TWI546636B - An intelligent adaptive control system - Google Patents

An intelligent adaptive control system Download PDF

Info

Publication number
TWI546636B
TWI546636B TW104143025A TW104143025A TWI546636B TW I546636 B TWI546636 B TW I546636B TW 104143025 A TW104143025 A TW 104143025A TW 104143025 A TW104143025 A TW 104143025A TW I546636 B TWI546636 B TW I546636B
Authority
TW
Taiwan
Prior art keywords
control
unit
feedback
control system
feedforward
Prior art date
Application number
TW104143025A
Other languages
Chinese (zh)
Other versions
TW201723696A (en
Inventor
簡宏益
利定東
胡智愷
邱顯智
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW104143025A priority Critical patent/TWI546636B/en
Application granted granted Critical
Publication of TWI546636B publication Critical patent/TWI546636B/en
Publication of TW201723696A publication Critical patent/TW201723696A/en

Links

Landscapes

  • Feedback Control In General (AREA)

Description

具智能調節之控制系統 Intelligent adjustment control system

本發明係關於一種控制系統,特別係一種具智能調節之控制系統。 The present invention relates to a control system, and more particularly to a control system with intelligent adjustment.

目前的大部分的控制系統係採用傳統式的比例-積分-微分控制(Proportional-Integral-Derivative Control,PID),其輸入值與輸出值不僅有誤差量大的缺點,其控制參數也無法自我進行調整,因此會造成系統的執行效率低落的問題,而且由於控制參數無法自我調整,在不同控制目標下(例如不同的目標溫度控制),也必須對控制系統進行修改,也就是說,原先設定好的控制參數都必須重新再設定才能因應不同的控制目標,因此也會造成成本的耗費。 Most of the current control systems use the traditional Proportional-Integral-Derivative Control (PID). The input and output values have not only the disadvantage of large error, but also the control parameters cannot be self-contained. Adjustment, therefore, will cause the system to perform inefficiently, and because the control parameters cannot be self-adjusted, the control system must be modified under different control targets (such as different target temperature control), that is, the original settings are good. The control parameters must be re-set in order to respond to different control objectives, which will also result in cost.

此外,目標受控體通常會具有多重物理耦合特性,因此控制系統的輸出值常常會受到環境上的不穩定的影響,而造成控制系統的延遲,舉例來說,假如控制系統係一個升溫系統,那麼加熱載台就會因為其質量、熱輻射、對流等環境因素,而使得控制系統延遲,並產生不穩定的輸出。 In addition, the target controlled body usually has multiple physical coupling characteristics, so the output value of the control system is often affected by environmental instability, causing delays in the control system. For example, if the control system is a heating system, Then heating the stage will delay the control system and produce an unstable output due to environmental factors such as mass, heat radiation, and convection.

有鑑於此,本發明提供一種改良的控制系統,其具有可自我調整控制參數的功效,並且可以解決系統延遲的不穩定,進而解決上述的問題。 In view of this, the present invention provides an improved control system that has the effect of self-adjusting control parameters and can address the instability of system delays, thereby solving the above problems.

本發明的一目的係提供一種具智能調節之控制系統,包含:一輸入單元,用以取得使用者所輸入的一輸入訊號;一誤差計算單元,將該輸入訊號與一輸出訊號進行運算以產生一誤差訊號;一前饋運算單元,對該輸入訊號執行一前饋控制法則;一回授運算單元,對該輸入訊號執行與該誤差訊號相關的一回授控制法則;一優化單元,用以調整該前饋控制法則及該回授控制法則;以及一運算結合單元,根據該前饋運算單元及該回授運算單元的運算結果產生一控制器輸出,並將該控制器輸出傳送至一受控體;其中,該優化單元係根據該誤差訊號來調整該前饋控制法則及該回授控制法則。由此可知,藉由優化單元的調整,本發明的控制系統具有可自我調整參數之功能,進而解決傳統PID在不同的控制目標下必須要重新設定的問題。 An object of the present invention is to provide a control system with intelligent adjustment, comprising: an input unit for acquiring an input signal input by a user; and an error calculation unit for calculating the input signal and an output signal to generate An error signal; a feedforward operation unit, performing a feedforward control rule on the input signal; a feedback operation unit performing a feedback control law related to the error signal on the input signal; and an optimization unit for Adjusting the feedforward control rule and the feedback control rule; and an operation combining unit, generating a controller output according to the operation result of the feedforward operation unit and the feedback operation unit, and transmitting the controller output to a receiver a control unit; wherein the optimization unit adjusts the feedforward control law and the feedback control rule according to the error signal. It can be seen that, by adjusting the optimization unit, the control system of the present invention has the function of self-adjusting parameters, thereby solving the problem that the traditional PID must be reset under different control objectives.

在一實施例裡,該優化單元對該前饋運算單元的前饋控制法以及該回授運算單元的回授控制法則則所執行的優化調整,係基於李亞普諾夫函數(Lyapunov function)。 In an embodiment, the optimization unit performs a feedforward control method for the feedforward operation unit and an optimization adjustment performed by the feedback control rule of the feedback operation unit based on a Lyapunov function.

在一實施例裡,該具智能調節之控制系統更包含一補償單元即一第二運算結合單元,該補償單元用以對該控制器輸出進行運算以消除系統的延遲,該第二運算結合單元用以將該控制器輸出通過該受控體後的結果與該控制輸出通過該補償單元的運算結果結合,並回傳至該誤差計算單元。藉此,系統的延遲項可經由不斷地回授而被消除,使得系統的輸出結果穩定。 In an embodiment, the intelligent adjustment control system further includes a compensation unit, that is, a second operation combination unit, the compensation unit is configured to perform operation on the controller output to eliminate delay of the system, and the second operation combination unit The result of outputting the controller through the controlled body is combined with the operation result of the control output through the compensation unit, and is transmitted back to the error calculating unit. Thereby, the delay term of the system can be eliminated through continuous feedback, so that the output of the system is stable.

1‧‧‧控制系統 1‧‧‧Control system

10、100‧‧‧輸入單元 10, 100‧‧‧ input unit

12、120‧‧‧誤差計算單元 12, 120‧‧‧ error calculation unit

14、140‧‧‧前饋運算單元 14, 140‧‧‧ feedforward computing unit

15‧‧‧前饋控制法則 15‧‧‧Feed-for-control law

16、160‧‧‧回授運算單元 16, 160‧‧‧Return arithmetic unit

17‧‧‧回授控制法則 17‧‧‧Reward control law

18、180‧‧‧優化單元 18, 180‧‧‧Optimization unit

20、200‧‧‧運算結合單元 20, 200‧‧‧ computing combination unit

22、220‧‧‧輸出單元 22, 220‧‧‧ Output unit

240‧‧‧補償單元 240‧‧‧Compensation unit

260‧‧‧第二運算結合單元 260‧‧‧Second operation combining unit

yd‧‧‧輸入訊號 Yd‧‧‧Input signal

e‧‧‧誤差訊號 e‧‧‧Error signal

y old ‧‧‧前次執行所產生的輸出訊號 y old ‧‧‧Output signal generated by previous execution

y‧‧‧輸出訊號 y‧‧‧Output signal

e new ‧‧‧新的誤差訊號 e new ‧‧‧ new error signal

G‧‧‧預測轉移函數 Prediction transfer function G ‧‧‧

Y‧‧‧控制輸出 Y ‧‧‧Control output

U‧‧‧控制輸入 U ‧‧‧Control input

M、C、 K‧‧‧系統參數的倒數 M, C, K‧‧‧Reciprocal of system parameters

u‧‧‧控制器輸出 u‧‧‧Controller output

U‧‧‧控制輸入 U‧‧‧Control input

u ff ‧‧‧前饋控制法則 u ff ‧‧‧Feed-for-control law

u fb ‧‧‧回授控制法則 u fb ‧‧‧ feedback control law

ym‧‧‧回授訊號 Ym‧‧‧Reward signal

α k ,α c ,α M ,β K ,β C ,β M ,α i ,α p ,α d ,β i ,β p ,β d ‧‧‧適應性增益參數 α k , α c , α M , β K , β C , β M , α i , α p , α d , β i , β p , β d ‧‧‧adaptive gain parameters

x 1‧‧‧誤差訊號e對時間的積分 x 1 ‧ ‧ integral of error signal e over time

G m ‧‧‧特殊轉移函數 G m ‧‧‧ special transfer function

x 3‧‧‧誤差訊號e對時間的微分 x 3 ‧‧‧Error signal e to time differentiation

e -Ts ‧‧‧延遲參數 e -Ts ‧‧‧delay parameters

ym old ‧‧‧前次執行所產生的回授訊號 ym old ‧‧‧ previous execution generated feedback signal

S21~S28‧‧‧步驟 S21~S28‧‧‧Steps

S51~S58‧‧‧步驟 S51~S58‧‧‧Steps

k p ‧‧‧比例控制增益 k p ‧‧‧Proportional control gain

k d ‧‧‧微分控制增益 k d ‧‧‧ differential control gain

k i ‧‧‧積分控制增益 k i ‧‧‧Integral control gain

圖1係本發明之具智能調節之控制系統之一第一實施態樣之系統架構示意圖。 1 is a schematic diagram of a system architecture of a first embodiment of a control system with intelligent adjustment according to the present invention.

圖2係本發明之第一實施態樣的一系統執行流程圖。 Figure 2 is a system execution flow chart of the first embodiment of the present invention.

圖3(A)係傳統的PID控制系統在溫度控制下的模擬數據示意圖。 Figure 3 (A) is a schematic diagram of simulated data of a conventional PID control system under temperature control.

圖3(B)係傳統的PID控制系統在溫度控制下的另一模擬數據示意圖。 Figure 3 (B) is a schematic diagram of another analog data of a conventional PID control system under temperature control.

圖3(C)係本發明具智能調節之控制系統1在溫度控制下的模擬數據示意圖。 FIG. 3(C) is a schematic diagram of simulation data of the control system 1 with intelligent adjustment according to the present invention under temperature control.

圖3(D)係本發明具智能調節之控制系統1在溫度控制下的另一模擬數據示意圖。 FIG. 3(D) is a schematic diagram of another simulation data of the control system 1 with intelligent adjustment according to the present invention under temperature control.

圖4係本發明之具智能調節之控制系統1之一第二實施態樣之系統架構示意圖。 4 is a schematic diagram of a system architecture of a second embodiment of the intelligent control system 1 of the present invention.

圖5係本發明之第二實施態樣的一系統執行流程圖。 Figure 5 is a system execution flow diagram of a second embodiment of the present invention.

圖6(A)係本發明具智能調節之控制系統1之第二實施態樣在溫度控制下的模擬數據示意圖。 Fig. 6(A) is a schematic view showing the simulation data of the second embodiment of the control system 1 with intelligent adjustment according to the present invention under temperature control.

圖6(B)係本發明具智能調節之控制系統1之第二實施態樣在溫度控制下的另一模擬數據示意圖。 Fig. 6(B) is a schematic view showing another simulation data of the second embodiment of the intelligent control system 1 of the present invention under temperature control.

圖1係本發明之一種具智能調節之控制系統1之一第一實施態樣之系統架構示意圖,如圖1所示,該具智能調節之控制系統1包含一輸入單元10、一誤差計算單元12、一前饋運算單元14、一回授運算單元16、一優化單元18、一運算結合單元20及一輸出單元22。其中,該輸入單元10係與該誤差計算單元12及該前饋運算單元14連結,該誤差計算單元12與該回授控制運算單元16連結,該前饋 運算單元14續與該回授運算單元16與該運算結合單元20連結,之後,該運算結合單元20輸出的一訊號將對一受控物進行控制,而該受控物的受控結果會經由該輸出單元22而被輸出,且該輸出單元續與該誤差計算單元12連結,以將該受控結果傳輸至該誤差計算單元12。此外,該誤差計算單元12亦與該優化單元18連結,該優化單元續與該前饋運算單元14及該回授運算單元16連結。 1 is a schematic diagram of a system architecture of a first embodiment of a control system 1 with intelligent adjustment according to the present invention. As shown in FIG. 1, the control system 1 with intelligent adjustment includes an input unit 10 and an error calculation unit. 12. A feedforward operation unit 14, a feedback operation unit 16, an optimization unit 18, an operation combining unit 20, and an output unit 22. The input unit 10 is coupled to the error calculation unit 12 and the feedforward operation unit 14, and the error calculation unit 12 is coupled to the feedback control operation unit 16, and the feedforward The computing unit 14 continues to be coupled to the computing unit 16 and the computing unit 20. Thereafter, a signal output by the computing unit 20 controls a controlled object, and the controlled result of the controlled object is controlled. The output unit 22 is output, and the output unit continues to be coupled to the error calculation unit 12 to transmit the controlled result to the error calculation unit 12. In addition, the error calculation unit 12 is also coupled to the optimization unit 18, which is continuously coupled to the feedforward operation unit 14 and the feedback operation unit 16.

在一較佳實施例裡,本發明所述的各種單元係由演算法所構成,並藉由具備微處理器的裝置來執行。 In a preferred embodiment, the various units of the present invention are comprised of algorithms and are executed by a device having a microprocessor.

在一實施例裡,該輸入單元10係用以取得使用者所輸入的一輸入訊號y d ,舉例來說,假如本發明之具智能調節之控制系統1係使用於溫度控制上,則該輸入訊號y d 即為使用者所設定的一目標溫度值,經由控制後可使該受控物達到該目標溫度值,又假如本發明之控制系統1係用於位置控制,那麼該輸入訊號y d 即為使用者所設定的一目標位置,經由控制後可使該受控物到達該目標位置。該誤差計算單元12係一運算程序,用以將該輸入訊號y d 與該控制系統1前次執行所產生的一輸出訊號y old 進行相減以得到一誤差訊號e,並將該誤差訊號e傳送至該回授運算單元16。該前饋運算單元14係一前饋控制器,用以依照一前饋控制法則15對該輸入訊號y d 執行一運算,以達到前饋控制的目的。該回授運算單元16係一回授控制器,由該誤差計算單元12處取得該誤差訊號e,並依照一回授控制法則17對該誤差訊號e執行一運算,以達到回授控制的目的。該運算結合單元20係一運算程序,其係根據該前饋運算單元14及該回授運算單元16的運算結果產生一控制器輸出u,並利用該控制器輸出u來控制該受控體。該受控體接受該控制器輸出u的控制後,該輸出單元22會將實際的控制結果輸出,以產生新的輸出訊號y,該輸出訊號y會被該輸出單元22傳回該誤差計算單元12處,以進 行新一次的加減運算,並產生新的誤差訊號e new ,之後該誤差訊號e new 再被交由該回授運算單元16來進行再一次的回授運算。 In an embodiment, the input unit 10 is configured to obtain an input signal y d input by a user. For example, if the intelligent control system 1 of the present invention is used for temperature control, the input is The signal y d is a target temperature value set by the user, and the controlled object can be controlled to reach the target temperature value, and if the control system 1 of the present invention is used for position control, the input signal y d That is, a target position set by the user can be controlled to reach the target position. The error calculation unit 12 is an operation program for subtracting the input signal y d from an output signal y old generated by the previous execution of the control system 1 to obtain an error signal e, and the error signal e It is transmitted to the feedback arithmetic unit 16. The feedforward computing unit 14 is a feedforward controller for performing an operation on the input signal y d according to a feedforward control law 15 for the purpose of feedforward control. The feedback computing unit 16 is a feedback controller, and the error signal e is obtained by the error calculating unit 12, and an operation is performed on the error signal e according to a feedback control law 17 to achieve the purpose of feedback control. . The operation combining unit 20 is an arithmetic program that generates a controller output u according to the operation result of the feedforward operation unit 14 and the feedback operation unit 16, and controls the controlled body by using the controller output u. After the controlled body receives the control of the controller output u, the output unit 22 outputs the actual control result to generate a new output signal y, and the output signal y is transmitted back to the error calculating unit by the output unit 22. At 12, a new addition and subtraction operation is performed, and a new error signal e new is generated, and then the error signal e new is again subjected to the feedback operation unit 16 for another feedback operation.

值得注意的係,本發明更具備了該優化單元18。該優化單元18可使整體系統產生一適應性的控制,使得本系統達到自行調控參數的功效。在執行上,該優化單元18係由該誤差計算單元12處而取得該誤差訊號e,並根據該誤差訊號e對該前饋運算單元14的該前饋運算法則15以及該回授運算單元16的該回授運算法則17進行調整,換言之,由於該控制系統1每執行一次控制流程就會產生新的誤差訊號e new 來取代原本的誤差訊號e,因此本發明的該前饋運算法則15及該回授運算法則17將不斷地根據誤差訊號e的變化而改變。藉此,控制的效果將可以更加地精準,且更快地達到目標值。 It is worth noting that the present invention is further provided with the optimization unit 18. The optimization unit 18 can produce an adaptive control of the overall system, so that the system achieves the effect of self-regulating parameters. In operation, the optimization unit 18 obtains the error signal e from the error calculation unit 12, and the feedforward algorithm 15 and the feedback operation unit 16 of the feedforward operation unit 14 according to the error signal e. The feedback algorithm 17 is adjusted. In other words, since the control system 1 generates a new error signal e new to replace the original error signal e every time the control flow is executed, the feedforward algorithm 15 of the present invention The feedback algorithm 17 will constantly change according to the change of the error signal e. Thereby, the effect of the control will be more accurate and reach the target value faster.

較佳地,該前饋運算單元14、該回授運算單元16以及該優化單元18係以程式軟體的形式被載入於電腦系統中,並由電腦執行該等程式軟體,而達到控制的目的。 Preferably, the feedforward computing unit 14, the feedback computing unit 16, and the optimization unit 18 are loaded into the computer system in the form of a program software, and the software is executed by the computer for control purposes. .

其中,本發明之控制系統1的一預測轉移函數為G,其可表示為本控制系統1的控制輸出Y與控制輸入U之間的關係。該預測轉移函數G係與該受控物的配置相關,舉例來說,假如用在溫度控制下,該預測轉移函數G係可能與受控物的一料管的轉移函數及一加熱片的轉移函數相關。而該受控物的配置考慮至該預測轉移函數為G後,經由運算整理可以取得控制系統1的複數個相關參數M、C及K(例如系統參數的倒數)。其中,該控制輸入U係可表示為: 其中,u為系統的控制輸入,y為該輸出訊號,M、C及K係與該受控物的配置相關的系統參數,並可由多組輸入訊號u及輸出訊號y經由最小平方法運算所求出。 Wherein, a predictive transfer function of the control system 1 of the present invention is G , which can be expressed as a relationship between the control output Y of the control system 1 and the control input U. The predicted transfer function G is related to the configuration of the controlled object. For example, if used under temperature control, the predicted transfer function G may be a transfer function of a tube with a controlled substance and a transfer of a heating piece. Function related. The configuration of the controlled object takes into account that the predicted transfer function is G , and a plurality of related parameters M, C, and K (for example, the reciprocal of the system parameters) of the control system 1 can be obtained through arithmetic operations. Wherein, the control input U can be expressed as: Where u is the control input of the system, y is the output signal, and M, C, and K are system parameters related to the configuration of the controlled object, and can be operated by a plurality of sets of input signals u and output signals y via a least squares method Find out.

值得注意的係,該系統的控制輸入u可視為該控制系統1對該受控物的控制,換言之,該系統的控制輸入u即可視為該控制器輸出u。 It is worth noting that the control input u of the system can be regarded as the control of the controlled object by the control system 1, in other words, the control input u of the system can be regarded as the controller output u.

在一較佳實施例裡,該前饋運算單元14所執行的該前饋運算法則15,係符合下列算式: 其中,u ff 係該前饋控制法則15,yd係該輸入訊號。 In a preferred embodiment, the feedforward algorithm 15 performed by the feedforward operation unit 14 conforms to the following equation: Where u ff is the feedforward control law 15, y d is the input signal.

該回授運算單元16所執行的該回授運算法則17較佳係具備比例控制、積分控制及微分控制三者至少之一有關。舉例來說,該回授運算法則17可以單獨係比例控制、積分控制或微分控制,也可以係三種控制中任二者的組合,也可以係同時具備三種控制的組合。該回授運算法則17係取決於本發明的控制系統1的應用。因此,該回授運算法則17係可能具有下列的情況。 The feedback algorithm 17 executed by the feedback arithmetic unit 16 is preferably related to at least one of proportional control, integral control, and differential control. For example, the feedback algorithm 17 can be a separate proportional control, integral control, or differential control, or a combination of any of the three controls, or a combination of the three controls. This feedback algorithm 17 is dependent on the application of the control system 1 of the present invention. Therefore, the feedback algorithm 17 may have the following conditions.

在該回授運算法則17係比例控制的情況下,該回授運算法則17係可表示為:u fb =k p e;其中u fb 係該回授控制法則17,e為該誤差訊號,k p 為比例控制增益。 In the case of the feedback algorithm 17 system proportional control, the feedback algorithm 17 can be expressed as: u fb = k p e ; where u fb is the feedback control law 17, e is the error signal, k p is the proportional control gain.

在該回授運算法則17係積分控制的情況下,該回授運算法則17係可表示為: In the case where the feedback algorithm is 17-integral control, the feedback algorithm 17 can be expressed as:

其中k i 為積分控制增益。 Where k i is the integral control gain.

在該回授運算法則17係微分控制的情況下,該回授運算法則17係可表示為: In the case of the feedback algorithm 17 series differential control, the feedback algorithm 17 can be expressed as:

其中k d 為微分控制增益。 Where k d is the differential control gain.

在該回授運算法則17必須同時具備比例控制、積分控制以及微分控制的情況下,該回授運算法則17即為三種控制的組合,即該回授運算法則17係可表示為: In the case where the feedback algorithm 17 must have both proportional control, integral control, and differential control, the feedback algorithm 17 is a combination of three types of control, that is, the feedback algorithm 17 can be expressed as:

同理,在該回授控制法則17具備兩種控制時,其亦可被視為係該二種控制的組合。為了使本發明的說明更加明確,之後將以該回授運算法則17同時具備了比例控制、積分控制以及微分控制的情況來進行說明。 Similarly, when the feedback control law 17 has two kinds of controls, it can also be regarded as a combination of the two types of control. In order to clarify the description of the present invention, the case where the feedback control algorithm 17 includes proportional control, integral control, and differential control will be described later.

該運算結合單元20係一運算結合程序,其所產生的該控制器輸出u係將該輸入訊號yd經由該前饋運算單元14所執行的該前饋運算法則15後的結果與該誤差訊號e經由該回授運算單元16所執行的回授運算法則17後的結果結合,並施加於該受控體來進行控制。其中,該運算結合單元20所產生的該控制器輸出u係可表示為:u=u ff +u fb The operation combining unit 20 is an operation combining program, and the controller output u generated by the controller is the result of the feed signal yd passing through the feedforward algorithm 15 executed by the feedforward operation unit 14 and the error signal e. The results after the feedback algorithm 17 executed by the feedback arithmetic unit 16 are combined and applied to the controlled body for control. The controller output u generated by the operation combining unit 20 can be expressed as: u = u ff + u fb .

當該受控體接收該控制器輸出u的控制後所產生的實際的輸出訊號y’將會被該輸出單元22傳送回該誤差計算單元12,並取代該控制系統1前次執行的輸出訊號y old 而與該輸入訊號yd再次進行相減運算,相減運算後所產生的誤 差訊號e new 會取代原本的誤差訊號e,並被傳送至該優化單元18來調整該前饋運算法則15及該回授運算法則17,同時也會被傳送至該回授運算單元16來進行新的回授運算。 When the controlled body receives the control of the controller output u, the actual output signal y' generated by the output unit 22 will be transmitted back to the error calculating unit 12, and replaces the output signal previously executed by the control system 1. y old and the subtraction operation is performed again with the input signal yd, and the error signal e new generated after the subtraction operation replaces the original error signal e and is transmitted to the optimization unit 18 to adjust the feedforward algorithm 15 and The feedback algorithm 17 is also transmitted to the feedback arithmetic unit 16 for a new feedback operation.

值得注意的係,該優化單元18係不斷地根據該誤差訊號e的變化來優化調整該前饋運算單元14及該回授運算單元16所執行的該等運算法則15、17。其中,優化後的該前饋運算法則15及該回授運算法則17將會滿足李亞普諾夫穩定性(Lyapunov stability)。 It is to be noted that the optimization unit 18 continually optimizes and adjusts the algorithms 15 and 17 executed by the feedforward operation unit 14 and the feedback operation unit 16 according to the change of the error signal e. Among them, the optimized feedforward algorithm 15 and the feedback algorithm 17 will satisfy the Lyapunov stability.

其中,該優化單元18調整後的該前饋控制法則15的複數個運算參數係符合下列算式: 其中,α k α c α M β K β C β M 為必須為正數的適應性增益參數,R為該誤差訊號e的正定矩陣表示形式。 The plurality of operational parameters of the feedforward control rule 15 adjusted by the optimization unit 18 are in accordance with the following formula: Where α k , α c , α M , β K , β C and β M are adaptive gain parameters which must be positive, and R is a positive definite matrix representation of the error signal e.

該優化單元18調整後的該回授控制法則17的複數個運算參數係符合下列算式: 其中,α i α p α d β i β p β d 為必須為正數的適應性增益參數,x1為該誤差訊號e對時間的積分,x2為該誤差訊號e,x3為該誤差訊號e對時間的微分。 The plurality of operational parameters of the feedback control rule 17 adjusted by the optimization unit 18 conform to the following formula: Where α i , α p , α d , β i , β p and β d are adaptive gain parameters which must be positive, x 1 is the integral of the error signal e with respect to time, and x 2 is the error signal e, x 3 is the differentiation of the error signal e from time.

其中,該等適應性增益參數係將該控制器輸出u以及控制輸入U的算式結合並轉換為狀態空間形式(矩陣形式)後,再將其代入一誤差參考模型來取得一適應性誤差的微分方程式,之後再將該適應性誤差的微分方程式代入李亞普諾夫(Lyapunov)準則中,以確保系統產生的誤差能夠被收斂至零,即使得該輸出訊號y’可跟隨所設定的輸入訊號yd。由於上述該等適應性增益參數的推導過程係屬於該領域具通常知識者可以領會的數學運算,故在此不再詳述其推導過程。 Wherein, the adaptive gain parameters combine the controller output u and the control input U into a state space form (matrix form), and then substitute it into an error reference model to obtain an adaptive error differential. The equation is then substituted into the Lyapunov criterion to ensure that the error generated by the system can be converged to zero, that is, the output signal y' can follow the set input signal yd. Since the derivation process of the above adaptive gain parameters is a mathematical operation that can be understood by those skilled in the art, the derivation process will not be described in detail herein.

該控制系統1將不斷地重複上述該輸入單元10、該誤差計算單元12、該前饋運算單元14、該回授運算單元16、該優化單元18、該運算結合單元20及該輸出單元22的運作,直到該誤差計算單元12所產生的誤差訊號e的值為0。由於在誤差值為0時,該輸入訊號yd將等同於輸出訊號y,即該受控物受控制後實際的輸出等於使用者所輸入的目標值。藉此,本發明可以使系統不斷地調整該前饋運算單元14及該回授運算單元16的運作來改變系統的控制輸入u(即該控制器輸出u),使得該受控物可以更快地達到目標值。 The control system 1 will continually repeat the above-described input unit 10, the error calculation unit 12, the feedforward operation unit 14, the feedback operation unit 16, the optimization unit 18, the operation combining unit 20, and the output unit 22. It operates until the value of the error signal e generated by the error calculating unit 12 is zero. Since the input signal yd will be equivalent to the output signal y when the error value is 0, that is, the actual output of the controlled object is equal to the target value input by the user. Thereby, the present invention can make the system continuously adjust the operation of the feedforward operation unit 14 and the feedback operation unit 16 to change the control input u of the system (ie, the controller output u), so that the controlled object can be faster. The ground reaches the target value.

圖2係本發明之第一實施態樣的一系統執行流程圖,其係以本發明之控制系統使用於溫度控制上作為舉例,但值得注意的係本發明並不只限於溫度控制,本發明實際上可適用於各類型的控制。首先步驟S21被執行,該輸入單元12接收使用者所輸入的該輸入訊號yd,其中該輸入訊號yd代表了使用者希望該受控物所達到的目標溫度值。之後步驟S22被執行,該誤差計算單元12將代表該目標溫度值的該輸入訊號yd與代表系統前次執行結果的該輸出訊號y old 進行比較,並產生該誤差訊號e。之後步驟S23被執行,該優化單元18根據該誤差值對該前饋運算單元14所進行的該前饋運算法則15以及該回授運算單元16所進行的該 回授運算法則17進行調整。之後步驟S24被執行,該前饋運算單元14根據優化後的該前饋運算法則15對該輸入訊號yd進行前饋運算,並將運算結果傳送至該運算結合單元20。同時,步驟S25被執行,該回授運算單元16根據優化後的該回授控制法則17對該誤差訊號e執行回授運算,並將運算結果傳送至該運算結合單元20。之後步驟S26被執行,該運算結合單元20將前饋運算的該運算結果及回授運算的該運算結果結合以產生該控制器輸出u。之後步驟S27被執行,該控制系統1根據該控制器輸出u對該受控體進行溫度控制。之後步驟S28被執行,該輸出單元22將代表該受控體受控後的實際溫度值的該輸出訊號y回傳至該誤差計算單元12。由於該優化單元18係根據李亞普諾夫穩定性來優化本系統的前饋運算及回授運算,再重複進行步驟S22至S28的情況下,該誤差訊號e將會逐漸趨近於0,使得實際溫度值可以與目標溫度值相同。 2 is a system execution flow chart of the first embodiment of the present invention, which is used as an example for the control system of the present invention for temperature control, but it is noted that the present invention is not limited to temperature control, and the present invention is actually It can be applied to all types of controls. First, step S21 is executed. The input unit 12 receives the input signal yd input by the user, wherein the input signal yd represents a target temperature value that the user desires the controlled object to reach. Then, step S22 is executed, and the error calculating unit 12 compares the input signal yd representing the target temperature value with the output signal y old representing the previous execution result of the system, and generates the error signal e. Thereafter, step S23 is executed, and the optimization unit 18 adjusts the feedforward algorithm 15 performed by the feedforward operation unit 14 and the feedback algorithm 17 performed by the feedback operation unit 16 based on the error value. Then, step S24 is executed. The feedforward operation unit 14 performs a feedforward operation on the input signal yd according to the optimized feedforward algorithm 15 and transmits the operation result to the operation combining unit 20. At the same time, step S25 is executed, and the feedback operation unit 16 performs a feedback operation on the error signal e according to the optimized feedback control rule 17, and transmits the operation result to the operation combining unit 20. Thereafter, step S26 is executed, and the operation combining unit 20 combines the operation result of the feedforward operation and the operation result of the feedback operation to generate the controller output u. Thereafter, step S27 is executed, and the control system 1 performs temperature control on the controlled body according to the controller output u. Thereafter, step S28 is executed, and the output unit 22 returns the output signal y representing the actual temperature value controlled by the controlled body to the error calculating unit 12. Since the optimization unit 18 optimizes the feedforward operation and the feedback operation of the system according to the Lyapunov stability, and repeats the steps S22 to S28, the error signal e will gradually approach 0, so that the actual The temperature value can be the same as the target temperature value.

圖3(A)及3(B)係傳統的PID控制系統在溫度控制下的結果示意圖。其中,橫軸係系統執行的時間,縱軸係系統的輸出結果。由圖3(A)可知,傳統的PID控制系統在目標溫度為100度時,必須在時間1500秒後方可使該受控物達到目標溫度,且趨於穩定。由圖3(B)可知,傳統的PID控制系統在目標溫度為120度時,控制系統即便執行了一較長的時間,仍無法使該受控物達到目標溫度。 Figures 3(A) and 3(B) are diagrams showing the results of a conventional PID control system under temperature control. Among them, the horizontal axis system performs the time, and the vertical axis system outputs the result. As can be seen from FIG. 3(A), when the target temperature is 100 degrees, the conventional PID control system must make the controlled object reach the target temperature after 1500 seconds and tend to be stable. As can be seen from Fig. 3(B), when the target PID temperature is 120 degrees, the control system cannot achieve the target temperature even if it is executed for a long time.

圖3(C)及3(D)係本發明具智能調節之控制系統1在溫度控制下的結果示意圖。由圖3(C)可知,本發明的控制系統1在目標溫度為100度時,在時間約1500秒後可使該受控物達到目標溫度。而由圖3(D)可知,本發明的控制系統1在目標溫度為120度時,也只需要時間到達約2000秒時,就可使該受控物達到目標溫度。 3(C) and 3(D) are diagrams showing the results of the control system 1 with intelligent adjustment according to the present invention under temperature control. As can be seen from Fig. 3(C), the control system 1 of the present invention can bring the controlled object to the target temperature after the time is about 1500 seconds when the target temperature is 100 degrees. As can be seen from Fig. 3(D), the control system 1 of the present invention can bring the controlled object to the target temperature when the target temperature is 120 degrees and only takes about 2000 seconds.

請再次參考圖3(A)至3(D),不論是傳統的PID控制系統或是本發明具智能調節之控制系統1,該等的輸出值在達到目標溫度後仍處於不平穩的狀態。該等不穩定的訊號往往係因為控制環境變數的影響所造成的控制系統延遲所造成,因此若需要將輸出的訊號穩定下來,則必須再針對系統延遲的問題進行處理。 Referring again to FIGS. 3(A) to 3(D), whether the conventional PID control system or the control system 1 with intelligent adjustment of the present invention, the output values are still in an unstable state after reaching the target temperature. These unstable signals are often caused by the delay of the control system caused by the influence of the control environment variables. Therefore, if the output signal needs to be stabilized, the problem of system delay must be dealt with.

圖4係本發明之具智能調節之控制系統1之一第二實施態樣之系統架構示意圖,與第一實施態樣相似,本發明之第二實施態樣亦包含一輸入單元100、一誤差計算單元120、一前饋運算單元140、一回授運算單元160、一優化單元180、一運算結合單元200及一輸出單元220。此外,該控制系統1的第二實施態樣更包含了一補償單元240及一第二運算結合單元260。 4 is a schematic diagram of a system architecture of a second embodiment of the intelligent control system 1 of the present invention. Similar to the first embodiment, the second embodiment of the present invention also includes an input unit 100 and an error. The calculation unit 120, a feedforward operation unit 140, a feedback operation unit 160, an optimization unit 180, an operation combination unit 200, and an output unit 220. In addition, the second implementation of the control system 1 further includes a compensation unit 240 and a second operation combining unit 260.

在一較佳實施例裡,上述的各種單元係由演算法所構成,並藉由具備微處理器的裝置來執行。 In a preferred embodiment, the various units described above are comprised of algorithms and are executed by a device having a microprocessor.

相似地,該輸入單元100係與該誤差計算單元120及該前饋運算單元140連結,該誤差計算單元120與該回授控制運算單元160連結,該前饋運算單元140續與該回授運算單元160與該運算結合單元200連結,該誤差計算單元120亦與該優化單元180連結,該優化單元180續與該前饋運算單元140及該回授運算單元160連結。與第一實施態樣不同的係,該運算結合單元200除了經由該受控物而與該輸出單元220連結外,亦連結至該補償單元240。此外,該第二運算結合單元260與該補償單元240、該輸出單元220連結及該誤差計算單元120連結。 Similarly, the input unit 100 is coupled to the error calculation unit 120 and the feedforward operation unit 140. The error calculation unit 120 is coupled to the feedback control operation unit 160. The feedforward operation unit 140 continues with the feedback operation. The unit 160 is coupled to the calculation combining unit 200. The error calculating unit 120 is also coupled to the optimization unit 180. The optimization unit 180 is continuously coupled to the feedforward computing unit 140 and the feedback computing unit 160. Different from the first embodiment, the operation combining unit 200 is connected to the compensation unit 240 in addition to the output unit 220 via the controlled object. In addition, the second operation combining unit 260 is coupled to the compensation unit 240 and the output unit 220 and coupled to the error calculating unit 120.

該輸入單元100、該前饋運算單元140、該回授運算單元160及該優化單元180所執行的可適性控制與該第一實施態樣相同,故在此不再詳述。 The adaptive control performed by the input unit 100, the feedforward operation unit 140, the feedback operation unit 160, and the optimization unit 180 is the same as that of the first embodiment, and therefore will not be described in detail herein.

該誤差計算單元120會將一輸入訊號yd(目標值)與一回授訊號ym old 進行比較,以產生一誤差訊號e。該回授訊號ym old 係系統前次執行所產生的一輸出訊號y old 與該補償單元240所產生的一或多個訊號之結合。 The error calculation unit 120 compares an input signal yd (target value) with a feedback signal ym old to generate an error signal e. The feedback signal ym old is a combination of an output signal y old generated by the previous execution of the system and one or more signals generated by the compensation unit 240.

該補償單元240係用以解決系統延遲的問題,當該補償單元240從該運算結合單元200處取得該控制器輸出u後,該補償單元240會對該控制器輸出u執行運算,並將運算結果傳送至該第二運算結合單元260。在一實施例裡,該補償單元240係利用一特殊轉移函數G m 與一延遲參數e -Ts 來對該控制器輸出u進行運算。較佳地,該補償單元240係一史密斯估測器。其中,該特殊轉移函數G m 係利用最小平方法所取得的函數,其係由多組測量結果所找出的一最佳的系統轉移函數。 The compensation unit 240 is used to solve the problem of system delay. When the compensation unit 240 obtains the controller output u from the operation combining unit 200, the compensation unit 240 performs an operation on the controller output u, and performs an operation. The result is transmitted to the second operation combining unit 260. In one embodiment, the compensation unit 240 of the system using a particular transfer function G m and a delay parameter e -Ts performs operation on the controller output u. Preferably, the compensation unit 240 is a Smith estimator. Wherein the transfer function G m special function using the least squares method based achieved, which is an optimum system-based measurements by a plurality of sets of the identified transfer function.

該第二運算結合單元260將來自該輸出單元220的該受控物的輸出訊號y與來自該補償單元240的運算結果結合,並將該結合後的一回授訊號ym傳送至該誤差計算單元120。 The second operation combining unit 260 combines the output signal y of the controlled object from the output unit 220 with the operation result from the compensation unit 240, and transmits the combined feedback signal ym to the error calculation unit. 120.

該補償單元240的運算結果係可表示為:G m e -Ts ,其中G m 可視為利用最小平方法所取得的一最佳系統轉移函數。 The operation result of the compensation unit 240 can be expressed as: G m e -Ts , where G m can be regarded as an optimal system transfer function obtained by the least squares method.

值得注意的係,在第二實施態樣裡,該誤差計算單元120所產生的一誤差訊號e係該輸入訊號yd與該結合後的該回授訊號ym的差值。藉由該結合後的訊號ym不斷地被傳回該誤差計算單元120進行運算,當該誤差訊號e為0時,系統的延遲可以被消除。 It should be noted that in the second embodiment, an error signal e generated by the error calculation unit 120 is a difference between the input signal yd and the combined feedback signal ym. The combined signal ym is continuously transmitted back to the error calculation unit 120 for calculation. When the error signal e is 0, the delay of the system can be eliminated.

再一較佳實施例裡,該控制系統消除掉系統延遲後的轉移函數係可表示為: In still another preferred embodiment, the transfer function after the control system eliminates the system delay can be expressed as:

其中,係該控制系統消除掉系統延遲後的轉移函數,G係該控制系統未消除系統延遲前的該預測轉移函數,G m 為利用最小平方法所取得的最佳系統轉移函數,e -Ts 為延遲參數,T為系統的延遲時間,s為拉普拉斯運算子或微分運算子。 among them, The control system eliminates the transfer function after the system delay, G is the control system does not eliminate the predicted transfer function before the system delay, G m is the optimal system transfer function obtained by the least squares method, and e -Ts is the delay The parameter, T is the delay time of the system, and s is the Laplacian operator or the differential operator.

圖5係本發明之第二實施態樣的一系統執行流程圖,其係以本發明之控制系統使用於溫度控制上作為舉例,但值得注意的係本發明並不只限於溫度控制,本發明實際上可適用於各類型的控制。首先步驟S51被執行,該輸入單元100接收代表目標溫度值的該輸入訊號yd。之後步驟S52被執行,該誤差計算單元120將代表該目標溫度值的該輸入訊號yd與前次執行所產生的回授訊號ym old 進行比較,並產生一誤差訊號e。之後步驟S53被執行,該優化單元180根據該誤差訊號e對該前饋運算單元140所進行的該前饋運算法則15以及該回授運算單元160所進行的該回授運算法則17進行調整。之後步驟S54被執行,該前饋運算單元140根據優化後的該前饋運算法則15對該輸入訊號yd進行前饋運算,並將運算結果傳送至該運算結合單元200。同時,步驟S55被執行,該回授運算單元160根據優化後的該回授控制法則17對該誤差訊號e執行回授運算,並將運算結果傳送至該運算結合單元200。之後步驟S56被執行,該運算結合單元200將前饋運算的該運算結果及回授運算的該運算結果結合以產生該控制器輸出u。之後步驟S57被執行,該控制系統1根據該控制器輸出u對該受控體進行溫度控制,並產生該輸出訊號y。同時,步驟S58被執行,該補償單元240取得該控制器輸出u,並對該控制器輸出u進行運算。之後,步驟S59被執行,該第二運算結合單元260結合該輸出訊號y及該補償單元240的該運算結果來產生一個新的回授訊號ym,並傳回至 該誤差計算單元120來產生新的誤差訊號e new 。藉此,系統的延遲將會在該補償單元240持續的運作下,逐漸地被消除。 5 is a system execution flow chart of a second embodiment of the present invention, which is used as an example for controlling the temperature control system of the present invention, but it is noted that the present invention is not limited to temperature control, and the present invention is practical. It can be applied to all types of controls. First, step S51 is executed, and the input unit 100 receives the input signal yd representing the target temperature value. Then, step S52 is executed, and the error calculation unit 120 compares the input signal yd representing the target temperature value with the feedback signal ym old generated by the previous execution, and generates an error signal e. Thereafter, step S53 is executed, and the optimization unit 180 adjusts the feedforward algorithm 15 performed by the feedforward operation unit 140 and the feedback algorithm 17 performed by the feedback operation unit 160 according to the error signal e. Then, the step S54 is executed, and the feedforward operation unit 140 performs a feedforward operation on the input signal yd according to the optimized feedforward algorithm 15 and transmits the operation result to the operation combining unit 200. At the same time, step S55 is executed, and the feedback operation unit 160 performs a feedback operation on the error signal e according to the optimized feedback control rule 17, and transmits the operation result to the operation combining unit 200. Thereafter, step S56 is executed, and the operation combining unit 200 combines the operation result of the feedforward operation and the operation result of the feedback operation to generate the controller output u. Thereafter, step S57 is executed, and the control system 1 performs temperature control on the controlled body according to the controller output u, and generates the output signal y. At the same time, step S58 is executed, the compensation unit 240 obtains the controller output u, and performs an operation on the controller output u. Then, the step S59 is executed, and the second operation combining unit 260 combines the output signal y and the operation result of the compensation unit 240 to generate a new feedback signal ym, and returns the error signal to the error calculation unit 120 to generate a new one. the error signal e new. Thereby, the delay of the system will be gradually eliminated under the continuous operation of the compensation unit 240.

圖6(A)及6(B)係本發明具智能調節之控制系統1之第二實施態樣在溫度控制下的結果示意圖,請一併參考圖3(C)及3(D)。由圖6(A)及6(B)可知,當本發明的控制系統1之第二實施態樣在經由該補償單元240的作用下,不論目標溫度係100度或120度,不平穩的狀態皆可以被消除。由此可知,藉由本發明的控制系統1不斷地回授處理該回授訊號ym,造成不穩定的系統延遲因素可以迅速地被消除。 6(A) and 6(B) are diagrams showing the results of the second embodiment of the control system 1 with intelligent adjustment according to the present invention under temperature control. Please refer to FIGS. 3(C) and 3(D) together. 6(A) and 6(B), when the second embodiment of the control system 1 of the present invention is operated by the compensation unit 240, the target temperature is 100 degrees or 120 degrees, and the state is unstable. Can be eliminated. It can be seen that the control system 1 of the present invention continuously processes and processes the feedback signal ym, so that unstable system delay factors can be quickly eliminated.

藉此,本發明提供了可自動調整前饋控制與回授控制的一種控制系統,藉由優化單元持續地根據誤差訊號來調整前饋控制與回授控制,可使得控制效果更加精準,且整體控制程序的執行可以更佳地迅速。此外,本發明亦在控制系統中加入了清除掉系統延遲時間的補償單元,使得控制系統的控制在達到目標值後,不會產生不穩定的現象。 Accordingly, the present invention provides a control system capable of automatically adjusting feedforward control and feedback control. By optimizing the unit to continuously adjust the feedforward control and the feedback control according to the error signal, the control effect can be more accurate, and the overall Control program execution can be faster and faster. In addition, the present invention also adds a compensation unit that removes the system delay time in the control system, so that the control system control does not cause an unstable phenomenon after reaching the target value.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。 The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

1‧‧‧控制系統 1‧‧‧Control system

10、100‧‧‧輸入單元 10, 100‧‧‧ input unit

12、120‧‧‧誤差計算單元 12, 120‧‧‧ error calculation unit

14、140‧‧‧前饋運算單元 14, 140‧‧‧ feedforward computing unit

15‧‧‧前饋控制法則 15‧‧‧Feed-for-control law

16、160‧‧‧回授運算單元 16, 160‧‧‧Return arithmetic unit

17‧‧‧回授控制法則 17‧‧‧Reward control law

18、180‧‧‧優化單元 18, 180‧‧‧Optimization unit

20、200‧‧‧運算結合單元 20, 200‧‧‧ computing combination unit

22、220‧‧‧輸出單元 22, 220‧‧‧ Output unit

Claims (10)

一種具智能調節之控制系統,包含:一輸入單元,用以取得使用者所輸入的一輸入訊號;一誤差計算單元,將該輸入訊號與系統前次執行的一輸出訊號進行運算,並產生一誤差訊號;一前饋運算單元,對該輸入訊號執行一前饋控制法則;一回授運算單元,對該輸入訊號執行與該誤差訊號相關的一回授控制法則;一優化單元,用以調整該前饋控制法則及該回授控制法則;以及一運算結合單元,根據該前饋運算單元及該回授運算單元的運算結果產生一控制器輸出,並將該控制器輸出傳送至一受控體,以產生系統此次執行的一輸出訊號;其中,該優化單元係根據該誤差訊號來調整該前饋控制法則及該回授控制法則。 A control system with intelligent adjustment includes: an input unit for obtaining an input signal input by a user; an error calculation unit for calculating the input signal and an output signal executed by the system before, and generating a An error feed signal; a feedforward operation unit that performs a feedforward control rule on the input signal; a feedback operation unit that performs a feedback control law related to the error signal on the input signal; and an optimization unit for adjusting The feedforward control rule and the feedback control rule; and an operation combining unit, generating a controller output according to the operation result of the feedforward operation unit and the feedback operation unit, and transmitting the controller output to a controlled The body is configured to generate an output signal that is executed by the system at a time; wherein the optimization unit adjusts the feedforward control law and the feedback control rule according to the error signal. 如申請專利範圍第1項所述的具智能調節之控制系統,其中該優化單元所執行的優化調整係基於李亞普諾夫函數(Lyapunov function)。 The intelligent adjustment control system described in claim 1, wherein the optimization adjustment performed by the optimization unit is based on a Lyapunov function. 如申請專利範圍第2項所述的具智能調節之控制系統,其中該前饋控制法則係符合下列算式: 其中u ff 係該前饋控制法則,y d 係該輸入訊號,M、C及K為與受控物的配置有關的系統參數的倒數。 For example, the intelligent adjustment control system described in claim 2, wherein the feedforward control law conforms to the following formula: Where u ff is the feedforward control law, y d is the input signal, and M, C and K are the reciprocals of the system parameters related to the configuration of the controlled object. 如申請專利範圍第3項所述的具智能調節之控制系統,其中經優化調整後的該前饋控制法則的複數個運算參數係符合下列算式: 其中,α K α C α M β K β c β M 為必須為正數的適應性增益參數,R為該誤差訊號的矩陣形式。 For example, the control system with intelligent adjustment described in claim 3, wherein the plurality of operational parameters of the optimized feedforward control law are in accordance with the following formula: Where α K , α C , α M , β K , β c and β M are adaptive gain parameters which must be positive, and R is the matrix form of the error signal. 如申請專利範圍第2項所述的具智能調節之控制系統,其中回授控制法則係具備比例控制、積分控制及微分控制三者至少之一。 For example, the control system with intelligent adjustment described in claim 2, wherein the feedback control law has at least one of proportional control, integral control and differential control. 如申請專利範圍第2項所述的具智能調節之控制系統,其中該回授控制法則係符合下列算式: 其中u fb 係該回授控制法則,e為該誤差訊號,k p 為比例控制增益,k i 為積分控制增益,k d 為微分控制增益。 For example, the intelligent adjustment control system described in claim 2, wherein the feedback control law conforms to the following formula: Where u fb is the feedback control law, e is the error signal, k p is the proportional control gain, k i is the integral control gain, and k d is the differential control gain. 如申請專利範圍第6項所述的具智能調節之控制系統,其中經優化單元調整後的該回授控制法則的複數個運算參數係符合下列算式: 其中,α i α p α d β i β p β d 為必須為正數的適應性增益參數,x1為該誤差訊號e對時間的積分,x2為該誤差訊號e,x3為該誤差訊號對時間的微分,R為該誤差訊號的矩陣形式。 For example, in the control system with intelligent adjustment described in claim 6, wherein the plurality of operational parameters of the feedback control rule adjusted by the optimization unit conform to the following formula: Where α i , α p , α d , β i , β p and β d are adaptive gain parameters which must be positive, x 1 is the integral of the error signal e with respect to time, and x 2 is the error signal e, x 3 is the differentiation of the error signal with respect to time, and R is a matrix form of the error signal. 如申請專利範圍第1項所述的具智能調節之控制系統,更包含一補償單元,具有一補償參數與一延遲項,用以對該控制器輸出進行運算以消除系統的延遲。 The intelligent adjustment control system described in claim 1 further includes a compensation unit having a compensation parameter and a delay term for calculating the controller output to eliminate the delay of the system. 如申請專利範圍第8項所述的具智能調節之控制系統,更包含一第二運算結合單元,將該控制輸出通過該受控體後的結果與該控制輸出通過該補償單元的運算結果結合,並回傳至該誤差計算單元。 The control system with intelligent adjustment as described in claim 8 further includes a second operation combining unit, and the result of the control output passing through the controlled body is combined with the operation result of the control output through the compensation unit. And passed back to the error calculation unit. 如申請專利範圍第9所述的具智能調節之控制系統,其中該控制系統消除掉系統延遲後的轉移函數為: 其中,係該控制系統消除掉系統延遲後的轉移函數,G係控制系統未消除系統延遲前的轉移函數,G m 為利用最小平方法所取得的最佳系統轉移函數,e -Ts 為延遲項,s為拉普拉斯運算子或微分運算子,T為系統的延遲時間,M、C及K為與受控物的配置有關的系統參數的倒數。 The control system with intelligent adjustment according to claim 9 is characterized in that the transfer function after the control system eliminates the system delay is: among them, The control system eliminates the transfer function after the system delay, the G system control system does not eliminate the transfer function before the system delay, G m is the optimal system transfer function obtained by the least squares method, e -Ts is the delay term, s For the Laplacian operator or the differential operator, T is the delay time of the system, and M, C, and K are the reciprocals of the system parameters related to the configuration of the controlled object.
TW104143025A 2015-12-21 2015-12-21 An intelligent adaptive control system TWI546636B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104143025A TWI546636B (en) 2015-12-21 2015-12-21 An intelligent adaptive control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104143025A TWI546636B (en) 2015-12-21 2015-12-21 An intelligent adaptive control system

Publications (2)

Publication Number Publication Date
TWI546636B true TWI546636B (en) 2016-08-21
TW201723696A TW201723696A (en) 2017-07-01

Family

ID=57183804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104143025A TWI546636B (en) 2015-12-21 2015-12-21 An intelligent adaptive control system

Country Status (1)

Country Link
TW (1) TWI546636B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767398B (en) * 2019-11-04 2022-06-11 美商瓦特洛威電子製造公司 Systems and methods for monitoring semiconductor processing systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708470B (en) * 2020-02-21 2020-10-21 龍華科技大學 A power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767398B (en) * 2019-11-04 2022-06-11 美商瓦特洛威電子製造公司 Systems and methods for monitoring semiconductor processing systems

Also Published As

Publication number Publication date
TW201723696A (en) 2017-07-01

Similar Documents

Publication Publication Date Title
JP6345801B2 (en) Temperature control method and temperature control device
TWI546636B (en) An intelligent adaptive control system
Jetto et al. A mixed numerical–analytical stable pseudo‐inversion method aimed at attaining an almost exact tracking
Lhachemi et al. Finite-dimensional observer-based PI regulation control of a reaction–diffusion equation
Zhao et al. Adaptive neural network control for a class of discrete-time nonlinear interconnected systems with unknown dead-zone
JP4982905B2 (en) Control method and control apparatus
WO2017085781A1 (en) Temperature control device and temperature control method
JP2009076098A (en) Closed loop system process controller including pid controller
JP4358674B2 (en) Control method
JPH07104805A (en) Method and device for controlling controller of semiconductor manufacturing device
JP6582425B2 (en) Temperature control system and temperature control method
CN114815922B (en) GPC and GPIO-based electric heating furnace temperature anti-interference control method
JP7143796B2 (en) Control device, control method and control program
JPWO2020003403A1 (en) Control device and control method
JP4361851B2 (en) Control method
JP7401331B2 (en) Control device and control method
JP4361884B2 (en) Control method and control apparatus
JP4361881B2 (en) Control method and control apparatus
JP2019046121A (en) Gain adjustment device and gain adjustment method for two-degree of freedom control system
KR102005455B1 (en) Robust nonlinear control method with low-complexity
JP4361852B2 (en) Control device
JP4358675B2 (en) Control method
JP2006133953A (en) Control device
JP2020030567A (en) Process controller and parameter alteration method
CN116126050A (en) Oven heating control method and system, electronic equipment and storage medium

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees