TWI547582B - Solar cell and method for manufacturing the same - Google Patents

Solar cell and method for manufacturing the same Download PDF

Info

Publication number
TWI547582B
TWI547582B TW103143429A TW103143429A TWI547582B TW I547582 B TWI547582 B TW I547582B TW 103143429 A TW103143429 A TW 103143429A TW 103143429 A TW103143429 A TW 103143429A TW I547582 B TWI547582 B TW I547582B
Authority
TW
Taiwan
Prior art keywords
conversion layer
electrode
energy gap
layer
deposition
Prior art date
Application number
TW103143429A
Other languages
Chinese (zh)
Other versions
TW201604297A (en
Inventor
李佳樺
許弘儒
劉永宗
張書噥
蔡松雨
林福銘
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201410834321.1A priority Critical patent/CN105280817B/en
Priority to US14/584,908 priority patent/US9349967B2/en
Publication of TW201604297A publication Critical patent/TW201604297A/en
Priority to US15/137,905 priority patent/US9768395B2/en
Application granted granted Critical
Publication of TWI547582B publication Critical patent/TWI547582B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

太陽能電池與其形成方法 Solar cell and its forming method

本發明係關於太陽能電池之鈣鈦礦轉換層,更特別關於鈣鈦礦轉換層之漸變組成與其形成方法。 The present invention relates to a perovskite conversion layer for solar cells, and more particularly to a graded composition of a perovskite conversion layer and a method of forming the same.

有機金屬鈣鈦礦材料具備優異物理特性,是太陽電池潛力材料之一。有機鉛鹵化物鈣鈦礦是目前效率較高的鈣鈦礦材料。目前製程主要為塗佈法,比如將鈣鈦礦的兩個前驅物一起溶解在有機溶劑(如DMF)之後,旋轉塗佈於電極上。另一方面,可先將鉛的鹵化物(PbX2)溶解在有機溶劑中,旋轉塗佈於電極上後,再將PbX2膜浸泡在碘化甲胺(Methylammonium iodide,MAI)中反應而得Pb(CH3NH3)X2I。然而下一次塗佈製程中的溶劑會溶解前一次塗佈形成的鈣鈦礦膜,即使每次塗佈製程中的組成不同,不同塗佈製程中的溶劑都會溶解不同組成的鈣鈦礦而無法形成組成漸變的鈣鈦礦層。 Organometallic perovskite materials have excellent physical properties and are one of the potential materials for solar cells. Organic lead halide perovskites are currently more efficient perovskite materials. The current process is mainly a coating method, such as dissolving two precursors of perovskite together in an organic solvent (such as DMF) and spin coating on the electrode. On the other hand, the lead halide (PbX 2 ) can be dissolved in an organic solvent, spin-coated on the electrode, and then the PbX 2 film is immersed in Methylammonium iodide (MAI) to obtain a reaction. Pb(CH 3 NH 3 )X 2 I. However, the solvent in the next coating process dissolves the perovskite film formed by the previous coating. Even if the composition in each coating process is different, the solvent in different coating processes dissolves the perovskite of different composition and cannot A gradual composition of the perovskite layer is formed.

綜上所述,目前亟需新的方法形成組成漸變的鈣鈦礦層。 In summary, there is a need for new methods to form a gradual composition of perovskite.

本發明一實施例提供之太陽能電池,包含:第一電極;第二電極;第一轉換層,夾設於第一電極與第二電極之間,且第一電極比第二電極靠近入光側,其中第一轉換層係一 組成漸變的鈣鈦礦層,且第一轉換層靠近第一電極處之能隙,小於靠近第二電極處之能隙,其中第一轉換層的組成為M1 mM2 (1-m)A[X1 xX2 (1-x)]3,其中M1與M2各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X1與X2各自為鹵素之一價陰離子,其中M1之原子序小於M2、X1之原子序大於X2、或上述之組合,1m0,1x0,且越靠近該第一電極處之m與x越大。 A solar cell according to an embodiment of the present invention includes: a first electrode; a second electrode; a first conversion layer interposed between the first electrode and the second electrode, and the first electrode is closer to the light incident side than the second electrode Wherein the first conversion layer is a layer of a gradual perovskite layer, and the energy gap of the first conversion layer near the first electrode is smaller than the energy gap near the second electrode, wherein the composition of the first conversion layer is M 1 m M 2 (1-m) A[X 1 x X 2 (1-x) ] 3 , wherein each of M 1 and M 2 is a divalent cation of Ge, Sn, or Pb, wherein A is methylammonium or ethyl a monovalent cation of ammonium or formazan, wherein each of X 1 and X 2 is a monovalent anion of halogen, wherein the atomic order of M 1 is less than M 2 , the atomic order of X 1 is greater than X 2 , or a combination thereof, 1 m 0,1 x 0, and the closer to m and x at the first electrode, the larger.

本發明一實施例提供之太陽能電池的形成方法, 包括:以第一沉積源提供m莫耳份的M1X1 2、以第二沉積源提供(1-m)莫耳份的M2X2 2、以及以第三沉積源提供定量的AX1 tX2 (1-t),以沉積第一轉換層於第一電極上,且第一轉換層為組成漸變的鈣鈦礦;以及形成第二電極於第一轉換層上,其中第一轉換層靠近第一電極處之能隙,小於靠近第二電極處之能隙,其中第一轉換層之組成為M1 mM2 (1-m)AX1 2m+tX2 3-2m-t,m隨著沉積時間增加而減少,t隨著沉積時間增加而減少,1m0,且1t0;其中M1與M2各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X1與X2各自為鹵素之一價陰離子,其中M1之原子序小於M2、X1之原子序大於X2、或上述之組合。 A method for forming a solar cell according to an embodiment of the present invention includes: providing m moles of M 1 X 1 2 with a first deposition source, and providing (1-m) molar M 2 X with a second deposition source 22, and AX 1 t X 2 (1- t) provide quantitative third deposition source to deposit a first conversion layer on the first electrode, and the first conversion layer is compositionally graded perovskite; and forming The second electrode is on the first conversion layer, wherein the first conversion layer is close to the energy gap at the first electrode and smaller than the energy gap near the second electrode, wherein the first conversion layer is composed of M 1 m M 2 (1- m) AX 1 2m+t X 2 3-2m-t ,m decreases with increasing deposition time, t decreases with increasing deposition time, 1 m 0, and 1 t 0; wherein M 1 and M 2 are each a divalent cation of Ge, Sn, or Pb, wherein A is methylammonium, ethylammonium, or a monovalent cation of formazan, wherein each of X 1 and X 2 is a halogen A monovalent anion wherein the atomic order of M 1 is less than M 2 , the atomic order of X 1 is greater than X 2 , or a combination thereof.

本發明一實施例提供之太陽能電池的形成方法, 包括:以第一沉積源提供m莫耳份的M1X1 2,以及以第二沉積源提供(1-m)莫耳份的M2X2 2,以沉積M1 mM2 (1-m)X1 2mX2 (2-2m)層於第一電極上;以第三沉積源提供AX1或AX2,以與M1 mM2 (1-m)X1 2mX2 (2-2m)層反應形成M1 mM2 (1-m)AX1 (2m+1)X2 (2-2m) 或M1 mM2 (1-m)AX1 (2m)X2 (3-2m)之第一轉換層於該第一電極上,且第一轉換層為組成漸變的鈣鈦礦;以及形成第二電極於第一轉換層上,其中第一轉換層靠近第一電極處之能隙,小於靠近第二電極處之能隙,其中m隨著沉積時間增加而減少,且1m0,其中M1與M2各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X1與X2各自為鹵素之一價陰離子,其中M1之原子序小於M2、X1之原子序大於X2、或上述之組合。 A method for forming a solar cell according to an embodiment of the present invention includes: providing m moles of M 1 X 1 2 with a first deposition source, and providing (1-m) molar M 2 with a second deposition source X 2 2 to deposit a layer of M 1 m M 2 (1-m) X 1 2m X 2 (2-2m) on the first electrode; to provide AX 1 or AX 2 as a third deposition source, with M 1 m M 2 (1-m) X 1 2m X 2 (2-2m) layer reacts to form M 1 m M 2 (1-m) AX 1 (2m+1) X 2 (2-2m) or M 1 m M 2 (1-m) AX 1 (2m) X 2 (3-2m) of the first conversion layer on the first electrode, and the first conversion layer is a compositionally graded perovskite; and forming a second electrode at the first On the conversion layer, wherein the energy gap of the first conversion layer near the first electrode is smaller than the energy gap near the second electrode, wherein m decreases as the deposition time increases, and 1 m 0, wherein each of M 1 and M 2 is a divalent cation of Ge, Sn, or Pb, wherein A is methylammonium, ethylammonium, or a monovalent cation of formazan, wherein each of X 1 and X 2 is halogen A monovalent anion wherein the atomic order of M 1 is less than M 2 , the atomic order of X 1 is greater than X 2 , or a combination thereof.

11、13、15、61、63、65‧‧‧沉積源 11, 13, 15, 61, 63, 65‧‧‧ sedimentary sources

17、18‧‧‧轉換層 17, 18‧‧‧Transfer layer

19、31‧‧‧電極 19, 31‧‧‧ electrodes

第1圖係本發明一實施例中,沉積形成轉換層之示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view showing the deposition of a conversion layer in an embodiment of the present invention.

第2A與2B圖係本發明實施例中,沉積腔室中M1X1 2、M2X2 2、與AX1 tX2 (1-t)之濃度-沉積時間的對應圖。 2A and 2B are diagrams showing the concentration-deposition time of M 1 X 1 2 , M 2 X 2 2 , and AX 1 t X 2 (1-t) in the deposition chamber in the embodiment of the present invention.

第3圖係本發明一實施例中,太陽能電池的示意圖。 Figure 3 is a schematic illustration of a solar cell in an embodiment of the invention.

第4A、4B、4C、4D、與4E圖係本發明實施例中,轉換層之能隙對應厚度圖。 4A, 4B, 4C, 4D, and 4E are diagrams showing the thickness of the conversion layer corresponding to the thickness map in the embodiment of the present invention.

第5圖係本發明一實施例中,太陽能電池的示意圖。 Figure 5 is a schematic illustration of a solar cell in an embodiment of the invention.

第6圖係本發明一實施例中,沉積形成轉換層之示意圖。 Figure 6 is a schematic view showing the deposition of a conversion layer in an embodiment of the present invention.

第7A與7B圖係本發明實施例中,轉換層之能隙對應厚度圖。 7A and 7B are diagrams showing the thickness of the conversion layer corresponding to the thickness map in the embodiment of the present invention.

第8A、8B、與8C圖係本發明實施例中,轉換層之能隙對應厚度圖。 8A, 8B, and 8C are diagrams showing the thickness of the conversion layer corresponding to the thickness map in the embodiment of the present invention.

本發明一實施例提供太陽能電池的形成方法。如 第1圖所示,以沉積源11提供m莫耳份的M1X1 2、以沉積源13提供(1-m)莫耳份的M2X2 2、以及以沉積源15提供定量的AX1 tX2 (1-t),以沉積組成漸變的轉換層17於電極19上。第2A與2B圖係本發明實施例中,沉積腔室中M1X1 2、M2X2 2、與AX1 tX2 (1-t)於不同沉積時間之濃度圖。值得注意的是,雖然第2A與2B圖在一開始只有1莫耳份之M1X1 2與AX1以反應形成M1AX1 3,但亦可一開始即提供M1X1 2、M2X2 2、與AX1 tX2 (1-t)以形成M1 mM2 (1-m)AX1 2m+tX2 3-2m-t,比如由第2A與2B圖之時點T開始沉積。隨著沉積時間增加,m與t均減少,1m0,且1t0。M1 mM2 (1-m)AX1 2m+tX2 3-2m-t亦可表示為M1 mM2 (1-m)A[X1 xX2 (1-x)]3,即x=(2m+t)/3,且越靠近電極19之m與x越大。上述轉換層17即組成漸變的鈣鈦礦層,M1與M2各自為Ge、Sn、或Pb之二價陽離子,A為甲基銨、乙基銨、或甲脒之一價陽離子,X1與X2各自為鹵素之一價陰離子,其中M1之原子序小於M2、X1之原子序大於X2、或上述之組合。 An embodiment of the invention provides a method of forming a solar cell. As shown in FIG. 1, M 1 X 1 2 of m-mole is provided by deposition source 11, M 2 X 2 2 of (1-m) molar is provided by deposition source 13, and quantification is provided by deposition source 15. AX 1 t X 2 (1-t) is deposited on the electrode 19 to form a graded transition layer 17. 2A and 2B are concentration diagrams of M 1 X 1 2 , M 2 X 2 2 , and AX 1 t X 2 (1-t) in deposition chambers at different deposition times in the examples of the present invention. It is worth noting that although Figures 2A and 2B initially have only 1 mole of M 1 X 1 2 and AX 1 react to form M 1 AX 1 3 , M 1 X 1 2 may also be provided from the beginning. M 2 X 2 2 , and AX 1 t X 2 (1-t) to form M 1 m M 2 (1-m) AX 1 2m+t X 2 3-2m-t , such as by Figures 2A and 2B At time T begins to deposit. As the deposition time increases, both m and t decrease, 1 m 0, and 1 t 0. M 1 m M 2 (1-m) AX 1 2m+t X 2 3-2m-t can also be expressed as M 1 m M 2 (1-m) A[X 1 x X 2 (1-x) ] 3 That is, x = (2m + t) / 3, and the closer to the electrode 19, the larger m and x. I.e., the above-described conversion layer perovskite layer 17 is compositionally graded, M 1 and M 2 are each a divalent cation Ge, Sn, Pb, or the, A is methyl ammonium, ethyl ammonium, or formamidine one monovalent cation, X 1 Each of X 2 is a monovalent anion of a halogen, wherein the atomic order of M 1 is less than M 2 , the atomic order of X 1 is greater than X 2 , or a combination thereof.

接著可形成電極31於轉換層17上,如第3圖所示。在本發明一實施例中,電極19為入光側的電極,其材質需為透明導電物,比如氟參雜氧化錫(FTO)、銦錫氧化物(ITO)、鋅錫氧化物(ZTO)、或類似組成。電極31之材質可為一般導電物,比如碳材如活性碳、石墨烯;金屬如金、銀、銅、鋁、其他導電金屬、或上述之合金。在本發明一實施例中,可在電極19與轉換層17之間夾設金屬氧化物半導體材料如二氧化鈦、氧化鋅、氧化鎳、或氧化鎢,以做為電子傳輸層。在本發明另一實施例中,可在電極31與轉換層17之間夾設電洞傳輸材料如 Spiro-OMeTAD、P3HT、CuSCN、CuI、或PEDOT:PSS,以做為電洞傳遞層。 Electrode 31 can then be formed on conversion layer 17, as shown in FIG. In an embodiment of the invention, the electrode 19 is an electrode on the light incident side, and the material thereof is a transparent conductive material, such as fluorine doped tin oxide (FTO), indium tin oxide (ITO), zinc tin oxide (ZTO). Or a similar composition. The material of the electrode 31 may be a general conductive material such as a carbon material such as activated carbon, graphene, a metal such as gold, silver, copper, aluminum, other conductive metal, or an alloy thereof. In an embodiment of the invention, a metal oxide semiconductor material such as titanium dioxide, zinc oxide, nickel oxide, or tungsten oxide may be interposed between the electrode 19 and the conversion layer 17 as an electron transport layer. In another embodiment of the present invention, a hole transport material such as a hole may be interposed between the electrode 31 and the conversion layer 17. Spiro-OMeTAD, P3HT, CuSCN, CuI, or PEDOT: PSS, as a hole transfer layer.

上述第2A圖所形成之組成漸變的轉換層17其能隙 圖如第4A圖所示,而第2B圖所形成之組成漸變的轉換層17其能隙圖如第4B圖所示。可以理解的是,只要是轉換層17靠近電極19之能隙小於靠近電極31之能隙,均可採用上述製程形成組成漸變之轉換層。除此之外,轉換層17之能隙亦可有其他設計,比如第4C圖、4D、或4E圖所示。 The energy conversion gap of the conversion layer 17 formed by the above-mentioned FIG. 2A The figure is shown in Fig. 4A, and the conversion layer 17 of the composition gradient formed by Fig. 2B has an energy gap diagram as shown in Fig. 4B. It can be understood that as long as the energy gap of the conversion layer 17 close to the electrode 19 is smaller than the energy gap close to the electrode 31, the conversion process of the composition gradient can be formed by the above process. In addition, the energy gap of the conversion layer 17 can have other designs, such as shown in FIG. 4C, 4D, or 4E.

在本發明一實施例中,第1圖中的沉積源11提供之 M1X1 2為SnI2,沉積源13提供之M2X2 2為PbI2,且沉積源15提供之AX1 tX2 (1-t)為(CH3NH3)I。如此一來,轉換層17靠近電極19之組成可為Sn(CH3NH3)I3(能隙為1.1eV),靠近電極31之組成可為Pb(CH3NH3)I3(能隙為1.5eV),且位於電極19與電極31之間的組成可為SnmPb(1-m)(CH3NH3)I3In an embodiment of the invention, the deposition source 11 in FIG. 1 provides M 1 X 1 2 as SnI 2 , the deposition source 13 provides M 2 X 2 2 as PbI 2 , and the deposition source 15 provides AX 1 t X 2 (1-t) is (CH 3 NH 3 )I. In this way, the composition of the conversion layer 17 near the electrode 19 may be Sn(CH 3 NH 3 )I 3 (energy gap 1.1 eV), and the composition close to the electrode 31 may be Pb(CH 3 NH 3 )I 3 (energy gap) It is 1.5 eV), and the composition between the electrode 19 and the electrode 31 may be Sn m Pb (1-m) (CH 3 NH 3 )I 3 .

在本發明一實施例中,第1圖中的沉積源11提供之 M1X1 2為PbI2,沉積源13提供之M2X2 2為PbBr2,且沉積源15提供之AX1 tX2 (1-t)為(CH3NH3)ItBr(1-t)。如此一來,轉換層17靠近電極19之組成可為Pb(CH3NH3)I3(能隙為1.5eV),靠近電極31之組成可為Pb(CH3NH3)Br3(能隙為2.3eV),而位於第一電極與第二電極之間的組成可為Pb(CH3NH3)[IxBr(1-x)]3In an embodiment of the invention, the deposition source 11 in FIG. 1 provides M 1 X 1 2 as PbI 2 , the deposition source 13 provides M 2 X 2 2 as PbBr 2 , and the deposition source 15 provides AX 1 t X 2 (1-t) is (CH 3 NH 3 )I t Br (1-t) . In this way, the composition of the conversion layer 17 near the electrode 19 may be Pb(CH 3 NH 3 )I 3 (energy gap 1.5 eV), and the composition close to the electrode 31 may be Pb(CH 3 NH 3 )Br 3 (energy gap) It is 2.3 eV), and the composition between the first electrode and the second electrode may be Pb(CH 3 NH 3 )[I x Br (1-x) ] 3 .

上述沉積源11、13、與15可為濺鍍源或蒸鍍源。 當採用濺鍍源時,調整撞擊靶材之能量即可調整M1X1 2與M2X2 2之比例。當採用蒸鍍源時,調整蒸鍍源之溫度即可調整M1X1 2與M2X2 2之比例。另一方面,調整與A反應之鹵素氣體流量,即 可調整AX1 tX2 (1-t)中X1與X2之比例。 The deposition sources 11, 13, and 15 described above may be a sputtering source or a vapor deposition source. When a sputtering source is used, the ratio of M 1 X 1 2 to M 2 X 2 2 can be adjusted by adjusting the energy of the impact target. When the evaporation source is used, the ratio of M 1 X 1 2 to M 2 X 2 2 can be adjusted by adjusting the temperature of the evaporation source. On the other hand, by adjusting the flow rate of the halogen gas reacted with A, the ratio of X 1 to X 2 in AX 1 t X 2 (1-t) can be adjusted.

在本發明另一實施例中,可在沉積轉換層17於電 極19前,先沉積轉換層18於電極19上。如第5圖所示,轉換層18位於電極19與轉換層17之間。轉換層18靠近電極19之能隙高於靠近轉換層17之能隙,轉換層18靠近轉換層17之能隙與轉換層17靠近轉換層18之能隙相同,且轉換層18靠近電極19之能隙低於轉換層17靠近電極31之能隙。 In another embodiment of the present invention, the conversion layer 17 can be deposited on the electricity Before the pole 19, a conversion layer 18 is deposited on the electrode 19. As shown in FIG. 5, the conversion layer 18 is located between the electrode 19 and the conversion layer 17. The energy gap of the conversion layer 18 near the electrode 19 is higher than the energy gap close to the conversion layer 17. The energy gap of the conversion layer 18 near the conversion layer 17 is the same as the energy gap of the conversion layer 17 near the conversion layer 18, and the conversion layer 18 is close to the electrode 19. The energy gap is lower than the energy gap of the conversion layer 17 close to the electrode 31.

在本發明一實施例中,沉積轉換層18之步驟包括 以沉積源61提供m’莫耳份的M3X3 2、以沉積源63提供(1-m’)莫耳份的M4X4 2、以及以沉積源65提供定量的AX3 t’X4 (1-t’),以沉積轉換層18於電極19上,如第6圖所示。轉換層18之組成為M3 m’M4 (1-m’)AX3 (2m’+t’)X4 (3-2m-t’),m’隨著沉積時間增加而減少,t’隨著沉積時間增加而減少,1m’0,且1t’0。 M3 m’M4 (1-m’)AX3 2m’+tX4 3-2m’-t’亦可表示為M3 m’M4 (1-m’)A[X3 x’X4 (1-x’)]3,即x’=(2m’+t’)/3,且越靠近電極19之m’與x’越大。M3與M4各自為Ge、Sn、或Pb之二價陽離子,A為甲基銨、乙基銨、或甲脒之一價陽離子,X3與X4各自為鹵素之一價陰離子。M3之原子序大於M4、X3之原子序小於X4、或上述之組合。 In an embodiment of the invention, the step of depositing the conversion layer 18 includes providing m' molar M 3 X 3 2 with deposition source 61 and providing (1-m') molar M 4 X with deposition source 63. 4 2 and a quantitative amount of AX 3 t' X 4 (1-t') is provided by deposition source 65 to deposit conversion layer 18 on electrode 19, as shown in FIG. The composition of the conversion layer 18 is M 3 m' M 4 (1-m') AX 3 (2m'+t') X 4 (3-2m-t') , and m' decreases as the deposition time increases, t' Decreased as deposition time increases, 1 m' 0, and 1 t' 0. M 3 m' M 4 (1-m') AX 3 2m'+t X 4 3-2m'-t' can also be expressed as M 3 m' M 4 (1-m') A[X 3 x' X 4 (1-x') ] 3 , that is, x'=(2m'+t')/3, and the closer to the electrode 19, the larger m' and x'. Each of M 3 and M 4 is a divalent cation of Ge, Sn, or Pb, A is a methyl ammonium, ethyl ammonium, or a monovalent cation of formazan, and each of X 3 and X 4 is a monovalent anion of a halogen. The atomic order of M 3 is greater than M 4 , the atomic order of X 3 is less than X 4 , or a combination thereof.

上述沉積源61、63、與65可為濺鍍源或蒸鍍源。 當採用濺鍍源時,調整撞擊靶材之能量即可調整M3X3 2與M4X4 2之比例。當採用蒸鍍源時,調整蒸鍍源之溫度即可調整M3X3 2與M4X4 2之比例。另一方面,調整與A反應之鹵素氣體流量,即可調整AX3 tX4 (1-t)中X3與X4之比例。 The deposition sources 61, 63, and 65 described above may be a sputtering source or a vapor deposition source. When a sputtering source is used, the ratio of M 3 X 3 2 to M 4 X 4 2 can be adjusted by adjusting the energy of the impact target. When the evaporation source is used, the ratio of M 3 X 3 2 to M 4 X 4 2 can be adjusted by adjusting the temperature of the evaporation source. On the other hand, by adjusting the flow rate of the halogen gas reacted with A, the ratio of X 3 to X 4 in AX 3 t X 4 (1-t) can be adjusted.

在本發明一實施例中,轉換層18可由靠近電極19 之Pb(CH3NH3)[IxBr(1-x)]3(0<x<1)漸變為Pb(CH3NH3)I3,而轉換層17可由轉換層18與17交界處的Pb(CH3NH3)I3再漸變為Pb(CH3NH3)Br3。在本發明另一實施例中,轉換層18可由靠近電極19之SnmPb(1-m)(CH3NH3)I3(0<m<1)漸變為Sn(CH3NH3)I3,而轉換層17可由轉換層18與17交界處的Sn(CH3NH3)I3再漸變為Pb(CH3NH3)I3In an embodiment of the present invention, the conversion layer 18 may be formed near the Pb electrode 19 of the (CH 3 NH 3) [I x Br (1-x)] 3 (0 <x <1) gradient as Pb (CH 3 NH 3) I 3 , and the conversion layer 17 can be further changed to Pb(CH 3 NH 3 )Br 3 by Pb(CH 3 NH 3 )I 3 at the junction of the conversion layers 18 and 17. In another embodiment of the present invention, the conversion layer 18 may be graded to Sn(CH 3 NH 3 )I by Sn m Pb (1-m) (CH 3 NH 3 )I 3 (0<m<1) near the electrode 19. 3 , and the conversion layer 17 can be further changed to Pb(CH 3 NH 3 )I 3 by Sn(CH 3 NH 3 )I 3 at the junction of the conversion layers 18 and 17.

舉例來說,轉換層18與17之能隙圖可如第7A或7B 圖所示。值得注意的是,轉換層18與17之形狀可搭配第4B-4E圖所示之其他變化調整。 For example, the energy gap diagrams of the conversion layers 18 and 17 can be as in 7A or 7B. The figure shows. It is worth noting that the shape of the conversion layers 18 and 17 can be adjusted to match the other variations shown in Figure 4B-4E.

在本發明另一實施例中,以沉積源11提供m莫耳份 的M1X1 2,以及以沉積源13提供(1-m)莫耳份的M2X2 2,以沉積M1 mM2 (1-m)X1 2mX2 (2-2m)層於電極19上。接著以沉積源15提供AX1或AX2,以與M1 mM2 (1-m)X1 2mX2 (2-2m)層反應形成M1 mM2 (1-m)AX1 (2m+1)X2 (2-2m)或M1 mM2 (1-m)AX1 (2m)X2 (3-2m)之組成漸變的轉換層17於電極19上。接著形成電極31於轉換層17上,如第3圖所示。M1 mM2 (1-m)AX1 (2m+1)X2 (2-2m)亦可表示為M1 mM2 (1-m)A[X1 xX2 (1-x)]3,即x=(2m+1)/3,且越靠近電極19之m與x越大。M1 mM2 (1-m)AX1 (2m)X2 (3-2m)亦可表示為M1 mM2 (1-m)A[X1 xX2 (1-x)]3,即x=2m/3,且越靠近電極19之m與x越大。 In another embodiment of the invention, m 1 molar M 1 X 1 2 is provided by deposition source 11 and (1-m) molar M 2 X 2 2 is provided by deposition source 13 to deposit M 1 m M 2 (1-m) X 1 2m X 2 (2-2m) is layered on the electrode 19. Next, AX 1 or AX 2 is provided by deposition source 15 to react with M 1 m M 2 (1-m) X 1 2m X 2 (2-2m) layer to form M 1 m M 2 (1-m) AX 1 ( 2m+1) X 2 (2-2m) or M 1 m M 2 (1-m) AX 1 (2m) X 2 (3-2m) The composition of the transition layer 17 is graded on the electrode 19. Next, an electrode 31 is formed on the conversion layer 17, as shown in Fig. 3. M 1 m M 2 (1-m) AX 1 (2m+1) X 2 (2-2m) can also be expressed as M 1 m M 2 (1-m) A[X 1 x X 2 (1-x) 3 , that is, x = (2m + 1) / 3, and the closer to the electrode 19, the larger m and x. M 1 m M 2 (1-m) AX 1 (2m) X 2 (3-2m) can also be expressed as M 1 m M 2 (1-m) A[X 1 x X 2 (1-x) ] 3 That is, x = 2 m / 3, and the closer to the electrode 19, the larger m and x.

轉換層17靠近電極19之能隙,小於靠近電極31之 能隙。在上述沉積步驟中,m隨著沉積時間增加而減少,且1m0。M1與M2各自為Ge、Sn、或Pb之二價陽離子。A為甲基 銨、乙基銨、或甲脒之一價陽離子。X1與X2各自為鹵素之一價陰離子。在轉換層17之組成中,M1之原子序小於M2、X1之原子序大於X2、或上述之組合。 The conversion layer 17 is close to the energy gap of the electrode 19 and smaller than the energy gap close to the electrode 31. In the above deposition step, m decreases as the deposition time increases, and 1 m 0. M 1 and M 2 are each a divalent cation of Ge, Sn, or Pb. A is methylammonium, ethylammonium, or a monovalent cation of formazan. X 1 and X 2 are each a halogen monovalent anion. In the composition of the conversion layer 17, the atomic order of M 1 is smaller than M 2 , the atomic order of X 1 is larger than X 2 , or a combination thereof.

此實施例與前述實施例之主要差別在於先形成 M1 mM2 (1-m)X1 2mX2 (2-2m)層再提供AX1或AX2,而非同時提供M1X1、M2X2、與AX1(或AX2)直接形成轉換層。由於此實施例之轉換層17的實際組成與能隙圖與前述實施例類似,在此不贅述。 The main difference between this embodiment and the previous embodiment is that the M 1 m M 2 (1-m) X 1 2m X 2 (2-2m) layer is formed first and then AX 1 or AX 2 is provided instead of simultaneously providing M 1 X 1 , M 2 X 2 , and AX 1 (or AX 2 ) directly form a conversion layer. Since the actual composition and energy gap diagram of the conversion layer 17 of this embodiment is similar to the foregoing embodiment, it will not be described herein.

與前述實施例類似,此實施例在沉積轉換層17 前,亦可進一步沉積組成漸變的轉換層18於電極19上。換言之,轉換層18位於轉換層17與電極19之間。轉換層18靠近電極19處之能隙高於靠近轉換層17之能隙,轉換層18靠近轉換層17之能隙與轉換層17靠近轉換層18之能隙相同,且轉換層18靠近電極19之能隙低於轉換層17靠近電極31之能隙。舉例來說,此實施例之轉換層18與17之能隙可參考第7A-7B圖。 Similar to the previous embodiment, this embodiment is in the deposition conversion layer 17 The conversion layer 18 constituting the gradation may be further deposited on the electrode 19 before. In other words, the conversion layer 18 is located between the conversion layer 17 and the electrode 19. The energy gap of the conversion layer 18 near the electrode 19 is higher than the energy gap near the conversion layer 17. The energy gap of the conversion layer 18 near the conversion layer 17 is the same as the energy gap of the conversion layer 17 near the conversion layer 18, and the conversion layer 18 is close to the electrode 19. The energy gap is lower than the energy gap of the conversion layer 17 near the electrode 31. For example, the energy gaps of the conversion layers 18 and 17 of this embodiment can be referred to the 7A-7B diagram.

在本發明一實施例中,上述沉積轉換層18之步驟 可為以沉積源61提供m’莫耳份的M3X3 2,以及以沉積源63提供(1-m’)莫耳份的M4X4 2,以沉積M3 m’M4 (1-m’)X3 2m’X4 (2-2m’)層於電極19上。接著以沉積源65提供AX3或AX4,以與M3 mM4 (1-m’)X3 2m’X4 (2-2m’)層反應形成M3 m’M4 (1-m’)AX3 (2m’+1)X4 (2-2m’)或M3 m’M4 (1-m’)AX3 (2m’)X4 (3-2m’)之組成漸變的轉換層18於電極19上。 M3 m’M4 (1-m’)AX3 (2m’+1)X4 (2-2m’)亦可表示為M3 m’M4 (1-m’)A[X3 x’X4 (1-x’)]3,即x’=(2m’+1)/3,且越靠近電極19 之m’與x’越大。M3 m’M4 (1-m’)AX3 (2m’)X4 (3-2m’)亦可表示為M3 m’M4 (1-m’)A[X3 x’X4 (1-x’)]3,即x’=2m’/3,且越靠近電極19之m’與x’越大。m’隨著沉積時間增加而減少,且1m’0,M3與M4各自為Ge、Sn、或Pb之二價陽離子,A為甲基銨、乙基銨、或甲脒之一價陽離子,X3與X4各自為鹵素之一價陰離子,在轉變層18中,M3之原子序大於M4、X3之原子序小於X4、或上述之組合。 In an embodiment of the invention, the step of depositing the conversion layer 18 may be to provide m' molar M 3 X 3 2 from the deposition source 61 and provide (1-m') moles from the deposition source 63. M 4 X 4 2 to deposit a layer of M 3 m' M 4 (1-m') X 3 2m' X 4 (2-2 m') on the electrode 19. AX 3 or AX 4 is then provided as a deposition source 65 to react with the M 3 m M 4 (1-m') X 3 2m' X 4 (2-2 m' ) layer to form M 3 m' M 4 (1-m ') AX 3 (2m'+1) X 4 (2-2m') or M 3 m' M 4 (1-m') AX 3 (2m') X 4 (3-2m') composition gradient conversion Layer 18 is on electrode 19. M 3 m' M 4 (1-m') AX 3 (2m'+1) X 4 (2-2m') can also be expressed as M 3 m' M 4 (1-m') A[X 3 x' X 4 (1-x') ] 3 , that is, x'=(2m'+1)/3, and the closer to the electrode 19, the larger m' and x'. M 3 m' M 4 (1-m') AX 3 (2m') X 4 (3-2m') can also be expressed as M 3 m' M 4 (1-m') A[X 3 x' X 4 (1-x') ] 3 , that is, x'=2m'/3, and the closer to the electrode 19, the larger m' and x'. m' decreases as deposition time increases, and 1 m' 0, M 3 and M 4 are each a divalent cation of Ge, Sn, or Pb, A is a methyl ammonium, ethyl ammonium, or a monovalent cation of formazan, and each of X 3 and X 4 is a halogen anion. In the transition layer 18, the atomic order of M 3 is larger than M 4 , the atomic order of X 3 is smaller than X 4 , or a combination thereof.

與習知技術相較,本申請案形成鈣鈦礦之轉換層 的製程均未採用溶劑,可有效避免不同層中不同組成之鈣鈦礦被溶劑溶解混合的問題。換言之,本申請案提供的方法可控制鈣鈦礦之轉換層中不同厚度的組成,進而調整轉換層之能隙與提升太陽能電池之轉換效率。 Compared with the prior art, the present application forms a conversion layer of perovskite The solvent is not used in the process, and the problem that the perovskite of different compositions in different layers is dissolved and mixed by the solvent can be effectively avoided. In other words, the method provided by the present application can control the composition of different thicknesses in the conversion layer of the perovskite, thereby adjusting the energy gap of the conversion layer and improving the conversion efficiency of the solar cell.

為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下: The above and other objects, features, and advantages of the present invention will become more apparent and understood.

實施例 Example 比較例1 Comparative example 1

請參考第3圖,電極19為90nm之TiO2層,電極31為金的薄膜,轉換層17為400nm厚之Pb(CH3NH3)I3,以及位於轉換層17與電極31之間的400nm厚之電洞傳輸層(未圖示)如Spiro-OMeTAD。經AMPS-1D(Analysis of Microelectronic and Photonic Structures-1D)進行模擬計算,此電池之開路電壓為1.272V,短路電流為21.683mA/cm2,填充因子為0.826,且轉換效率為22.722%。 Referring to FIG. 3, the electrode 19 is a 90 nm TiO 2 layer, the electrode 31 is a gold film, the conversion layer 17 is 400 nm thick Pb(CH 3 NH 3 )I 3 , and is located between the conversion layer 17 and the electrode 31. A 400 nm thick hole transport layer (not shown) such as Spiro-OMeTAD. By AMPS-1D (A nalysis of M icroelectronic and P hotonic S tructures-1D) are simulated, the open circuit voltage of this cell was 1.272V, a short circuit current of 21.683mA / cm 2, a fill factor of 0.826, and the conversion efficiency was 22.722 %.

比較例2 Comparative example 2

請參考第3圖,電極19為90nm之TiO2層,電極31為金的薄膜,而轉換層17為400nm厚之Pb(CH3NH3)I3。經AMPS-1D進行模擬計算,此電池之開路電壓為0.838V,短路電流為17.945mA/cm2,填充因子為0.804,且轉換效率為12.095%。 Referring to FIG. 3, the electrode 19 is a 90 nm TiO 2 layer, the electrode 31 is a gold film, and the conversion layer 17 is 400 nm thick Pb(CH 3 NH 3 )I 3 . The simulation calculation by AMPS-1D showed that the open circuit voltage of the battery was 0.838V, the short circuit current was 17.945mA/cm 2 , the fill factor was 0.804, and the conversion efficiency was 12.095%.

實施例1 Example 1

請參考第3圖,電極19為90nm之TiO2層,電極31為金的薄膜,靠近電極19之轉換層17的組成(Pb(CH3NH3)I3)其厚度延續約300nm,而組成漸變之Pb(CH3NH3)[IxBr(1-x)]3之厚度延續100nm,直到Pb(CH3NH3)Br3。上述轉換層17之能隙圖如第8A圖所示。經AMPS-1D進行模擬計算,此電池之開路電壓為1.284V,短路電流為21.136mA/cm2,填充因子為0.840,且轉換效率為22.807%。 Referring to FIG. 3, the electrode 19 is a 90 nm TiO 2 layer, the electrode 31 is a gold film, and the composition of the conversion layer 17 near the electrode 19 (Pb(CH 3 NH 3 )I 3 ) has a thickness of about 300 nm. The thickness of the graded Pb(CH 3 NH 3 )[I x Br (1-x) ] 3 continues for 100 nm up to Pb(CH 3 NH 3 )Br 3 . The energy gap diagram of the above conversion layer 17 is as shown in Fig. 8A. The simulation calculation by AMPS-1D showed that the open circuit voltage of the battery was 1.284V, the short circuit current was 21.136mA/cm 2 , the fill factor was 0.840, and the conversion efficiency was 22.807%.

實施例2 Example 2

請參考第3圖,電極19為90nm之TiO2層,電極31為金的薄膜,且轉換層17由電極19至電極31依序分成三區,分別為(1)組成漸變之Pb(CH3NH3)[IxBr(1-x)]3,其厚度延續約50nm直到Pb(CH3NH3)I3,且其能隙自1.5eV、1.6eV、1.8eV、2.0eV、與2.3eV逐漸轉變至1.5eV;(2)Pb(CH3NH3)I3,其厚度為約300nm,且其能隙為1.5eV;以及(3)組成漸變之Pb(CH3NH3)[IxBr(1-x)]3,其厚度延續50nm直到Pb(CH3NH3)Br3,且其能隙逐漸增加至2.3eV。上述轉換層17之能隙圖如第8B圖所示。經AMPS-1D進行模擬計算,此電池之開路電壓、短路電流、填充因子為、及轉換效率如第1表所示。 Referring to FIG. 3, the electrode 19 is a 90 nm TiO 2 layer, the electrode 31 is a gold film, and the conversion layer 17 is sequentially divided into three regions from the electrode 19 to the electrode 31, which are respectively (1) a compositionally graded Pb (CH 3 ). NH 3 )[I x Br (1-x) ] 3 , the thickness of which extends from about 50 nm up to Pb(CH 3 NH 3 )I 3 , and its energy gap from 1.5 eV, 1.6 eV, 1.8 eV, 2.0 eV, and 2.3 eV gradually changes to 1.5 eV; (2) Pb(CH 3 NH 3 )I 3 , which has a thickness of about 300 nm and an energy gap of 1.5 eV; and (3) a compositionally graded Pb(CH 3 NH 3 )[I x Br (1-x) ] 3 , which has a thickness of 50 nm up to Pb(CH 3 NH 3 )Br 3 and its energy gap gradually increases to 2.3 eV. The energy gap diagram of the above conversion layer 17 is as shown in Fig. 8B. The open circuit voltage, short circuit current, fill factor, and conversion efficiency of the battery were simulated by AMPS-1D as shown in Table 1.

實施例3 Example 3

請參考第3圖,電極19為90nm之TiO2層,電極31為金的薄膜,轉換層17由電極19至電極31依序分成三區,分別為(1)組成漸變之Pb(CH3NH3)[IxBr(1-x)]3,其厚度延續約50nm、100nm、200nm、300nm、或350nm直到Pb(CH3NH3)I3,且其能隙自1.6eV逐漸轉變至1.5eV;(2)Pb(CH3NH3)I3,其厚度為約300nm、250nm、150nm、50nm、或0nm,且其能隙為1.5eV;以及(3)組成漸變之Pb(CH3NH3)[IxBr(1-x)]3,其厚度延續50nm直到Pb(CH3NH3)Br3,且其能隙逐漸增加至2.3eV。上述轉換層17之能隙圖如第8C圖所示。經理論計算,此電池之開路電壓、短路電流、填充因子為、及轉換效率如第2表所示。 Referring to FIG. 3, the electrode 19 is a 90 nm TiO 2 layer, the electrode 31 is a gold film, and the conversion layer 17 is sequentially divided into three regions from the electrode 19 to the electrode 31, respectively (1) a gradual composition of Pb (CH 3 NH). 3 ) [I x Br (1-x) ] 3 , the thickness of which lasts about 50 nm, 100 nm, 200 nm, 300 nm, or 350 nm up to Pb(CH 3 NH 3 )I 3 , and its energy gap gradually changes from 1.6 eV to 1.5 eV; (2) Pb(CH 3 NH 3 )I 3 having a thickness of about 300 nm, 250 nm, 150 nm, 50 nm, or 0 nm, and having an energy gap of 1.5 eV; and (3) a compositionally graded Pb (CH 3 NH) 3 ) [I x Br (1-x) ] 3 , the thickness of which continues for 50 nm until Pb(CH 3 NH 3 )Br 3 , and its energy gap gradually increases to 2.3 eV. The energy gap diagram of the above conversion layer 17 is as shown in Fig. 8C. According to theoretical calculations, the open circuit voltage, short circuit current, fill factor, and conversion efficiency of the battery are shown in Table 2.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,任何本技術領域中具有通常知識者,在不脫 離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above in several embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art is not The scope of the present invention is defined by the scope of the appended claims.

Claims (11)

一種太陽能電池,包含:一第一電極;一第二電極;一第一轉換層,夾設於該第一電極與該第二電極之間,且該第一電極比該第二電極靠近入光側,其中該第一轉換層係一組成漸變的鈣鈦礦層,且該第一轉換層靠近該第一電極處之能隙,小於靠近該第二電極處之能隙,其中該第一轉換層的組成為M1 mM2 (1-m)A[X1 xX2 (1-x)]3,其中M1與M2各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X1與X2各自為鹵素之一價陰離子,其中M1之原子序小於M2、X1之原子序大於X2、或上述之組合,1m0,1x0,且越靠近該第一電極處之m與x越大。 A solar cell comprising: a first electrode; a second electrode; a first conversion layer interposed between the first electrode and the second electrode, and the first electrode is closer to the second electrode than the second electrode a side, wherein the first conversion layer is a gradual composition of a perovskite layer, and the energy gap of the first conversion layer near the first electrode is smaller than an energy gap near the second electrode, wherein the first conversion layer The composition is M 1 m M 2 (1-m) A[X 1 x X 2 (1-x) ] 3 , wherein each of M 1 and M 2 is a divalent cation of Ge, Sn, or Pb, wherein A is a monovalent cation of methylammonium, ethylammonium, or formazan, wherein each of X 1 and X 2 is a monovalent anion of halogen, wherein the atomic order of M 1 is less than M 2 , the atomic order of X 1 is greater than X 2 , or Combination of the above, 1 m 0,1 x 0, and the closer to m and x at the first electrode, the larger. 如申請專利範圍第1項所述之太陽能電池,更包括一第二轉換層位於該第一轉換層與該第一電極之間,其中該第二轉換層為組成漸變的鈣鈦礦層,該第二轉換層靠近該第一電極處之能隙高於靠近該第一轉換層處之能隙,該第二轉換層靠近該第一轉換層之能隙與該第一轉換層靠近該第二轉換層之能隙相同,且該第二轉換層靠近該第一電極處之能隙低於該第一轉換層靠近該第二電極處之能隙。 The solar cell of claim 1, further comprising a second conversion layer between the first conversion layer and the first electrode, wherein the second conversion layer is a gradual composition of a perovskite layer, the first The energy gap of the second conversion layer near the first electrode is higher than the energy gap near the first conversion layer, and the energy gap of the second conversion layer close to the first conversion layer is close to the second conversion layer of the first conversion layer. The energy gap of the layer is the same, and the energy gap of the second conversion layer near the first electrode is lower than the energy gap of the first conversion layer near the second electrode. 如申請專利範圍第2項所述之太陽能電池,其中該第二轉換層的組成為M3 m’M4 (1-m’)A[X3 x’X4 (1-x’)]3, 其中M3與M4各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X3與X4各自為鹵素之一價陰離子,其中M3之原子序大於M4、X3之原子序小於X4、或上述之組合,1m’0,1x’0,且越靠近該第一電極處之m’與x’越大。 The solar cell of claim 2, wherein the composition of the second conversion layer is M 3 m' M 4 (1-m') A[X 3 x' X 4 (1-x') ] 3 Wherein M 3 and M 4 are each a divalent cation of Ge, Sn, or Pb, wherein A is methylammonium, ethylammonium, or a one-valent cation of formazan, wherein each of X 3 and X 4 is a halogen a valence anion wherein the atomic order of M 3 is greater than M 4 , the atomic order of X 3 is less than X 4 , or a combination thereof, 1 m' 0,1 x' 0, and the closer to the first electrode, the larger m' and x'. 一種太陽能電池的形成方法,包括:以一第一沉積源提供m莫耳份的M1X1 2、以一第二沉積源提供(1-m)莫耳份的M2X2 2、以及以一第三沉積源提供定量的AX1 tX2 (1-t),以沉積一第一轉換層於一第一電極上,且該第一轉換層為組成漸變的鈣鈦礦;以及形成一第二電極於該第一轉換層上,其中該第一轉換層靠近該第一電極處之能隙,小於靠近該第二電極處之能隙,其中該第一轉換層之組成為M1 mM2 (1-m)AX1 2m+tX2 3-2m-t,m隨著沉積時間增加而減少,t隨著沉積時間增加而減少,1m0,且1t0;其中M1與M2各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X1與X2各自為鹵素之一價陰離子,其中M1之原子序小於M2、X1之原子序大於X2、或上述之組合。 A method of forming a solar cell, comprising: supplying m moles of M 1 X 1 2 with a first deposition source, providing (1-m) molar parts of M 2 X 2 2 with a second deposition source, and Quantitative AX 1 t X 2 (1-t) is provided by a third deposition source to deposit a first conversion layer on a first electrode, and the first conversion layer is a compositionally graded perovskite; and forming a second electrode is disposed on the first conversion layer, wherein an energy gap of the first conversion layer near the first electrode is smaller than an energy gap near the second electrode, wherein the first conversion layer is composed of M 1 m M 2 (1-m) AX 1 2m+t X 2 3-2m-t ,m decreases as the deposition time increases, and t decreases as the deposition time increases, 1 m 0, and 1 t 0; wherein M 1 and M 2 are each a divalent cation of Ge, Sn, or Pb, wherein A is methylammonium, ethylammonium, or a monovalent cation of formazan, wherein each of X 1 and X 2 is a halogen A monovalent anion wherein the atomic order of M 1 is less than M 2 , the atomic order of X 1 is greater than X 2 , or a combination thereof. 如申請專利範圍第4項所述之太陽能電池的形成方法,其中該第一、第二、與第三沉積源包括濺鍍源或蒸鍍源。 The method of forming a solar cell according to claim 4, wherein the first, second, and third deposition sources comprise a sputtering source or a vapor deposition source. 如申請專利範圍第4項所述之太陽能電池的形成方法,更包括沉積一第二轉換層於該第一轉換層與該第一電極之間,且該第二轉換層為組成漸變的鈣鈦礦,其中該第二轉換層靠近該第一電極處之能隙高於靠近該第一轉換層處之能隙,該第二轉換層靠近該第一轉換層之能隙與該第一轉換層靠近該第二轉換層之能隙相同,且該第二轉換層靠近該第一電極處之能隙低於該第一轉換層靠近該第二電極處之能隙,其中沉積該第二轉換層之步驟包括:以一第四沉積源提供m’莫耳份的M3X3 2、一第五沉積源提供(1-m’)莫耳份的M4X4 2、以及一第六沉積源提供定量的AX3 t’X4 (1-t’),以沉積該第二轉換層於該第一電極上,其中該第二轉換層之組成為M3 m’M4 (1-m’)AX3 (2m’+t’)X4 (3-2m-t’),m’隨著沉積時間增加而減少,t’隨著沉積時間增加而減少,1m’0,且1t’0,其中M3與M4各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X3與X4各自為鹵素之一價陰離子,其中M3之原子序大於M4、X3之原子序小於X4、或上述之組合。 The method for forming a solar cell according to claim 4, further comprising depositing a second conversion layer between the first conversion layer and the first electrode, and the second conversion layer is a compositionally graded calcium titanium The ore, wherein the energy gap of the second conversion layer near the first electrode is higher than the energy gap near the first conversion layer, the second conversion layer is close to the energy gap of the first conversion layer and the first conversion layer The energy gap close to the second conversion layer is the same, and the energy gap of the second conversion layer near the first electrode is lower than the energy gap of the first conversion layer near the second electrode, wherein the second conversion layer is deposited The steps include: providing a m' molar M 3 X 3 2 with a fourth deposition source, a fifth deposition source providing (1-m') molar M 4 X 4 2 , and a sixth deposition The source provides a quantitative amount of AX 3 t 'X 4 (1-t') to deposit the second conversion layer on the first electrode, wherein the composition of the second conversion layer is M 3 m' M 4 (1-m ') AX 3 (2m'+t') X 4 (3-2m-t') , m' decreases with increasing deposition time, t' decreases with increasing deposition time, 1 m' 0, and 1 t' 0, wherein each of M 3 and M 4 is a divalent cation of Ge, Sn, or Pb, wherein A is methylammonium, ethylammonium, or a monovalent cation of formazan, wherein each of X 3 and X 4 is halogen A monovalent anion wherein the atomic order of M 3 is greater than M 4 , the atomic sequence of X 3 is less than X 4 , or a combination thereof. 如申請專利範圍第6項所述之太陽能電池的形成方法,其中該第四、第五、與第六沉積源包括濺鍍源或蒸鍍源。 The method of forming a solar cell according to claim 6, wherein the fourth, fifth, and sixth deposition sources comprise a sputtering source or a vapor deposition source. 一種太陽能電池的形成方法,包括:以一第一沉積源提供m莫耳份的M1X1 2,以及以一第二沉積源提供(1-m)莫耳份的M2X2 2,以沉積M1 mM2 (1-m)X1 2mX2 (2-2m)層 於一第一電極上;以一第三沉積源提供AX1或AX2,以與M1 mM2 (1-m)X1 2mX2 (2-2m)層反應形成M1 mM2 (1-m)AX1 (2m+1)X2 (2-2m)或M1 mM2 (1-m)AX1 (2m)X2 (3-2m)之第一轉換層於該第一電極上,且該第一轉換層為組成漸變的鈣鈦礦;以及形成一第二電極於該第一轉換層上,其中該第一轉換層靠近該第一電極處之能隙,小於靠近該第二電極處之能隙,其中m隨著沉積時間增加而減少,且1m0,其中M1與M2各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X1與X2各自為鹵素之一價陰離子,其中M1之原子序小於M2、X1之原子序大於X2、或上述之組合。 A method for forming a solar cell, comprising: providing m moles of M 1 X 1 2 with a first deposition source, and providing (1-m) molar M 2 X 2 2 with a second deposition source, Depositing a layer of M 1 m M 2 (1-m) X 1 2m X 2 (2-2m) on a first electrode; providing AX 1 or AX 2 with a third deposition source to interact with M 1 m M 2 (1-m) X 1 2m X 2 (2-2m) layer reacts to form M 1 m M 2 (1-m) AX 1 (2m+1) X 2 (2-2m) or M 1 m M 2 (1 -m) a first conversion layer of AX 1 (2m) X 2 (3-2m) on the first electrode, and the first conversion layer is a gradual composition of perovskite; and forming a second electrode at the a conversion layer, wherein the energy gap of the first conversion layer near the first electrode is smaller than the energy gap near the second electrode, wherein m decreases as the deposition time increases, and 1 m 0, wherein each of M 1 and M 2 is a divalent cation of Ge, Sn, or Pb, wherein A is methylammonium, ethylammonium, or a monovalent cation of formazan, wherein each of X 1 and X 2 is halogen A monovalent anion wherein the atomic order of M 1 is less than M 2 , the atomic order of X 1 is greater than X 2 , or a combination thereof. 如申請專利範圍第8項所述之太陽能電池的形成方法,其中該第一、第二、與第三沉積源包括濺鍍源或蒸鍍源。 The method of forming a solar cell according to claim 8, wherein the first, second, and third deposition sources comprise a sputtering source or a vapor deposition source. 如申請專利範圍第8項所述之太陽能電池的形成方法,更包括沉積一第二轉換層於該第一轉換層與該第一電極之間,且該第二轉換層為組成漸變的鈣鈦礦,其中該第二轉換層靠近該第一電極處之能隙高於靠近該第一轉換層處之能隙,該第二轉換層靠近該第一轉換層之能隙與該第一轉換層靠近該第二轉換層之能隙相同,且該第二轉換層靠近該第一電極處之能隙低於該第一轉換層靠近該第二電極處之能隙,其中沉積該第二轉換層之步驟包括: 以一第四沉積源提供m’莫耳份的M3X3 2,以及以一第五沉積源提供(1-m’)莫耳份的M4X4 2,以沉積M3 m’M4 (1-m’)X3 2m’X4 (2-2m’)層於該第一電極上;以及以一第六沉積源提供AX3或AX4,以與M3 m’M4 (1-m’)X3 2m’X4 (2-2m’)層反應形成M3 m’M4 (1-m’)AX3 (2m’+1)X4 (2-2m’)或M3 m’M4 (1-m’)AX3 (2m’)X4 (3-2m’)之組成漸變的第二轉換層於該第一電極上,其中m’隨著沉積時間增加而減少,且1m’0,其中M3與M4各自為Ge、Sn、或Pb之二價陽離子,其中A為甲基銨、乙基銨、或甲脒之一價陽離子,其中X3與X4各自為鹵素之一價陰離子,其中M3之原子序大於M4、X3之原子序小於X4、或上述之組合。 The method for forming a solar cell according to claim 8 , further comprising depositing a second conversion layer between the first conversion layer and the first electrode, and the second conversion layer is a compositionally graded calcium titanium The ore, wherein the energy gap of the second conversion layer near the first electrode is higher than the energy gap near the first conversion layer, the second conversion layer is close to the energy gap of the first conversion layer and the first conversion layer The energy gap close to the second conversion layer is the same, and the energy gap of the second conversion layer near the first electrode is lower than the energy gap of the first conversion layer near the second electrode, wherein the second conversion layer is deposited The steps include: providing m' molar M 3 X 3 2 with a fourth deposition source, and providing (1-m') molar M 4 X 4 2 with a fifth deposition source to deposit M 3 m' M 4 (1-m') X 3 2m' X 4 (2-2m') layer on the first electrode; and a sixth deposition source to provide AX 3 or AX 4 to M 3 m ' M 4 (1-m') X 3 2m' X 4 (2-2m') layer reacts to form M 3 m' M 4 (1-m') AX 3 (2m'+1) X 4 (2-2m ') or m 3 m' m 4 (1 -m ') AX 3 (2m') X 4 (3-2m ') conversion of a compositionally graded second layer On the first electrode, wherein m 'decreases with increasing deposition time, 1 and m' 0, wherein each of M 3 and M 4 is a divalent cation of Ge, Sn, or Pb, wherein A is methylammonium, ethylammonium, or a monovalent cation of formazan, wherein each of X 3 and X 4 is halogen A monovalent anion wherein the atomic order of M 3 is greater than M 4 , the atomic sequence of X 3 is less than X 4 , or a combination thereof. 如申請專利範圍第10項所述之太陽能電池的形成方法,其中該第四、第五、與第六沉積源包括濺鍍源或蒸鍍源。 The method of forming a solar cell according to claim 10, wherein the fourth, fifth, and sixth deposition sources comprise a sputtering source or a vapor deposition source.
TW103143429A 2014-07-16 2014-12-12 Solar cell and method for manufacturing the same TWI547582B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410834321.1A CN105280817B (en) 2014-07-16 2014-12-29 Solar cell and forming method thereof
US14/584,908 US9349967B2 (en) 2014-07-16 2014-12-29 Solar cell and method for manufacturing the same
US15/137,905 US9768395B2 (en) 2014-07-16 2016-04-25 Solar cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462025180P 2014-07-16 2014-07-16

Publications (2)

Publication Number Publication Date
TW201604297A TW201604297A (en) 2016-02-01
TWI547582B true TWI547582B (en) 2016-09-01

Family

ID=55809529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103143429A TWI547582B (en) 2014-07-16 2014-12-12 Solar cell and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI547582B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779101A (en) * 2014-01-07 2014-05-07 浙江大学 Hybrid solid solar cell and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779101A (en) * 2014-01-07 2014-05-07 浙江大学 Hybrid solid solar cell and preparation method thereof

Also Published As

Publication number Publication date
TW201604297A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US9768395B2 (en) Solar cell and method for manufacturing the same
Sutanto et al. 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells
CN104704617B (en) Thin-film photovoltaic devices of the manufacture added with potassium
US9564593B2 (en) Solar cells comprising 2d-perovskites
CN105140319B (en) A kind of thin-film solar cells and preparation method thereof
Lin et al. Characteristics of Cu2ZnSn (SxSe1− x) 4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment
CN107210367A (en) The method for forming the photoactive layer of photoelectric device
CN105493304A (en) A high efficiency stacked solar cell
CN110372744A (en) Photoelectric device including the organic metal perovskite with mixed anion
Zhao et al. Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method
Seok et al. Zno: Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells
Chen et al. ZnO-based electron transporting layer for perovskite solar cells
US20160226009A1 (en) Thin film solar cell, semiconductor thin film and coating liquid for forming semiconductor
JP7429881B2 (en) solar cells
KR20200048037A (en) Perovskite solar cell and manufacturing methodmethod of same
WO2018166094A1 (en) Flexible display device and method for preparing same
Mandati et al. 4.9% efficient Sb2S3 solar cells from semitransparent absorbers with fluorene-based thiophene-terminated hole conductors
US20170092697A1 (en) Oxide Electron Selective Layers
Luo et al. Epitaxial Electrodeposition of Hole Transport CuSCN Nanorods on Au (111) at the Wafer Scale and Lift-off to Produce Flexible and Transparent Foils
US20150357502A1 (en) Group iib-via compound solar cells with minimum lattice mismatch and reduced tellurium content
TWI547582B (en) Solar cell and method for manufacturing the same
Mayon et al. Flame-made ultra-porous TiO2 layers for perovskite solar cells
CN105474410A (en) Photovoltaic device and methods of forming the same
CN103765604A (en) Method for producing CIGS film, and method for manufacturing CIGS solar cell using same
Bhande et al. Low-temperature solution-processed Zn-doped SnO 2 photoanodes: enhancements in charge collection efficiency and mobility