TWI550282B - Dielectric constant measurement method and apparatus - Google Patents

Dielectric constant measurement method and apparatus Download PDF

Info

Publication number
TWI550282B
TWI550282B TW104137214A TW104137214A TWI550282B TW I550282 B TWI550282 B TW I550282B TW 104137214 A TW104137214 A TW 104137214A TW 104137214 A TW104137214 A TW 104137214A TW I550282 B TWI550282 B TW I550282B
Authority
TW
Taiwan
Prior art keywords
test object
dielectric constant
signal line
load impedance
thickness
Prior art date
Application number
TW104137214A
Other languages
Chinese (zh)
Other versions
TW201716787A (en
Inventor
洪政源
翁敏航
尤崇智
吳春森
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW104137214A priority Critical patent/TWI550282B/en
Application granted granted Critical
Publication of TWI550282B publication Critical patent/TWI550282B/en
Publication of TW201716787A publication Critical patent/TW201716787A/en

Links

Description

介電常數量測方法及介電常數量測裝置 Dielectric constant quantity measurement method and dielectric constant quantity measuring device

本發明是有關於一種量測方法及裝置,且特別是一種使用同軸訊號線進行量測的介電常數量測方法及介電常數量測裝置。 The invention relates to a measuring method and device, and in particular to a dielectric constant quantity measuring method and a dielectric constant quantity measuring device which are measured by using a coaxial signal line.

平行板技術已應用至許多領域中。舉例而言,在微波成像系統中,藉由一平板發射微波訊號至物體,再透過另一平板接收並量測穿透物體的微波訊號,接著再經由運算散射參數來重建物體的形狀或得到物體的介電常數分佈。然而,在使用習知平行板進行對物體的量測之前,須先使用習知平行板對標準校正樣品進行量測以及依據量測的結果來校正量測系統的參數。此外,習知使用平行板進行介電常數量測的方法僅適用在電磁波頻率低於1GHz的環境下,且在同一操作步驟中僅可使用單一頻率對物體進行量測。對於一些高頻元件而言,其介電常數和導電率具有頻率相依性。若是使用習知平行板來量測此些高頻元件,量測結果可能會有較大的誤差而導致其不具參考價值。 Parallel plate technology has been applied in many fields. For example, in a microwave imaging system, a microwave signal is transmitted to an object by a flat panel, and a microwave signal penetrating the object is received and measured through another flat panel, and then the shape of the object or the object is reconstructed by calculating a scattering parameter. The dielectric constant distribution. However, prior to the measurement of the object using conventional parallel plates, the standard calibration samples are first measured using conventional parallel plates and the parameters of the measurement system are corrected based on the results of the measurements. In addition, conventional methods for conducting dielectric constant measurements using parallel plates are only applicable in environments where the electromagnetic wave frequency is below 1 GHz, and only a single frequency can be used to measure the object in the same operational step. For some high frequency components, their dielectric constant and conductivity have frequency dependence. If the conventional parallel plate is used to measure these high frequency components, the measurement results may have a large error and cause no reference value.

本發明的目的是在於提供一種介電常數量測方法及介電常數量測裝置,其可應用至高頻元件之介電常數和導電率的量測,且可增加量測的準確度。此外,本發明之介電常數量測方法及介電常數量測裝置不需在進行量測步驟前預先進行參數校正,因此可增加操作上的便利性及節省硬體成本和時間。 It is an object of the present invention to provide a dielectric constant quantity measuring method and a dielectric constant quantity measuring apparatus which are applicable to measurement of dielectric constant and electrical conductivity of a high frequency component and which can increase the accuracy of measurement. In addition, the dielectric constant quantity measuring method and the dielectric constant quantity measuring apparatus of the present invention do not need to perform parameter correction in advance before performing the measuring step, thereby increasing the convenience of operation and saving hardware cost and time.

根據本發明之上述目的,提出一種介電常數量測方法,此介電常數量測方法包含下列步驟:使用同軸訊號線量測第一測試物,以得到第一測試物的第一負載阻抗;使用同軸訊號線量測第二測試物,以得到第二測試物的第二負載阻抗,其中第一測試物與第二測試物由相同的材料所組成,第一測試物和第二測試物分別具有第一厚度和第二厚度,且第一厚度與第二厚度的差距介於0.1毫米與100毫米之間;使用處理器對第一負載阻抗和第二負載阻抗進行除法運算,以得到第一測試物和第二測試物的傳播常數;以及藉由傳播常數決定第一測試物和第二測試物的介電常數和導電率。 According to the above object of the present invention, a dielectric constant quantity measurement method is provided. The dielectric constant quantity measurement method includes the following steps: measuring a first test object using a coaxial signal line to obtain a first load impedance of the first test object; The second test object is measured by using a coaxial signal line to obtain a second load impedance of the second test object, wherein the first test object and the second test object are composed of the same material, and the first test object and the second test object respectively Having a first thickness and a second thickness, and a difference between the first thickness and the second thickness is between 0.1 mm and 100 mm; dividing the first load impedance and the second load impedance by using a processor to obtain the first a propagation constant of the test object and the second test object; and determining a dielectric constant and a conductivity of the first test object and the second test object by a propagation constant.

依據本發明之一實施例,上述第一測試物和上述第二測試物的表面平整度小於或等於0.1毫米。 According to an embodiment of the invention, the first test object and the second test object have a surface flatness of less than or equal to 0.1 mm.

依據本發明之又一實施例,上述第一厚度和上述第二厚度介於0.1毫米與100毫米之間。 According to still another embodiment of the present invention, the first thickness and the second thickness are between 0.1 mm and 100 mm.

依據本發明之又一實施例,上述傳播常數為複數,且上述介電常數和上述導電率分別由傳播常數的相位常數和衰減常數而得到。 According to still another embodiment of the present invention, the propagation constant is a complex number, and the dielectric constant and the conductivity are respectively obtained from a phase constant and an attenuation constant of a propagation constant.

依據本發明之又一實施例,上述第一負載阻抗和上述第二負載阻抗係再經由扣除同軸訊號線之的特性阻抗和傳播常數而得到。 According to still another embodiment of the present invention, the first load impedance and the second load impedance are obtained by subtracting a characteristic impedance and a propagation constant of the coaxial signal line.

依據本發明之又一實施例,上述同軸訊號線係對上述第一測試物和上述第二測試物進行開路量測。 According to still another embodiment of the present invention, the coaxial signal line performs open measurement on the first test object and the second test object.

根據本發明之上述目的,另提出一種介電常數量測裝置,此介電常數量測裝置包含同軸訊號線和處理模組。同軸訊號線具有第一端和第二端。同軸訊號線的第一端用以接觸第一測試物和第二測試物,以對第一測試物和第二測試物進行個別量測,進而得到第一測試物的第一負載阻抗和第二測試物的第二負載阻抗,其中第一測試物與第二測試物由相同的材料所組成,第一測試物和第二測試物分別具有第一厚度和第二厚度,且第一厚度與第二厚度的差距介於0.1毫米與100毫米之間。處理模組耦接於同軸訊號線的第二端,其用以對第一負載阻抗和第二負載阻抗進行除法運算,以得到第一測試物和第二測試物的傳播常數,且藉由傳播常數決定第一測試物和第二測試物的介電常數和導電率。 According to the above object of the present invention, a dielectric constant quantity measuring device is further provided, which comprises a coaxial signal line and a processing module. The coaxial signal line has a first end and a second end. The first end of the coaxial signal line is configured to contact the first test object and the second test object to perform individual measurement on the first test object and the second test object, thereby obtaining a first load impedance of the first test object and a second a second load impedance of the test object, wherein the first test object and the second test object are composed of the same material, the first test object and the second test object respectively have a first thickness and a second thickness, and the first thickness and the first thickness The difference in thickness is between 0.1 mm and 100 mm. The processing module is coupled to the second end of the coaxial signal line for dividing the first load impedance and the second load impedance to obtain propagation constants of the first test object and the second test object, and by propagating The constant determines the dielectric constant and conductivity of the first test object and the second test object.

依據本發明之一實施例,上述同軸訊號線與上述第一測試物及上述同軸訊號線與上述第二測試物的接觸為開路接觸。 According to an embodiment of the invention, the contact between the coaxial signal line and the first test object and the coaxial signal line and the second test object is an open contact.

依據本發明之又一實施例,上述同軸訊號線的特性阻抗介於10歐姆與250歐姆之間。 According to still another embodiment of the present invention, the characteristic impedance of the coaxial signal line is between 10 ohms and 250 ohms.

依據本發明之又一實施例,上述同軸訊號線包含外殼導體、介電質和中心導體。外殼導體和中心導體包含金、銀、銅、鋁、錫、鎳或合金,且介電質包含陶瓷材料、 玻璃纖維材料、碳氫化合物材料、鐵氟龍材料、鐵氟龍玻璃纖維材料或鐵氟龍陶瓷材料。 In accordance with still another embodiment of the present invention, the coaxial signal line includes a housing conductor, a dielectric, and a center conductor. The outer casing conductor and the center conductor comprise gold, silver, copper, aluminum, tin, nickel or an alloy, and the dielectric comprises a ceramic material, Glass fiber material, hydrocarbon material, Teflon material, Teflon fiberglass material or Teflon ceramic material.

100‧‧‧介電常數量測裝置 100‧‧‧Dielectric constant measuring device

110‧‧‧同軸訊號線 110‧‧‧ coaxial signal line

110A‧‧‧第一端 110A‧‧‧ first end

110B‧‧‧第二端 110B‧‧‧second end

120‧‧‧處理模組 120‧‧‧Processing module

210‧‧‧第一測試物 210‧‧‧First test object

220‧‧‧第二測試物 220‧‧‧Second test article

300‧‧‧介電常數量測方法 300‧‧‧Dielectric constant measurement method

310、320、330、340‧‧‧步驟 310, 320, 330, 340‧ ‧ steps

T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness

為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中:〔圖1〕係繪示依據本發明一些實施例之介電常數量測裝置的示意圖;〔圖2A〕和〔圖2B〕係繪示使用〔圖1〕之介電常數量測裝置量測測試物的示意圖;以及〔圖3〕係繪示依據本發明一些實施例之介電常數量測方法的流程圖。 For a more complete understanding of the embodiments and the advantages thereof, reference is made to the following description in conjunction with the drawings in which: FIG. 1 is a schematic diagram showing a dielectric constant quantity measuring device according to some embodiments of the present invention; 2A] and [Fig. 2B] are schematic views showing the measurement of the test object using the dielectric constant quantity measuring device of Fig. 1; and Fig. 3 is a diagram showing the dielectric constant quantity measuring method according to some embodiments of the present invention. Flow chart.

請參照圖1,圖1係繪示依據本發明實施例之一種介電常數量測裝置100的示意圖。介電常數量測裝置100包含同軸訊號線110和處理模組120。同軸訊號線110具有第一端110A和第二端110B,其中第一端110A用以接觸測試物,而第二端110B耦接處理模組120。同軸訊號線110由內而外依序為外殼導體、介電質和中心導體,其中外殼導體和中心導體可包含金、銀、銅、鋁、錫、鎳、合金或其他類似的金屬材料,而介電材質可包含陶瓷材料、玻璃纖維材料、碳氫化合物材料、鐵氟龍材料、鐵氟龍玻璃纖維材料、鐵氟龍陶瓷材料或其他類似的介電材料。此外,同軸訊號線110的特性阻抗較佳介於10歐姆與250歐姆之間。處理模組 120提供一介面,以供同軸訊號線110的第二端110B耦接。處理模組120可以是具備運算功能的裝置,例如個人電腦(personal computer)或筆記型電腦(laptop computer)等,但不限於此。 Please refer to FIG. 1. FIG. 1 is a schematic diagram of a dielectric constant measurement device 100 according to an embodiment of the invention. The dielectric constant measurement device 100 includes a coaxial signal line 110 and a processing module 120. The coaxial signal line 110 has a first end 110A and a second end 110B. The first end 110A is for contacting the test object, and the second end 110B is coupled to the processing module 120. The coaxial signal line 110 is sequentially ordered from the inside to the outer casing conductor, the dielectric and the center conductor, wherein the outer casing conductor and the center conductor may comprise gold, silver, copper, aluminum, tin, nickel, alloy or the like. The dielectric material may comprise ceramic material, fiberglass material, hydrocarbon material, Teflon material, Teflon fiberglass material, Teflon ceramic material or other similar dielectric materials. In addition, the characteristic impedance of the coaxial signal line 110 is preferably between 10 ohms and 250 ohms. Processing module 120 provides an interface for coupling the second end 110B of the coaxial signal line 110. The processing module 120 may be a device having an arithmetic function, such as a personal computer or a laptop computer, but is not limited thereto.

請參照圖2A和圖2B,圖2A和圖2B係分別繪示使用介電常數量測裝置100量測第一測試物210和第二測試物220的示意圖。第一測試物210和第二測試物220由相同的材料所組成,其可以是固體、半固體或液體等,但不限於此。測試材料(其組成第一測試物210和第二測試物220)的介電常數較佳為介於1到80之間,測試材料的導電率較佳介於1Sm-1與40Sm-1之間,且第一測試物210和第二測試物220的表面平整度較佳為小於或等於0.1毫米,以利介電常數量測裝置100對第一測試物210和第二測試物220進行精確的量測。此外,第一測試物210和第二測試物220分別具有厚度T1和T2,其中厚度T1和T2較佳介於0.1毫米與100毫米之間,且厚度T1與T2的差距較佳介於0.1毫米與100毫米之間。 Please refer to FIG. 2A and FIG. 2B . FIG. 2A and FIG. 2B are schematic diagrams showing the measurement of the first test object 210 and the second test object 220 by using the dielectric constant measurement device 100, respectively. The first test object 210 and the second test object 220 are composed of the same material, which may be solid, semi-solid or liquid, etc., but are not limited thereto. The dielectric constant of the test material (which constitutes the first test object 210 and the second test object 220) is preferably between 1 and 80, and the conductivity of the test material is preferably between 1 Sm -1 and 40 Sm -1 . The surface flatness of the first test object 210 and the second test object 220 is preferably less than or equal to 0.1 mm, so that the dielectric constant measurement device 100 can accurately measure the first test object 210 and the second test object 220. Measurement. In addition, the first test object 210 and the second test object 220 have thicknesses T1 and T2, respectively, wherein the thicknesses T1 and T2 are preferably between 0.1 mm and 100 mm, and the difference between the thicknesses T1 and T2 is preferably between 0.1 mm and 100. Between millimeters.

為了得到測試材料的介電常數和導電率,首先將同軸訊號線110的第一端110A接觸第一測試物210,如圖2A所示。同軸訊號線110對第一測試物210進行量測,且將量測到的數值減去同軸訊號線110的特性阻抗和傳播常數後,即可得到第一測試物210的負載阻抗。第一測試物210的負載阻抗YL1如式(1)所示: 其中r1為同軸訊號線110的中心導體的直徑,r2為同軸訊號線110的介電質的外圈直徑,ε d 為第一測試物210的介電常數,γ d 為第一測試物210的傳播常數,且T1為第一測試物210的厚度。 In order to obtain the dielectric constant and conductivity of the test material, the first end 110A of the coaxial signal line 110 is first contacted with the first test object 210, as shown in FIG. 2A. The coaxial signal line 110 measures the first test object 210, and subtracts the characteristic impedance and propagation constant of the coaxial signal line 110 from the measured value to obtain the load impedance of the first test object 210. The load impedance YL 1 of the first test object 210 is as shown in the formula (1): Where r1 is the diameter of the center conductor of the coaxial signal line 110, r2 is the outer diameter of the dielectric of the coaxial signal line 110, ε d is the dielectric constant of the first test object 210, and γ d is the first test object 210 The propagation constant is and T1 is the thickness of the first test object 210.

接著,將第一測試物210移除,且再將同軸訊號線110的第一端110A接觸第二測試物220,如圖2B所示。同軸訊號線110對第二測試物220進行量測,且將量測到的數值減去同軸訊號線110的特性阻抗和傳播常數後,即可得到第二測試物220的負載阻抗。相似地,第二測試物220的負載阻抗YL2如式(2)所示: 其中T2為第二測試物220的厚度。 Next, the first test object 210 is removed, and the first end 110A of the coaxial signal line 110 is further contacted with the second test object 220, as shown in FIG. 2B. The coaxial signal line 110 measures the second test object 220, and subtracts the characteristic impedance and the propagation constant of the coaxial signal line 110 from the measured value to obtain the load impedance of the second test object 220. Similarly, the load impedance YL 2 of the second test object 220 is as shown in the formula (2): Where T2 is the thickness of the second test object 220.

得到第一測試物210的負載阻抗YL1和第二測試物220的負載阻抗YL2後,接著處理模組120對負載阻抗YL1和負載阻抗YL2進行除法運算。將式(1)與式(2)相除,可得到式(3)如下: 由於負載阻抗YL1、負載阻抗YL2、厚度T1和厚度T2為已知,因此只要將負載阻抗YL1、負載阻抗YL2、厚度T1和厚 度T2的數值代入至式(3)並進行運算,便可得到為測試物質的傳播常數γ d After obtaining the first test was a load impedance YL 210 and the second test load impedance 220 YL 2, then the processing module 120 to the load impedance and the load impedance YL 1 YL 2 division. Dividing the formula (1) and the formula (2), the formula (3) can be obtained as follows: Since the load impedance YL 1 , the load impedance YL 2 , the thickness T1 , and the thickness T2 are known, the values of the load impedance YL 1 , the load impedance YL 2 , the thickness T1 , and the thickness T2 are substituted into the equation (3) and calculated. The propagation constant γ d of the test substance is obtained.

測試物質的傳播常數γ d 為複數,其可用式(4)來表示:γ d =α d + d , (4)其中α d β d 均為實數。α d 代表傳播常數γ d 的衰減常數,且β d 代表傳播常數γ d 的相位常數。將相位常數β d 代入至式(5),即可得到測試物質的介電常數ε d 其中λ 0為同軸訊號線110所發射的的電磁波訊號在真空中的輻射波長。得到介電常數ε d 後,接著將介電常數ε d 和衰減常數α d 代入至式(6),即可得到測試物質的導電率σ 其中f為同軸訊號線110所發射的電磁波訊號的頻率,且ε 0為真空介電常數(vacuum permittivity)。 The propagation constant γ d of the test substance is a complex number, which can be expressed by the formula (4): γ d = α d + d , (4) wherein α d and β d are both real numbers. α d represents the attenuation constant of the propagation constant γ d , and β d represents the phase constant of the propagation constant γ d . By substituting the phase constant β d into the equation (5), the dielectric constant ε d of the test substance can be obtained: Where λ 0 is the wavelength of the electromagnetic wave signal emitted by the coaxial signal line 110 in a vacuum. After obtaining the dielectric constant ε d , the dielectric constant ε d and the attenuation constant α d are then substituted into the formula (6) to obtain the conductivity σ of the test substance: Where f is the frequency of the electromagnetic wave signal emitted by the coaxial signal line 110, and ε 0 is the vacuum permittivity.

應注意的是,在圖2A和圖2B所繪示之實施例中,同軸訊號線110與第一測試物210的接觸以及同軸訊號線110與第二測試物220的接觸為開路(open-circuit)接觸。換言之,同軸訊號線110係對第一測試物210和第二測試物220進行開路量測。 It should be noted that, in the embodiment illustrated in FIG. 2A and FIG. 2B, the contact of the coaxial signal line 110 with the first test object 210 and the contact of the coaxial signal line 110 with the second test object 220 are open-circuit (open-circuit). )contact. In other words, the coaxial signal line 110 performs an open circuit measurement on the first test object 210 and the second test object 220.

請參照圖3,圖3繪示使用介電常數量測方法300的流程圖。介電常數量測方法300適用於如圖1所示的介電常數量測裝置100或其他類似的量測裝置。在介電常數量測方法300中,首先進行步驟310,使用同軸訊號線量測第一測試物,以得到第一測試物的負載阻抗。在一些實施例中,第一測試物的負載阻抗可藉由將量測到的數值減去同軸訊號線的特性阻抗和傳播常數而得。 Please refer to FIG. 3 , which illustrates a flow chart of using the dielectric constant measurement method 300 . The dielectric constant measurement method 300 is applicable to the dielectric constant measurement device 100 or other similar measurement device as shown in FIG. In the dielectric constant measurement method 300, first step 310 is performed to measure the first test object using a coaxial signal line to obtain a load impedance of the first test object. In some embodiments, the load impedance of the first test object can be obtained by subtracting the measured value from the characteristic impedance and propagation constant of the coaxial signal line.

接著,進行步驟320,使用同軸訊號線量測第二測試物,以得到第二測試物的第二負載阻抗。在一些實施例中,第二測試物的負載阻抗可藉由將量測到的數值減去同軸訊號線的特性阻抗和傳播常數而得。 Next, in step 320, the second test object is measured using a coaxial signal line to obtain a second load impedance of the second test object. In some embodiments, the load impedance of the second test object can be obtained by subtracting the measured value from the characteristic impedance and propagation constant of the coaxial signal line.

之後,進行步驟330,使用處理器對第一負載阻抗和第二負載阻抗進行除法運算,以得到第一測試物和第二測試物的傳播常數。處理器係利用式(3)對第一負載阻抗和第二負載阻抗進行除法運算來得到第一測試物和第二測試物的傳播常數,而有關式(3)的說明請參照先前段落,在此不贅述。 Then, in step 330, the first load impedance and the second load impedance are divided by the processor to obtain propagation constants of the first test object and the second test object. The processor uses the equation (3) to divide the first load impedance and the second load impedance to obtain propagation constants of the first test object and the second test object, and the description of the equation (3) refers to the previous paragraph, This will not go into details.

最後,進行步驟340,藉由傳播常數決定第一測試物和第二測試物的介電常數和導電率。處理器係利用式(5)和式(6)對傳播常數的相位常數和衰減常數進行來得到第一測試物和第二測試物的介電常數和導電率,而有關式(5)和式(6)的說明請參照先前段落,在此不贅述。 Finally, step 340 is performed to determine the dielectric constant and conductivity of the first test object and the second test object by propagation constants. The processor uses the equations (5) and (6) to calculate the phase constant and the decay constant of the propagation constant to obtain the dielectric constant and conductivity of the first test object and the second test object, and the equation (5) and the equation Please refer to the previous paragraph for the description of (6), and I will not repeat them here.

應注意的是,第一測試物和第二測試物是由相同的材料所組成,其可以是固體、半固體或液體等,但不限 於此。第一測試物和第二測試物的介電常數較佳為介於1到80之間,第一測試物和第二測試物的導電率較佳介於1Sm-1與40Sm-1之間,且第一測試物210和第二測試物的表面平整度較佳為小於或等於0.1毫米。此外,第一測試物和第二測試物的厚度較佳介於0.1毫米與100毫米之間,且第一測試物與第二測試物之間的厚度差較佳介於0.1毫米與100毫米之間。 It should be noted that the first test substance and the second test substance are composed of the same material, which may be solid, semi-solid or liquid, etc., but is not limited thereto. The dielectric constant of the first test object and the second test object is preferably between 1 and 80, and the conductivity of the first test object and the second test object is preferably between 1 Sm -1 and 40 Sm -1 , and The surface flatness of the first test object 210 and the second test object is preferably less than or equal to 0.1 mm. Further, the thickness of the first test object and the second test object is preferably between 0.1 mm and 100 mm, and the difference in thickness between the first test object and the second test object is preferably between 0.1 mm and 100 mm.

本發明的特點在於,透過同軸訊號線量測由相同材料所組成的兩個高度相異的測試物來計算出材料的高頻特性,故本發明可廣泛應用至各種通訊產業、高頻材料產業及生醫產業上。舉例而言,將本發明應用在微波成像系統上,可確認標準微波假體的介電常數和導電率的正確性;將本發明應用在通訊產業上,可確認乘載基板介電常數的正確性;將本發明應用在電子產業方面,可確認薄膜介電常數的正確性;將本發明應用在高頻材料產業上,可確認新配方基板的介電常數。此外,本發明之介電常數量測方法及介電常數量測裝置不需在進行量測步驟前預先進行參數校正,因此可增加操作上的便利性及節省硬體成本和時間。 The invention is characterized in that the high-frequency characteristics of the material are calculated by measuring two highly different test materials composed of the same material through the coaxial signal line, so the invention can be widely applied to various communication industries and high-frequency materials industries. And the biomedical industry. For example, the application of the present invention to a microwave imaging system can confirm the correctness of the dielectric constant and conductivity of a standard microwave prosthesis; the application of the present invention to the communication industry can confirm the correct dielectric constant of the carrier substrate. The invention can be applied to the electronics industry to confirm the correctness of the dielectric constant of the film; the application of the present invention to the high-frequency material industry can confirm the dielectric constant of the newly formulated substrate. In addition, the dielectric constant quantity measuring method and the dielectric constant quantity measuring apparatus of the present invention do not need to perform parameter correction in advance before performing the measuring step, thereby increasing the convenience of operation and saving hardware cost and time.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

300‧‧‧介電常數量測方法 300‧‧‧Dielectric constant measurement method

310、320、330、340‧‧‧步驟 310, 320, 330, 340‧ ‧ steps

Claims (10)

一種介電常數量測方法,包含:使用一同軸訊號線量測一第一測試物,以得到該第一測試物之一第一負載阻抗;使用該同軸訊號線量測一第二測試物,以得到該第二測試物之一第二負載阻抗,其中該第一測試物與該第二測試物由相同的材料所組成,該第一測試物和該第二測試物分別具有一第一厚度和一第二厚度,且該第一厚度與該第二厚度之差距介於0.1毫米與100毫米之間;使用一處理器對該第一負載阻抗和該第二負載阻抗進行除法運算,以得到該第一測試物和該第二測試物之一傳播常數;以及藉由該傳播常數決定該第一測試物和該第二測試物之一介電常數和一導電率。 A dielectric constant measurement method includes: measuring a first test object by using a coaxial signal line to obtain a first load impedance of the first test object; and measuring a second test object by using the coaxial signal line, Obtaining a second load impedance of the second test object, wherein the first test object and the second test object are composed of the same material, and the first test object and the second test object respectively have a first thickness And a second thickness, and the difference between the first thickness and the second thickness is between 0.1 mm and 100 mm; dividing the first load impedance and the second load impedance by using a processor to obtain a propagation constant of one of the first test object and the second test object; and determining a dielectric constant and a conductivity of the first test object and the second test object by the propagation constant. 如申請專利範圍第1項所述之介電常數量測方法,其中該第一測試物和該第二測試物之一表面平整度小於或等於0.1毫米。 The dielectric constant measurement method according to claim 1, wherein one of the first test object and the second test object has a surface flatness of less than or equal to 0.1 mm. 如申請專利範圍第1項所述之介電常數量測方法,其中該第一厚度和該第二厚度介於0.1毫米與100毫米之間。 The dielectric constant measurement method according to claim 1, wherein the first thickness and the second thickness are between 0.1 mm and 100 mm. 如申請專利範圍第1項所述之介電常數量測方法,其中該傳播常數係一複數,且該介電常數和該導 電率分別由該傳播常數之一相位常數和一衰減常數而得到。 The dielectric constant quantity measuring method according to claim 1, wherein the propagation constant is a complex number, and the dielectric constant and the guiding The electrical rates are respectively obtained from one of the propagation constants and a decay constant. 如申請專利範圍第1項所述之介電常數量測方法,其中該第一負載阻抗和第二負載阻抗係再經由扣除該同軸訊號線之一特性阻抗和一傳播常數而得到。 The dielectric constant quantity measuring method according to claim 1, wherein the first load impedance and the second load impedance are obtained by subtracting one characteristic impedance and a propagation constant of the coaxial signal line. 如申請專利範圍第1項所述之介電常數量測方法,其中該同軸訊號線係對該第一測試物和該第二測試物進行開路(open-circuit)量測。 The dielectric constant measurement method according to claim 1, wherein the coaxial signal line performs an open-circuit measurement on the first test object and the second test object. 一種介電常數量測裝置,包含:一同軸訊號線,具有一第一端和一第二端,其中該第一端用以接觸該第一測試物和該第二測試物,以對該第一測試物和該第二測試物進行個別量測,進而得到該第一測試物之一第一負載阻抗及該第二測試物之一第二負載阻抗,其中該第一測試物與該第二測試物由相同的材料所組成,該第一測試物和該第二測試物分別具有一第一厚度和一第二厚度,且該第一厚度與該第二厚度之差距介於0.1毫米與100毫米之間;一處理模組,耦接於該同軸訊號線之該第二端,該處理模組用以對該第一負載阻抗和該第二負載阻抗進行除法運算,以得到該第一測試物和該第二測試物之一傳播常數,且藉由該傳播常數決定該第一測試物和該第二測試物之一介電常數和一導電率。 A dielectric constant measurement device, comprising: a coaxial signal line having a first end and a second end, wherein the first end is configured to contact the first test object and the second test object to Individually measuring a test object and the second test object to obtain a first load impedance of the first test object and a second load impedance of the second test object, wherein the first test object and the second test object The test object is composed of the same material, the first test object and the second test object respectively have a first thickness and a second thickness, and the difference between the first thickness and the second thickness is between 0.1 mm and 100. Between the millimeters; a processing module coupled to the second end of the coaxial signal line, the processing module is configured to divide the first load impedance and the second load impedance to obtain the first test And a propagation constant of one of the second test object, and determining a dielectric constant and a conductivity of the first test object and the second test object by the propagation constant. 如申請專利範圍第7項所述之介電常數量測裝置,其中該同軸訊號線與該第一測試物及該同軸訊號線與該第二測試物之接觸為開路接觸。 The dielectric constant measuring device of claim 7, wherein the coaxial signal line and the first test object and the coaxial signal line are in open contact with the second test object. 如申請專利範圍第7項所述之介電常數量測裝置,其中該同軸訊號線之一特性阻抗介於10歐姆與250歐姆之間。 The dielectric constant measuring device according to claim 7, wherein one of the coaxial signal lines has a characteristic impedance between 10 ohms and 250 ohms. 如申請專利範圍第7項所述之介電常數量測裝置,其中該同軸訊號線包含一外殼導體、一介電質及一中心導體,該外殼導體和該中心導體包含金、銀、銅、鋁、錫、鎳或合金,且該介電質包含陶瓷材料、玻璃纖維材料、碳氫化合物材料、鐵氟龍材料、鐵氟龍玻璃纖維材料或鐵氟龍陶瓷材料。 The dielectric constant measuring device according to claim 7, wherein the coaxial signal line comprises a casing conductor, a dielectric and a center conductor, and the casing conductor and the center conductor comprise gold, silver, copper, Aluminum, tin, nickel or alloy, and the dielectric comprises a ceramic material, a glass fiber material, a hydrocarbon material, a Teflon material, a Teflon glass fiber material or a Teflon ceramic material.
TW104137214A 2015-11-11 2015-11-11 Dielectric constant measurement method and apparatus TWI550282B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104137214A TWI550282B (en) 2015-11-11 2015-11-11 Dielectric constant measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104137214A TWI550282B (en) 2015-11-11 2015-11-11 Dielectric constant measurement method and apparatus

Publications (2)

Publication Number Publication Date
TWI550282B true TWI550282B (en) 2016-09-21
TW201716787A TW201716787A (en) 2017-05-16

Family

ID=57445121

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104137214A TWI550282B (en) 2015-11-11 2015-11-11 Dielectric constant measurement method and apparatus

Country Status (1)

Country Link
TW (1) TWI550282B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157337A (en) * 1990-10-03 1992-10-20 The United States Of America As Represented By The Secretary Of The Navy Dielectric constant measurement probe assembly and apparatus and method
CN1828314A (en) * 2006-04-13 2006-09-06 东南大学 Substrate integration wave guide measuring method for microwave medium substrate dielectric constant
CN103941101A (en) * 2014-04-09 2014-07-23 芜湖航飞科技股份有限公司 High-frequency medium relative dielectric constant measuring circuit and method and discreteness measuring method
TW201446922A (en) * 2013-03-13 2014-12-16 Fujifilm Corp Adhesive sheet, laminate for touch panel, capacitive touch panel
TW201506416A (en) * 2013-08-12 2015-02-16 Univ Nat Taiwan Dielectric constant measurement circuit and dielectric constant measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157337A (en) * 1990-10-03 1992-10-20 The United States Of America As Represented By The Secretary Of The Navy Dielectric constant measurement probe assembly and apparatus and method
CN1828314A (en) * 2006-04-13 2006-09-06 东南大学 Substrate integration wave guide measuring method for microwave medium substrate dielectric constant
TW201446922A (en) * 2013-03-13 2014-12-16 Fujifilm Corp Adhesive sheet, laminate for touch panel, capacitive touch panel
TW201506416A (en) * 2013-08-12 2015-02-16 Univ Nat Taiwan Dielectric constant measurement circuit and dielectric constant measurement method
CN103941101A (en) * 2014-04-09 2014-07-23 芜湖航飞科技股份有限公司 High-frequency medium relative dielectric constant measuring circuit and method and discreteness measuring method

Also Published As

Publication number Publication date
TW201716787A (en) 2017-05-16

Similar Documents

Publication Publication Date Title
US8577632B2 (en) System and method for identification of complex permittivity of transmission line dielectric
CN111426885A (en) CSRR microstrip resonance sensor for measuring complex dielectric constant and application thereof
CN106556748B (en) The measuring device and method of thin-film material complex dielectric permittivity based on transmission bounce technique
JP4650487B2 (en) Method for measuring dielectric constant of transmission line material and method for measuring electrical characteristics of electronic component using this dielectric constant measuring method
CN112505429A (en) Complex dielectric constant test system and test method based on coaxial strip line resonator
Kassem et al. Characterization techniques for materials’ properties measurement
US20140032190A1 (en) System and method for identification of conductor surface roughness model for transmission lines
CN106443198A (en) Coaxial line testing method
Degerstrom et al. Accurate resistance, inductance, capacitance, and conductance (RLCG) from uniform transmission line measurements
US7643957B2 (en) Bisect de-embedding for network analyzer measurement
Havrilla et al. Electromagnetic characterization of layered materials via direct and de-embed methods
Chung et al. Broadband radio frequency conductivity measurement technique for engineered composites
TWI550282B (en) Dielectric constant measurement method and apparatus
US20230094478A1 (en) Measurement Device and Measurement Method for Measuring Permeability and Permittivity
Kato et al. Improvement of transmission/reflection method for permittivity measurement using long fixtures with time-domain analysis approach
Manara Measurement of material shielding effectiveness using a dual TEM cell and vector network analyzer
Eiø et al. Characterising beadless air lines as reference artefacts for S-parameter measurements at RF and microwave frequencies
CN111781479B (en) On-wafer calibration piece model establishing method
Tran et al. Full-wave modeling of coplanar waveguide discontinuities with finite conductor thickness
JP7370060B2 (en) Evaluation method, evaluation device, and evaluation system for dielectric materials
Hasar Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies
Khuhro et al. Real‐time low cost compact liquid‐water binary mixture monitoring sensor
Chung et al. A Method for Measuring Dielectric Properties of Dielectric Laminates
JP2009174951A (en) Dielectric loss tangent evaluation method
CN206311670U (en) Dielectric material measurement apparatus