations can be used to achieve similar or even the same behavior. The purpose of selecting a specific nominal instance is merely to show how various actions can be achieved with or without changes to specific parameters. In other words, the purpose of selecting this particular nominal instance is to resolve whether cells with the same parameters can demonstrate multiple behaviors and whether they can be varied in multiple/different ways (eg, by a parameter or a replacement parameter or a combination of parameters or by input) Change) to achieve the problem of behavior change.

模型行為可在任何期望的時間尺度上產生,因為該 模型的定義中的時間單位是任意的。因此,不失一般性,可論述抽象時間尺度上的行為。 Model behavior can be generated on any desired time scale because The time unit in the definition of the model is arbitrary. Therefore, without loss of generality, the behavior on the abstract time scale can be discussed.

本案審視回應於各種輸入上下文的以及在圖示性參 數設計態樣的演示性的行為集。該等行為是根據同步或時序態樣、容適或可興奮性態樣、在維持的輸入下的尖峰發放模式或在維持的輸入下的實際上強直性和位相型尖峰發放和短脈衝及靜息或重定軌道的動態態樣來組織的。 The case review responds to various input contexts as well as graphical representations. A demonstration of the behavioral set of design aspects. These behaviors are based on synchronization or timing patterns, tolerance or excitability, peak delivery modes at maintained inputs, or actual tonicity and phase-type spikes and short pulses and statics at sustained inputs. Organize or reorient the dynamics of the orbit.

同步和尖峰時序模式Synchronization and spike timing mode

由於輸入是在事件處應用的,因此狄拉克△函數可被用作輸入的根本基礎。多個△函數輸入一般一起構成尖峰時序模式(無論至突觸後細胞的輸入是來自同一突觸還是多個突觸)。審視回應於此類模式的代表性的行為集。儘管此處是根據此類輸入來表徵的,但該等行為在其他輸入上下文中亦是有關的。△函數輸入僅是離散時間中的元素分析的便利手段。 Since the input is applied at the event, the Dirac △ function can be used as the fundamental basis for the input. Multiple delta function inputs generally together form a peak timing mode (whether the input to the postsynaptic cell is from the same synapse or multiple synapses). Examine the representative set of behaviors that respond to such patterns. Although this is characterized by such input, such behavior is also relevant in other input contexts. The △ function input is only a convenient means of element analysis in discrete time.

尖峰等待時間Peak waiting time

該模型的正態相動態招致尖峰等待時間。正態相時間常數τ +決定了在沒有耦合的情況下的標稱等待時間。在有耦合的情況下,電流動態取決於電流是高於還是低於零傾線而相互作用。對於招致尖峰等待時間的唯一要求是:在事件處 使狀態移入正態相(亦即,以發放尖峰)。在有了狄拉克△函數輸入的情況下,從靜息狀態進入正態相僅要求電壓項△v中的輸入幅值貢獻滿足△v>v +-v -。一般而言,狀態移入正態相中的初始量越小,尖峰等待時間就越長。 The normal phase dynamics of the model incur a spike waiting time. The normal phase time constant τ + determines the nominal latency in the absence of coupling. In the case of coupling, the current dynamics depend on whether the current is above or below zero. The only requirement for a spike waiting time is to move the state into the normal phase at the event (ie, to issue a spike). In the case with a Dirac function △ input, the process proceeds with normal resting state is only required from the input amplitude voltage △ V Contribution entry satisfies △ v> v + - v - . In general, the smaller the initial amount of state shifting into the normal phase, the longer the peak wait time.

圖33圖示了在發生輸入事件3302的情況下的尖峰等 待時間的實例3300。圖表3304圖示如何可能招致實質性的尖峰等待時間。參數與標稱設置中相同,且△v=11mV,亦即,比足以到達態相閾值的值大1mV。應注意,該輸入將電壓狀態驅動到越深入正態相,尖峰等待時間就越短。該情形中的等待時間可受週期性耦合(由於非零β)的影響(增大)。 FIG. 33 illustrates an example 3300 of spike latency in the event of an input event 3302 occurring. Graph 3304 illustrates how it is possible to incur substantial spike waiting times. The parameters are the same as in the nominal setting, and Δ v =11 mV, that is, 1 mV greater than the value sufficient to reach the threshold of the phase. It should be noted that this input drives the voltage state deeper into the normal phase, and the spike wait time is shorter. The latency in this case can be affected (increased) by periodic coupling (due to non-zero β ).

圖34在狀態空間中圖示此效應(x軸是電壓狀態且y 軸是電流狀態)。在圖34中,此兩個態相基準電壓v -v +被標繪為垂直虛線,而電流u和電壓v零傾線在有限領域上被標繪為實線。狀態軌跡用曲線3402來圖示。 Figure 34 illustrates this effect in the state space (the x-axis is the voltage state and the y-axis is the current state). In Figure 34, the two phase reference voltages v - and v + are plotted as vertical dashed lines, while the current u and voltage v zero tilt lines are plotted as solid lines over a limited field. The state trajectory is illustrated by curve 3402.

出於比較的目的,在圖35中針對以下兩種情形來圖 示尖峰蹤跡和狀態軌跡:有耦合(尖峰蹤跡3502和狀態軌跡3504)以及無耦合(尖峰蹤跡3506和狀態軌跡3508)。參數與先前相同,但β=0。在有耦合的情況下,背離態相閾值的狀態軌跡具有正電流分量,並且由此將電壓帶到更靠近電壓零傾線,而非在水平上更朝向尖峰條件,並且由此增大了等待時間(相比於無耦合)。 For comparison purposes, the spike and state trajectories are illustrated in Figure 35 for the following two scenarios: coupled (spike trace 3502 and state trajectory 3504) and no coupling (spike trace 3506 and state trajectory 3508). The parameters are the same as before, but β = 0. In the case of coupling, the state trajectory that deviates from the phase threshold has a positive current component and thereby brings the voltage closer to the voltage zero tilt, rather than being more polar in the horizontal, and thus increasing the wait Time (compared to no coupling).

由此,耦合度影響尖峰等待時間。減小耦合將減小 尖峰等待時間。然而,減小耦合週期性亦將具有減小等待時間的效果。亦可簡單地藉由縮短正態相時間常數τ +或藉由減小 輸入量從而狀態初始地以較小的量進入正態相來達成減小的等待時間。概言之,有多種方式來獲得特定的等待時間,並且即使一些元素受其他設計目標約束,亦有自由針對期望行為來設計模型。 Thus, the degree of coupling affects the peak wait time. Reducing the coupling will reduce the peak wait time. However, reducing the coupling period will also have the effect of reducing latency. The reduced latency can also be achieved simply by shortening the normal phase time constant τ + or by reducing the input amount such that the state initially enters the normal phase by a small amount. In summary, there are multiple ways to achieve a specific wait time, and even if some elements are constrained by other design goals, there is freedom to design the model for the desired behavior.

模型中的該靈活性是優點,因為細胞行為可使用以 下各維來設計:輸入、細胞參數以及事件(包括人工事件)。 此外,該靈活性不僅適用於尖峰等待時間,而且亦一般適用於模型行為和動態。如前所述,該等維度皆是可獨立地控制的元素。不僅輸入和細胞參數是相異的維,事件本身(無論是否存在相關聯的輸入或輸出)、控制耦合亦是相異的維,並且由此影響動態。 This flexibility in the model is an advantage because cell behavior can be used The next dimensions are designed: inputs, cellular parameters, and events (including human events). In addition, this flexibility applies not only to peak wait times, but also to model behavior and dynamics. As mentioned earlier, these dimensions are all elements that can be controlled independently. Not only is the input and cell parameters different, the event itself (whether or not there is an associated input or output), the control coupling is also a distinct dimension, and thus affects the dynamics.

閾下振盪Subliminal oscillation

閾下振盪可在尖峰之後由於返回狀態而發生。尖峰後振盪可作為重定條件(其中電壓和電流狀態在尖峰之後被復位)的結果或由於狀態軌跡到達尖峰條件(由於對電流狀態的重定是偏移)或此兩者的組合而被調動。如以上所論述的,復位條件可導致收斂至靜息狀態(靜息原點)或從其發散的靜息軌道。 Sub-threshold oscillations can occur after the spike due to the return state. The post-peak oscillations can be mobilized as a result of a recondition (where the voltage and current states are reset after a spike) or as a result of the state trajectory reaching a spike condition (due to a reorientation of the current state) or a combination of the two. As discussed above, the reset condition may result in convergence to a resting state (resting origin) or a resting orbit that diverge therefrom.

該動態是實現如圖36的實例3600中展現的諧振器行為的底層特徵。參數與標稱設置相同,且△v=10mV,亦即,單獨不足以招致向正態相的轉變。第一對尖峰3602-3604分開達例如20ms,並且第二對尖峰3606-3608分開達例如40ms。諧振器行為的關鍵態樣是與閾下振盪一致/同步的輸入加強了該效應。由此,諸輸入相對於彼此的時序在輸出的意義上是 可區分的輸入特性,如圖36中在第二對尖峰3606-3608之後的諧振器行為3610所圖示的。換言之,具有諧振行為的細胞能將具有一個週期性(頻率)的諸輸入與具有另一週期性(頻率)的諸輸入區分開。 This dynamic is the underlying feature that implements the resonator behavior exhibited in the example 3600 of Figure 36. The parameters are the same as the nominal settings, and Δ v = 10 mV, that is, alone is not sufficient to induce a transition to the normal phase. The first pair of peaks 3602-3604 are separated by, for example, 20 ms, and the second pair of peaks 3606-3608 are separated by, for example, 40 ms. A key aspect of resonator behavior is that the input coincides with/synchronizes with sub-threshold oscillations to reinforce this effect. Thus, the timing of the inputs relative to one another is a distinguishable input characteristic in the sense of output, as illustrated by resonator behavior 3610 after the second pair of peaks 3606-3608 in FIG. In other words, cells with resonant behavior can distinguish inputs with one periodicity (frequency) from inputs with another periodicity (frequency).

在狀態軌跡中在靜息點附近可看到驅動諧振器行為 的衰退閾下振盪。圖37圖示了此類動態。相同的慣例用於所有狀態空間軌跡圖,亦即,x軸是電壓狀態且y軸是電流狀態;兩個基準電壓v -v +被標繪為垂直虛線,而電流u和電壓v零傾線在有限領域上被標繪為實線。狀態軌跡用曲線3702來圖示。衰退逆時針軌道在靜息點附近的動態(在尖峰前和尖峰後兩種情況下均)直接與以上關於在負態相中圍繞電壓和電流零傾線的交點的靜息軌道所論述的彼等動態相當。電流和電導率輸入被應用於電壓狀態。若輸入週期性地發生但在後續輸入之時與在狀態空間中的軌道上處於靜息點左側的點有一偏移,則興奮性影響受到阻尼。若代替地,輸入發生於在狀態位於軌道中處於靜息點右側的點上時,則興奮性影響得到增強。 A decay threshold oscillation that drives the behavior of the resonator can be seen in the state trajectory near the rest point. Figure 37 illustrates such dynamics. The same convention applies to all state space trajectories, ie, the x-axis is the voltage state and the y-axis is the current state; the two reference voltages v - and v + are plotted as vertical dashed lines, while the current u and voltage v are zero-dip Lines are plotted as solid lines in a limited area. The state trajectory is illustrated by curve 3702. The dynamics of the decaying counterclockwise orbit near the resting point (both before and after the peak) are directly related to the restoring orbits above the intersection of the voltage and current zero-tilt in the negative phase. Equal dynamics. Current and conductivity inputs are applied to the voltage state. If the input occurs periodically but there is an offset at the point of subsequent input and to the left of the rest point on the orbit in the state space, the excitatory effect is damped. If instead, the input occurs when the state is at a point on the right side of the resting point in the orbit, then the excitatory effect is enhanced.

相反,圖38的實例3800中圖示的積分式行為不具有 此區分能力,因為沒有會導致其一部分在靜息電壓左側的軌道的振盪。積分式行為可藉由各種方式來達成,包括解耦電流動態。參數與先前相同,除了δ=0和△v=8mV。從圖38中的圖表3802可觀察到,作為結果,沒有振盪。 In contrast, the integral behavior illustrated in the example 3800 of FIG. 38 does not have this discriminating power because there is no oscillation that would cause a portion of its orbit to the left of the resting voltage. Integral behavior can be achieved in a variety of ways, including decoupling current dynamics. The parameters are the same as before except δ =0 and Δ v = 8 mV. As can be observed from the graph 3802 in Fig. 38, as a result, there is no oscillation.

底層耦合特徵亦由於抑制性輸入而能實現可被稱為 「去極化閾值的顯著可變性」的行為。抑制性輸入如同興奮 性輸入一樣可被用於擾動模型狀態,從而使其移入閾下振盪。若後續興奮性輸入與振盪同步地(一致地)發生,則該效應可得到增強並提供該細胞的「閾值」已改變的印象。 The underlying coupling feature can also be implemented due to the suppression input. The behavior of "significant variability in depolarization thresholds". Suppressive input is like excitement Sexual input can be used to perturb the model state so that it moves into subliminal oscillations. If the subsequent excitatory input occurs synchronously (consistently) with the oscillation, the effect can be enhanced and provide an impression that the "threshold" of the cell has changed.

圖39圖示了作為該底層特徵的直接結果,在興奮性 輸入單獨可能無法導致尖峰時(假定一開始細胞處於靜息),由抑制性輸入繼以興奮性輸入(具有特定尖峰間間隔)構成的尖峰模式可如何導致尖峰。參數與標稱設置相同。尖峰間間隔為20ms,且對於每個輸入具有△v=10mV。該行為可在圖37的上下文中理解。差別在於,並非使用興奮性輸入3902來在軌道上處於靜息點右側的點開始振盪,而是使用抑制性輸入3904繼以興奮性輸入3906來在軌道上處於靜息點左側的點開始振盪。由於隨後沿該軌道而行,因此在圖39中可觀察到電壓3908發生振盪(在興奮性輸入3906之時超過靜息點)。該等尖峰時序有關行為源自於輸入時序與細胞的當前諧振頻率的同步或失步。 Figure 39 illustrates the direct result of this underlying feature, where the excitatory input alone may not result in a spike (assuming the cell is at rest), followed by an inhibitory input followed by an excitatory input (with a specific inter-peak interval) How the spike pattern can cause spikes. The parameters are the same as the nominal settings. The inter-spike interval is 20 ms and has Δ v = 10 mV for each input. This behavior can be understood in the context of Figure 37. The difference is that instead of using excitatory input 3902 to oscillate at the point on the track to the right of the resting point, the suppression input 3904 is followed by excitatory input 3906 to oscillate at the point on the track to the left of the resting point. Since it follows the track, it can be observed in Figure 39 that voltage 3908 oscillates (beyond excitability input 3906 exceeds the resting point). These spike timing related behaviors result from synchronization or out of synchronization of the input timing with the current resonant frequency of the cell.

輸入幅值和輸入時序對狀態的影響以及由此對尖峰 行為的影響可藉由在<v,u>空間中的形狀(例如,圓形或橢圓形)以及控制軌跡速率的時間常數方面設計軌道來控制。前者影響關於時序(頻寬)和幅值的不變性,而後者影響主諧振中心頻率。 The influence of the input amplitude and input timing on the state and thus the effect on the spike behavior can be designed by designing the orbit in the space of < v , u > space (for example, circular or elliptical) and controlling the time constant of the trajectory rate. To control. The former affects the invariance with respect to timing (bandwidth) and amplitude, while the latter affects the main resonant center frequency.

閾上振盪Threshold oscillation

以上,振盪對應於閾下狀態軌跡。然而,軌跡並不被約束於負態相。若來自抑制性輸入的回彈是充分的,則可能引發尖峰。取決於參數,此可能要求有較大的抑制性輸入 或多個抑制性輸入來將狀態移到朝外螺旋路徑中。可藉由增大電流動態(電流零傾線的斜率)來設計短脈衝。圖40圖示了由輸入事件4006導致的回彈尖峰4004的實例4002。對於回彈尖峰實例4002,參數與標稱設置相同,且在4ms上(以1ms的人工事件間隔)施加抑制性輸入4006。圖40圖示了由抑制性輸入4012導致的回彈短脈衝4010的實例4008。對於回彈短脈衝實例4008,參數與標稱設置相同,除了δ=-0.5。 Above, the oscillation corresponds to the sub-threshold state trajectory. However, the trajectory is not constrained to the negative phase. If the rebound from the inhibitory input is sufficient, a spike may be triggered. Depending on the parameters, this may require a larger suppression input or multiple suppression inputs to move the state into the outward spiral path. Short pulses can be designed by increasing the current dynamics (the slope of the current zero tilt). FIG. 40 illustrates an example 4002 of a rebound spike 4004 resulting from an input event 4006. For the rebound spike instance 4002, the parameters are the same as the nominal settings, and the inhibitory input 4006 is applied over 4 ms (at a manual event interval of 1 ms). FIG. 40 illustrates an example 4008 of a rebound short pulse 4010 caused by the inhibitory input 4012. For the rebound short pulse instance 4008, the parameters are the same as the nominal settings except for δ = -0.5.

圖41圖示了在圖40的回彈尖峰實例4002的情形中的 狀態空間軌跡4102的實例4100。抑制性輸入使狀態移到深入負態相中並移到負電流狀態,狀態從該負電流狀態起沿繞靜息原點的部分軌道(逆時針)而行。然而,由於軌道半徑相當大,該路徑與態相邊界相交並導致尖峰。此是閾下振盪與回彈尖峰/短脈衝之間的差異。應注意,存在許多方式來影響軌跡是否跨越態相邊界,亦即,無論是藉由控制軌跡、移動基準、改變輸入還是設計事件。 Figure 41 illustrates the situation in the case of the rebound spike instance 4002 of Figure 40. An instance 4100 of the state space trajectory 4102. The inhibitory input moves the state deeper into the negative phase and moves to a negative current state from which the state follows a partial orbit (counterclockwise) around the resting origin. However, due to the relatively large radius of the orbit, the path intersects the boundary of the state and causes a spike. This is the difference between the subthreshold oscillation and the rebound spike/short pulse. It should be noted that there are many ways to influence whether the trajectory crosses the phase boundary, that is, by controlling the trajectory, moving the reference, changing the input, or designing the event.

此外,完全相同的底層特徵可實現雙穩態行為。一 旦短脈衝正在進行中,狀態動態就處在軌道中(軌道穿過重定模式)。為了停止該短脈衝,可能需要輸入來將狀態推出軌道。在態樣中,任一類型的輸入(興奮性或抑制性)均可以是合適的。圖42圖示了具有興奮性輸入4204、4206的雙穩態行為(圖表4202)的實例4200。參數與標稱設置相同,除了輸入是單個事件但是更大,例如△v=20mV。 In addition, the same underlying features enable bistable behavior. Once the short pulse is in progress, the state dynamics are in the orbit (the track passes through the re-mode). In order to stop the short pulse, an input may be required to push the state out of the track. In the aspect, either type of input (excitability or inhibition) may be suitable. FIG. 42 illustrates an example 4200 of bistable behavior with excitatory inputs 4204, 4206 (graph 4202). The parameters are the same as the nominal settings except that the input is a single event but larger, such as Δ v =20mV.

圖43圖示了針對來自圖42的雙穩態實例4200的狀態 空間軌跡4302的實例4300。要注意的特徵是雙重的。首先, 初始的興奮性輸入4204導致尖峰,並且重定參數將狀態帶入軌道,從而產生進一步的尖峰(例如,參見圖表4202)。其次,最終的興奮性輸入4206將狀態從軌道上的點移回到靜息電壓附近,此導致回到靜息原點的衰退螺旋。應注意,最終興奮性輸入的時序是重要的。 43 illustrates the state for the bistable instance 4200 from FIG. Example 4300 of spatial trajectory 4302. The features to be noted are twofold. First of all, The initial excitability input 4204 results in a spike and the re-parameter brings the state into the orbit, resulting in further spikes (see, for example, chart 4202). Second, the final excitability input 4206 moves the state from the point on the track back to the vicinity of the resting voltage, which results in a decaying spiral back to the resting origin. It should be noted that the timing of the final excitatory input is important.

在本案的態樣中,亦可根據前一章節中的前述分析 來修改參數以對抗衰退並將軌道維持在負態相中。此外,該章節中描述的兩種或更多種方法可聯合使用。 In the case of this case, it can also be based on the aforementioned analysis in the previous chapter. To modify the parameters to counter the decay and maintain the orbit in the negative phase. In addition, two or more of the methods described in this section can be used in combination.

耦合、事件以及振盪之間的交叉Coupling, event, and intersection between oscillations

以上提供了模型的各種演示性動態,包括衰退、維持的和爆炸式軌道。由於耦合或事件(無論是輸入、輸出還是人工事件),細胞可在該等類型的循環之間轉變。例如,在閾下之上,振盪被演示為在尖峰(輸出事件)之後並且衰退軌道(至靜息)被演示為在興奮性輸入(輸入事件)之後。一般而言,若一個振盪已經存在,則動態行為中的改變亦可取決於振盪。本案首先演示應用前述原理之一來設計藉由耦合(不同於事件、輸入或其他參數)來振盪的實例,並且隨後演示可如何設計該振盪以甚至在事件之後仍能繼續的實例。 The above provides a variety of demo dynamics of the model, including recession, maintenance, and explosive orbits. Due to coupling or events (whether input, output, or artificial events), cells can transition between these types of cycles. For example, above the threshold, the oscillation is demonstrated as after the spike (output event) and the decaying track (to rest) is demonstrated as after the excitatory input (input event). In general, if an oscillation already exists, the change in dynamic behavior may also depend on the oscillation. The present case first demonstrates applying one of the foregoing principles to design an instance of oscillation by coupling (unlike events, inputs, or other parameters), and then demonstrates how the oscillation can be designed to continue even after an event.

圖44圖示了閾下振盪4402的實例4400,亦即增大耦 合參數βδ的幅值如何能足以對抗軌道衰退。參數與標稱設置相同,除了β=2和δ=-0.725。輸入4404被設為△v=10mV,從而不足以招致向正態相的轉變。在此種情形中,輸入不足以進入正域,並且由此由圖表4402圖示的系統行為與閾下振盪 相關聯。 Figure 44 illustrates an example 4400 of sub-threshold oscillations 4402, i.e., how the amplitudes of the coupling parameters β and δ are increased enough to counter orbital decay. The parameters are the same as the nominal settings except for β = 2 and δ = -0.725. Input 4404 is set to Δ v = 10 mV, which is insufficient to induce a transition to the normal phase. In such a case, the input is insufficient to enter the positive domain, and thus the system behavior illustrated by graph 4402 is associated with sub-threshold oscillations.

設計在尖峰之後維持振盪的細胞可僅藉由配置重定 電流偏移△u以將狀態帶入軌道區域中來達成。一般而言,此可藉由配置△u或此兩者以使重定後的狀態在軌道路徑上來達成。 After spike designed to maintain the oscillation of the cells can only re-configured by a current offset △ u state to be achieved into the track area. In general, this can be configured by Δ u , Or both to achieve the re-determined state on the orbital path.

圖45圖示了尖峰後閾下振盪的實例4500,亦即,相 同的細胞可如何在尖峰之前和之後(在輸入4504之前和之後)在閾下振盪(參見圖45中的圖表4502)。參數與以上相同(不改變),除了△u從0改變為-11,此足以使返回狀態移動到軌道路徑中。 Figure 45 illustrates an example 4500 of post-peak sub-threshold oscillations, i.e., how the same cells can oscillate under the threshold before and after the spikes (before and after input 4504) (see diagram 4502 in Figure 45). The parameters are the same as above (no change) except that Δ u changes from 0 to -11, which is sufficient to move the return state into the track path.

圖46圖示根據本案的某些態樣的在尖峰之前和之後 的靜息軌道路徑的實例4600。圖46圖示了在尖峰之後的閾下振盪(實線4602)如何像尖峰之前(虛線4604)一般返回到軌道路徑。X軸是電壓狀態v,且y軸是電流狀態u。該等蹤跡對應於圖44-45的狀態路徑重疊的結果。應注意,振盪性區域的寬度可被設計成相對於貢獻輸入為任意大。 Figure 46 illustrates an example 4600 of a resting orbital path before and after a spike, in accordance with certain aspects of the present disclosure. Figure 46 illustrates how sub-threshold oscillations after the spike (solid line 4602) generally return to the orbital path as before the spike (dashed line 4604). The X axis is the voltage state v and the y axis is the current state u . These traces correspond to the results of the state path overlap of Figures 44-45. It should be noted that the width of the oscillating region can be designed to be arbitrarily large relative to the contribution input.

振盪相位Oscillating phase

應注意,細胞在發放尖峰之後的行為一般包括負電壓擺動(振盪開始減小)。然而,尖峰之後的去極化亦是可能達成的。圖47圖示了實例4700,其中電位之後(輸入4704之後)的去極化(參見圖表4702)是藉由調節電流復位偏移△u來達成的。參數與以上相同,除了△u=-7.5。有效地,此在復位之際將振盪置於不同相位中。 It should be noted that the behavior of the cells after the spike is issued generally includes a negative voltage swing (the oscillation begins to decrease). However, depolarization after the spike is also possible. FIG 47 illustrates an example 4700, after which the potential (input after 4704) depolarization (see graph 4702) is reset by adjusting the current to achieve the offset △ u. The parameters are the same as above except for Δ u =-7.5. Effectively, this places the oscillations in different phases at reset.

多重行為Multiple behavior

絕大多數的以上行為是在不改變模型參數的情況下 達成的。所有行為皆是在沒有實質性地改變參數(至多調節一個或兩個)的情況下達成的。此外,調節特定參數以更改一些行為態樣並不干擾要保留的其他行為態樣。該優點可在以除了尖峰時序模式以外的其他方式來表徵的行為中觀察到。 The vast majority of the above behaviors are without changing the model parameters. Achieved. All behaviors are achieved without substantially changing the parameters (up to one or two adjustments). In addition, adjusting specific parameters to change some behavioral aspects does not interfere with other behavioral aspects to be retained. This advantage can be observed in behaviors characterized in other ways than the spike timing mode.

容適和可興奮性Adaptability and excitability

細胞行為往往是以具有決定細胞的可興奮性(哪些態樣會使細胞興奮而哪些不使細胞興奮)的典型目標的其他輸入波形形狀的方式來表徵的。更令人感興趣的輸入波形形狀之一是斜坡,因為輸入量會進化。具體而言,此類表徵可涉及向細胞供應逐漸增大的電流。斜坡可由斜率(增大速率)和歷時來表徵。增大(或以其他方式改變)輸入在與細胞動態在該輸入期間如何改變以及細胞動態是抵消還是增強輸入改變相提並論時是令人感興趣的。 Cellular behavior is often characterized in a manner that has other input waveform shapes that dictate the excitability of the cells, which can excite cells and excite cells. One of the more interesting input waveform shapes is the ramp because the input will evolve. In particular, such characterization may involve supplying a gradual increase in current to the cells. The ramp can be characterized by the slope (increasing rate) and duration. Increasing (or otherwise changing) the input is of interest when compared to how cell dynamics change during the input and whether cell dynamics are offset or enhanced input changes.

容適Tolerance

容適是其中只要輸入的增大速率相對較低則細胞的動態將會高於逐漸增大的輸入以從逐漸增大的輸入復原而不發放尖峰的行為。然而,若增大速率較快,則細胞可能無法復原並阻止尖峰。圖48圖示了容適原理的實例4800。參數與標稱設置相同,除了τ -=-5ms,τ +=1ms,τ u =50ms,δ=-1。第一斜坡4802的歷時為100ms,且第二斜坡4804的歷時為5ms。第一斜坡4802具有8mV/ms的斜率,且第二斜坡4804具有第一斜坡的斜率的3/4。應注意,第二斜坡比第一斜坡更短且更 小(較低的峰值和總積分輸入)。儘管如此,尖峰4806源自於第二斜坡而非第一斜坡。 The tolerance is one in which the dynamics of the cell will be higher than the increasing input as long as the rate of increase of the input is relatively low to recover from the increasing input without issuing a spike. However, if the rate of increase is faster, the cells may not recover and prevent spikes. FIG. 48 illustrates an example 4800 of an adaptive principle. The parameters are the same as the nominal settings except τ - =-5ms, τ + =1ms, τ u =50ms, δ =-1. The duration of the first ramp 4802 is 100 ms, and the duration of the second ramp 4804 is 5 ms. The first ramp 4802 has a slope of 8 mV/ms and the second ramp 4804 has a slope of 3/4 of the first ramp. It should be noted that the second ramp is shorter and smaller than the first ramp (lower peak and total integral input). Nonetheless, the spike 4806 originates from the second ramp rather than the first ramp.

圖49圖示了針對來自圖48的容適實例4800的狀態空 間軌跡4902的實例4900。應注意,輸入被施加於電壓狀態但以足夠慢的速率來施加,以允許電流狀態將軌跡帶入向著靜息回歸的衰退軌跡。相反,若斜率(輸入率)增大,則該動態不能足夠快地回應以阻止尖峰。 Figure 49 illustrates the empty state for the accessible example 4800 from Figure 48. Example 4900 of an inter trajectory 4902. It should be noted that the input is applied to the voltage state but is applied at a rate that is slow enough to allow the current state to bring the trajectory into the decay trajectory toward the rest of the rest. Conversely, if the slope (input rate) increases, the dynamics do not respond quickly enough to prevent spikes.

尖峰和短脈衝模式Spike and short pulse mode

對於逐漸增大的興奮性輸入,亦可達成變化的尖峰速率行為。藉由減小負態相電壓時間常數和電流時間常數兩者,可達成類1行為,或即逐漸增大的尖峰速率。此強調了逐漸增大的輸入的即時幅值(而非積分或累積輸入量)的影響。只要重定參數每次皆將狀態帶回到類似的軌跡中,行為改變(尖峰間間隔)就將受到該即時輸入幅值的很大影響。 For increasing excitatory inputs, varying peak rate behavior can also be achieved. By reducing both the negative phase voltage time constant and the current time constant, a class 1 behavior, or a gradually increasing peak rate, can be achieved. This emphasizes the effect of increasing the instantaneous magnitude of the input (rather than the integral or cumulative input). As long as the re-parameters bring the state back to a similar trajectory each time, the behavior change (inter-peak interval) will be greatly affected by the instantaneous input amplitude.

圖50圖示了作為上升的興奮性輸入5004的結果的增大的尖峰發放速率5002的實例5000。參數與標稱設置相同,除了時間常數縮短為:τ -=-5ms,τ u =5ms且δ=-0.1,以與標稱相比略微減小耦合。應回想起,對於標稱復位參數,△u=0且=v -FIG. 50 illustrates an example 5000 of an increased spike release rate 5002 as a result of the rising excitability input 5004. The parameters are the same as the nominal settings except that the time constant is shortened to: τ - = -5ms, τ u = 5ms and δ = -0.1 to slightly reduce the coupling compared to the nominal. It should be recalled that for the nominal reset parameter, Δ u =0 and = v - .

若重定參數使狀態移動以使得在每個尖峰之後朝向靜息的衰退更快,從而隨著興奮性輸入斜坡上升,尖峰間間隔可保持相對恆定而非減小,則可得到相對更恆定的尖峰發放速率,即類2行為。由此,藉由平衡針對電流(及/或電壓)的重定條件,可得到類2行為或即針對上升的興奮性輸入有相 對恆定的激發速率。 If the parameter is re-set to move the state so that the decay towards the rest is faster after each spike, so that as the excitability input ramps up, the inter-peak spacing can remain relatively constant rather than decrease, resulting in a relatively more constant spike The release rate, which is the class 2 behavior. Thus, by balancing the re-conditioning of the current (and/or voltage), a class 2 behavior or a phase of excitatory input for the rise can be obtained. For a constant rate of excitation.

圖51圖示了儘管有上升的興奮性輸入5104,但仍以 相對恆定的速率(固定間隔)發放尖峰5102的實例5100。參數與類1相同,除了△u=10以平衡(補償)逐漸增大的輸入以及δ=-0.5以增大耦合。應注意,用於類1和類2實例兩者的興奮性輸入斜坡是相同的,例如,長度為140ms,等效於在峰值/末端為25mV。應注意,在此處如同其他電壓蹤跡標繪中一樣,在尖峰之際的電壓看起來並非到達尖峰閾值。然而,此僅僅是因為當電壓到達尖峰閾值時,電壓立即復位,從而在尖峰時間處標繪的電壓實際上是重定電壓,因此在該等標繪中,尖峰並不總是看起來是高的。此僅僅是記錄到的電壓是怎樣情況的偽像。 Figure 51 illustrates an example 5100 of dispensing a spike 5102 at a relatively constant rate (fixed interval) despite the rising excitability input 5104. The parameters are the same as for Class 1, except that Δ u = 10 to balance (compensate) the increasing input and δ = -0.5 to increase the coupling. It should be noted that the excitability input ramps for both Class 1 and Class 2 instances are the same, for example, 140 ms in length, equivalent to 25 mV at peak/end. It should be noted that here as in other voltage trace plots, the voltage at the peak does not appear to reach the spike threshold. However, this is only because when the voltage reaches the spike threshold, the voltage is immediately reset, so that the voltage plotted at the peak time is actually a re-set voltage, so in these plots, the spike does not always appear to be high. . This is just an artifact of what the recorded voltage is.

強直性和位相型尖峰和短脈衝Tonic and phase type spikes and short pulses

階躍輸入電流的應用通常已被用作生物學細胞表徵(包括強直性和位相型尖峰以及短脈衝)的試驗性協議。該等行為是相當直截了當的,因為關注點較少在時序和輸入上,而更多是在繼起的輸出模式上,在強直性行為的情形中尤甚。 The application of step input currents has often been used as a pilot protocol for biological cell characterization, including tonic and phase-type spikes and short pulses. These behaviors are quite straightforward, because the focus is less on timing and input, and more on the subsequent output pattern, especially in the case of tonic behavior.

強直性和位相型尖峰Tonic and phase spikes

暫時忽略階躍轉變本身,此後的維持的輸入亦可被認為是在一段時間上發生的許多離散輸入的加總效應的粗略近似(可能具有實質性的濾波效應)。在維持的興奮性輸入下,強直性尖峰發放是源自於該輸入反覆地驅動電壓進入去極化的行為。取決於狀態變數耦合和活動性,作為直接結果, 尖峰發放速率可發生改變。圖52圖示了作為階躍5204的結果的強直性尖峰發放行為5202的實例5200。參數與標稱設置相比並不改變。行為5202是由輸入階躍5204(維持的興奮性輸入)產生的。然而,該行為可用各種其他參數化來得到,包括僅藉由增大輸入量用服從於如以下描述的位相型尖峰發放的彼等參數化來得到。 The step transition itself is temporarily ignored, and the sustain input thereafter can also be considered as a rough approximation of the summing effect of many discrete inputs occurring over a period of time (possibly with substantial filtering effects). At the maintained excitatory input, the ankylosing spike is derived from the behavior of the input repeatedly driving the voltage into depolarization. Depending on the state variable coupling and activity, as a direct result, The rate of spike release can vary. FIG. 52 illustrates an example 5200 of a tonic spike release behavior 5202 as a result of step 5204. The parameters do not change compared to the nominal settings. Behavior 5202 is generated by input step 5204 (maintained excitability input). However, this behavior can be obtained with a variety of other parameterizations, including by merely increasing the input amount with their parameterization subject to phase-type spikes as described below.

位相型尖峰行為的不同之處在於,尖峰在轉變之後 停止。然而,該區別可能沒有乍看起來那麼大。若復位條件在第一尖峰之後將軌跡置於非尖峰路徑上(儘管有維持的輸入),或者若在第一尖峰期間的軌跡本身使狀態移入在重定之後將衰退而非再次發放尖峰的路徑,則將發生位元相型行為。前者與後者的區別在於,是什麼機制(或機制的組合)驅動狀態到非尖峰發放態相。圖53根據本案的某些態樣單獨圖示後一種機制的實例5300。可觀察到,位相型尖峰5302在輸入階躍5304的轉變之後停止。參數與標稱相同,除了電流衰退時間常數增大到τ u =40ms,電流衰退時間常數影響狀態在重定後在何處結束。亦應注意,各種其他參數化或輸入可導致相同的或類似的行為。 The difference in phase-type spike behavior is that the spike stops after the transition. However, the difference may not be as big as it seems at first glance. If the reset condition places the trajectory on the non-spike path after the first spike (although there is a maintained input), or if the trajectory itself during the first spike shifts the state into a path that will decay rather than re-issue the spike after re-setting, The bit phase behavior will occur. The difference between the former and the latter is what mechanism (or combination of mechanisms) drives the state to the non-spike state. Figure 53 illustrates an example 5300 of the latter mechanism separately in accordance with certain aspects of the present disclosure. It can be observed that the phase type spike 5302 stops after the transition of the input step 5304. The parameters are the same as the nominal, except that the current decay time constant increases to τ u = 40 ms, and the current decay time constant affects where the state ends after the reset. It should also be noted that various other parameterizations or inputs may result in the same or similar behavior.

強直性和位相型短脈衝Tonic and phase short pulses

強直性和位相型短脈衝類似於強直性和位相型尖峰。然而,為了產生短脈衝,可能需要(相比於標稱)對參數化作出的唯一根本性改變是增大重定電壓或調節重定電流偏移,從而細胞繼續發放尖峰。另外,電流時間常數亦將影響短脈衝特性,諸如短脈衝持續多久。 Tonic and phase short pulses are similar to tonic and phase spikes. However, in order to generate short pulses, the only fundamental change that may be required (as compared to the nominal) to parameterize is to increase the re-set voltage or adjust the re-set current offset so that the cells continue to issue spikes. In addition, the current time constant will also affect short pulse characteristics, such as how long a short pulse lasts.

圖54圖示了主要藉由調節復位條件來達成的強直性 短脈衝5402的實例5400。參數與強直性和位相型尖峰是相同的,除了復位條件改變為△u=1.5和=-45mV,以在輸入階躍5404之後建立短脈衝。 FIG. 54 illustrates an example 5400 of a tonic short pulse 5402 that is primarily achieved by adjusting a reset condition. The parameters are the same as the tonic and phase type spikes except that the reset condition is changed to Δ u = 1.5 and = -45 mV to establish a short pulse after input step 5404.

位相型短脈衝行為是類似的並且可使用相同的機制 來達成。輸入上的差異(減小)可將強直性轉成位相型,因為回彈可被減少並且不足以擺脫下一短脈衝。此可藉由調節相對態相基準電壓差異以調節細胞行為對確切輸入水平的敏感度來演示。圖55圖示了在輸入階躍5504之際的位相型短脈衝行為5502的實例5500。參數與強直性短脈衝相同,除了使得電流復位條件與標稱相比不改變,亦即,△u=0,並且藉由設置=-50mV來改變態相基準差異。 Phase-type short pulse behavior is similar and can be achieved using the same mechanism. The difference (decrease) in the input turns the tonicity into a phase type because the rebound can be reduced and not enough to get rid of the next short pulse. This can be demonstrated by adjusting the relative phase phase reference voltage difference to adjust the sensitivity of cell behavior to exact input levels. FIG. 55 illustrates an example 5500 of phase-type short pulse behavior 5502 at input step 5504. The parameters are the same as the tonic short pulses except that the current reset condition is not changed compared to the nominal, ie, Δ u =0, and by setting =-50mV to change the phase reference difference.

自我調整變型Self-adjusting variant

混合模式行為即便不是往往難以與強直性尖峰區分開亦是與之相似的。然而,存在其他產生混合模式行為的方式,包括比如用於強直性或位相型短脈衝一般的參數化。此是由於兩個原因造成的。第一,短脈衝僅僅是在時間上靠近的尖峰的序列,其中要被視為是短脈衝的必要條件「靠近度」只不過是時間尺度或定義的問題(往往是任意的)。第二,單個尖峰從根本上說是僅具有一個尖峰的短脈衝。由此,混合行為可藉由強直性或位相型短脈衝(一或多個尖峰)的元素來產生。 Mixed mode behavior is similar, if not often difficult to distinguish from tonic peaks. However, there are other ways of producing mixed mode behavior, including, for example, parameterization for tonic or phase short pulses. This is due to two reasons. First, the short pulse is only a sequence of spikes that are close in time, and the necessary condition to be regarded as a short pulse "closeness" is merely a time scale or a defined problem (often arbitrary). Second, a single spike is essentially a short pulse with only one spike. Thus, the mixing behavior can be produced by elements of a tonic or phase-type short pulse (one or more spikes).

圖56圖示了強直性/位相型短脈衝參數化如何亦可導致由輸入階躍5604發起的混合模式行為5602的實例5600。 參數與位相型短脈衝相同,除了對復位條件的較小改變:△u=1和=-53mV。此僅僅是一種類型的行為可如何源自於參數化或輸入公式化的各種組合的另一實例。 FIG. 56 illustrates an example 5600 of how the tonic/phase-type short pulse parameterization can also result in the mixed mode behavior 5602 initiated by the input step 5604. The parameters are the same as the phase-type short pulses except for a small change to the reset condition: Δ u =1 and =-53mV. This is just another example of how one type of behavior can be derived from various combinations of parameterization or input formulation.

相同的一般原理可應用於尖峰頻率自我調整行為, 如圖57的實例5700中圖示的。參數與以上相同,除了對復位條件的較小改變:△u=0.5以及返回至標稱=-70mV以顯示共用參數如何解釋各種行為。由輸入階躍5704發起的「維持的短脈衝」中的尖峰5702的頻率可由各種參數來控制,包括例如復位條件或時間常數。 The same general principles can be applied to spike frequency self-adjustment behavior, as illustrated in example 5700 of FIG. The parameters are the same as above, except for minor changes to the reset condition: Δ u = 0.5 and return to nominal =-70mV to show how shared parameters explain various behaviors. The frequency of the spike 5702 in the "maintained short pulse" initiated by the input step 5704 can be controlled by various parameters including, for example, a reset condition or a time constant.

回應於階躍興奮性輸入的各種直接了當的行為可藉 由復位條件以及如由電流狀態衰退時間常數決定的電流狀態進化來解釋。然而,各種行為可藉由替換的參數化和機制(或組合)來產生,並且所提供的實例是演示性的且並不意味著是窮盡性的或較佳的。選擇該等實例是為了演示改變行為的特定極微參數差異或者是為瞭解釋特定關係而未必有任何使參數改變最小化的意圖。 Various direct behaviors that respond to step excitatory inputs can be borrowed It is explained by the reset condition and the evolution of the current state as determined by the current state decay time constant. However, various acts may be made by alternative parameterizations and mechanisms (or combinations) and the examples provided are illustrative and are not meant to be exhaustive or preferred. These examples are chosen to demonstrate a particular extreme parameter difference in changing behavior or to explain a particular relationship without necessarily having any intention of minimizing parameter changes.

零傾線鞍Zero tilt saddle

電流時間常數τ u 通常為正值,從而狀態趨向於零傾線。此外,耦合參數δ通常為負,從而零傾線具有正斜率。然而,若τ u 的符號反轉,則變換變數和零傾線r變為鞍點而非吸引子。此將得到無輸入的尖峰發放環,因為:(i)在零傾線之上,狀態被朝上推並被拖向負電壓/背離正電壓;(ii)在充分激進(小的)τ -情況下,狀態被拖曳跨過零傾線;及(iii)一旦在零傾線之下,狀態被向下推並被向外拖向尖峰電壓。在狀態 被重定時,該環重複並且細胞繼續發放尖峰。 The current time constant τ u is usually positive, so that the state tends to zero tilt. Furthermore, the coupling parameter δ is generally negative, so that the zero inclination has a positive slope. However, if the sign of τ u is inverted, the transformation variable and the zero inclination r become saddle points rather than attractors. This will result in a spike-free loop with no input because: (i) above the zero-tilt, the state is pushed up and dragged to the negative/deviated positive voltage; (ii) in the fully aggressive (small) τ - In this case, the state is dragged across the zero tilt line; and (iii) once below the zero tilt line, the state is pushed down and pulled outward toward the spike voltage. As the state is retimed, the loop repeats and the cells continue to issue spikes.

然而,可藉由添加興奮性輸入來使細胞停止發放尖 峰。此可能要求添加足夠的興奮性輸入以使較大負電壓處的電壓導數偏移。作為結果,負電壓導數變為正。若負電壓導數足夠正,則狀態軌跡可往回跨越零傾線並循環回去(閾下循環)並且甚至在期望的情況下衰退到穩定點。但是,若興奮性輸入被移除(或被抑制所抵消),則細胞可重新進入尖峰發放循環。 However, cells can be stopped by issuing excitatory inputs. peak. This may require adding enough excitatory inputs to shift the voltage derivative at the larger negative voltage. As a result, the negative voltage derivative becomes positive. If the negative voltage derivative is sufficiently positive, the state trajectory can traverse back to zero tilt and loop back (threshold sub-cycle) and decay to a stable point even under the desired conditions. However, if the excitatory input is removed (or offset by inhibition), the cells can re-enter the spike release cycle.

在以下演示該等原理時,可考慮一些額外的非典型 參數化態樣。例如,態相閾值可被設為除正態相基準電壓v +之外的值。此意味著狀態軌跡可使用超過典型範疇(基準電壓)的電壓零傾線之一來設計。例如,藉由將態相閾值減小到=v -,正態相零傾線有效地一直延伸回到v -並支配v -v +之間以及v +之上的動態。此可被用於達成各種期望效應,包括推電壓狀態而非拉電壓狀態。 Some additional atypical parametric aspects can be considered when demonstrating these principles below. For example, the state threshold It can be set to a value other than the normal phase reference voltage v + . This means that the state trajectory can be designed using one of the voltage zero tilts that exceeds the typical category (reference voltage). For example, by reducing the phase threshold to = v - , the normal phase zero tilt effectively extends back to v - and dominates the dynamics between v - and v + and above v + . This can be used to achieve various desired effects, including pushing the voltage state rather than pulling the voltage state.

在圖58的實例5800中,抑制5802被添加以使恆定的 興奮性輸入5804偏移(消掉),從而導致由抑制引起的尖峰5806。與標稱實例相比被修改的參數為:τ u =-25,δ=+0.9,且=v -以及τ -=-10。復位條件亦設為△u=10且=-60mV。當抑制消掉了興奮性輸入時,細胞開始激發並繼續如此做,因為復位條件在沒有輸入的情況下將細胞帶回到不穩定狀況。當抑制被移除時,淨興奮性輸入將狀態置於電流鞍點之上,此將電流狀態推回到0而非爆炸。 In the example 5800 of FIG. 58, the suppression 5802 is added to shift (eliminate) the constant excitability input 5804, resulting in a spike 5806 caused by the suppression. The parameters modified compared to the nominal instance are: τ u = -25, δ = +0.9, and = v - and τ - = -10. The reset condition is also set to Δ u =10 and =-60mV. When the inhibition eliminates the excitatory input, the cell begins to excite and continues to do so because the reset condition brings the cell back to an unstable condition without input. When the suppression is removed, the net excitability input places the state above the current saddle point, which pushes the current state back to zero instead of exploding.

圖59圖示了針對來自圖58的由抑制引起的尖峰實例 5800的狀態軌跡5902的實例5900。應注意,移除興奮(藉由抑制來消掉)如何導致尖峰發放循環。重新引入興奮性輸入將軌跡置於繞由於輸入偏移引起的抬升了的原點的衰退軌道中。 Figure 59 illustrates an example of a spike caused by inhibition from Figure 58 Example 5900 of state track 5902 of 5800. It should be noted that removing the excitement (by eliminating it by suppression) leads to a spike firing cycle. Reintroducing the excitatory input places the trajectory in a decaying orbit around the raised origin due to the input offset.

短脈衝可藉由應用以上論述的一或多個原理來達成 。例如,重定模式可被改變以將狀態置於更快的軌道路徑中。圖60圖示了由抑制引起的短脈衝的實例6000。抑制6002被添加以使恆定的興奮性輸入6004偏移(消掉),從而導致由抑制引起的短脈衝6006。參數與以上相同,除了△u=0和=-48mV。 Short pulses can be achieved by applying one or more of the principles discussed above. For example, the resizing mode can be changed to place the state in a faster track path. Figure 60 illustrates an example 6000 of short pulses caused by suppression. Suppression 6002 is added to shift (eliminate) the constant excitability input 6004, resulting in a short pulse 6006 caused by the suppression. The parameters are the same as above except △ u =0 and =-48mV.

概言之,該模型是靈活的,因為即使非典型的參數 範圍亦可被用於建模豐富的在生物學上現實的行為。 In summary, the model is flexible because even atypical parameters The scope can also be used to model rich biologically realistic behaviors.

細胞範本Cell template

出於實踐目的,本案中論述了有限的實例集。相應地,該等實例演示了有限的行為集,每個行為是以多種可能方式之一產生的。應當鼓勵模型設計者應用該等原理以達成該等及相關的或類似的期望行為以及動態之間的互動,並且認為多種設計組合(參數化、事件、以及輸入)一般是可能的。前述行為在圖61中再現。 For practical purposes, a limited set of examples is discussed in this case. Accordingly, these examples demonstrate a limited set of behaviors, each of which is produced in one of many possible ways. Model designers should be encouraged to apply these principles to achieve such and related or similar desired behaviors and interactions between dynamics, and it is believed that multiple design combinations (parameterization, events, and inputs) are generally possible. The foregoing behavior is reproduced in FIG.

圖62匯總了標稱實例參數設置和在以上實例中演示的對該等參數的具體變型。此不應當賦予所演示的實際值或具體變型過度的重要性。確切而言,該等實例可用作相對參數化(參數如何彼此相關)和行為態樣的概念範本。 Figure 62 summarizes the nominal instance parameter settings and the specific variations of the parameters demonstrated in the above examples. This should not give the actual value of the demonstration or the importance of a specific variant. Rather, these examples can be used as a conceptual paradigm for relative parameterization (how the parameters relate to each other) and behavioral aspects.

審視圖62揭示了具有相同參數(或類似參數,例如 ,僅單個參數改變)的細胞如何可展現多種行為。在態樣中 ,修改參數可阻止行為子集、允許新行為、改變其中展現出行為的領域或所述者的某種組合。在乍看圖62中圖示的有限示例參數集時,可能會覺得具有不同參數的兩個行為需要該差異來實現行為差異此一假定是有吸引力的。但是,建立一個行為的其他手段可具有與另一行為等同或相似的參數。應回想起,選取該等實例是為了演示特定設計建模原理。亦應注意,事件影響動態,並且輸入公式化亦是設計的另一維。 Review view 62 reveals the same parameters (or similar parameters, such as How cells with only a single parameter change can exhibit multiple behaviors. In the aspect Modifying a parameter can prevent a subset of behaviors, allow new behaviors, change the realm in which the behavior is exhibited, or some combination of the described. When looking at the limited set of example parameters illustrated in Figure 62, it may be attractive to assume that two behaviors with different parameters require the difference to achieve behavioral differences. However, other means of establishing an action may have parameters that are equivalent or similar to another behavior. It should be recalled that these examples were chosen to demonstrate the principles of a particular design modeling. It should also be noted that events affect dynamics, and input formulation is another dimension of design.

應注意,在圖62中,標稱實例是任意性的。用位相 型尖峰參數以更強的輸入亦可導致強直尖峰。混合模式行為可能難以與強直尖峰區分開。不同參數被用於混合模式僅是為了演示行為可用不同方式來產生或解釋。 It should be noted that in Figure 62, the nominal examples are arbitrary. Phase A sharper input with a stronger input can also result in a strong straight spike. Mixed mode behavior can be difficult to distinguish from tonic spikes. Different parameters are used in the mixed mode only to demonstrate that the behavior can be generated or interpreted in different ways.

圖63圖示了根據本案的某些態樣的用於更新人工神 經元的狀態的示例操作6300。在6302,可決定人工神經元的第一狀態,其中該人工神經元的神經元模型可在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態可被劃分成兩個或更多個態相。在6304,可至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相。在6306,可至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態。 Figure 63 illustrates the use of certain aspects of the present invention for updating artificial gods. An example operation 6300 of the state of the warp. At 6302, a first state of the artificial neuron can be determined, wherein the neuron model of the artificial neuron can have a closed form solution in continuous time and wherein the state dynamics of the neuron model can be divided into two or more State. At 6304, an operational phase of the artificial neuron can be determined from the two or more states based at least in part on the first state. At 6306, the state of the artificial neuron can be updated based at least in part on the first state of the artificial neuron and the determined operational phase.

圖64圖示了根據本案的某些態樣的用於產生人工神 經元的各種神經行為的示例操作6400。在6402,可決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的線性動態被 劃分成兩個或更多個態相。在6404,可至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相。在6406,可至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態。在6408,可藉由利用神經元模型的線性動態來產生該人工神經元的多種神經行為。 Figure 64 illustrates the use of certain aspects of the present invention for generating artificial gods An example operation 6400 of various neurobehavioral behaviors. At 6402, a first state of the artificial neuron can be determined, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the linear dynamics of the neuron model are Divided into two or more states. At 6404, an operational phase of the artificial neuron can be determined from the two or more states based at least in part on the first state. At 6406, the state of the artificial neuron can be updated based at least in part on the first state of the artificial neuron and the determined operational phase. At 6408, various neural behaviors of the artificial neuron can be generated by utilizing the linear dynamics of the neuron model.

圖65圖示了根據本案的某些態樣的用於更新人工神 經元的狀態的示例操作6500。在6502,可至少部分地基於事件來更新人工神經元的狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相。在6504,該人工神經元的狀態可按時間間隔被更新。在6506,若在時刻處或在時刻之間發生事件,則該人工神經元的狀態可被更新。 Figure 65 illustrates an update of an artificial god in accordance with certain aspects of the present disclosure. An example operation 6500 of the state of the warp. At 6502, the state of the artificial neuron can be updated based at least in part on an event, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the state dynamics of the neuron model are divided into two or more Multiple states. At 6504, the state of the artificial neuron can be updated at time intervals. At 6506, if an event occurs at a time or between times, the state of the artificial neuron can be updated.

圖66圖示了根據本案的某些態樣的使用通用處理器 6602對前述用於更新人工神經元的狀態和產生人工神經元的各種神經行為的方法的示例實現6600。與計算網路(神經網路)相關聯的變數(神經信號)、突觸權重和系統參數可被儲存在記憶體塊6604中,而在通用處理器6602處執行的指令可從程式記憶體6606中載入。在本案的態樣中,載入到通用處理器6602中的指令可包括:用於決定人工神經元的第一狀態的代碼,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態(線性)動態被劃分成兩個或更多個態相;用於至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相的代碼; 用於至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態的代碼;及用於藉由利用該神經元模型的線性動態來產生該人工神經元的多種神經行為的代碼。 Figure 66 illustrates the use of a general purpose processor in accordance with certain aspects of the present disclosure. 6602 An example implementation 6600 of the foregoing method for updating a state of an artificial neuron and generating various neural behaviors of an artificial neuron. Variables (neural signals), synaptic weights, and system parameters associated with the computing network (neural network) may be stored in memory block 6604, while instructions executed at general purpose processor 6602 may be from program memory 6606. Loaded in. In the aspect of the present invention, the instructions loaded into the general purpose processor 6602 can include: code for determining a first state of the artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in continuous time And wherein the state (linear) dynamics of the neuron model is divided into two or more states; for determining the work of the artificial neuron from the two or more states based at least in part on the first state State code a code for updating a state of the artificial neuron based at least in part on the first state of the artificial neuron and the determined operational state phase; and for generating the artificial nerve by utilizing linear dynamics of the neuron model A variety of neurobehavioral codes.

在本案的另一態樣中,載入到通用處理器6602中的 指令可包括:用於基於事件來更新人工神經元的狀態的代碼,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且該神經元模型的狀態動態被劃分成兩個或更多個態相;用於按時間間隔更新該人工神經元的狀態的代碼;及用於若在時刻處或在時刻之間發生事件,則更新該人工神經元的狀態的代碼。 In another aspect of the present case, loading into the general purpose processor 6602 The instructions may include code for updating a state of the artificial neuron based on the event, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and the state dynamics of the neuron model is divided into two or more a plurality of states; a code for updating a state of the artificial neuron at intervals; and a code for updating a state of the artificial neuron if an event occurs at or between times.

圖67圖示了根據本案的某些態樣的前述用於更新人 工神經元的狀態和用於產生人工神經元的各種神經行為的方法的示例實現6700,其中記憶體6702可經由互連網路6704與計算網路(神經網路)的個體(分散式)處理單元(神經處理器)6706對接。與計算網路(神經網路)相關聯的變數(神經信號)、突觸權重和系統參數可被儲存在記憶體6702中,並且可從記憶體6702經由互連網路6704的連接被載入到每個處理單元(神經處理器)6706中。在本案的態樣中,處理單元6406可被配置成:決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且該神經元模型的狀態(線性)動態被劃分成兩個或更多個態相;至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相;至少部分地基於該人工神經元的第 一狀態和所決定的工作態相來更新該人工神經元的狀態;及藉由利用該神經元模型的線性動態來產生該人工神經元的多種神經行為。 Figure 67 illustrates the foregoing for updating a person in accordance with certain aspects of the present disclosure. An example implementation 6700 of a state of a working neuron and a method for generating various neural behaviors of an artificial neuron, wherein the memory 6702 can be connected to an individual (distributed) processing unit of the computing network (neural network) via the interconnection network 6704 ( The neuro processor) 6706 is docked. The variables (neural signals), synaptic weights, and system parameters associated with the computing network (neural network) can be stored in memory 6702 and can be loaded from memory 6702 via the connection of interconnect network 6704 to each Processing unit (neural processor) 6706. In the aspect of the present invention, the processing unit 6406 can be configured to: determine a first state of the artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and the state of the neuron model (linear Dynamically being divided into two or more states; determining an operational phase of the artificial neuron from the two or more phases based at least in part on the first state; based at least in part on the artificial neuron First A state and a determined operational state are used to update the state of the artificial neuron; and a plurality of neural behaviors of the artificial neuron are generated by utilizing linear dynamics of the neuron model.

在本案的另一態樣,處理單元6706可被配置成:基 於事件來更新人工神經元的狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;按時間間隔更新該人工神經元的狀態;及若在時刻處或在時刻之間發生事件,則更新該人工神經元的狀態。 In another aspect of the present disclosure, processing unit 6706 can be configured to: Updating the state of the artificial neuron in an event, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the state dynamics of the neuron model is divided into two or more states; The state of the artificial neuron is updated at intervals; and if an event occurs at a time or between times, the state of the artificial neuron is updated.

圖68圖示了根據本案的某些態樣的基於分散式記憶 體6802和分散式處理單元(神經處理器)6804對前述用於更新人工神經元的狀態和產生人工神經元的各種神經行為的方法的示例實現6800。如圖68中所圖示的,一個記憶體組6802可直接與計算網路(神經網路)的一個處理單元6804對接,其中該記憶體組6802可儲存與該處理單元(神經處理器)6804相關聯的變數(神經信號)、突觸權重和系統參數。在本案的態樣中,處理單元6804可被配置成:決定人工神經元的第一狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且該神經元模型的狀態(線性)動態被劃分成兩個或更多個態相;至少部分地基於第一狀態從此兩個或更多個態相中決定該人工神經元的工作態相;至少部分地基於該人工神經元的第一狀態和所決定的工作態相來更新該人工神經元的狀態;及藉由利用該神經元模型的線性動態來產生該人工神經元的多種神經行為。 Figure 68 illustrates a decentralized memory based on certain aspects of the present disclosure. The body 6802 and the decentralized processing unit (neural processor) 6804 implement an example 6800 of the aforementioned method for updating the state of the artificial neurons and generating various neural behaviors of the artificial neurons. As illustrated in FIG. 68, a memory bank 6802 can directly interface with a processing unit 6804 of a computing network (neural network), wherein the memory bank 6802 can be stored with the processing unit (neural processor) 6804. Associated variables (neural signals), synaptic weights, and system parameters. In the aspect of the present invention, the processing unit 6804 can be configured to: determine a first state of the artificial neuron, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and the state of the neuron model (linear Dynamically being divided into two or more states; determining an operational phase of the artificial neuron from the two or more phases based at least in part on the first state; based at least in part on the artificial neuron The first state and the determined operational state update the state of the artificial neuron; and generate a plurality of neural behaviors of the artificial neuron by utilizing linear dynamics of the neuron model.

在本案的另一態樣中,處理單元6804可被配置成: 基於事件來更新人工神經元的狀態,其中該人工神經元的神經元模型在連續時間中具有封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相;按時間間隔更新該人工神經元的狀態;及若在時刻處或在時刻之間發生事件,則更新該人工神經元的狀態。 In another aspect of the present disclosure, processing unit 6804 can be configured to: Updating the state of the artificial neuron based on the event, wherein the neuron model of the artificial neuron has a closed form solution in continuous time and wherein the state dynamics of the neuron model is divided into two or more states; by time The state of the artificial neuron is updated at intervals; and if an event occurs at a time or between times, the state of the artificial neuron is updated.

圖69圖示根據本案的某些態樣的神經網路6900的示 例實現。如圖69中所圖示的,神經網路6900可包括複數個局部處理單元6902,局部處理單元6902可執行以上描述的方法的各種操作。每個處理單元6902可包括儲存該神經網路的參數的局部狀態記憶體6904和局部參數記憶體6906。另外,處理單元6902可包括具有局部(神經元)模型程式的記憶體6908、具有局部學習程式的記憶體6910以及局部連接記憶體6912。此外,如圖69中所圖示的,每個局部處理單元6902可與用於配置處理的單元6914對接並且與路由連接處理元件6916對接,單元6914可提供對局部處理單元的局部記憶體的配置,元件6916提供局部處理單元6902之間的路由。 Figure 69 illustrates an illustration of a neural network 6900 in accordance with certain aspects of the present disclosure. Example implementation. As illustrated in FIG. 69, neural network 6900 can include a plurality of local processing units 6902 that can perform various operations of the methods described above. Each processing unit 6902 can include local state memory 6904 and local parameter memory 6906 that store parameters of the neural network. In addition, the processing unit 6902 can include a memory 6908 having a local (neuron) model program, a memory 6910 having a local learning program, and a local connection memory 6912. In addition, as illustrated in FIG. 69, each local processing unit 6902 can interface with a unit 6914 for configuration processing and interface with routing connection processing component 6916, which can provide configuration of local memory for the local processing unit. Element 6916 provides routing between local processing units 6902.

根據本案的某些態樣,圖63-65中所圖示的操作6300 、6400和6500可在硬體中執行,例如由來自圖69的一或多個處理單元6902來執行。 According to some aspects of the present case, operation 6300 illustrated in Figures 63-65 6,400 and 6500 can be executed in hardware, such as by one or more processing units 6902 from FIG.

以上所描述的方法的各種操作可由能夠執行相應功 能的任何合適的手段來執行。該等手段可包括各種硬體及/或軟體元件及/或模組,包括但不限於電路、特殊應用積體電路(ASIC)或處理器。一般而言,在附圖中圖示操作的場合, 彼等操作可具有帶相似編號的相應配對手段功能元件。例如,圖63、圖64和圖65中圖示的操作6300、6400和6500對應於圖63A、圖64A和圖65A中圖示的組件6300A、6400A和6500A。 Various operations of the methods described above may be capable of performing corresponding work Can be executed by any suitable means. Such means may include various hardware and/or software components and/or modules including, but not limited to, circuits, special application integrated circuits (ASICs) or processors. In general, where the operation is illustrated in the drawings, These operations may have corresponding pairing means functional elements with similar numbers. For example, operations 6300, 6400, and 6500 illustrated in Figures 63, 64, and 65 correspond to components 6300A, 6400A, and 6500A illustrated in Figures 63A, 64A, and 65A.

如本文中所使用的,術語「決定」廣泛涵蓋各種各 樣的動作。例如,「決定」可包括演算、計算、處理、推導、研究、檢視(例如,在表、資料庫或其他資料結構中檢視)、探知及諸如此類。而且,「決定」可包括接收(例如,接收資訊)、存取(例如,存取記憶體中的資料)及諸如此類。而且,「決定」亦可包括解析、選擇、選取、確立及諸如此類。 As used herein, the term "decision" covers a wide variety of Kind of action. For example, a "decision" may include calculations, calculations, processing, derivation, research, inspection (eg, viewing in a table, database, or other data structure), detection, and the like. Moreover, "decision" may include receiving (eg, receiving information), accessing (eg, accessing data in memory), and the like. Moreover, "decisions" may also include analysis, selection, selection, establishment, and the like.

如本文中所使用的,引述一列項目中的「至少一個 (者)」的短語是指該等專案的任何組合,包括單個成員。作為實例,「abc中的至少一個」意欲涵蓋:abca-ba-cb-c以及a-b-cAs used herein, the phrase "at least one" in a list of items refers to any combination of the items, including the individual members. As an example, " at least one of a , b or c " is intended to cover: a , b , c , a - b , a - c , b - c and a - b - c .

結合本案所描述的各種說明性邏輯區塊、模組以及 電路可用設計成執行本文所描述功能的通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列信號(FPGA)或其他可程式設計邏輯裝置(PLD)、個別閘門或電晶體邏輯、個別的硬體元件或所述者的任何組合來實現或執行。通用處理器可以是微處理器,但在替換方案中,該處理器可以是任何市售的處理器、控制器、微控制器或狀態機。處理器亦可以被實現為計算設備的組合,例如DSP與微處理器的組合、複數個微處理器、與DSP核心協同的一或多個微處理器或任何其他此類配置。 Combining the various illustrative logic blocks, modules, and The circuit may be a general purpose processor, digital signal processor (DSP), special application integrated circuit (ASIC), field programmable gate array signal (FPGA), or other programmable logic device (PLD) designed to perform the functions described herein. ), individual gate or transistor logic, individual hardware components, or any combination of the foregoing to implement or perform. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. The processor may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

結合本案描述的方法或演算法的步驟可直接在硬體 中、在由處理器執行的軟體模組中或在此兩者的組合中實施。軟體模組可常駐在本領域所知的任何形式的儲存媒體中。 可使用的儲存媒體的一些實例包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體、EPROM記憶體、EEPROM記憶體、暫存器、硬碟、可移除磁碟、CD-ROM等。軟體模組可包括單一指令或許多數指令,且可分佈在若干不同的程式碼片段上,分佈在不同的程式間以及跨多個儲存媒體分佈。 儲存媒體可被耦合到處理器以使得該處理器能從/向該儲存媒體讀寫資訊。替換地,儲存媒體可以被整合到處理器。 The steps of the method or algorithm described in this case can be directly on the hardware Implemented in a software module executed by a processor or a combination of the two. The software modules can reside in any form of storage medium known in the art. Some examples of storage media that may be used include random access memory (RAM), read only memory (ROM), flash memory, EPROM memory, EEPROM memory, scratchpad, hard disk, removable magnetic Disc, CD-ROM, etc. The software module can include a single instruction or a majority of instructions, and can be distributed over several different code segments, distributed among different programs, and distributed across multiple storage media. The storage medium can be coupled to the processor such that the processor can read and write information from/to the storage medium. Alternatively, the storage medium can be integrated into the processor.

本文所揭示的方法包括用於達成所描述的方法的一或多個步驟或動作。該等方法步驟及/或動作可以彼此互換而不會脫離申請專利範圍的範圍。換言之,除非指定了步驟或動作的特定次序,否則具體步驟及/或動作的次序及/或使用可以改動而不會脫離申請專利範圍的範圍。 The methods disclosed herein comprise one or more steps or actions for achieving the methods described. The method steps and/or actions may be interchanged without departing from the scope of the claimed invention. In other words, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.

所描述的功能可在硬體、軟體、韌體或所述者的任何組合中實現。若以硬體實現,則示例硬體設定可包括設備中的處理系統。處理系統可以用匯流排架構來實現。取決於處理系統的具體應用和整體設計約束,匯流排可包括任何數目的互連匯流排和橋接器。匯流排可將包括處理器、機器可讀取媒體以及匯流排介面的各種電路連結在一起。匯流排介面可用於尤其將網路介面卡等經由匯流排連接至處理系統。網路介面卡可用於實現信號處理功能。對於某些態樣,使用者介面(例如,按鍵板、顯示器、滑鼠、遊戲操縱桿等)亦 可被連接至匯流排。匯流排亦可連結各種其他電路(諸如時序源、周邊設備、穩壓器、電源管理電路等),該等電路在本領域中是眾所周知的,因此將不再贅述。 The functions described can be implemented in hardware, software, firmware, or any combination of the foregoing. If implemented in hardware, the example hardware settings can include a processing system in the device. The processing system can be implemented with a bus architecture. The bus bar can include any number of interconnect bus bars and bridges depending on the particular application of the processing system and overall design constraints. The bus bar connects various circuits including the processor, machine readable media, and bus interface. The bus interface can be used to connect a network interface card or the like to a processing system via a bus bar. The network interface card can be used to implement signal processing functions. For some aspects, the user interface (eg, keypad, display, mouse, joystick, etc.) Can be connected to the bus. The busbars can also be connected to various other circuits (such as timing sources, peripherals, voltage regulators, power management circuits, etc.), which are well known in the art and will not be described again.

處理器可負責管理匯流排和一般處理,包括執行儲存在機器可讀取媒體上的軟體。處理器可用一或多個通用及/或專用處理器來實現。實例包括微處理器、微控制器、DSP處理器以及其他能執行軟體的電路系統。軟體應當被寬泛地解釋成意指指令、資料或所述者的任何組合,無論是被稱作軟體、韌體、仲介軟體、微代碼、硬體描述語言或其他。作為實例,機器可讀取媒體可以包括RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式設計唯讀記憶體)、EPROM(可抹除可程式設計唯讀記憶體)、EEPROM(電可抹除可程式設計唯讀記憶體)、暫存器、磁片、光碟、硬驅動器或者任何其他合適的儲存媒體或其任何組合。機器可讀取媒體可被實施在電腦程式產品中。該電腦程式產品可以包括包裝材料。 The processor is responsible for managing the bus and general processing, including executing software stored on machine readable media. The processor can be implemented with one or more general purpose and/or special purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Software should be interpreted broadly to mean instructions, materials, or any combination of the above, whether referred to as software, firmware, media, software, hardware, or other description. As an example, the machine readable medium may include RAM (random access memory), flash memory, ROM (read only memory), PROM (programmable read only memory), EPROM (erasable program) Design read-only memory), EEPROM (Electrically Erasable Programmable Read Only Memory), scratchpad, magnetic disk, optical disk, hard drive or any other suitable storage medium or any combination thereof. Machine readable media can be implemented in a computer program product. The computer program product can include packaging materials.

在硬體實現中,機器可讀取媒體可以是處理系統中與處理器分開的一部分。然而,如本領域技藝人士將容易領會的,機器可讀取媒體或其任何部分可在處理系統外部。作為實例,機器可讀取媒體可包括傳輸線、由資料調制的載波及/或與設備分開的電腦產品,所有該等皆可由處理器經由匯流排介面來存取。替換地或補充地,機器可讀取媒體或其任何部分可被集成到處理器中,諸如快取記憶體及/或通用暫存器檔可能就是此種情形。 In a hardware implementation, the machine readable medium can be part of the processing system separate from the processor. However, as will be readily appreciated by those skilled in the art, the machine readable medium or any portion thereof can be external to the processing system. By way of example, a machine readable medium can include a transmission line, a carrier modulated by the data, and/or a computer product separate from the device, all of which can be accessed by the processor via the bus interface. Alternatively or additionally, the machine readable medium or any portion thereof may be integrated into the processor, such as cache memory and/or general purpose register files.

處理系統可以被配置為通用處理系統,該通用處理系統具有一或多個提供處理器功能性的微處理器和提供機器可讀取媒體中的至少一部分的外部記憶體,微處理器和外部記憶體皆藉由外部匯流排架構與其他支援電路系統連結在一起。替換地,該處理系統可以包括一或多個神經元形態處理器以用於實現本文述及之神經元模型和神經系統模型。作為另一替代方案,處理系統可以用帶有整合在單塊晶片中的處理器、匯流排介面、使用者介面、支援電路系統和至少一部分機器可讀取媒體的ASIC(特殊應用積體電路)來實現,或者用一或多個FPGA(現場可程式設計閘陣列)、PLD(可程式設計邏輯裝置)、控制器、狀態機、閘控邏輯、個別硬體元件或者任何其他合適的電路系統或者能執行本案通篇所描述的各種功能性的電路的任何組合來實現。取決於具體應用和加諸於整體系統上的總設計約束,本領域技藝人士將認識到如何最佳地實現關於處理系統所描述的功能。 The processing system can be configured as a general purpose processing system having one or more microprocessors providing processor functionality and external memory providing at least a portion of machine readable media, a microprocessor and external memory The body is connected to other supporting circuits by an external bus structure. Alternatively, the processing system can include one or more neuromorphic processors for implementing the neuron model and the nervous system model described herein. As a further alternative, the processing system may use an ASIC (Special Application Integrated Circuit) with a processor integrated in a single chip, a bus interface, a user interface, a support circuitry, and at least a portion of machine readable media. To implement, either with one or more FPGAs (field programmable gate arrays), PLDs (programmable logic devices), controllers, state machines, gated logic, individual hardware components, or any other suitable circuitry or It can be implemented by any combination of circuits capable of performing the various functions described throughout the present application. Those skilled in the art will recognize how best to implement the functions described with respect to the processing system, depending on the particular application and the overall design constraints imposed on the overall system.

機器可讀取媒體可包括數個軟體模組。該等軟體模組包括當由處理器執行時使處理系統執行各種功能的指令。該等軟體模組可包括傳送模組和接收模組。每個軟體模組可以常駐在單個儲存裝置中或者跨多個儲存裝置分佈。作為實例,當觸發事件發生時,可以從硬驅動器中將軟體模組載入到RAM中。在軟體模組執行期間,處理器可以將一些指令載入到快取記憶體中以提高存取速度。隨後可將一或多個快取記憶體行載入到通用暫存器檔中以供處理器執行。在以下談及軟體模組的功能性時,將理解此類功能性是在處理器執行 來自該軟體模組的指令時由該處理器來實現的。 Machine readable media can include several software modules. The software modules include instructions that, when executed by the processor, cause the processing system to perform various functions. The software modules can include a transmission module and a receiving module. Each software module can reside in a single storage device or be distributed across multiple storage devices. As an example, when a trigger event occurs, the software module can be loaded into the RAM from the hard drive. During execution of the software module, the processor can load some instructions into the cache to increase access speed. One or more cache memory lines can then be loaded into the general purpose scratchpad file for execution by the processor. When talking about the functionality of a software module, it will be understood that such functionality is performed on the processor. The instructions from the software module are implemented by the processor.

若在軟體中實現,則各功能可作為一或多數指令或代碼儲存在電腦可讀取媒體上或藉電腦可讀取媒體進行傳送。電腦可讀取媒體包括電腦儲存媒體和通訊媒體兩者,該等媒體包括促成電腦程式從一地向另一地轉移的任何媒體。儲存媒體可以是能被電腦存取的任何可用媒體。作為實例而非限定,此種電腦可讀取媒體可包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存、磁片儲存或其他磁儲存裝置或能被用來攜帶或儲存指令或資料結構形式的期望程式碼且能被電腦存取的任何其他媒體。任何連接亦被正當地稱為電腦可讀取媒體。例如,若軟體是使用同軸電纜、光纖電纜、雙絞線、數位用戶線(DSL)或無線技術(諸如紅外(IR)、無線電以及微波)從web網站、伺服器或其他遠端源傳送而來,則該同軸電纜、光纖電纜、雙絞線、DSL或無線技術(諸如紅外、無線電以及微波)就被包括在媒體的定義之中。如本文中所使用的盤(disk)和碟(disc)包括壓縮光碟(CD)、鐳射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光®光碟,其中盤(disk)常常磁性地再現資料,而碟(disc)用鐳射來光學地再現資料。因此,在一些態樣中,電腦可讀取媒體可包括非瞬態電腦可讀取媒體(例如,有形媒體)。另外,對於其他態樣,電腦可讀取媒體可包括瞬態電腦可讀取媒體(例如,信號)。上述的組合亦應被包括在電腦可讀取媒體的範圍內。 If implemented in software, each function can be stored as one or more instructions or codes on a computer readable medium or on a computer readable medium. Computer readable media includes both computer storage media and communication media, including any media that facilitates the transfer of a computer program from one location to another. The storage medium can be any available media that can be accessed by the computer. By way of example and not limitation, such computer readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage device or can be used to carry or store instructions or data structures. Any other medium that expects code and can be accessed by a computer. Any connection is also properly referred to as computer readable media. For example, if the software is transmitted from a web site, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and microwave. The coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies (such as infrared, radio, and microwave) are included in the definition of the media. As used herein, a disk (Disk) and disc (Disc), includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray ® disc where disks (Disk) magnetically often The data is reproduced, and the disc uses laser to optically reproduce the data. Thus, in some aspects, computer readable media can include non-transitory computer readable media (eg, tangible media). Additionally, for other aspects, computer readable media can include transient computer readable media (eg, signals). The above combinations should also be included in the scope of computer readable media.

因此,某些態樣可包括用於執行本文仲介紹的操作 的電腦程式產品。例如,此類電腦程式產品可包括其上儲存(及/或編碼)有指令的電腦可讀取媒體,該等指令能由一或多個處理器執行以執行本文中所描述的操作。對於某些態樣,電腦程式產品可包括包裝材料。 Therefore, some aspects may include operations for performing the operations described herein. Computer program product. For example, such computer program products can include computer readable media having stored thereon (and/or encoded) instructions executable by one or more processors to perform the operations described herein. For some aspects, computer program products may include packaging materials.

此外,應當領會,用於執行本文中所描述的方法和技術的模組及/或其他合適手段能由使用者終端及/或基地台在適用的場合下載及/或以其他方式獲得。例如,此類設備能被耦合至伺服器以促成用於執行本文中所描述的方法的手段的轉移。或者,本文述及之各種方法能經由儲存手段(例如,RAM、ROM、諸如壓縮光碟(CD)或軟碟等實體儲存媒體等)來提供,以使得一旦將該儲存手段耦合至或提供給使用者終端及/或基地台,該手段就能獲得各種方法。此外,能利用適於向設備提供本文中所描述的方法和技術的任何其他合適的技術。 In addition, it should be appreciated that modules and/or other suitable means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station where applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, the various methods described herein can be provided via storage means (eg, RAM, ROM, physical storage media such as compact discs (CDs) or floppy disks, etc.) such that once the storage means is coupled or provided for use The terminal and/or the base station can obtain various methods by this means. Moreover, any other suitable technique suitable for providing the methods and techniques described herein to a device can be utilized.

應該理解的是,申請專利範圍並不被限定於以上所圖示的精確配置和元件。可在以上所描述的方法和裝置的佈局、操作和細節上作出各種改動、更換和變形而不會脫離申請專利範圍的範圍。 It should be understood that the scope of the patent application is not limited to the precise arrangements and elements illustrated. Various modifications, changes and variations can be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

6300‧‧‧操作 6300‧‧‧ operation

6302‧‧‧步驟 6302‧‧‧Steps

6304‧‧‧步驟 6304‧‧‧Steps

6306‧‧‧步驟 6306‧‧‧Steps

Claims (43)

一種用於更新一人工神經元的一狀態的方法,該方法包含以下步驟:決定該人工神經元的一第一狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解,並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相(regime);至少部分地基於該第一狀態從該等兩個或更多個態相中決定該人工神經元的一工作態相;及至少部分地基於該人工神經元的該第一狀態和該所決定的工作態相來更新該人工神經元的該狀態。 A method for updating a state of an artificial neuron, the method comprising the steps of: determining a first state of the artificial neuron, wherein a neuron model of the artificial neuron has a closed form solution in continuous time And wherein the state dynamics of the neuron model are divided into two or more regimes; the artificial neurons are determined from the two or more states based at least in part on the first state An operational phase; and updating the state of the artificial neuron based at least in part on the first state of the artificial neuron and the determined operational phase. 如請求項1述及之方法,其中該等兩個或更多個態相包含:第一態相和第二態相,並且其中該神經元模型的該等狀態動態在該第一態相中趨向於靜息而在該第二態相中趨向於發放尖峰。 The method of claim 1, wherein the two or more states comprise: a first phase and a second phase, and wherein the state dynamics of the neuron model are in the first phase It tends to rest and tends to issue spikes in the second phase. 如請求項1述及之方法,其中該等兩個或更多個態相包含:第一態相和第二態相,並且其中該神經元模型的該等狀態動態在該第一態相中趨向於一第一基準而在該第二態相中趨於背離一第二基準。 The method of claim 1, wherein the two or more states comprise: a first phase and a second phase, and wherein the state dynamics of the neuron model are in the first phase It tends to a first reference and tends to deviate from a second reference in the second phase. 如請求項1述及之方法,其中該等兩個或更多個態相包含:第一態相和第二態相,並且其中該神經元模型的該等狀態 動態在該第一態相中展現帶洩漏積分激發(LIF)行為而在該第二態相中展現抗洩漏積分激發(ALIF)行為。 The method of claim 1, wherein the two or more states comprise: a first phase and a second phase, and wherein the states of the neuron model Dynamics exhibits a Leaky Integral Excitation (LIF) behavior in the first phase and an Anti-Leakage Integral Excitation (ALIF) behavior in the second phase. 如請求項1述及之方法,該方法進一步包含以下步驟:基於該第一狀態和該工作態相中的至少一者決定該神經元模型在與該第一狀態的時間不同的一時間的一第二狀態。 The method of claim 1, the method further comprising the step of determining, based on at least one of the first state and the operational phase, a time at which the neuron model is different from the time of the first state Second state. 如請求項5述及之方法,其中該神經元模型的該第一狀態對應於一第一事件,其中該第二狀態對應於一第二事件,並且其中該第二事件是該第一事件之後的下一個事件。 The method of claim 5, wherein the first state of the neuron model corresponds to a first event, wherein the second state corresponds to a second event, and wherein the second event is after the first event The next event. 如請求項6述及之方法,其中該第一事件包含:針對該神經元模型的一輸入事件、一輸出事件或一人工事件。 The method of claim 6, wherein the first event comprises: an input event, an output event, or an artificial event for the neuron model. 如請求項6述及之方法,其中決定該第二狀態之步驟包含以下步驟:至少部分地基於該第一事件與該第二事件之間的一時間以及在該工作態相中的該等狀態動態來決定該神經元模型的該第二狀態。 The method of claim 6, wherein the step of determining the second state comprises the step of: based at least in part on a time between the first event and the second event and the states in the working phase Dynamically determines the second state of the neuron model. 如請求項8述及之方法,其中該第一狀態由該神經元模型的一膜電位元(v)和一復原電流(u)來定義,並且其中該第二狀態係根據下式來決定: v'=v+q ρ u'=u+rq ρ =-τ ρ βu-v ρ ',以及r=δ(v+ε),其中△t是該第一狀態與該第二狀態之間一流逝的時間,若v>ρ=+,若v ρ=-,是一態相閾值,τ ρ 是一電壓時間常數,τ u 是一復原電流時間常數,β是一電阻,v ρ 是該工作態相的一基電壓,q ρ r是狀態變換變數,δ是一比例因數,且ε是一偏移電壓。 The method of claim 8, wherein the first state is defined by a membrane potential element ( v ) and a recovery current ( u ) of the neuron model, and wherein the second state is determined according to the following formula: v '= v + q ρ , u '= u + r , q ρ =- τ ρ βu - v ρ ', and r = δ ( v + ε ), where Δ t is the first state and the second state Between the best time of death, if v > Then ρ =+, if v Then ρ =-, Is a one-state phase threshold, τ ρ is a voltage time constant, τ u is a recovery current time constant, β is a resistance, v ρ is a base voltage of the working phase, q ρ and r are state transformation variables, δ Is a scaling factor and ε is an offset voltage. 如請求項1述及之方法,該方法進一步包含以下步驟:至少部分地基於該第一狀態或該工作態相中的至少一者決定該人工神經元何時將激發。 The method of claim 1, the method further comprising the step of determining when the artificial neuron will fire based, at least in part, on the first state or the at least one of the operational phase. 如請求項10述及之方法,其中該第一狀態由該神經元模型的一膜電位元(v)和一復原電流(u)來定義,並且其中決定該人工神經元何時將激發的步驟包含以下步驟:使用以下規則: 其中τ +是一正態相電壓時間常數,v S 是該神經元模型的一輸出尖峰的一所定義電壓,q +是一正態相狀態變換變數, 是一態相閾值,並且△t S 是直至該人工神經元將激發之前的一預計時間。 The method of claim 10, wherein the first state is defined by a membrane potential element ( v ) and a recovery current ( u ) of the neuron model, and wherein the step of determining when the artificial neuron will be excited comprises The following steps: Use the following rules: Where τ + is a normal phase voltage time constant, v S is a defined voltage of an output spike of the neuron model, q + is a normal phase state transition variable, Is a state with the threshold, and a △ t S is the expected time until the artificial neuron will fire before. 如請求項1述及之方法,其中更新該人工神經元的該狀態之步驟包含以下步驟:在一事件的一時刻處更新該狀態或在一事件的一時刻之後立即更新該狀態。 The method of claim 1, wherein the step of updating the state of the artificial neuron comprises the step of updating the state at a time of an event or updating the state immediately after a time of an event. 如請求項1述及之方法,其中更新該人工神經元的該狀態之步驟包含以下步驟:以所決定的時間間隔來更新該狀態。 The method of claim 1, wherein the step of updating the state of the artificial neuron comprises the step of updating the state at the determined time interval. 如請求項1述及之方法,其中更新該人工神經元的該狀態之步驟包含以下步驟:若在所決定的時間間隔處或在所決定的時間間隔之間發生一事件則更新該狀態。 The method of claim 1, wherein the step of updating the state of the artificial neuron comprises the step of updating the state if an event occurs between the determined time interval or the determined time interval. 如請求項1述及之方法,其中該等狀態動態由該神經元模型的一膜電位元和一復原電流來定義。 The method of claim 1, wherein the state dynamics are defined by a membrane potential element of the neuron model and a recovery current. 如請求項1述及之方法,該方法進一步包含以下步驟:在該第一狀態從一先前事件進展至一輸入事件的一時間之後,根據下式來向該神經元模型的該等狀態動態應用該輸入事件: 其中該第一狀態由該神經元模型的一膜電位元(v)和一 復原電流(u)來定義,△t是該先前事件與該輸入事件之間一流逝的時間,h v h u 是輸入通道函數,τ ρ 是一電壓時間常數,τ u 是一復原電流時間常數,以及i是建模該輸入事件的一函數。 The method of claim 1, the method further comprising the step of dynamically applying the state to the state of the neuron model according to the following formula after the first state progresses from a previous event to an input event Input event: Wherein the first state and a recovery current (u) is defined by a membrane potential-membered (v) the neuron model, △ t is the previous event between the input event and a time elapsed, h v h u and Is the input channel function, τ ρ is a voltage time constant, τ u is a recovery current time constant, and i is a function to model the input event. 如請求項16述及之方法,其中在該先前事件與該輸入事件之間該流逝的時間上的一總貢獻由下式提供: 其中g是一呈指數地衰退的興奮性或抑制性輸入,並且τ g 是一衰退時間常數。 The method of claim 16, wherein a total contribution of the elapsed time between the previous event and the input event is provided by: Where g is an exponentially decaying excitatory or inhibitory input, and τ g is a decay time constant. 如請求項1述及之方法,該方法進一步包含以下步驟:使該入工神經元的該狀態從一先前事件進展至一下一事件;在給定了該下一時間事件處的一輸入的情況下在該下一事件時間處更新該狀態;及預計該下一事件之後的一事件將何時發生。 The method of claim 1, the method further comprising the step of: progressing the state of the incoming neuron from a previous event to a next event; giving an input at the next time event The state is updated at the next event time; and an event after the next event is expected to occur. 如請求項1述及之方法,該方法進一步包含以下步驟:應用一或多個人工事件以改變該神經元模型的耦合,其中該人工神經元的該狀態在應用該一或多個人工事件之後自一上一事件解耦地進化。 The method of claim 1, the method further comprising the step of applying one or more artificial events to change the coupling of the neuron model, wherein the state of the artificial neuron is after applying the one or more artificial events Decoupled from the last event. 如請求項9述及之方法,其中該膜電位(v)和該復原電流(u)的零傾線分別由該狀態變換變數q ρ r的該負數提供,其中:v=τ ρ βu+v ρ u=(v-v ρ )/τ ρ βu=-δ(v+ε)或v=-u/δ-ε,並且其中該參數δ是控制該u零傾線的該斜率的一比例因數,該斜率可為正(對於δ<0)或為負(對於δ>0)。 The method of claim 9, wherein the film potential ( v ) and the zero inclination of the recovery current ( u ) are respectively provided by the negative of the state transformation variables q ρ and r , wherein: v = τ ρ βu + v ρ or u =( v - v ρ )/ τ ρ β , u =- δ ( v + ε ) or v =- u / δ - ε , and wherein the parameter δ is the slope controlling the u zero inclination A scale factor that can be positive (for δ <0) or negative (for δ >0). 一種用於更新一人工神經元的一狀態的設備,包含一處理系統,該處理系統組態成:決定該人工神經元的一第一狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解,並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相(regime);至少部分地基於該第一狀態從該等兩個或更多個態相中決定該人工神經元的一工作態相;及至少部分地基於該人工神經元的該第一狀態和該所決定的工作態相來更新該人工神經元的該狀態。 An apparatus for updating a state of an artificial neuron, comprising a processing system configured to: determine a first state of the artificial neuron, wherein a neuron model of the artificial neuron is in continuous time Has a closed form solution, and wherein the state dynamics of the neuron model is divided into two or more states; at least in part based on the first state from the two or more states Determining an operational phase of the artificial neuron; and updating the state of the artificial neuron based at least in part on the first state of the artificial neuron and the determined operational phase. 一種用於更新一人工神經元的一狀態的設備,包含:用於決定該人工神經元的一第一狀態的手段,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解,並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相(regime); 用於至少部分地基於該第一狀態從該等兩個或更多個態相中決定該人工神經元的一工作態相的手段;及用於至少部分地基於該人工神經元的該第一狀態和該所決定的工作態相來更新該人工神經元的該狀態的手段。 An apparatus for updating a state of an artificial neuron, comprising: means for determining a first state of the artificial neuron, wherein a neuron model of the artificial neuron has a closed form solution in continuous time And wherein the state dynamics of the neuron model are divided into two or more states; Means for determining an operational phase of the artificial neuron from the two or more phases based at least in part on the first state; and for the first based at least in part on the artificial neuron A means of updating the state of the artificial neuron with the state and the determined working state. 一種用於更新一人工神經元的一狀態的電腦程式產品,包含一電腦可讀取媒體,該電腦可讀取媒體包含用於以下動作的程式碼:決定該人工神經元的一第一狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解,並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相(regime);至少部分地基於該第一狀態從該等兩個或更多個態相中決定該人工神經元的一工作態相;及至少部分地基於該人工神經元的該第一狀態和該所決定的工作態相來更新該人工神經元的該狀態。 A computer program product for updating a state of an artificial neuron, comprising a computer readable medium, the computer readable medium containing code for determining a first state of the artificial neuron, Wherein a neuron model of the artificial neuron has a closed form solution in continuous time, and wherein the state dynamics of the neuron model is divided into two or more states; at least in part based on the Determining an operational phase of the artificial neuron from the two or more states; and updating the at least in part based on the first state of the artificial neuron and the determined operational phase This state of artificial neurons. 一種用於產生人工神經元的神經行為的方法,該方法包含以下步驟:決定該人工神經元的一第一狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解,並且其中該神經元模型的線性動態被劃分成兩個或更多個態相(regime);至少部分地基於該第一狀態從該等兩個或更多個態相中 決定該人工神經元的一工作態相;至少部分地基於該人工神經元的該第一狀態和該所決定的工作態相來更新該人工神經元的該狀態;及藉由利用該神經元模型的該等線性動態來產生該人工神經元的多種神經行為。 A method for generating neural behavior of an artificial neuron, the method comprising the steps of: determining a first state of the artificial neuron, wherein a neuron model of the artificial neuron has a closed form solution in continuous time, And wherein the linear dynamics of the neuron model are divided into two or more states; at least in part based on the first state from the two or more states Determining an operational phase of the artificial neuron; updating the state of the artificial neuron based at least in part on the first state of the artificial neuron and the determined operational phase; and utilizing the neuron model These linear dynamics produce a variety of neural behaviors of the artificial neuron. 如請求項24述及之方法,其中該等神經行為包含:該人工神經元的維持的閾下振盪。 The method of claim 24, wherein the neural behavior comprises: a sub-threshold oscillation of the maintenance of the artificial neuron. 如請求項25述及之方法,其中該人工神經元的該等神經行為進一步包含以下至少一者:回彈、尖峰之後的去極化、強直性尖峰、尖峰前和尖峰後振盪、回彈短脈衝、容適、位相型尖峰、雙穩態、類1興奮、強直性短脈衝、諧振、由抑制引起的尖峰、類2興奮、位相型短脈衝、由抑制引起的短脈衝、頻率自我調整或積分式行為。 The method of claim 25, wherein the neural behavior of the artificial neuron further comprises at least one of: rebound, depolarization after a spike, a tonic peak, a pre-peak and a post-peak oscillation, and a short rebound Pulse, tolerance, phase spike, bistable, class 1 excitation, tonic short pulse, resonance, spike caused by inhibition, class 2 excitation, phase short pulse, short pulse caused by inhibition, frequency self-adjustment or Integral behavior. 如請求項24述及之方法,其中該神經元模型的該等線性動態包含:一閾下態相,該閾下態相具有表示作用於使該人工神經元返回到靜息的帶洩漏積分激發動態的一負時間常數,以及一閾上態相,該閾上態相具有表示驅動該人工神經元以一等待時間來發放尖峰的抗洩漏積分激發動態的一正時間常數。 The method of claim 24, wherein the linear dynamics of the neuron model comprises: a sub-threshold phase having a leak-integrated excitation that acts to return the artificial neuron to rest A dynamic negative time constant, and a threshold upper state phase having a positive time constant representing an anti-leakage integral excitation dynamic that drives the artificial neuron to issue a spike with a waiting time. 如請求項27述及之方法,其中該神經元模型的該等線性動態被定義為: q ρ =-τ ρ βu-v ρ ,以及r=δ(v+ε),其中v是該神經元模型的一膜電位元,u是該神經元模型的一復原電流,τ ρ=+是一正態相電壓時間常數,τ ρ=-是一負態相電壓時間常數,τ u 是一復原電流時間常數,q ρ r是狀態變換變數,β是一耦合電阻,δ是一耦合電導率-時間,ε是一耦合偏移電壓,v ρ=+是一正態相基電壓,以及v ρ=-是一負態相基電壓。 The method of claim 27, wherein the linear dynamics of the neuron model are defined as: q ρ =- τ ρ βu - v ρ , and r = δ ( v + ε ), where v is a membrane potential element of the neuron model, u is a recovery current of the neuron model, τ ρ =+ is A normal phase voltage time constant, τ ρ =- is a negative phase voltage time constant, τ u is a recovery current time constant, q ρ and r are state transition variables, β is a coupling resistance, and δ is a coupled conductance Rate-time, ε is a coupled offset voltage, v ρ =+ is a normal phase base voltage, and v ρ =- is a negative phase base voltage. 如請求項28述及之方法,其中針對該人工神經元的該狀態以及針對從另一狀態到達該第一狀態的一時間的一封閉形式解被定義為: 其中△t是從該另一狀態v 0到達該第一狀態v f 的該時間。 A method as recited in claim 28, wherein the closed state solution for the state of the artificial neuron and for a time from another state to the first state is defined as: Where △ t is the v f of the first state of the time of arrival from the other state v 0. 一種用於產生一人工神經元的神經行為的設備,包含一處理系統,該處理系統組態成:決定該人工神經元的一第一狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解,並且其中該神經元模型的線性動態被劃分成兩個或更多個態相(regime);至少部分地基於該第一狀態從該等兩個或更多個態相中決定該人工神經元的一工作態相;至少部分地基於該人工神經元的該第一狀態和該所決定的工作態相來更新該人工神經元的該狀態;及藉由利用該神經元模型的該等線性動態來產生該人工神經元的多種神經行為。 An apparatus for generating neural behavior of an artificial neuron, comprising a processing system configured to: determine a first state of the artificial neuron, wherein a neuron model of the artificial neuron is in continuous time Has a closed form solution, and wherein the linear dynamics of the neuron model are divided into two or more states; at least in part based on the first state from the two or more states Determining an operational phase of the artificial neuron; updating the state of the artificial neuron based at least in part on the first state of the artificial neuron and the determined operational phase; and by utilizing the neuron These linear dynamics of the model produce a variety of neural behaviors of the artificial neuron. 一種用於產生一人工神經元的神經行為的設備,包含:用於決定該人工神經元的一第一狀態的手段,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解,並且其中該神經元模型的線性動態被劃分成兩個或更多個態相(regime);用於至少部分地基於該第一狀態從該等兩個或更多個態相中決定該人工神經元的一工作態相的手段;用於至少部分地基於該人工神經元的該第一狀態和該所決定的工作態相來更新該人工神經元的該狀態的手段;及用於藉由利用該神經元模型的該等線性動態來產生該人工神經元的多種神經行為的手段。 An apparatus for generating neural behavior of an artificial neuron, comprising: means for determining a first state of the artificial neuron, wherein a neuron model of the artificial neuron has a closed form solution in continuous time And wherein the linear dynamics of the neuron model are divided into two or more regimes; for determining the artifact from the two or more states based at least in part on the first state Means of a working phase of a neuron; means for updating the state of the artificial neuron based at least in part on the first state of the artificial neuron and the determined operational state; and The linear dynamics of the neuron model are utilized to generate a variety of neural behavioral means of the artificial neuron. 一種用於產生一人工神經元的神經行為的電腦程式產品,包含一電腦可讀取媒體,該電腦可讀取媒體包含用於以下動作的程式碼:決定該人工神經元的一第一狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解,並且其中該神經元模型的線性動態被劃分成兩個或更多個態相(regime);至少部分地基於該第一狀態從該等兩個或更多個態相中決定該人工神經元的一工作態相;至少部分地基於該人工神經元的該第一狀態和該所決定的工作態相來更新該人工神經元的該狀態;及藉由利用該神經元模型的該等線性動態來產生該人工神經元的多種神經行為。 A computer program product for generating neural behavior of an artificial neuron, comprising a computer readable medium, the computer readable medium containing code for determining a first state of the artificial neuron, Wherein a neuron model of the artificial neuron has a closed form solution in continuous time, and wherein the linear dynamics of the neuron model are divided into two or more regimes; based at least in part on the Determining an operational phase of the artificial neuron from the two or more states; updating the artificial based at least in part on the first state of the artificial neuron and the determined operational phase This state of the neuron; and the various neural behaviors of the artificial neuron by utilizing the linear dynamics of the neuron model. 一種用於更新一人工神經元的狀態的方法,該方法包含以下步驟:至少部分地基於事件來更新該人工神經元的該狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相(regime);在時間間隔處更新該人工神經元的該狀態;及若在時刻處或在時刻之間發生一事件,則更新該人工神經元的該狀態。 A method for updating a state of an artificial neuron, the method comprising the steps of: updating the state of the artificial neuron based at least in part on an event, wherein a neuron model of the artificial neuron has a continuous time a closed form solution and wherein the state dynamics of the neuron model are divided into two or more regimes; the state of the artificial neuron is updated at time intervals; and if at time or between times When an event occurs, the state of the artificial neuron is updated. 如請求項33述及之方法,其中從事件時間t到事件時間t+△t更新該狀態係根據: 其中v是該神經元模型的一膜電位元,u是該神經元模型的一復原電流,τ ρ 是一態相電壓時間常數,τ u 是一復原電流時間常數,以及q ρ r是狀態變換變數。 The method according to item 33 of the mentioned request, wherein the event from time t to time t + △ t event to update the status lines by: Where v is a membrane potential element of the neuron model, u is a recovery current of the neuron model, τ ρ is a one-state voltage time constant, τ u is a recovery current time constant, and q ρ and r are states Transform variables. 如請求項34述及之方法,其中該等事件預計將根據下式發生: 其中△t是從另一狀態v 0到達一狀態v f 的一時間。 The method as recited in claim 34, wherein the events are expected to occur according to the following formula: Where △ t is from another state v 0 v f reaches a state of a time. 如請求項33述及之方法,其中在該等時間間隔t+△t處的該狀態更新被定義為: 其中v是該神經元模型的一膜電位元,u是該神經元模型的一復原電流,τ ρ 是一態相電壓時間常數,τ u 是一復原電流 時間常數,q ρ r是狀態變換變數,β是耦合電阻,δ是一耦合電導率-時間,ε是一耦合偏移電壓,以及v ρ 是一態相基電壓。 The method according to item 33 of the mentioned request, wherein in these time intervals t + △ t at the state updating is defined as: Where v is a membrane potential element of the neuron model, u is a recovery current of the neuron model, τ ρ is a one-phase voltage time constant, τ u is a recovery current time constant, q ρ and r are state transitions The variable, β is the coupling resistance, δ is a coupling conductivity-time, ε is a coupling offset voltage, and v ρ is the one-phase voltage. 如請求項33述及之方法,其中該神經元模型的一膜電位元差異隨時間推移而減少。 The method of claim 33, wherein the difference in a membrane potential of the neuron model decreases over time. 如請求項37述及之方法,其中該差異在該等兩個或更多個態相中的一負態相中如下式所提供地單調遞減: 其中v 1v 2是該神經元模型的膜電位元,t+△t是該事件的一時間,以及τ -是一負態相電壓時間常數。 The method of claim 37, wherein the difference is monotonically decreasing as provided by the following equation in a negative phase of the two or more states: Wherein v 1 and v 2 is the membrane potential of the neuron element model, t + △ t is a time of the event, and τ - is a negative voltage relative to the time constant state. 如請求項33述及之方法,其中該神經元模型的一尖峰等待時間是如下式所提供的一輸入尖峰時序的函數: 其中τ +是一負的正態相電壓時間常數,v S 是一閾值電壓,v 0是一電壓膜狀態,τ i 是來自一突觸前神經元i的輸入尖峰的一時間,以及△τ i 是來自該突觸前神經元i的一連接延遲。 The method of claim 33, wherein a spike wait time of the neuron model is a function of an input spike timing as provided by: Where τ + is a negative normal phase voltage time constant, v S is a threshold voltage, v 0 is a voltage film state, τ i is a time from an input spike of a presynaptic neuron i , and Δ τ i is a connection delay from the presynaptic neuron i . 如請求項39述及之方法,其中作為輸入尖峰時序的該函 數的該尖峰等待時間等效於一負對數域中的一線性方程組。 The method as recited in claim 39, wherein the letter is used as an input spike timing The peak wait time of the number is equivalent to a linear system of equations in a negative logarithmic domain. 一種用於更新一人工神經元的一狀態的設備,包含一處理系統,該處理系統組態成:至少部分地基於事件來更新該人工神經元的該狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相(regime);在時間間隔處更新該人工神經元的該狀態;及若在時刻處或在時刻之間發生一事件,則更新該人工神經元的該狀態。 An apparatus for updating a state of an artificial neuron, comprising a processing system configured to: update the state of the artificial neuron based at least in part on an event, wherein a neuron of the artificial neuron The model has a closed form solution in continuous time and wherein the state dynamics of the neuron model is divided into two or more regimes; the state of the artificial neuron is updated at time intervals; and if When an event occurs at or between times, the state of the artificial neuron is updated. 一種用於更新一人工神經元的狀態的設備,包含:用於至少部分地基於事件來更新該人工神經元的該狀態的手段,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相(regime);用於在時間間隔處更新該人工神經元的該狀態的手段;及用於若在時刻處或在時刻之間發生一事件,則更新該人工神經元的該狀態的手段。 An apparatus for updating a state of an artificial neuron, comprising: means for updating the state of the artificial neuron based at least in part on an event, wherein a neuron model of the artificial neuron has a continuous time a closed form solution and wherein the state dynamics of the neuron model are divided into two or more regimes; means for updating the state of the artificial neuron at time intervals; and for A means of updating the state of the artificial neuron at or after an event occurs. 一種用於更新一人工神經元的狀態的電腦程式產品,包含一電腦可讀取媒體,該電腦可讀取媒體包含用於以下動作 的程式碼:至少部分地基於事件來更新該人工神經元的該狀態,其中該人工神經元的一神經元模型在連續時間中具有一封閉形式解並且其中該神經元模型的狀態動態被劃分成兩個或更多個態相(regime);在時間間隔處更新該人工神經元的該狀態;及若在時刻處或在時刻之間發生一事件,則更新該人工神經元的該狀態。 A computer program product for updating the state of an artificial neuron, comprising a computer readable medium, the computer readable medium comprising the following actions The code: updating the state of the artificial neuron based at least in part on an event, wherein a neuron model of the artificial neuron has a closed form solution in continuous time and wherein the state dynamics of the neuron model are divided into Two or more regimes; updating the state of the artificial neuron at time intervals; and updating the state of the artificial neuron if an event occurs at or between times.
TW102142291A 2012-11-20 2013-11-20 Dynamical event neuron and synapse models for learning spiking neural networks TWI550529B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261728409P 2012-11-20 2012-11-20
US201361759181P 2013-01-31 2013-01-31
US14/081,777 US20140074761A1 (en) 2012-05-30 2013-11-15 Dynamical event neuron and synapse models for learning spiking neural networks

Publications (2)

Publication Number Publication Date
TW201435757A TW201435757A (en) 2014-09-16
TWI550529B true TWI550529B (en) 2016-09-21

Family

ID=50776490

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102142291A TWI550529B (en) 2012-11-20 2013-11-20 Dynamical event neuron and synapse models for learning spiking neural networks

Country Status (2)

Country Link
TW (1) TWI550529B (en)
WO (1) WO2014081671A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9424511B2 (en) 2011-11-09 2016-08-23 Qualcomm Incorporated Methods and apparatus for unsupervised neural component replay by referencing a pattern in neuron outputs
US9015091B2 (en) * 2011-11-09 2015-04-21 Qualcomm Incorporated Methods and apparatus for unsupervised neural replay, learning refinement, association and memory transfer: structural plasticity and structural constraint modeling
US9443190B2 (en) 2011-11-09 2016-09-13 Qualcomm Incorporated Methods and apparatus for neural pattern sequence completion and neural pattern hierarchical replay by invoking replay of a referenced neural pattern
US9424513B2 (en) 2011-11-09 2016-08-23 Qualcomm Incorporated Methods and apparatus for neural component memory transfer of a referenced pattern by including neurons to output a pattern substantially the same as the referenced pattern
US20160281094A1 (en) * 2015-03-28 2016-09-29 John C. Weast Technologies for manufacturing an engineered bio-system
US9747546B2 (en) * 2015-05-21 2017-08-29 Google Inc. Neural network processor
FR3038997A1 (en) * 2015-07-13 2017-01-20 Univ Pierre Et Marie Curie (Paris 6) DATA PROCESSING DEVICE WITH VALUE REPRESENTATION THROUGH INTERVALS OF TIME BETWEEN EVENTS
KR102565273B1 (en) 2016-01-26 2023-08-09 삼성전자주식회사 Recognition apparatus based on neural network and learning method of neural network
CN112966433B (en) * 2021-02-08 2022-12-23 北京大学 Instant compiling-based neurodynamics simulation method and device
CN115169547B (en) * 2022-09-09 2022-11-29 深圳时识科技有限公司 Neuromorphic chip and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687286A (en) * 1992-11-02 1997-11-11 Bar-Yam; Yaneer Neural networks with subdivision
US20090076993A1 (en) * 2007-09-18 2009-03-19 International Business Machines Corporation System and method for cortical simulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8856055B2 (en) * 2011-04-08 2014-10-07 International Business Machines Corporation Reconfigurable and customizable general-purpose circuits for neural networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687286A (en) * 1992-11-02 1997-11-11 Bar-Yam; Yaneer Neural networks with subdivision
US20090076993A1 (en) * 2007-09-18 2009-03-19 International Business Machines Corporation System and method for cortical simulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Phenomenological models of synaptic plasticity based on spike timing,Biological Cybernetics(2008) 98: 459-478 Summation and division by neurons in primate visual cortex,Science(1994) 264:1333-1336 firing patterns in the adaptive exponential integrate-and-fire model,Biological Cybernetics(2008) 99:335-347 *

Also Published As

Publication number Publication date
WO2014081671A1 (en) 2014-05-30
TW201435757A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
TWI550529B (en) Dynamical event neuron and synapse models for learning spiking neural networks
US20140074761A1 (en) Dynamical event neuron and synapse models for learning spiking neural networks
TWI537843B (en) Piecewise linear neuron modeling
US9330355B2 (en) Computed synapses for neuromorphic systems
US10339041B2 (en) Shared memory architecture for a neural simulator
TW201531966A (en) Configuring sparse neuronal networks
TW201528162A (en) Implementing synaptic learning using replay in spiking neural networks
US9542644B2 (en) Methods and apparatus for modulating the training of a neural device
TW201541372A (en) Artificial neural network and perceptron learning using spiking neurons
TW201535277A (en) Monitoring neural networks with shadow networks
TW201539335A (en) Implementing a neural-network processor
KR20170031695A (en) Decomposing convolution operation in neural networks
TW201541374A (en) Event-based inference and learning for stochastic spiking bayesian networks
TW201531967A (en) Causal saliency time inference
KR20160136381A (en) Differential encoding in neural networks
TWI550530B (en) Method, apparatus, computer readable medium, and computer program product for generating compact representations of spike timing-dependent plasticity curves
KR20140128382A (en) Methods and apparatus for spiking neural computation
TW201602807A (en) COLD neuron spike timing back propagation
TW201543382A (en) Neural network adaptation to current computational resources
TW201533668A (en) Short-term synaptic memory based on a presynaptic spike
US9652711B2 (en) Analog signal reconstruction and recognition via sub-threshold modulation
TW201602924A (en) Modulating plasticity by global scalar values in a spiking neural network
KR20160062052A (en) Automated method for modifying neural dynamics
TW201401188A (en) Dynamical event neuron and synapse models for learning spiking neural networks
TW201539336A (en) Simultaneous latency and rate coding for automatic error correction

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees