TWI547085B - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
TWI547085B
TWI547085B TW104108482A TW104108482A TWI547085B TW I547085 B TWI547085 B TW I547085B TW 104108482 A TW104108482 A TW 104108482A TW 104108482 A TW104108482 A TW 104108482A TW I547085 B TWI547085 B TW I547085B
Authority
TW
Taiwan
Prior art keywords
boosting
electrically connected
voltage
diode
output
Prior art date
Application number
TW104108482A
Other languages
Chinese (zh)
Other versions
TW201635687A (en
Inventor
Xin-Zhu Chen
Song-Pei Yang
zhao-ming Huang
Guan-Sheng Jiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW104108482A priority Critical patent/TWI547085B/en
Application granted granted Critical
Publication of TWI547085B publication Critical patent/TWI547085B/en
Publication of TW201635687A publication Critical patent/TW201635687A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

電源轉換器 Power converter

本發明是有關於一種轉換器,特別是指一種能達到高電壓轉換增益的電源轉換器。 The present invention relates to a converter, and more particularly to a power converter capable of achieving high voltage conversion gain.

習知的太陽能發電系統和燃料電池發電系統所產生的輸出電壓是屬於低電壓以解決住宅型應用的安全性與可靠性的問題,但隨著併網發電系統的崛起,為達到其200/380V的高直流排電壓,必須先將太陽能發電系統和燃料電池發電系統所產生的低輸出電壓加以升壓,因此升壓型的電源轉換器在電力電子領域中佔了一定的重要性。 The output voltage generated by conventional solar power generation systems and fuel cell power generation systems is a low voltage to solve the safety and reliability of residential applications, but with the rise of grid-connected power generation systems, to reach its 200/380V The high DC voltage must first boost the low output voltage generated by the solar power system and the fuel cell power generation system. Therefore, the boost type power converter plays an important role in the power electronics field.

以往的升壓型電源轉換器為了降低輸入電流漣波及符合高功率的應用,大多選擇如圖1所示的交錯式升壓型轉換器。該交錯式升壓型轉換器電連接一產生一輸入電壓Vin1的一外部電源60,並包含一第一轉換器6,和一第二轉換器7。該第一轉換器6電連接該外部電源60以接收該輸入電壓Vin1並產生一第六電壓V6和一第七電壓V7。該第二轉換器7電連接該第一轉換器6以接收該等第六和第七電壓V6、V7,並根據該等第六和第七電壓V6、V7產生一直流輸出電壓Vo1。 In order to reduce input current ripple and high power applications, conventional boost converters have chosen an interleaved boost converter as shown in Figure 1. The interleaved boost converter is electrically coupled to an external power supply 60 that generates an input voltage Vin1 and includes a first converter 6, and a second converter 7. The first converter 6 is electrically connected to the external power source 60 to receive the input voltage Vin1 and generate a sixth voltage V6 and a seventh voltage V7. The second converter 7 is electrically connected to the first converter 6 to receive the sixth and seventh voltages V6, V7, and generates a DC output voltage Vo1 according to the sixth and seventh voltages V6, V7.

當該交錯式升壓型轉換器操作於連續導通模式 (連續導通模式為流經二個電感L1、L2的電流大小恆大於零的狀況)時,其電壓轉換增益M如下述公式(1)所示。其中,參數d為該第一轉換器6的二個開關S1、S2的個別導通比(duty cycle),參數Vo1為該直流輸出電壓,參數Vin1為該輸入電壓。 When the interleaved boost converter operates in continuous conduction mode (When the continuous conduction mode is a condition in which the magnitude of the current flowing through the two inductors L1 and L2 is always greater than zero), the voltage conversion gain M is as shown in the following formula (1). The parameter d is the individual duty cycle of the two switches S1 and S2 of the first converter 6, the parameter Vo1 is the DC output voltage, and the parameter Vin1 is the input voltage.

根據公式(1)可知,當該交錯式升壓型轉換器要得到高的電壓轉換增益時,該等開關S1、S2則需要操作於極大的導通比d,造成該交錯式升壓型轉換器容易產生大電流漣波的問題。且倘若為了得到高的電壓轉換增益而使該等開關S1、S2操作於極大的導通比d,則會使二個輸出二極體D1、D2轉為不導通之前所流經該等輸出二極體D1、D2的電流大小值,與該等輸出二極體D1、D2轉為不導通時所流經該等輸出二極體D1、D2的電流大小值相差甚大,而造成反向恢復損失相當大。更甚至於,在某些應用中,例如典型的脈衝寬度調變(Pulse Width Modulation,PWM)控制積體電路(Integrated circuit,IC)的情況下,欲使導通比d大於0.9更是難以實現。故,此情況下欲得到高的電壓轉換增益更是具有相當大的難度。此外,傳統的交錯式升壓型轉換器之該等開關S1、S2的電壓應力大多為高壓的輸出電壓,因此該等開關S1、S2會有較高導通電阻值,導致該等開關S1、S2在導通時具有較大的導通損失。 According to formula (1), when the interleaved boost converter is to obtain a high voltage conversion gain, the switches S1 and S2 need to operate at a very large conduction ratio d, resulting in the interleaved boost converter. It is easy to generate a problem of large current ripple. And if the switches S1 and S2 are operated at a very large conduction ratio d in order to obtain a high voltage conversion gain, the output diodes are passed before the two output diodes D1 and D2 are turned off. The magnitudes of the currents of the bodies D1 and D2 are quite different from the magnitudes of the currents flowing through the output diodes D1 and D2 when the output diodes D1 and D2 are turned off, and the reverse recovery loss is equivalent. Big. Even more, in some applications, such as a typical Pulse Width Modulation (PWM) control integrated circuit (IC), it is more difficult to achieve a conduction ratio d greater than 0.9. Therefore, it is quite difficult to obtain a high voltage conversion gain in this case. In addition, the voltage stress of the switches S1 and S2 of the conventional interleaved boost converter is mostly a high voltage output voltage, so the switches S1 and S2 have a high on-resistance value, resulting in the switches S1. S2 has a large conduction loss when turned on.

因此,本發明之目的,即在提供一種可提升電壓轉換增益,同時降低導通比與輸入電流漣波的電源轉換器。 Accordingly, it is an object of the present invention to provide a power converter that can increase the voltage conversion gain while reducing the turn-on ratio and input current ripple.

於是本發明電源轉換器,包含一降低電流漣波模組、一升壓模組,及一增益提升模組。 Therefore, the power converter of the present invention comprises a reduced current chopper module, a boosting module, and a gain boosting module.

該降低電流漣波模組適於電連接一供應一直流輸入電壓之直流電壓源,以接收來自該直流電壓源的該直流輸入電壓,並據以產生一第一電壓及一第二電壓。 The reduced current chopper module is adapted to be electrically connected to a DC voltage source that supplies a DC input voltage to receive the DC input voltage from the DC voltage source, and accordingly generate a first voltage and a second voltage.

該升壓模組包括一第一升壓電路,及一第二升壓電路。 The boosting module includes a first boosting circuit and a second boosting circuit.

該第一升壓電路具有分別電連接該降低電流漣波模組以分別接收來自該降低電流漣波模組的該等第一及第二電壓的一第一端與一第二端、一第三端,及一第四端,該第一升壓電路根據該等第一及第二電壓,在該等第三及第四端分別輸出一第三電壓及一第四電壓。 The first boosting circuit has a first end and a second end, respectively, electrically connected to the reduced current chopper module to respectively receive the first and second voltages from the reduced current chopper module The third boosting circuit and the fourth boosting circuit respectively output a third voltage and a fourth voltage at the third and fourth ends according to the first and second voltages.

該第二升壓電路電連接該第一升壓電路之該等第三及第四端以分別接收該等第三及第四電壓,並根據該等第三及第四電壓產生一升壓電壓,且該第二升壓電路包括一第一二極體,及一第一電容。 The second boosting circuit is electrically connected to the third and fourth ends of the first boosting circuit to respectively receive the third and fourth voltages, and generate a boosted voltage according to the third and fourth voltages And the second boosting circuit includes a first diode and a first capacitor.

該第一二極體具有一電連接該第一升壓電路之該第四端的陽極,及一陰極。 The first diode has an anode electrically connected to the fourth end of the first boosting circuit, and a cathode.

該第一電容具有一電連接於該第一二極體之該陰極的第一端,及一電連接該第一升壓電路的該第三端的第二端,且該第一電容的該第一端輸出該升壓電壓。 The first capacitor has a first end electrically connected to the cathode of the first diode, and a second end electrically connected to the third end of the first booster circuit, and the first end of the first capacitor The boost voltage is outputted at one end.

該增益提升模組電連接該升壓模組的該第二升壓電路以接收來自該第二升壓電路之該升壓電壓,並根據該升壓電壓產生一直流輸出電壓,且該增益提升模組包括一第一輸出二極體、一第二輸出二極體、一第三輸出二極體、一第一輸出電容、一第一二次側電感、一第二二次側電感、一第二輸出電容、一第三輸出電容,及一輸出電阻。 The gain boosting module is electrically connected to the second boosting circuit of the boosting module to receive the boosting voltage from the second boosting circuit, and generates a DC output voltage according to the boosting voltage, and the gain is boosted The module includes a first output diode, a second output diode, a third output diode, a first output capacitor, a first secondary inductor, a second secondary inductor, and a second output inductor. a second output capacitor, a third output capacitor, and an output resistor.

該第一輸出二極體具有一電連接該第二升壓電路之該第一二極體之該陰極且接收該升壓電壓的陽極,及一陰極。 The first output diode has an anode electrically connected to the cathode of the first diode of the second boosting circuit and receiving the boosting voltage, and a cathode.

該第二輸出二極體具有一電連接該第一輸出二極體之該陰極的陽極,及一陰極。 The second output diode has an anode electrically connected to the cathode of the first output diode, and a cathode.

該第三輸出二極體具有一電連接該第二輸出二極體之該陰極的陽極,及一陰極。 The third output diode has an anode electrically connected to the cathode of the second output diode, and a cathode.

該第一輸出電容具有一電連接該第三輸出二極體之該陰極的第一端,及一第二端。 The first output capacitor has a first end electrically connected to the cathode of the third output diode, and a second end.

該第一二次側電感串聯連接該第二二次側電感,且該第一二次側電感電連接該第一輸出電容之該第二端,而該第二二次側電感電連接該第二輸出二極體之該陰極。 The first secondary side inductor is connected in series to the second secondary side inductor, and the first secondary side inductor is electrically connected to the second end of the first output capacitor, and the second secondary side inductor is electrically connected to the first The cathode of the two output diodes.

該第二輸出電容電連接於該第一輸出電容之該第二端與該第一輸出二極體之該陰極之間。 The second output capacitor is electrically connected between the second end of the first output capacitor and the cathode of the first output diode.

該第三輸出電容電連接於該第一輸出二極體之該陰極與地之間。 The third output capacitor is electrically connected between the cathode of the first output diode and the ground.

該輸出電阻電連接於該第三輸出二極體之該陰極與地之間,該輸出電阻的跨壓作為該直流輸出電壓。 The output resistor is electrically connected between the cathode and the ground of the third output diode, and the voltage across the output resistor is used as the DC output voltage.

較佳地,該降低電流漣波模組包括一第一一次側電感、一第一激磁電感、一第一漏電感、一第一開關、一第二一次側電感、一第二激磁電感、一第二漏電感,及一第二開關。 Preferably, the current-carrying chopper module includes a first primary side inductance, a first excitation inductance, a first leakage inductance, a first switch, a second primary side inductance, and a second electromagnetic inductance. a second leakage inductance and a second switch.

該第一一次側電感具有一電連接該直流電壓源以接收該直流輸入電壓的第一端,及一第二端。 The first primary side inductor has a first end electrically connected to the DC voltage source to receive the DC input voltage, and a second end.

該第一激磁電感並聯連接該第一一次側電感。 The first magnetizing inductance is connected in parallel to the first primary side inductance.

該第一漏電感具有一電連接該第一一次側電感之該第二端的第一端,及一輸出該第一電壓的第二端。 The first leakage inductance has a first end electrically connected to the second end of the first primary side inductance, and a second end outputting the first voltage.

該第一開關電連接於該第一漏電感之該第二端與地之間,並具有一用以接收一第一控制信號的控制端,以致該第一開關根據該第一控制信號而導通或不導通。 The first switch is electrically connected between the second end of the first leakage inductance and the ground, and has a control end for receiving a first control signal, so that the first switch is turned on according to the first control signal. Or not.

該第二一次側電感具有一電連接該直流電壓源以接收該直流輸入電壓的第一端,及一第二端。 The second primary side inductor has a first end electrically connected to the DC voltage source to receive the DC input voltage, and a second end.

該第二激磁電感並聯連接該第二一次側電感。 The second magnetizing inductance is connected in parallel to the second primary side inductance.

該第二漏電感具有一電連接該第二一次側電感之該第二端的第一端,及一輸出該第二電壓的第二端。 The second leakage inductance has a first end electrically connected to the second end of the second primary side inductance, and a second end outputting the second voltage.

該第二開關電連接於該第二漏電感之該第二端與地之間,並具有一用以接收一第二控制信號的控制端,以致該第二開關根據該第二控制信號而導通或不導通。 The second switch is electrically connected between the second end of the second leakage inductance and the ground, and has a control end for receiving a second control signal, so that the second switch is turned on according to the second control signal. Or not.

本發明之功效在於藉由該第一升壓模組的該第一升壓電路和該第二升壓電路相配合,使跨於該輸出電阻 的該直流輸出電壓得以提升,進而使本發明電源轉換器的電壓轉換增益得以提高,同時該等第一和第二開關不需操作於極大的導通比而具有低電壓應力之優點。 The effect of the present invention is that the first boosting circuit of the first boosting module and the second boosting circuit cooperate to make the output resistor The DC output voltage is increased, thereby increasing the voltage conversion gain of the power converter of the present invention, and the first and second switches have the advantage of having low voltage stress without operating at a large turn-on ratio.

1‧‧‧降低電流漣波模組 1‧‧‧Reducing current chopper module

10‧‧‧直流電壓源 10‧‧‧DC voltage source

11‧‧‧第一一次側電感 11‧‧‧First primary side inductance

12‧‧‧第一開關 12‧‧‧First switch

13‧‧‧第二一次側電感 13‧‧‧Second primary side inductance

14‧‧‧第二開關 14‧‧‧Second switch

2‧‧‧升壓模組 2‧‧‧Boost Module

21‧‧‧第一升壓電路 21‧‧‧First booster circuit

211‧‧‧第一升壓單元 211‧‧‧First boost unit

212‧‧‧第二升壓單元 212‧‧‧Second boost unit

213‧‧‧第二升壓單元 213‧‧‧second boost unit

214‧‧‧第三升壓單元 214‧‧‧ third boost unit

22‧‧‧第二升壓電路 22‧‧‧second booster circuit

221‧‧‧第一二極體 221‧‧‧ first diode

222‧‧‧第一電容 222‧‧‧first capacitor

3‧‧‧增益提升模組 3‧‧‧ Gain boost module

31‧‧‧第一輸出二極體 31‧‧‧First output diode

32‧‧‧第二輸出二極體 32‧‧‧Second output diode

33‧‧‧第三輸出二極體 33‧‧‧ Third output diode

34‧‧‧第一輸出電容 34‧‧‧First output capacitor

35‧‧‧第一二次側電感 35‧‧‧First secondary inductance

36‧‧‧第二二次側電感 36‧‧‧Second secondary inductance

37‧‧‧第二輸出電容 37‧‧‧Second output capacitor

38‧‧‧第三輸出電容 38‧‧‧ third output capacitor

39‧‧‧輸出電阻 39‧‧‧Output resistance

41‧‧‧第二電容 41‧‧‧second capacitor

42‧‧‧第二二極體 42‧‧‧second diode

43‧‧‧第三電容 43‧‧‧ third capacitor

44‧‧‧第三二極體 44‧‧‧ Third Dipole

45‧‧‧第四電容 45‧‧‧fourth capacitor

46‧‧‧第四二極體 46‧‧‧Fourth dipole

51‧‧‧第三二極體 51‧‧‧ Third Dipole

52‧‧‧第三電容 52‧‧‧ third capacitor

53‧‧‧第四電容 53‧‧‧fourth capacitor

54‧‧‧第四二極體 54‧‧‧Fourth dipole

55‧‧‧第五電容 55‧‧‧ fifth capacitor

56‧‧‧第五二極體 56‧‧‧ fifth diode

60‧‧‧外部電源 60‧‧‧External power supply

6‧‧‧第一轉換器 6‧‧‧ first converter

7‧‧‧第二轉換器 7‧‧‧Second converter

D1‧‧‧輸出二極體 D1‧‧‧ output diode

D2‧‧‧輸出二極體 D2‧‧‧ output diode

i1‧‧‧第一迴路 I1‧‧‧ first circuit

i2‧‧‧第二迴路 I2‧‧‧second loop

i3‧‧‧第三迴路 I3‧‧‧ third circuit

Iin‧‧‧輸入電流 Iin‧‧‧ input current

L1‧‧‧電感 L1‧‧‧Inductance

L2‧‧‧電感 L2‧‧‧Inductance

Lm1‧‧‧第一激磁電感 Lm1‧‧‧first magnetizing inductance

Lm2‧‧‧第二激磁電感 Lm2‧‧‧second magnetizing inductance

Lk1‧‧‧第一漏電感 Lk1‧‧‧First Leakage Inductance

Lk2‧‧‧第二漏電感 Lk2‧‧‧Second leakage inductance

S1‧‧‧開關 S1‧‧ switch

S2‧‧‧開關 S2‧‧‧ switch

Vo‧‧‧直流輸出電壓 Vo‧‧‧DC output voltage

Vo1‧‧‧直流輸出電壓 Vo1‧‧‧DC output voltage

Vin‧‧‧直流輸入電壓 Vin‧‧‧DC input voltage

Vin1‧‧‧輸入電壓 Vin1‧‧‧ input voltage

V1‧‧‧第一電壓 V1‧‧‧ first voltage

V2‧‧‧第二電壓 V2‧‧‧second voltage

V3‧‧‧第三電壓 V3‧‧‧ third voltage

V4‧‧‧第四電壓 V4‧‧‧fourth voltage

V5‧‧‧升壓電壓 V5‧‧‧ boost voltage

V6‧‧‧第六電壓 V6‧‧‧ sixth voltage

V7‧‧‧第七電壓 V7‧‧‧ seventh voltage

Vgs1‧‧‧第一控制信號 Vgs1‧‧‧ first control signal

Vgs2‧‧‧第二控制信號 Vgs2‧‧‧ second control signal

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一電路圖,說明習知的交錯式升壓型轉換器;圖2是一電路圖,說明本發明電源轉換器的一第一實施例;圖3是一時序圖,說明該第一實施例;圖4是一電路圖,說明該第一實施例操作於模式一;圖5是一電路圖,說明該第一實施例操作於模式二;圖6是一電路圖,說明該第一實施例操作於模式三;圖7是一電路圖,說明該第一實施例操作於模式四;圖8是一電路圖,說明該第一實施例操作於模式五;圖9是一電路圖,說明該第一實施例操作於模式六;圖10是一模擬示意圖,說明該第一實施例的一電壓轉換增益對一導通比的變化;圖11是一波形圖,說明該第一實施例的第一及第二控制訊號、一直流輸入電壓和一直流輸出電壓;圖12是一波形圖,說明該第一實施例中流經第一及第二電容和第一至第三輸出電容的電流;圖13是一波形圖,說明該第一實施例的該等第一及第二控制訊號和第一及第二開關的個別跨壓; 圖14是一電路圖,說明本發明電源轉換器的一第二實施例圖的一第一升壓電路;圖15是一電路圖,說明本發明電源轉換器的一第三實施例的第一和第二升壓電路;及圖16是一電路圖,說明本發明電源轉換器的一第四實施例的第一和第二升壓電路。 Other features and effects of the present invention will be apparent from the following description of the drawings. FIG. 1 is a circuit diagram illustrating a conventional interleaved boost converter; FIG. 2 is a circuit diagram illustrating the present invention. A first embodiment of the inventive power converter; FIG. 3 is a timing diagram illustrating the first embodiment; FIG. 4 is a circuit diagram illustrating the first embodiment operating in mode one; FIG. 5 is a circuit diagram illustrating The first embodiment operates in mode two; FIG. 6 is a circuit diagram illustrating the first embodiment operating in mode three; FIG. 7 is a circuit diagram illustrating the first embodiment operating in mode four; FIG. 8 is a circuit diagram illustrating The first embodiment operates in mode five; FIG. 9 is a circuit diagram illustrating the first embodiment operating in mode six; FIG. 10 is a schematic diagram illustrating a voltage conversion gain versus a turn-on ratio of the first embodiment FIG. 11 is a waveform diagram illustrating the first and second control signals, the DC input voltage, and the DC output voltage of the first embodiment; FIG. 12 is a waveform diagram illustrating the flow through the first embodiment. One and second And receiving the output current of the first to third capacitors; FIG. 13 is a waveform diagram illustrating the voltage across the individual such first and second control signals and first and second switches of the first embodiment; Figure 14 is a circuit diagram showing a first booster circuit of a second embodiment of the power converter of the present invention; Figure 15 is a circuit diagram showing the first and the third embodiment of the power converter of the present invention The second boosting circuit; and FIG. 16 is a circuit diagram illustrating the first and second boosting circuits of a fourth embodiment of the power converter of the present invention.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

<第一實施例> <First Embodiment>

參閱圖2,本發明電源轉換器之第一實施例包含一降低電流漣波模組1、一升壓模組2,及一增益提升模組3。 Referring to FIG. 2, a first embodiment of the power converter of the present invention includes a reduced current chopper module 1, a boost module 2, and a gain boosting module 3.

該降低電流漣波模組1適於電連接一供應一直流輸入電壓Vin之直流電壓源10,以接收來自該直流電壓源10的該直流輸入電壓Vin,並據以產生一第一電壓V1及一第二電壓V2。 The current reducing chopper module 1 is adapted to be electrically connected to a DC voltage source 10 for supplying a DC input voltage Vin to receive the DC input voltage Vin from the DC voltage source 10, and accordingly generate a first voltage V1 and A second voltage V2.

該降低電流漣波模組1包括一第一一次側電感11、一第一激磁電感Lm1、一第一漏電感Lk1、一第一開關12、一第二一次側電感13、一第二激磁電感Lm2、一第二漏電感Lk2,及一第二開關14。 The current reducing chopper module 1 includes a first primary side inductor 11, a first magnetizing inductance Lm1, a first leakage inductance Lk1, a first switch 12, a second primary side inductance 13, and a second The magnetizing inductance Lm2, a second leakage inductance Lk2, and a second switch 14.

該第一一次側電感11具有一電連接該直流電壓源10以接收該直流輸入電壓Vin的第一端,及一第二端。該第一激磁電感Lm1並聯連接該第一一次側電感11。該第 一漏電感Lk1具有一電連接該第一一次側電感11之該第二端的第一端,及一輸出該第一電壓V1的第二端。該第一開關12電連接於該第一漏電感Lk1之該第二端與地之間,並具有一用以接收一第一控制信號Vgs1的控制端,以致該第一開關12根據該第一控制信號Vgs1而導通或不導通。該第二一次側電感13具有一電連接該直流電壓源10以接收該直流輸入電壓Vin的第一端,及一第二端。該第二激磁電感Lm2並聯連接該第二一次側電感13。該第二漏電感Lk2具有一電連接該第二一次側電感13之該第二端的第一端,及一輸出該第二電壓V2的第二端。該第二開關14電連接於該第二漏電感Lk2之該第二端與地之間,並具有一用以接收一第二控制信號Vgs2的控制端,以致該第二開關14根據該第二控制信號Vgs2而導通或不導通。在該第一實施例中,該等第一和第二開關12、14中的每一者是一N型金氧半場效電晶體,但不限於此。 The first primary side inductor 11 has a first end electrically connected to the DC voltage source 10 to receive the DC input voltage Vin, and a second end. The first magnetizing inductance Lm1 is connected in parallel to the first primary side inductor 11. The first A leakage inductance Lk1 has a first end electrically connected to the second end of the first primary side inductor 11, and a second end outputting the first voltage V1. The first switch 12 is electrically connected between the second end of the first leakage inductance Lk1 and the ground, and has a control end for receiving a first control signal Vgs1, so that the first switch 12 is according to the first The control signal Vgs1 is turned on or off. The second primary side inductor 13 has a first end electrically connected to the DC voltage source 10 to receive the DC input voltage Vin, and a second end. The second magnetizing inductance Lm2 is connected in parallel to the second primary side inductor 13. The second leakage inductance Lk2 has a first end electrically connected to the second end of the second primary side inductor 13 and a second end outputting the second voltage V2. The second switch 14 is electrically connected between the second end of the second leakage inductance Lk2 and the ground, and has a control end for receiving a second control signal Vgs2, so that the second switch 14 is according to the second The control signal Vgs2 is turned on or off. In the first embodiment, each of the first and second switches 12, 14 is an N-type metal oxide half field effect transistor, but is not limited thereto.

該升壓模組2包括一第一升壓電路21,及一第二升壓電路22。該第一升壓電路21具有分別電連接該降低電流漣波模組1以分別接收來自該降低電流漣波模組1的該等第一及第二電壓V1、V2的一第一端與一第二端、一第三端,及一第四端。該第一升壓電路21根據該等第一及第二電壓V1、V2,在該等第三及第四端分別輸出一第三電壓V3及一第四電壓V4。該第一升壓電路21包括一第一升壓單元211,該第一升壓單元211包括一第二電容41,及一第二二極體42。該第二電容41具有一電連接該第一升壓電 路21之該第一端的第一端,及一電連接該第一升壓電路21之該第四端的第二端。該第二二極體42具有一電連接該第一升壓電路21之該等第二及第三端的陽極,及一電連接該第一升壓電路21之該第四端的陰極。 The boosting module 2 includes a first boosting circuit 21 and a second boosting circuit 22. The first boosting circuit 21 has a first end and a first electrically connected to the reduced current chopper module 1 to respectively receive the first and second voltages V1, V2 from the reduced current chopper module 1 a second end, a third end, and a fourth end. The first boosting circuit 21 outputs a third voltage V3 and a fourth voltage V4 at the third and fourth ends respectively according to the first and second voltages V1 and V2. The first boosting circuit 21 includes a first boosting unit 211. The first boosting unit 211 includes a second capacitor 41 and a second diode 42. The second capacitor 41 has an electrical connection to the first boosting power a first end of the first end of the path 21 and a second end electrically connected to the fourth end of the first boosting circuit 21. The second diode 42 has an anode electrically connected to the second and third ends of the first boosting circuit 21, and a cathode electrically connected to the fourth end of the first boosting circuit 21.

該第二升壓電路22電連接該第一升壓電路21之該等第三及第四端以分別接收該等第三及第四電壓V3、V4,並根據該等第三及第四電壓V3、V4產生一升壓電壓V5,且該第二升壓電路22包括一第一二極體221、一第一電容222。該第一二極體221具有一電連接該第一升壓電路之該第四端的陽極,及一陰極。該第一電容222具有一電連接於該第一二極體221之該陰極的第一端,及一電連接該第一升壓電路21的該第三端的第二端,且該第一電容222之該第一端輸出該升壓電壓V5。 The second boosting circuit 22 is electrically connected to the third and fourth ends of the first boosting circuit 21 to respectively receive the third and fourth voltages V3, V4, and according to the third and fourth voltages V3 and V4 generate a boosting voltage V5, and the second boosting circuit 22 includes a first diode 221 and a first capacitor 222. The first diode 221 has an anode electrically connected to the fourth end of the first boosting circuit, and a cathode. The first capacitor 222 has a first end electrically connected to the cathode of the first diode 221, and a second end electrically connected to the third end of the first booster circuit 21, and the first capacitor The first end of 222 outputs the boost voltage V5.

該增益提升模組3電連接該升壓模組2的該第二升壓電路22以接收來自該第二升壓電路22之該升壓電壓V5,並根據該升壓電壓V5產生一直流輸出電壓Vo。該增益提升模組3包括一第一輸出二極體31、一第二輸出二極體32、一第三輸出二極體33、一第一輸出電容34、一第一二次側電感35、一第二二次側電感36、一第二輸出電容37、一第三輸出電容38,及一輸出電阻39。 The boosting module 3 is electrically connected to the second boosting circuit 22 of the boosting module 2 to receive the boosted voltage V5 from the second boosting circuit 22, and generates a DC output according to the boosting voltage V5. Voltage Vo. The gain boosting module 3 includes a first output diode 31, a second output diode 32, a third output diode 33, a first output capacitor 34, and a first secondary inductor 35. a second secondary side inductor 36, a second output capacitor 37, a third output capacitor 38, and an output resistor 39.

該第一輸出二極體31具有一電連接該第二升壓電路22之該第一二極體221之該陰極且接收該升壓電壓V5的陽極,及一陰極。該第二輸出二極體32具有一電連接該第一輸出二極體31之該陰極的陽極,及一陰極。該第 三輸出二極體33具有一電連接該第二輸出二極體32之該陰極的陽極,及一陰極。該第一輸出電容34具有一電連接該第三輸出二極體33之該陰極的第一端,及一第二端。該第一二次側電感35和該第二二次側電感36串聯連接,且該第一二次側電感35電連接該第一輸出電容34之該第二端,該第二二次側電感36電連接該第二輸出二極體32之該陰極。該第二輸出電容37電連接於該第一輸出電容34之該第二端與該第一輸出二極體31之該陰極之間。該第三輸出電容38電連接於該第一輸出二極體31之該陰極與地之間。該輸出電阻39電連接於該第三輸出二極體33之該陰極與地之間,該輸出電阻39的跨壓作為該直流輸出電壓Vo。 The first output diode 31 has an anode electrically connected to the cathode of the first diode 221 of the second boosting circuit 22 and receiving the boosting voltage V5, and a cathode. The second output diode 32 has an anode electrically connected to the cathode of the first output diode 31, and a cathode. The first The three-output diode 33 has an anode electrically connected to the cathode of the second output diode 32, and a cathode. The first output capacitor 34 has a first end electrically connected to the cathode of the third output diode 33, and a second end. The first secondary side inductor 35 and the second secondary side inductor 36 are connected in series, and the first secondary side inductor 35 is electrically connected to the second end of the first output capacitor 34. The second secondary side inductor 36 is electrically connected to the cathode of the second output diode 32. The second output capacitor 37 is electrically connected between the second end of the first output capacitor 34 and the cathode of the first output diode 31. The third output capacitor 38 is electrically connected between the cathode of the first output diode 31 and the ground. The output resistor 39 is electrically connected between the cathode of the third output diode 33 and the ground, and the voltage across the output resistor 39 is used as the DC output voltage Vo.

在該第一實施例中,該第一一次側電感11、該第一二次側電感35組合成一第一耦合電感,而該第一耦合電感、該第一激磁電感Lm1和該第一漏電感Lk1組合成一第一變壓器,且該第一一次側電感11和該第一二次側電感35的匝數比大小為1。該第二一次側電感13、該第二二次側電感36組合成一第二耦合電感,且該第二耦合電感、該第二激磁電感Lm2和該第二漏電感Lk2組合成一第二變壓器,且該第二一次側電感13和該第二二次側電感36的匝數比大小為1。 In the first embodiment, the first primary side inductor 11 and the first secondary side inductor 35 are combined into a first coupled inductor, and the first coupled inductor, the first magnetizing inductor Lm1, and the first leakage current The sense Lk1 is combined into a first transformer, and the first primary side inductance 11 and the first secondary side inductance 35 have a turns ratio of one. The second primary side inductor 13 and the second secondary side inductor 36 are combined into a second coupled inductor, and the second coupled inductor, the second magnetizing inductor Lm2 and the second leakage inductor Lk2 are combined into a second transformer. The ratio of the turns ratio of the second primary side inductor 13 and the second secondary side inductor 36 is one.

參閱圖3,參數Iin表示該直流電壓源10的一輸入電流,參數iLk1和iLk2分別表示流經該第一漏電感Lk1和該第二漏電感Lk2的電流,參數i31、i221、i42、i32 和i33分別表示流經該第一輸出二極體31的電流、流經該第一二極體221的電流、流經該第二二極體42的電流、流經該第二輸出二極體32的電流、流經該第三輸出二極體33的電流。 Referring to FIG. 3, the parameter Iin represents an input current of the DC voltage source 10, and the parameters iLk1 and iLk2 represent currents flowing through the first leakage inductance Lk1 and the second leakage inductance Lk2, respectively, parameters i31, i221, i42, i32. And i33 respectively indicate a current flowing through the first output diode 31, a current flowing through the first diode 221, a current flowing through the second diode 42, and flowing through the second output diode. The current of 32, the current flowing through the third output diode 33.

為清楚說明本發明電源轉換器的該第一實施例之操作,將以以下6個模式加以詳細說明,且為了方便說明,在圖4至圖9中,導通的元件以實線畫出,非導通的元件以虛線畫出。 In order to clearly explain the operation of the first embodiment of the power converter of the present invention, the following six modes will be described in detail, and for convenience of explanation, in FIGS. 4 to 9, the conductive elements are drawn in solid lines, The turned-on components are drawn in dashed lines.

模式一(t0~t1):參閱圖3和圖4,該直流輸入電壓Vin提供能量,使得該輸入電流Iin呈線性上升,且該等第一和第二開關12、14分別受該等第一和第二控制信號Vgs1、Vgs2控制而導通,以致該等第一及第二二極體221、42和該等第一至第三輸出二極體31~33呈現逆向偏壓而不導通。因此,在該模式一下,流經該等第一和第二漏電感Lk1、Lk2的該等電流iLk1、iLk2分別對該等第一和第二漏電感Lk1、Lk2進行充電,且當該第二開關14受該第二控制信號Vgs2控制而不導通時,進入到模式二。 Mode one (t0~t1): Referring to FIG. 3 and FIG. 4, the DC input voltage Vin provides energy such that the input current Iin rises linearly, and the first and second switches 12, 14 are respectively subjected to the first And the second control signals Vgs1, Vgs2 are controlled to be turned on, so that the first and second diodes 221, 42 and the first to third output diodes 31-33 are reverse biased and not turned on. Therefore, in this mode, the currents iLk1, iLk2 flowing through the first and second leakage inductances Lk1, Lk2 respectively charge the first and second leakage inductances Lk1, Lk2, and when the second When the switch 14 is controlled by the second control signal Vgs2 and is not turned on, it enters mode 2.

模式二(t1~t2):參閱圖3和圖5,該第二開關14已切換為不導通,且該第一開關12持續導通。此時,該第二二極體42、該等第一和第三輸出二極體31、33由逆向偏壓轉換成順向偏壓而導通,且該電流iLk2流經該第二漏電感Lk2後分流成一第一電流i1和一第二電流i2,該第一電流i1經由該 第二二極體42、該第二電容41和該第一開關12流至地,並對該第二電容41進行充電。而該第二電流i2經由該第一電容222、該第一輸出二極體31和該第三輸出電容38流至地。該第二電流i2對該第一電容222進行放電,並對該第三輸出電容38進行充電,因此流經該第二漏電感Lk2的該電流iLk2會呈線性下降。 Mode 2 (t1~t2): Referring to FIG. 3 and FIG. 5, the second switch 14 has been switched to be non-conducting, and the first switch 12 is continuously turned on. At this time, the second diode 42 and the first and third output diodes 31 and 33 are turned into a forward bias by the reverse bias, and the current iLk2 flows through the second leakage inductance Lk2. After being divided into a first current i1 and a second current i2, the first current i1 is The second diode 42, the second capacitor 41 and the first switch 12 flow to the ground, and charge the second capacitor 41. The second current i2 flows to the ground via the first capacitor 222, the first output diode 31 and the third output capacitor 38. The second current i2 discharges the first capacitor 222 and charges the third output capacitor 38, so the current iLk2 flowing through the second leakage inductance Lk2 decreases linearly.

同時,該第二激磁電感Lm2的能量也會藉由耦合的方式傳送至該第二二次側電感36,以致一第三電流i3由該第二二次側電感36流經該第三輸出二極體33及該第一輸出電容34,並對該第一輸出電容34進行充電。當儲存於該第二漏電感Lk2的能量完全釋放完畢時,進入模式三。 At the same time, the energy of the second magnetizing inductance Lm2 is also transmitted to the second secondary side inductor 36 by coupling, so that a third current i3 flows from the second secondary side inductor 36 through the third output two. The pole body 33 and the first output capacitor 34 charge the first output capacitor 34. When the energy stored in the second leakage inductance Lk2 is completely released, the mode 3 is entered.

模式三(t2~t3):參閱圖3和圖6,該第二開關14持續不導通,且該第一開關12持續導通。該第二漏電感Lk2的能量完全釋放完畢,因此該第一輸出二極體31和該第二二極體42由順向偏壓轉換為逆向偏壓而不導通。此時,該第二激磁電感Lm2的能量持續耦合至該第二二次側電感36,且該第三電流i3持續對該第一輸出電容34進行充電。當該第二開關14受該第二控制訊號Vgs2控制而導通時,進入模式四。 Mode 3 (t2~t3): Referring to FIG. 3 and FIG. 6, the second switch 14 continues to be non-conducting, and the first switch 12 is continuously turned on. The energy of the second leakage inductance Lk2 is completely released, so that the first output diode 31 and the second diode 42 are converted into a reverse bias by the forward bias and are not turned on. At this time, the energy of the second magnetizing inductance Lm2 is continuously coupled to the second secondary side inductor 36, and the third current i3 continues to charge the first output capacitor 34. When the second switch 14 is turned on by the second control signal Vgs2, it enters mode four.

模式四(t3~t4):參閱圖3和圖7,該第二開關14切換為導通,且該第一開關12持續導通。此時的操作模式同模式一,故 不再贅述。當該第一開關12受該第一控制信號Vgs1控制而不導通時,進入模式五。 Mode 4 (t3~t4): Referring to FIG. 3 and FIG. 7, the second switch 14 is switched to be turned on, and the first switch 12 is continuously turned on. At this time, the operation mode is the same as the mode, so No longer. When the first switch 12 is controlled by the first control signal Vgs1 and is not turned on, the mode 5 is entered.

模式五(t4~t5):參閱圖3和圖8,該第一開關12已切換為不導通,且該第二開關14持續導通。此時,該第一二極體221和該第二輸出二極體32由逆向偏壓轉換成順向偏壓而導通,因此流經該第一漏電感Lk1的該電流iLk1會經由該第二電容41、該第一二極體221、該第一電容222和該第二開關14流至地,並對該第一電容222進行充電,同時該第二電容41經由該第一二極體221釋放能量至該第一電容222。 Mode 5 (t4~t5): Referring to FIG. 3 and FIG. 8, the first switch 12 has been switched to be non-conducting, and the second switch 14 is continuously turned on. At this time, the first diode 221 and the second output diode 32 are turned into a forward bias by the reverse bias, and the current iLk1 flowing through the first leakage inductance Lk1 passes through the second. The capacitor 41, the first diode 221, the first capacitor 222 and the second switch 14 flow to the ground, and charge the first capacitor 222, and the second capacitor 41 passes through the first diode 221 Energy is released to the first capacitor 222.

此外,儲存於該第一激磁電感Lm1的能量則藉由耦合的方式傳送至該第一二次側電感35,並對該第二輸出電容37進行充電。當該第一漏電感Lk1的能量完全釋放完畢,且該第一二極體221由順向偏壓轉變為逆向偏壓而不導通時,進入模式六。 In addition, the energy stored in the first magnetizing inductance Lm1 is transmitted to the first secondary side inductor 35 by coupling, and the second output capacitor 37 is charged. When the energy of the first leakage inductance Lk1 is completely released, and the first diode 221 is converted from the forward bias to the reverse bias and is not turned on, the mode 6 is entered.

模式六(t5~t6):參閱圖3和圖9,該第一開關12持續不導通,且該第二開關14持續導通。該第一二極體221不導通,此時該第一激磁電感Lm1的能量持續耦合至該第一二次側電感35,並經由該第二輸出二極體32對該第二輸出電容37進行充電。當該第一開關12受該第一控制信號Vgs1控制而導通時,回到模式一重新開始新的一個週期。 Mode 6 (t5~t6): Referring to FIG. 3 and FIG. 9, the first switch 12 continues to be non-conducting, and the second switch 14 is continuously turned on. The first diode 221 is not turned on, and the energy of the first magnetizing inductor Lm1 is continuously coupled to the first secondary inductor 35, and the second output capacitor 37 is performed via the second output diode 32. Charging. When the first switch 12 is turned on by the first control signal Vgs1, it returns to the mode one to restart a new cycle.

值得注意的是,因為在高功率應用時該輸入電 流Iin容易有較大的波幅,因此若使該第一一次側電感11和該第二一次側電感13分別接收該輸入電流Iin之一平均電流Iavg的一半(即,Iavg/2),且該等第一和第二開關12、14進行交錯式操作(即,在模式二、三時,該第一開關12導通,且該第二開關14不導通,在模式五、六時,該第一開關12不導通,且該第二開關14導通),將可使該輸入電流Iin在該第一一次側電感11和該第二一次側電感13所產生的電流漣波相互抵銷,進而降低該輸入電流Iin所產生的電流漣波大小。 It is worth noting that this input is used in high power applications. The current Iin tends to have a large amplitude, so if the first primary side inductance 11 and the second primary side inductance 13 respectively receive half of the average current Iavg of the input current Iin (ie, Iavg/2), And the first and second switches 12, 14 perform an interleaving operation (ie, in the second and third modes, the first switch 12 is turned on, and the second switch 14 is not turned on, in the mode five or six, the mode The first switch 12 is not turned on, and the second switch 14 is turned on, which can offset the current ripple generated by the input current Iin between the first primary side inductor 11 and the second primary side inductor 13 And further reducing the magnitude of the current ripple generated by the input current Iin.

以下更將本發明電源轉換器的該第一實施例操作在上述模式時,對該直流輸出電壓Vo加以分析推導,且為了簡化分析,忽略該等第一和第二開關12、14、該等第一和第二二極體221、42,及該等第一至第三輸出二極體31~33的導通壓降,及時間極短的暫態特性,同時也忽略該等第一和第二漏電感Lk1、Lk2,並定義該等第一至第三輸出電容34、37、38的電容值夠大且足以使該等第一至第三輸出電容34、37、38的跨壓可視為一常數。藉此,可推導出下述公式(2)、(3)、(4)、(5)所示: In the following, when the first embodiment of the power converter of the present invention is operated in the above mode, the DC output voltage Vo is analyzed and derived, and in order to simplify the analysis, the first and second switches 12, 14 are ignored. The first and second diodes 221, 42 and the first to third output diodes 31-33 have a turn-on voltage drop and a very short transient characteristic, and also ignore the first and the first The two leakage inductances Lk1, Lk2, and the capacitance values of the first to third output capacitors 34, 37, 38 are defined to be large enough to make the voltage across the first to third output capacitors 34, 37, 38 A constant. Therefore, the following formulas (2), (3), (4), and (5) can be derived:

其中,參數V41、V222、V38分別為該第二電容 41、該第一電容222及該第三輸出電容38的跨壓,參數V34、V37分別為該等第一和第二輸出電容34、37的跨壓,參數Vin為該直流輸入電壓,參數D為該等第一和第二開關12、14的一導通比(duty ratio),且該導通比D的值大於0.5,參數n為該等第一和第二耦合電感的匝數比,且該等第一和第二耦合電感的匝數比相同,而參數X1為一總電容數量,該總電容數量X1等於該等第一和第二電容222、41,及該第三輸出電容38的個數總和。在該第一實施例中,該總電容數量X1如下述公式(4.1)所示:X1=n41+n222+n38 公式(4.1) The parameters V 41 , V 222 , and V 38 are the cross voltages of the second capacitor 41 , the first capacitor 222 and the third output capacitor 38 , respectively, and the parameters V 34 and V 37 are the first and second respectively. The voltage across the output capacitors 34, 37, the parameter Vin is the DC input voltage, the parameter D is a duty ratio of the first and second switches 12, 14, and the value of the conduction ratio D is greater than 0.5. The parameter n is the turns ratio of the first and second coupled inductors, and the first and second coupled inductors have the same turns ratio, and the parameter X1 is a total capacitance, and the total capacitance X1 is equal to the same The sum of the first and second capacitors 222, 41, and the third output capacitor 38. In the first embodiment, the total capacitance number X1 is as shown in the following formula (4.1): X1 = n 41 + n 222 + n 38 formula (4.1)

其中,參數n41、n222、n38分別為該第二電容41、該第一電容222和該第三輸出電容38的個數。由於該第一實施例中,該第二電容41、該第一電容222和該第三輸出電容38的個數各為1,所以X1等於三(即,X1=1+1+1=3)。 The parameters n 41 , n 222 , and n 38 are the number of the second capacitor 41 , the first capacitor 222 , and the third output capacitor 38 , respectively. In the first embodiment, the number of the second capacitor 41, the first capacitor 222, and the third output capacitor 38 are each 1, so X1 is equal to three (ie, X1=1+1+1=3) .

在該第一實施例時,本發明電源轉換器的該直流輸出電壓Vo為該第三輸出電容38和該等第一和第二輸出電容34、37的該等跨壓V38、V34、V37相加,且可由下述公式(6)獲得: In the first embodiment, the DC output voltage Vo of the power converter of the present invention is the third output capacitor 38 and the voltages V 38 , V 34 of the first and second output capacitors 34 , 37 , V 37 is added and can be obtained by the following formula (6):

本發明電源轉換器的電壓轉換增益(conversion gain,CG)可由下述公式(7)獲得: The voltage conversion gain (CG) of the power converter of the present invention can be obtained by the following formula (7):

根據上述公式(7)可知,該電壓轉換增益CG的大小是相關於該等第一和第二耦合電感的匝數比n,及該等第一和第二開關12、14的該導通比D。因此,藉由增加該匝數比n或該導通比D即可提升本發明電源轉換器的該電壓轉換增益CG,以致本發明電源轉換器不需如習知電源轉換器只可藉由將公式(1)中的導通比d調整至極大值才可提升其電壓轉換增益M。此外,藉由調整該匝數比n或該導通比D的值來提升本發明電源轉換器的該電壓轉換增益CG使本發明電源轉換器更具有設計自由度。 According to the above formula (7), the magnitude of the voltage conversion gain CG is a turns ratio n related to the first and second coupled inductors, and the conduction ratio D of the first and second switches 12, 14 . Therefore, the voltage conversion gain CG of the power converter of the present invention can be improved by increasing the turns ratio n or the turn-on ratio D, so that the power converter of the present invention does not need to be a conventional power converter only by formulating The conduction ratio d in (1) is adjusted to the maximum value to increase its voltage conversion gain M. Furthermore, increasing the voltage conversion gain CG of the power converter of the present invention by adjusting the turns ratio n or the value of the turn-on ratio D makes the power converter of the present invention more design freedom.

舉例來說,參閱圖10,其為本發明電源轉換器的該電壓轉換增益CG對該導通比D之變化的模擬示意圖。根據公式(7)可知,當該導通比D的值為0.6,該匝數比n的值為1時,該電壓轉換增益CG的值為12.5。當該導通比D的值為0.6,該匝數比n的值為3時,該電壓轉換增益CG的值為22.5。當該導通比D的值為0.6,該匝數比n的值為5時,該電壓轉換增益CG的值為32.5。 For example, referring to FIG. 10, it is a schematic diagram of the variation of the voltage conversion gain CG of the power converter of the present invention on the conduction ratio D. According to the formula (7), when the value of the conduction ratio D is 0.6 and the value of the turns ratio n is 1, the value of the voltage conversion gain CG is 12.5. When the value of the conduction ratio D is 0.6 and the value of the turns ratio n is 3, the value of the voltage conversion gain CG is 22.5. When the value of the conduction ratio D is 0.6 and the value of the turns ratio n is 5, the value of the voltage conversion gain CG is 32.5.

更由以下的圖11至圖13的該第一實施例的模擬實驗圖加以驗證上述的理論分析。其中,該直流輸入電壓Vin的大小為36伏特,該直流輸出電壓Vo的大小為400伏特,最大輸出功率為400瓦特,且該等第一和第二耦合電感的匝數比n的大小為1。 The above theoretical analysis was verified by the simulation experiment of the first embodiment of Figs. 11 to 13 below. Wherein, the DC input voltage Vin has a size of 36 volts, the DC output voltage Vo has a magnitude of 400 volts, and the maximum output power is 400 watts, and the first and second coupled inductors have a turns ratio n of 1 .

依上述參數值及公式(7)可推算出該導通比D為0.55,對應圖11的模擬實驗圖確實可看出控制該等第一和第二開關12、14的該等第一和第二控制訊號Vgs1、Vgs2的該導通比D確實也約為0.55,故,可證實上述的理論分析推導出來的公式(7)所算出來的導通比D確實與模擬實驗圖相符應。 According to the above parameter values and formula (7), it can be inferred that the conduction ratio D is 0.55, and the first and second control of the first and second switches 12, 14 can be seen by corresponding to the simulation experiment diagram of FIG. The conduction ratio D of the control signals Vgs1 and Vgs2 is also approximately 0.55. Therefore, it can be confirmed that the conduction ratio D calculated by the equation (7) derived from the above theoretical analysis is surely matched with the simulation experiment diagram.

再由公式(2)至公式(5)可推算出該第二電容41的跨壓V41的大小為80伏特,該第一電容222的跨壓值V222的大小為160伏特,該第三輸出電容38的跨壓V38的大小為240伏特,而該等第一和第二輸出電容34、37的該等跨壓V34和V37的大小為80伏特,並將該等第一和第二開關12、14、該等第一和第二二極體221、42、該等第一至第三輸出二極體31~33的導通壓降考慮在內再比對圖12,可清楚看到圖12的模擬實驗圖的該第一電容222和該等第一至第三輸出電容34、37、38的該等跨壓V222、V34、V37、V38的大小確實與由公式(2)至公式(5)所推算出的該等跨壓V222、V34、V37、V38的大小相同。 By the formula (2) to Equation (5) can calculate the voltage V across the second capacitor 41 is the size of 41 80 volts, the voltage across the first capacitor 222 size is 160 V 222 V, the third output voltage V 38 across the capacitor 38 is the size of 240 volts, while the size of such cross voltage V 34 is such V and the first and second output capacitor 34, 37 is 37 80 volts, and the plurality of first and The conduction voltage drops of the second switches 12, 14, the first and second diodes 221, 42 and the first to third output diodes 31-33 are taken into consideration and compared with FIG. The magnitudes of the first capacitors 222 and the first to third output capacitors 34 , 37 , 38 of the simulated experimental diagrams of FIG. 12 are indeed the same as the magnitudes of the voltages V 222 , V 34 , V 37 , V 38 . The magnitudes of the cross-over voltages V 222 , V 34 , V 37 , and V 38 calculated by the formulas (2) to (5) are the same.

參閱圖13,為該第一實施例的該等第一及第二控制訊號Vgs1、Vgs2和該等第一和第二開關12、14的該等跨壓Vds1、Vds2的波形圖。可觀察出當該等第一和第二開關12、14不導通時,該等第一和第二開關12、14的該等跨壓Vds1、Vds2的大小約為80伏特,僅為該直流輸出電壓Vo(Vo等於400伏特)的五分之一倍,因此可證實本發明電源轉換器的該等第一和第二開關12、14具有低電壓應 力的優點。 Referring to FIG. 13, waveform diagrams of the first and second control signals Vgs1, Vgs2 of the first embodiment and the voltages Vds1, Vds2 of the first and second switches 12, 14 are shown. It can be observed that when the first and second switches 12, 14 are non-conducting, the magnitudes of the voltages Vds1, Vds2 of the first and second switches 12, 14 are about 80 volts, only the DC output. The voltage Vo (Vo is equal to 400 volts) is one-fifth times, thus confirming that the first and second switches 12, 14 of the power converter of the present invention have a low voltage The advantage of force.

<第二實施例> <Second embodiment>

參閱圖14,本發明電源轉換器之一第二實施例與該第一實施例的差別為該第一升壓電路21還包括N個第二升壓單元212,且該等第二升壓單元212中的每一者皆具有一第一端、一第二端、一第三端及一第四端,N≧1,N為正整數。 Referring to FIG. 14, a difference between the second embodiment of the power converter of the present invention and the first embodiment is that the first booster circuit 21 further includes N second boosting units 212, and the second boosting units Each of 212 has a first end, a second end, a third end, and a fourth end, N ≧ 1, N being a positive integer.

在該第二實施例中,第一個第二升壓單元212之該等第一及第二端分別電連接該第一升壓單元211之該第二二極體42之該陰極與該陽極。第i個第二升壓單元212之該等第一及第二端分別電連接第i-1個第二升壓單元212之該等第四及第三端,2≦i≦N-1,i為正整數。第N個第二升壓單元212之該等第一及第二端分別電連接第N-1個第二升壓單元212之該等第四及第三端,且該第N個第二升壓單元212之該等第三及第四端分別電連接該第一升壓電路21之該等第三及第四端。 In the second embodiment, the first and second ends of the first second boosting unit 212 are electrically connected to the cathode and the anode of the second diode 42 of the first boosting unit 211, respectively. . The first and second ends of the i-th second boosting unit 212 are electrically connected to the fourth and third ends of the i-1th second boosting unit 212, respectively, 2≦i≦N-1, i is a positive integer. The first and second ends of the Nth second boosting unit 212 are electrically connected to the fourth and third ends of the N-1th second boosting unit 212, respectively, and the Nth second rising The third and fourth ends of the voltage unit 212 are electrically connected to the third and fourth ends of the first booster circuit 21, respectively.

每一個第二升壓單元212包括一第三電容43、一第三二極體44、一第四電容45,及一第四二極體46。 Each of the second boosting units 212 includes a third capacitor 43 , a third diode 44 , a fourth capacitor 45 , and a fourth diode 46 .

在第j個第二升壓單元212中,1≦j≦N,j為正整數,該第三電容43電連接於該第j個第二升壓單元212之該第二端與該第三端之間。該第三二極體44具有一電連接該第j個第二升壓單元212之該第一端的陽極,及一電連接該第j個第二升壓單元212之該第三端的陰極。該第四電容45電連接於該第三二極體44之該陽極與該第j個第二升 壓單元212之該第四端之間。該第四二極體46具有一電連接該第j個第二升壓單元212之該第三端的陽極,及一電連接該第j個第二升壓單元212之該第四端的陰極。 In the jth second boosting unit 212, 1≦j≦N,j is a positive integer, and the third capacitor 43 is electrically connected to the second end and the third end of the jth second boosting unit 212. Between the ends. The third diode 44 has an anode electrically connected to the first end of the jth second boosting unit 212, and a cathode electrically connected to the third end of the jth second boosting unit 212. The fourth capacitor 45 is electrically connected to the anode of the third diode 44 and the jth second liter Between the fourth ends of the pressing unit 212. The fourth diode 46 has an anode electrically connected to the third end of the jth second boosting unit 212, and a cathode electrically connected to the fourth end of the jth second boosting unit 212.

該第二實施例的操作程序及動作原理分別近似於該第一實施例,在此不再贅述。故,由上述的公式(4)可知該第三輸出電容38的跨壓V38如下述公式(8)所示: The operation procedure and the operation principle of the second embodiment are respectively similar to the first embodiment, and details are not described herein again. Therefore, it can be seen from the above formula (4) that the voltage across the third output capacitor 38 V 38 is as shown in the following formula (8):

X2=n41+N(n43+n45)+n222+n38 公式(8.1) X2=n 41 +N(n 43 +n 45 )+n 222 +n 38 Formula (8.1)

其中,參數X2為一總電容數量,且公式(8.1)說明在該第二實施例中,該總電容數量X2等於該等第一和第二電容222、41、該N個第二升壓單元212中的該等第三和第四電容43、45,及該第三輸出電容38(見圖2)的個數總和。參數n41、n222、n38分別為該第二電容41、該第一電容222(見圖2)和該第三輸出電容38的個數,參數n43、n45分別為該N個第二升壓單元212中的該等第三和第四電容43、45的個數。舉例來說,當N=2時,X2=1+2(1+1)+1+1=7。 Wherein, the parameter X2 is a total number of capacitors, and the formula (8.1) indicates that in the second embodiment, the total capacitance number X2 is equal to the first and second capacitors 222, 41, and the N second boosting units. The sum of the number of the third and fourth capacitors 43, 45, and the third output capacitor 38 (see FIG. 2) in 212. The parameters n 41 , n 222 , and n 38 are the number of the second capacitor 41 , the first capacitor 222 (see FIG. 2 ) and the third output capacitor 38 respectively, and the parameters n 43 and n 45 are respectively the N numbers. The number of the third and fourth capacitors 43, 45 in the second boosting unit 212. For example, when N=2, X2=1+2(1+1)+1+1=7.

所以,依據公式(6)、(8)、(8.1),且當N=2時,可推導出該第二實施例的該直流輸出電壓Vo如下述公式(9)所示。 Therefore, according to the formulas (6), (8), (8.1), and when N = 2, it can be inferred that the DC output voltage Vo of the second embodiment is as shown in the following formula (9).

<第三實施例> <Third embodiment>

參閱圖15,本發明電源轉換器之一第三實施例與該第一實施例的差別為該第一升壓電路21還包括一第二升壓單元213,且該第二升壓單元213包括一第三二極體51,及一第三電容52。 Referring to FIG. 15, a difference between the third embodiment of the power converter of the present invention and the first embodiment is that the first booster circuit 21 further includes a second boosting unit 213, and the second boosting unit 213 includes A third diode 51 and a third capacitor 52.

該第三二極體51具有一電連接該第一升壓電路21(見圖2)之該第一端與該第二電容41之該第一端的陽極,及一電連接該第二二極體42之該陽極的陰極。該第三電容52具有一電連接該第一升壓電路21之該第二端的第一端,及一電連接該第二二極體42之該陽極的第二端。 The third diode 51 has an anode electrically connected to the first end of the first booster circuit 21 (see FIG. 2) and the first end of the second capacitor 41, and an electrical connection to the second The cathode of the anode of the pole body 42. The third capacitor 52 has a first end electrically connected to the second end of the first boosting circuit 21 and a second end electrically connected to the anode of the second diode 42.

該第三實施例的操作程序及動作原理分別近似於該第一實施例,故不再重述。故,由上述的公式(4)可知該第三輸出電容38的跨壓V38如下述公式(10): The operational procedures and operational principles of the third embodiment are similar to the first embodiment, respectively, and therefore will not be repeated. Therefore, from the above equation (4) can be seen as the following equation 38 (10) of the third output voltage V across capacitor 38 is:

X3=n52+n41+n222+n38 公式(10.1) X3=n 52 +n 41 +n 222 +n 38 formula (10.1)

其中,參數X3為一總電容數量,且公式(10.1)說明在該第三實施例中,該總電容數量X3等於該第三電容52、該等第一和第二電容222、41,及該第三輸出電容38(見圖2)的個數總和。參數n52、n41、n222、n38分別為該第三電容52、該第二電容41、該第一電容222和該第三輸出電容38(見圖2)的個數。由於該第三實施例的該第三電容52、該第二電容41、該第一電容222和該第三輸出電容38的個數各為1,所以X3等於四(即,X3=1+1+1+1=4)。 Wherein, the parameter X3 is a total capacitance quantity, and the formula (10.1) indicates that in the third embodiment, the total capacitance quantity X3 is equal to the third capacitance 52, the first and second capacitances 222, 41, and the The sum of the number of third output capacitors 38 (see Figure 2). The parameters n 52 , n 41 , n 222 , and n 38 are the number of the third capacitor 52 , the second capacitor 41 , the first capacitor 222 , and the third output capacitor 38 (see FIG. 2 ), respectively. Since the number of the third capacitor 52, the second capacitor 41, the first capacitor 222, and the third output capacitor 38 of the third embodiment are each 1, X3 is equal to four (ie, X3=1+1) +1+1=4).

所以,依據公式(6)、(10)、(10.1)可推導出該第 三實施例的該直流輸出電壓Vo如下述公式(11)所示。 Therefore, according to formulas (6), (10), (10.1), the first The DC output voltage Vo of the third embodiment is as shown in the following formula (11).

<第四實施例> <Fourth embodiment>

參閱圖16,本發明電源轉換器之一第四實施例與該第三實施例的差別為該第一升壓電路21還包括N個第三升壓單元214,且該等第三升壓單元214中的每一者皆具有一第一端、一第二端、一第三端及一第四端,N≧1,N為正整數。 Referring to FIG. 16, a difference between the fourth embodiment of the power converter of the present invention and the third embodiment is that the first boosting circuit 21 further includes N third boosting units 214, and the third boosting units Each of the 214 has a first end, a second end, a third end, and a fourth end, N ≧ 1, N being a positive integer.

在該第四實施例中,第一個第三升壓單元214之該等第一及第二端分別電連接該第一升壓電路21(見圖2)之該等第一及第二端。第i個第三升壓單元214之該等第一及第二端分別電連接第i-1個第三升壓單元214之該等第四及第三端,2≦i≦N-1,i為正整數。第N個第三升壓單元214之該等第一及第二端分別電連接第N-1個第三升壓單元214之該等第四及第三端,且該第N個第三升壓單元214之該等第三及第四端分別電連接該第三電容52之該第一端與該第三二極體51之該陽極。 In the fourth embodiment, the first and second ends of the first third boosting unit 214 are electrically connected to the first and second ends of the first boosting circuit 21 (see FIG. 2), respectively. . The first and second ends of the i-th third boosting unit 214 are electrically connected to the fourth and third ends of the i-1th third boosting unit 214, respectively, 2≦i≦N-1, i is a positive integer. The first and second ends of the Nth third boosting unit 214 are electrically connected to the fourth and third ends of the N-1th third boosting unit 214, respectively, and the Nth third rising The third and fourth ends of the pressing unit 214 are electrically connected to the first end of the third capacitor 52 and the anode of the third diode 51, respectively.

每一個第三升壓單元214包括一第四電容53、一第四二極體54、一第五電容55,及一第五二極體56。在第j個第三升壓單元214中,1≦j≦N,j為正整數,該第四電容53電連接於該第j個第三升壓單元214的該第二端與該第三端之間。該第四二極體54具有一電連接該第j個 第三升壓單元214之該第一端的陽極,及一電連接該第j個第三升壓單元214之該第三端的陰極。該第五電容55電連接於該第四二極體54之該陽極與該第j個第三升壓單元214之該第四端之間。該第五二極體56具有一電連接該第j個第三升壓單元214之該第三端的陽極,及一電連接該第j個第三升壓單元214之該第四端的陰極。 Each of the third boosting units 214 includes a fourth capacitor 53 , a fourth diode 54 , a fifth capacitor 55 , and a fifth diode 56 . In the jth third boosting unit 214, 1≦j≦N,j is a positive integer, and the fourth capacitor 53 is electrically connected to the second end and the third end of the jth third boosting unit 214. Between the ends. The fourth diode 54 has an electrical connection to the jth An anode of the first end of the third boosting unit 214 and a cathode electrically connected to the third end of the jth third boosting unit 214. The fifth capacitor 55 is electrically connected between the anode of the fourth diode 54 and the fourth end of the j th third boost unit 214. The fifth diode 56 has an anode electrically connected to the third end of the jth third boosting unit 214, and a cathode electrically connected to the fourth end of the jth third boosting unit 214.

該第四實施例的操作程序及動作原理分別近似於該第一實施例,故不再重述。故,由上述的公式(4)可知該第三輸出電容38的跨壓V38如下述公式(12)所示: The operational procedures and operational principles of the fourth embodiment are similar to the first embodiment, respectively, and therefore will not be repeated. Therefore, it can be seen from the above formula (4) that the voltage across the third output capacitor 38 V 38 is as shown in the following formula (12):

X4=N(n53+n55)+n52+n41+n222+n38 公式(12.1) X4=N(n 53 +n 55 )+n 52 +n 41 +n 222 +n 38 Formula (12.1)

其中,參數X4為一總電容數量,且公式(12.1)說明在該第四實施例中,該總電容數量X4等於該N個第三升壓單元214中的該等第四電容53及該等第五電容55、該第三電容52、該等第一和第二電容222、41,及該第三輸出電容38(見圖2)的個數總和。參數n53、n55分別為該N個第三升壓單元214中的該等第四電容53及該等第五電容55的個數,參數n52、n41、n222、n38分別為該第三電容52、該第二電容41(見圖2)、該第一電容222和該第三輸出電容38(見圖2)的個數。舉例來說,當N=2時,X4=2(1+1)+1+1+1+1=8 Wherein, the parameter X4 is a total number of capacitors, and the formula (12.1) indicates that in the fourth embodiment, the total capacitance number X4 is equal to the fourth capacitors 53 in the N third boosting units 214 and the like The sum of the fifth capacitor 55, the third capacitor 52, the first and second capacitors 222, 41, and the third output capacitor 38 (see FIG. 2). The parameters n 53 and n 55 are the number of the fourth capacitors 53 and the fifth capacitors 55 in the N third boosting units 214, respectively, and the parameters n 52 , n 41 , n 222 , and n 38 are respectively The number of the third capacitor 52, the second capacitor 41 (see FIG. 2), the first capacitor 222, and the third output capacitor 38 (see FIG. 2). For example, when N=2, X4=2(1+1)+1+1+1+1=8

所以,依據公式(6)、(12)、(12.1),且當N=2時,可推導出該第四實施例的該直流輸出電壓Vo為如下述公式(13)所示。 Therefore, according to the formulas (6), (12), (12.1), and when N = 2, it can be inferred that the DC output voltage Vo of the fourth embodiment is as shown in the following formula (13).

綜上所述,上述實施例具有以下優點: In summary, the above embodiment has the following advantages:

1.減少輸入電流Iin的電流漣波:藉由該第一一次側電感11和該第二一次側電感13分別接收該輸入電流Iin之該平均電流Iavg的一半(即,Iavg/2),且該等第一和第二開關12、14進行交錯式操作,將可使該輸入電流Iin在該第一一次側電感11和該第二一次側電感13所產生的電流漣波相互抵銷,進而降低該輸入電流Iin所產生的電流漣波大小。 1. Reducing the current chopping of the input current Iin: the first primary side inductance 11 and the second primary side inductance 13 respectively receive half of the average current Iavg of the input current Iin (ie, Iavg/2) And the first and second switches 12, 14 are interleaved, so that the current generated by the input current Iin at the first primary side inductance 11 and the second primary side inductance 13 can be mutually Offset, thereby reducing the magnitude of the current ripple generated by the input current Iin.

2.高電壓轉換增益:本發明利用該第一升壓電路21和該第二升壓電路22的相配合,並藉由在該第一升壓單元211和該第二升壓電路22之間串聯連接該N個第二升壓單元212(如圖14),或是如圖16所示的藉由串聯連接該N個第三升壓單元214於該第二升壓單元213和該降低電流連波模組1之間,以使該直流輸出電壓Vo能有如公式(11)、(13)的變化,進而達到高電壓轉換增益,且不需如習知的升壓型電源轉換器需要藉由操作於極大的導通比d才能達到高電壓轉換增益。 2. High voltage conversion gain: The present invention utilizes the cooperation of the first boosting circuit 21 and the second boosting circuit 22, and is between the first boosting unit 211 and the second boosting circuit 22 Connecting the N second boosting units 212 (FIG. 14) in series, or connecting the N third boosting units 214 to the second boosting unit 213 and the reduced current by connecting in series as shown in FIG. Between the wave module 1 so that the DC output voltage Vo can be changed as in the formulas (11), (13), thereby achieving a high voltage conversion gain, and there is no need to borrow a boost type power converter as is conventional. A high voltage conversion gain can be achieved by operating at a very large conduction ratio d.

3.高效率:如圖13所示,本發明的該等第一和第二開關12、14的電壓應力遠小於該直流輸出電壓Vo,因此該等第一和第二開關12、14分別會有較低導通電阻值,以致該等第一和第二開關12、14在導通時具有較低的導通 損失。且由圖3更可看出流經該等第一至第三輸出二極體31~33和該等第一與第二二極體221、42的電流i31、i32、i33、i221、i42在該等第一至第三輸出二極體31~33和該等第一與第二二極體221、42轉為逆向偏壓而不導通之前都已大幅下降,進而改善了習知電壓轉換器的二極體反向恢復損失,並使本發明電源轉換器具有高效率的優點,故確實能達成本發明之目的。 3. High efficiency: as shown in FIG. 13, the voltage stress of the first and second switches 12, 14 of the present invention is much smaller than the DC output voltage Vo, so the first and second switches 12, 14 respectively Have a lower on-resistance value such that the first and second switches 12, 14 have a lower conduction when conducting loss. It can be seen from FIG. 3 that the currents i31, i32, i33, i221, i42 flowing through the first to third output diodes 31-33 and the first and second diodes 221, 42 are The first to third output diodes 31 to 33 and the first and second diodes 221 and 42 are reversely biased and are not significantly turned on before being turned on, thereby improving the conventional voltage converter. The diode reverse recovery loss and the power converter of the present invention have the advantage of high efficiency, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and the patent specification of the present invention are still It is within the scope of the patent of the present invention.

1‧‧‧降低電流漣波模組 1‧‧‧Reducing current chopper module

10‧‧‧直流電壓源 10‧‧‧DC voltage source

11‧‧‧第一一次側電感 11‧‧‧First primary side inductance

12‧‧‧第一開關 12‧‧‧First switch

13‧‧‧第二一次側電感 13‧‧‧Second primary side inductance

14‧‧‧第二開關 14‧‧‧Second switch

2‧‧‧升壓模組 2‧‧‧Boost Module

21‧‧‧第一升壓電路 21‧‧‧First booster circuit

211‧‧‧第一升壓單元 211‧‧‧First boost unit

22‧‧‧第二升壓電路 22‧‧‧second booster circuit

221‧‧‧第一二極體 221‧‧‧ first diode

222‧‧‧第一電容 222‧‧‧first capacitor

3‧‧‧增益提升模組 3‧‧‧ Gain boost module

31‧‧‧第一輸出二極體 31‧‧‧First output diode

32‧‧‧第二輸出二極體 32‧‧‧Second output diode

33‧‧‧第三輸出二極體 33‧‧‧ Third output diode

34‧‧‧第一輸出電容 34‧‧‧First output capacitor

35‧‧‧第一二次側電感 35‧‧‧First secondary inductance

36‧‧‧第二二次側電感 36‧‧‧Second secondary inductance

37‧‧‧第二輸出電容 37‧‧‧Second output capacitor

38‧‧‧第三輸出電容 38‧‧‧ third output capacitor

39‧‧‧輸出電阻 39‧‧‧Output resistance

41‧‧‧第二電容 41‧‧‧second capacitor

42‧‧‧第二二極體 42‧‧‧second diode

Lm1‧‧‧第一激磁電感 Lm1‧‧‧first magnetizing inductance

Lm2‧‧‧第二激磁電感 Lm2‧‧‧second magnetizing inductance

Lk1‧‧‧第一漏電感 Lk1‧‧‧First Leakage Inductance

Lk2‧‧‧第二漏電感 Lk2‧‧‧Second leakage inductance

Vo‧‧‧直流輸出電壓 Vo‧‧‧DC output voltage

Vin‧‧‧直流輸入電壓 Vin‧‧‧DC input voltage

Iin‧‧‧輸入電流 Iin‧‧‧ input current

V1‧‧‧第一電壓 V1‧‧‧ first voltage

V2‧‧‧第二電壓 V2‧‧‧second voltage

V3‧‧‧第三電壓 V3‧‧‧ third voltage

V4‧‧‧第四電壓 V4‧‧‧fourth voltage

V5‧‧‧升壓電壓 V5‧‧‧ boost voltage

Vgs1‧‧‧第一控制信號 Vgs1‧‧‧ first control signal

Vgs2‧‧‧第二控制信號 Vgs2‧‧‧ second control signal

Claims (9)

一種電源轉換器,包含:一降低電流漣波模組,適於電連接一供應一直流輸入電壓之直流電壓源,以接收來自該直流電壓源的該直流輸入電壓,並據以產生一第一電壓及一第二電壓;一升壓模組,包括一第一升壓電路,具有分別電連接該降低電流漣波模組以分別接收來自該降低電流漣波模組的該等第一及第二電壓的一第一端與一第二端、一第三端,及一第四端,該第一升壓電路根據該等第一及第二電壓,在該等第三及第四端分別輸出一第三電壓及一第四電壓,其中,該第一升壓電路包括一第一升壓單元,且該第一升壓單元包括一第二電容,具有一電連接該第一升壓電路之該第一端的第一端,及一電連接該第一升壓電路之該第四端的第二端,及一第二二極體,具有一電連接該第一升壓電路之該等第二及第三端的陽極,及一電連接該第一升壓電路之該第四端的陰極,及一第二升壓電路,電連接該第一升壓電路之該等第三及第四端以分別接收該等第三及第四電壓,並根據該等第三及第四電壓產生一升壓電壓,且該第二升壓電路包括一第一二極體,具有一電連接該第一升壓 電路之該第四端的陽極,及一陰極,及一第一電容,具有一電連接於該第一二極體之該陰極的第一端,及一電連接該第一升壓電路的該第三端的第二端,且該第一電容之該第一端輸出該升壓電壓;及一增益提升模組,電連接該升壓模組的該第二升壓電路以接收來自該第二升壓電路之該升壓電壓,並根據該升壓電壓產生一直流輸出電壓,且該增益提升模組包括一第一輸出二極體,具有一電連接該第二升壓電路之該第一二極體之該陰極且接收該升壓電壓的陽極,及一陰極,一第二輸出二極體,具有一電連接該第一輸出二極體之該陰極的陽極,及一陰極,一第三輸出二極體,具有一電連接該第二輸出二極體之該陰極的陽極,及一陰極,一第一輸出電容,具有一電連接該第三輸出二極體之該陰極的第一端,及一第二端,串聯連接的一第一二次側電感與一第二二次側電感,該第一二次側電感電連接該第一輸出電容之該第二端,該第二二次側電感電連接該第二輸出二極體之該陰極,一第二輸出電容,電連接於該第一輸出電容之該第二端與該第一輸出二極體之該陰極之間, 一第三輸出電容,電連接於該第一輸出二極體之該陰極與地之間,及一輸出電阻,電連接於該第三輸出二極體之該陰極與地之間,該輸出電阻的跨壓作為該直流輸出電壓。 A power converter includes: a reduced current chopper module adapted to electrically connect a DC voltage source that supplies a DC input voltage to receive the DC input voltage from the DC voltage source, and thereby generate a first a voltage and a second voltage; a boosting module comprising a first boosting circuit having electrically connected to the reduced current chopper module to respectively receive the first and the first from the reduced current chopper module a first end of the two voltages, a second end, a third end, and a fourth end, wherein the first boosting circuit is respectively configured at the third and fourth ends according to the first and second voltages Outputting a third voltage and a fourth voltage, wherein the first boosting circuit includes a first boosting unit, and the first boosting unit includes a second capacitor having an electrical connection to the first boosting circuit a first end of the first end, a second end electrically connected to the fourth end of the first boosting circuit, and a second diode having an electrical connection to the first boosting circuit An anode of the second and third ends, and an electrical connection to the first boosting circuit a four-terminal cathode, and a second boosting circuit electrically connected to the third and fourth ends of the first boosting circuit to respectively receive the third and fourth voltages, and according to the third and fourth The voltage generates a boosted voltage, and the second boosting circuit includes a first diode having an electrical connection An anode of the fourth end of the circuit, a cathode, and a first capacitor having a first end electrically connected to the cathode of the first diode, and an electrical connection to the first booster circuit a second end of the third end, and the first end of the first capacitor outputs the boosting voltage; and a gain boosting module electrically connected to the second boosting circuit of the boosting module to receive the second rising Pressing the boosting voltage of the circuit, and generating a DC output voltage according to the boosting voltage, and the gain boosting module includes a first output diode having a first two electrically connected to the second boosting circuit a cathode of the pole body and receiving the boosting voltage, and a cathode, a second output diode having an anode electrically connected to the cathode of the first output diode, and a cathode, a third An output diode having an anode electrically connected to the cathode of the second output diode, and a cathode, a first output capacitor having a first end electrically connected to the cathode of the third output diode And a second end, a first secondary side inductance connected in series with a first a second side inductor electrically connected to the second end of the first output capacitor, the second secondary side inductor electrically connecting the cathode of the second output diode, and a second output capacitor Electrically connected between the second end of the first output capacitor and the cathode of the first output diode a third output capacitor electrically connected between the cathode and the ground of the first output diode, and an output resistor electrically connected between the cathode and the ground of the third output diode, the output resistor The cross voltage acts as the DC output voltage. 如請求項1所述的電源轉換器,其中,該降低電流漣波模組包括:一第一一次側電感,具有一電連接該直流電壓源以接收該直流輸入電壓的第一端,及一第二端;一第一激磁電感,並聯連接該第一一次側電感;一第一漏電感,具有一電連接該第一一次側電感之該第二端的第一端,及一輸出該第一電壓的第二端;一第一開關,電連接於該第一漏電感之該第二端與地之間,並具有一用以接收一第一控制信號的控制端,以致該第一開關根據該第一控制信號而導通或不導通;一第二一次側電感,具有一電連接該直流電壓源以接收該直流輸入電壓的第一端,及一第二端;一第二激磁電感,並聯連接該第二一次側電感;一第二漏電感,具有一電連接該第二一次側電感之該第二端的第一端,及一輸出該第二電壓的第二端;及一第二開關,電連接於該第二漏電感之該第二端與地之間,並具有一用以接收一第二控制信號的控制端,以致該第二開關根據該第二控制信號而導通或不導通。 The power converter of claim 1, wherein the reduced current chopping module comprises: a first primary side inductor having a first end electrically connected to the DC voltage source to receive the DC input voltage, and a second end; a first magnetizing inductance connected in parallel to the first primary side inductance; a first leakage inductance having a first end electrically connected to the second end of the first primary side inductance, and an output a second end of the first voltage; a first switch electrically connected between the second end of the first leakage inductance and the ground, and having a control end for receiving a first control signal, such that the first a switch is turned on or off according to the first control signal; a second primary side inductor having a first end electrically connected to the DC voltage source to receive the DC input voltage, and a second end; a second a magnetizing inductor connected in parallel to the second primary side inductor; a second leakage inductor having a first end electrically connected to the second end of the second primary side inductor, and a second end outputting the second voltage And a second switch electrically connected to the second leakage inductance The second end is connected to the ground and has a control end for receiving a second control signal, so that the second switch is turned on or off according to the second control signal. 如請求項1所述的電源轉換器,其中,該第一升壓電路 還包括N個第二升壓單元,且該等第二升壓單元中的每一者具有一第一端、一第二端、一第三端及一第四端,N≧1,N為正整數;其中,第一個第二升壓單元之該等第一及第二端分別電連接該第一升壓單元之該第二二極體之該陰極與該陽極;其中,第i個第二升壓單元之該等第一及第二端分別電連接第i-1個第二升壓單元之該等第四及第三端,2≦i≦N-1,i為正整數;及其中,第N個第二升壓單元之該等第一及第二端分別電連接第N-1個第二升壓單元之該等第四及第三端,且該第N個第二升壓單元之該等第三及第四端分別電連接該第一升壓電路之該等第三及第四端。 The power converter of claim 1, wherein the first booster circuit The method further includes N second boosting units, and each of the second boosting units has a first end, a second end, a third end, and a fourth end, where N≧1, N are a positive integer; wherein the first and second ends of the first second boosting unit are electrically connected to the cathode of the second diode of the first boosting unit and the anode; wherein, the ith The first and second ends of the second boosting unit are electrically connected to the fourth and third ends of the i-1th second boosting unit, respectively, and 2≦i≦N-1,i is a positive integer; And the first and second ends of the Nth second boosting unit are electrically connected to the fourth and third ends of the N-1th second boosting unit, respectively, and the Nth and second ends The third and fourth ends of the boosting unit are electrically connected to the third and fourth ends of the first boosting circuit, respectively. 如請求項3所述的電源轉換器,其中,第j個第二升壓單元,1≦j≦N,j為正整數,每一第j個第二升壓單元包括:一第三電容,電連接於該第j個第二升壓單元之該第二端與該第三端之間;一第三二極體,具有一電連接該第j個第二升壓單元之該第一端的陽極,及一電連接該第j個第二升壓單元之該第三端的陰極;一第四電容,電連接於該第三二極體之該陽極與該第j個第二升壓單元之該第四端之間;及一第四二極體,具有一電連接該第j個第二升壓單 元之該第三端的陽極,及一電連接該第j個第二升壓單元之該第四端的陰極。 The power converter of claim 3, wherein the jth second boosting unit, 1≦j≦N,j is a positive integer, and each jth second boosting unit comprises: a third capacitor, Electrically connected between the second end of the jth second boosting unit and the third end; a third diode having an electrical connection to the first end of the jth second boosting unit An anode, and a cathode electrically connected to the third end of the jth second boosting unit; a fourth capacitor electrically connected to the anode of the third diode and the jth second boosting unit Between the fourth ends; and a fourth diode having an electrical connection to the jth second boosting list An anode of the third end of the element, and a cathode electrically connected to the fourth end of the jth second boosting unit. 如請求項1所述的電源轉換器,其中,該第一升壓電路還包括一第二升壓單元,且該第二升壓單元包括:一第三二極體,具有一電連接該第一升壓電路之該第一端與該第二電容之該第一端的陽極,及一電連接該第二二極體之該陽極的陰極;及一第三電容,具有一電連接該第一升壓電路之該第二端的第一端,及一電連接該第二二極體之該陽極的第二端。 The power converter of claim 1, wherein the first boosting circuit further comprises a second boosting unit, and the second boosting unit comprises: a third diode having an electrical connection The first end of a booster circuit and the anode of the first end of the second capacitor, and a cathode electrically connected to the anode of the second diode; and a third capacitor having an electrical connection a first end of the second end of the boosting circuit and a second end electrically connected to the anode of the second diode. 如請求項5所述的電源轉換器,其中,該第一升壓電路還包括N個第三升壓單元,且該等第三升壓單元中的每一者具有一第一端、一第二端、一第三端及一第四端,N≧1,N為正整數;其中,第一個第三升壓單元之該等第一及第二端分別電連接該第一升壓電路之該等第一及第二端;其中,第i個第三升壓單元之該等第一及第二端分別電連接第i-1個第三升壓單元之該等第四及第三端,2≦i≦N-1,i為正整數;及其中,第N個第三升壓單元之該等第一及第二端分別電連接第N-1個第三升壓單元之該等第四及第三端,且該第N個第三升壓單元之該等第三及第四端分別電連接該第三電容之該第一端與該第三二極體之該陽極。 The power converter of claim 5, wherein the first boosting circuit further comprises N third boosting units, and each of the third boosting units has a first end, a first The second end, the third end, and the fourth end, N≧1, N are positive integers; wherein the first and second ends of the first third boosting unit are electrically connected to the first boosting circuit The first and second ends; wherein the first and second ends of the i th third boosting unit are electrically connected to the fourth and third of the i-1th third boosting unit, respectively a terminal, 2≦i≦N-1, i is a positive integer; and wherein the first and second ends of the Nth third boosting unit are electrically connected to the N-1th third boosting unit respectively Waiting for the fourth and third ends, and the third and fourth ends of the Nth third boosting unit are electrically connected to the first end of the third capacitor and the anode of the third diode, respectively. 如請求項6所述的電源轉換器,其中,第j個第三升壓 單元,1≦j≦N,j為正整數,每一第j個第三升壓單元包括:一第四電容,電連接於該第j個第三升壓單元的該第二端與該第三端之間;一第四二極體,具有一電連接該第j個第三升壓單元之該第一端的陽極,及一電連接該第j個第三升壓單元之該第三端的陰極;一第五電容,電連接於該第四二極體之該陽極與該第j個第三升壓單元之該第四端之間;及一第五二極體,具有一電連接該第j個第三升壓單元之該第三端的陽極,及一電連接該第j個第三升壓單元之該第四端的陰極。 The power converter of claim 6, wherein the jth third boost a unit, 1≦j≦N, j is a positive integer, each jth third boosting unit includes: a fourth capacitor electrically connected to the second end of the jth third boosting unit and the first Between the three ends; a fourth diode having an anode electrically connected to the first end of the jth third boosting unit, and a third electrically connected to the jth third boosting unit a cathode of the terminal; a fifth capacitor electrically connected between the anode of the fourth diode and the fourth end of the jth third boosting unit; and a fifth diode having an electrical connection An anode of the third end of the jth third boosting unit, and a cathode electrically connected to the fourth end of the jth third boosting unit. 如請求項2所述的電源轉換器,其中,該第一一次側電感和該第一二次側電感組合成一第一耦合電感,該第二一次側電感和該第二二次側電感組合成一第二耦合電感。 The power converter of claim 2, wherein the first primary side inductance and the first secondary side inductance are combined into a first coupled inductor, the second primary side inductor and the second secondary side inductor A second coupled inductor is synthesized. 如請求項2所述的電源轉換器,其中,該第一開關和該第二開關中的每一者是一N型金氧半場效電晶體。 The power converter of claim 2, wherein each of the first switch and the second switch is an N-type MOS field effect transistor.
TW104108482A 2015-03-17 2015-03-17 Power converter TWI547085B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104108482A TWI547085B (en) 2015-03-17 2015-03-17 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104108482A TWI547085B (en) 2015-03-17 2015-03-17 Power converter

Publications (2)

Publication Number Publication Date
TWI547085B true TWI547085B (en) 2016-08-21
TW201635687A TW201635687A (en) 2016-10-01

Family

ID=57183840

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104108482A TWI547085B (en) 2015-03-17 2015-03-17 Power converter

Country Status (1)

Country Link
TW (1) TWI547085B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831147B (en) * 2022-03-11 2024-02-01 國立虎尾科技大學 Switch mode power supply circuit with high voltage output, and electrostatic spray apparatus and agricultural plant protection apparatus using the same

Also Published As

Publication number Publication date
TW201635687A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
US8098055B2 (en) Step-up converter systems and methods
TW200947842A (en) Method for regulating an output voltage
Torrico-Bascopé et al. A generalized high voltage gain boost converter based on three-state switching cell
TWI414139B (en) High voltage gain power converter
Porselvi et al. A novel single switch high gain dc-dc converter
TWI569566B (en) High voltage gain power converter
TWI565207B (en) Isolated high-step-up dc-dc converter
TWI547085B (en) Power converter
Li et al. A non-isolated high step-up converter with built-in transformer derived from its isolated counterpart
KR20140091477A (en) Switching regulator including charge pump
Kumar et al. Microcontroller based DC-DC Cascode Buck-Boost Converter
Arshadi et al. Novel grid-connected step-up boost-flyback inverter with ground leakage current elimination for ac-module application
CN113285596B (en) Buck-boost direct current converter and control method thereof
Stewart et al. Design and evaluation of hybrid switched capacitor converters for high voltage, high power density applications
Hwu et al. An isolated high step-up converter with continuous input current and LC snubber
TWI455465B (en) High pressurization device
TWI444811B (en) High boost ratio circuit
TW201717532A (en) Single-stage AC-to-DC converter
KR101372825B1 (en) Step up converter
Graziani et al. Isolated flying capacitor multilevel converters
Piansangsan et al. A voltage-lift switched inductor DC/DC multilevel boost converter
Kodama et al. Input-parallel-output-series two-stage interleaved dc-dc converter using coupled inductors
Tattiwong et al. Analysis and Design of a Tapped Inductor Boost Converter
US20090189447A1 (en) Multi-channel switching regulator
Vinh et al. Highly Efficient step-up Boost-Flyback coupled magnetic integrated converter for photovoltaic energy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees