TWI545904B - Cyclic vernier ring time-to-digital converter - Google Patents

Cyclic vernier ring time-to-digital converter Download PDF

Info

Publication number
TWI545904B
TWI545904B TW103130762A TW103130762A TWI545904B TW I545904 B TWI545904 B TW I545904B TW 103130762 A TW103130762 A TW 103130762A TW 103130762 A TW103130762 A TW 103130762A TW I545904 B TWI545904 B TW I545904B
Authority
TW
Taiwan
Prior art keywords
delay
signal
time
loop
backward
Prior art date
Application number
TW103130762A
Other languages
Chinese (zh)
Other versions
TW201611526A (en
Inventor
蘇俊仁
洪崇智
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW103130762A priority Critical patent/TWI545904B/en
Publication of TW201611526A publication Critical patent/TW201611526A/en
Application granted granted Critical
Publication of TWI545904B publication Critical patent/TWI545904B/en

Links

Description

環狀微刻度時間數位轉換器 Ring micro-scale time digital converter

本發明係有關於一種時間數位轉換器,特別是一種使用多階延遲單元之環狀微刻度時間數位轉換器。 The present invention relates to a time digital converter, and more particularly to a circular micro-scale time digital converter using a multi-order delay unit.

按,時間數位轉換器(time-to-digital converter,TDC)係為一種相對於一參考事件之時間資訊進行量化之轉換單元,其係常用於數位鎖相迴圈(Phase Lock Loop,PLL)、物理或雷射測距儀(Physics and Laser range finder)當中。其中,時間數位轉換器之效能可由表示時間資訊的數位化最小單元(resolution)所表示。 Press, time-to-digital converter (TDC) is a conversion unit that quantizes the time information relative to a reference event, which is commonly used in digital phase lock loop (PLL), Among the physical and laser range finder (Physics and Laser range finder). Among them, the performance of the time digital converter can be represented by a digitized minimum resolution representing time information.

一般而言,時間數位轉換器通常可由包括多個延遲單元的延遲線(delay line)所實現,而上述多個延遲單元產生間隔相對相等的相位。每個延遲單元具有傳遞延遲的特性,而該傳遞延遲係限制電路輸出的數位化最小單元。因此,時間數位轉換器的效能與每個延遲單元之傳遞延遲的精確度有關。然而,實際上,由製程變動而產生之延遲單元的偏移多會導致時間數位轉換器之效能下降。 In general, a time digital converter can typically be implemented by a delay line comprising a plurality of delay units, and the plurality of delay units produce relatively equal intervals of phase. Each delay unit has a characteristic of a transfer delay that limits the digitized minimum unit of the circuit output. Therefore, the performance of the time digital converter is related to the accuracy of the transfer delay of each delay unit. However, in practice, the offset of the delay unit caused by the process variation may cause the performance of the time digital converter to decrease.

再者,對於習見常用的時間數位轉換器而言,其延遲單元多使用正反器,且必須串接奇數級方可產生震盪使得電路正常運作,因此需要使用較為複雜的編碼電路。除此之外,由於延遲迴路中每個相鄰節點的 波形皆互為相反,所以每個節點各需要額外設置兩組的比較器來比較相位,其中一組比較訊號之正緣(rising edge)相位差,也就是訊號上升的先後順序;而另外一組比較訊號之負緣(falling edge)相位差,也就是比較訊號下降的先後順序。最後,在迴路偵測完成後,必須再重置訊號從輸入端進入,然後再經由所有的正反器延遲時間後才能夠完成重置的動作,於此,也耗費較長的時間,不僅使得電路的設計複雜度過高,更在無形中增加許多設計成本。 Moreover, for the commonly used time digital converter, the delay unit mostly uses a flip-flop, and must be connected in an odd-numbered stage to generate an oscillation to make the circuit operate normally, so a relatively complicated coding circuit is needed. In addition to this, due to the delay of each adjacent node in the loop The waveforms are opposite to each other, so each node needs to additionally set two sets of comparators to compare the phases, one of which compares the phase difference of the rising edge of the signal, that is, the order in which the signals rise; The phase difference of the falling edge of the comparison signal is the order in which the comparison signal drops. Finally, after the loop detection is completed, the reset signal must be reset from the input terminal, and then the reset operation can be completed after all the flip-flops delay the time. Therefore, it takes a long time, which not only makes The design complexity of the circuit is too high, and many design costs are added invisibly.

緣是,為了解決習知技術存有的眾多缺失,本發明人有感上述缺失之可改善,且依據多年來從事此方面之相關經驗,悉心觀察且研究之,並配合學理之運用,而提出一種設計新穎且有效改善上述缺失之本發明,其係揭露一種環狀微刻度時間數位轉換器,其具體之架構及實施方式將詳述於下。 Therefore, in order to solve the many shortcomings of the prior art, the inventors have felt that the above-mentioned defects can be improved, and based on the relevant experience in this field for many years, carefully observed and studied, and with the use of academic theory, The present invention, which is novel in design and effective in improving the above-mentioned deficiencies, discloses a ring-shaped micro-scale time-digital converter, the specific structure and implementation of which will be described in detail below.

為解決習知技術存在的問題,本發明之一目的係在於提供一種環狀微刻度時間數位轉換器(Vernier Ring Time-to-Digital Converter),其係使用正向的延遲單元,使得每個相鄰節點不具備習見訊號反向的問題,如此一來,每個節點僅需要單一組比較器即可偵測出兩訊號間的先後關係,大幅簡化了習見之電路設計。 In order to solve the problems of the prior art, it is an object of the present invention to provide a Vernier Ring Time-to-Digital Converter that uses a forward delay unit such that each phase The neighboring nodes do not have the problem of reversing the signal. In this way, each node only needs a single set of comparators to detect the relationship between the two signals, which greatly simplifies the circuit design of the see.

本發明之又一目的係在於提供一種環狀微刻度時間數位轉換器,其係利用多工器取代習見之延遲單元,不僅符合輸出訊號不會反向之要求,更達到可以利用多工器本身自動歸零之特性,加速電路重置的速度,藉此減少電路之設計複雜度並降低設計成本。 Another object of the present invention is to provide a ring-shaped micro-scale time digital converter which replaces a conventional delay unit by using a multiplexer, which not only meets the requirement that the output signal does not reverse, but also can utilize the multiplexer itself. The auto-zero feature speeds up circuit resets, thereby reducing circuit design complexity and design cost.

本發明之再一目的係在於提供一種環狀微刻度時間數位轉換器,其係簡化了先前技術較為複雜之電路架構,並藉由此電路設計概念,可進一步地延伸至脈波調變電路或是展頻電路應用之中,藉此增加電路之效能。 A further object of the present invention is to provide a ring-shaped micro-scale time-to-digital converter which simplifies the circuit structure of the prior art and can be further extended to the pulse wave modulation circuit by the circuit design concept. Or in the spread spectrum circuit application, thereby increasing the performance of the circuit.

是以,根據本發明所揭露之環狀微刻度時間數位轉換器,其係將所接收到的一領先訊號與一落後訊號之時間差轉換為一數位訊號輸出,該環狀微刻度時間數位轉換器包括有:一第一多階延遲迴路、一第二多階延遲迴路、複數個比較器、一運算模組、一解碼器以及一處理模組。 Therefore, the ring-shaped micro-scale time digital converter according to the present invention converts the received time difference between a leading signal and a backward signal into a digital signal output, and the circular micro-scale time digital converter The method includes: a first multi-order delay loop, a second multi-order delay loop, a plurality of comparators, a computing module, a decoder, and a processing module.

根據本發明之實施例,其中,第一多階延遲迴路係接收領先訊號,並控制該領先訊號經多階延遲後形成一第一脈波訊號週期性地在該第一多階延遲迴路中重覆運行;一第二多階延遲迴路係接收落後訊號,並控制該落後訊號經多階延遲後形成一第二脈波訊號週期性地在該第二多階延遲迴路中重覆運行;該些比較器係耦接於第一多階延遲迴路與第二多階延遲迴路,並比較該第一脈波訊號與該第二脈波訊號之時間差,據以輸出一比較訊號。運算模組耦接該第一多階延遲迴路與該第二多階延遲迴路,以計數該第一脈波訊號與該第二脈波訊號分別於該第一多階延遲迴路與該第二多階延遲迴路中的運行次數。解碼器耦接該些比較器,當該比較訊號由高準位切換至低準位時,代表該第一脈波訊號係同步於該第二脈波訊號,此時解碼器係將該比較訊號解碼為一解碼訊號輸出。最後,處理模組耦接該解碼器與該運算模組,以接收該解碼訊號與該運算模組之計數結果,據以產生該數位訊號輸出。 According to an embodiment of the present invention, the first multi-order delay loop receives the leading signal, and controls the leading signal to form a first pulse signal after the multi-step delay periodically to be heavy in the first multi-order delay loop. a second multi-step delay loop receives the backward signal, and controls the backward signal to form a second pulse signal periodically after the multi-step delay to periodically run in the second multi-order delay loop; The comparator is coupled to the first multi-order delay loop and the second multi-order delay loop, and compares the time difference between the first pulse signal and the second pulse signal to output a comparison signal. The operation module is coupled to the first multi-order delay loop and the second multi-order delay loop to count the first pulse signal and the second pulse signal respectively in the first multi-order delay loop and the second The number of runs in the order delay loop. The decoder is coupled to the comparators. When the comparison signal is switched from the high level to the low level, the first pulse signal is synchronized with the second pulse signal, and the decoder compares the comparison signal. Decoded into a decoded signal output. Finally, the processing module is coupled to the decoder and the computing module to receive the decoded signal and the counting result of the computing module, to generate the digital signal output.

在一實施例中,本發明所揭露之環狀微刻度時間數位轉換器 更可包括預先處理邏輯電路,配合一預先比較器,以決定該落後訊號進入該第二多階延遲迴路之位置,藉此加速偵測速度,並提供計數冗餘校正器進行校正用途。 In an embodiment, the annular micro-scale time digital converter disclosed in the present invention Further, the pre-processing logic circuit may be included to cooperate with a pre-comparator to determine the position of the backward signal entering the second multi-order delay loop, thereby accelerating the detection speed, and providing a counting redundancy corrector for calibration purposes.

在一實施例中,該運算模組更包括一粗計數器、一細計數器與計數冗餘校正器。其中,該領先訊號進入該第一多階延遲迴路時,粗計數器係開始計數,直到該落後訊號進入該第二多階延遲迴路時,粗計數器係停止計數,而細計數器開始計數,以分別利用粗計數器計算該第一脈波訊號於該第一多階延遲迴路中的運行次數,以及利用細計數器計算該第二脈波訊號於該第二多階延遲迴路中的運行次數。 In an embodiment, the computing module further includes a coarse counter, a fine counter, and a count redundancy corrector. Wherein, when the leading signal enters the first multi-stage delay loop, the coarse counter starts counting, until the backward signal enters the second multi-order delay loop, the coarse counter stops counting, and the fine counter starts counting to respectively utilize The coarse counter calculates the number of operations of the first pulse signal in the first multi-order delay loop, and calculates the number of times the second pulse signal is operated in the second multi-order delay loop by using a fine counter.

再者,計數冗餘校正器更可利用預先處理邏輯電路的偵測結果來決定由上述之粗計數器運作切換成細計數器運作的時間。藉由此些技術特徵,本發明同時降低電路的硬體消耗成本、達成低功率消耗與避免習見轉換器常有計數錯誤之問題發生。 Moreover, the counting redundancy corrector can further utilize the detection result of the pre-processing logic circuit to determine the time for switching from the above-mentioned coarse counter operation to the operation of the fine counter. With such technical features, the present invention simultaneously reduces the hardware cost of the circuit, achieves low power consumption, and avoids the problem that the converter often has a counting error.

底下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 The purpose, technical contents, features and effects achieved by the present invention will be more readily understood by the detailed description of the embodiments and the accompanying drawings.

10‧‧‧預先比較器 10‧‧‧Pre-comparator

100‧‧‧第一多階延遲迴路 100‧‧‧ first multi-order delay loop

200‧‧‧第二多階延遲迴路 200‧‧‧ second multi-order delay loop

300‧‧‧比較器 300‧‧‧ comparator

301a‧‧‧正反器 301a‧‧‧Factor

301b‧‧‧正反器 301b‧‧‧Factor

301c‧‧‧正反器 301c‧‧‧Factor

301d‧‧‧正反器 301d‧‧‧Factor

303a‧‧‧多工器 303a‧‧‧Multiplexer

303b‧‧‧多工器 303b‧‧‧Multiplexer

400‧‧‧運算模組 400‧‧‧ Computing Module

402‧‧‧粗計數器 402‧‧‧ coarse counter

404‧‧‧細計數器 404‧‧‧ fine counter

406‧‧‧計數冗餘校正器 406‧‧‧Counting redundancy corrector

500‧‧‧解碼器 500‧‧‧Decoder

600‧‧‧處理模組 600‧‧‧Processing module

700‧‧‧第一預先處理邏輯電路 700‧‧‧First pre-processing logic

800‧‧‧第二預先處理邏輯電路 800‧‧‧Second pre-processing logic

第1圖係為根據本發明實施例環狀微刻度時間數位轉換器之電路示意圖。 1 is a circuit diagram of a ring-shaped micro-scale time digital converter in accordance with an embodiment of the present invention.

第2A圖係為根據本發明實施例第一預先處理邏輯電路之電路示意圖。 2A is a circuit diagram of a first pre-processing logic circuit in accordance with an embodiment of the present invention.

第2B圖係為根據本發明實施例第二預先處理邏輯電路之電路示意 圖。 2B is a circuit diagram of a second pre-processing logic circuit according to an embodiment of the present invention Figure.

第3圖係為根據本發明實施例之計數冗餘校正器之電路示意圖。 Figure 3 is a circuit diagram of a count redundancy corrector in accordance with an embodiment of the present invention.

第4A圖與第4B圖係為根據第3圖所示之計數冗餘校正器中節點之訊號波形示意圖。 4A and 4B are diagrams showing the signal waveforms of the nodes in the count redundancy corrector shown in FIG.

第4C圖係為根據第3圖所示之計數冗餘校正器提早切換粗計數器關閉而細計數器導通之示意圖。 Fig. 4C is a diagram showing the early switching of the coarse counter and the fine counter being turned on according to the counting redundancy corrector shown in Fig. 3.

第4D圖係為根據第3圖所示之計數冗餘校正器延後切換粗計數器關閉而細計數器導通之示意圖。 The 4D figure is a schematic diagram in which the counting redundancy corrector delays switching the coarse counter off and the fine counter is turned on according to the third figure.

第5圖與第6圖係為根據本發明實施例之環狀微刻度時間數位轉換器的詳細時間運作示意圖。 5 and 6 are detailed time operation diagrams of a ring-shaped micro-scale time digital converter according to an embodiment of the present invention.

以上有關於本發明的內容說明,與以下的實施方式係用以示範與解釋本發明的精神與原理,並且提供本發明的專利申請範圍更進一步的解釋。有關本發明的特徵、實作與功效,茲配合圖式作較佳實施例詳細說明如下。 The above description of the present invention is intended to be illustrative and illustrative of the spirit and principles of the invention, and to provide further explanation of the scope of the invention. The features, implementations, and utilities of the present invention are described in detail with reference to the preferred embodiments.

請參閱第1圖所示,其係為根據本發明實施例環狀微刻度時間數位轉換器之電路示意圖,包括:一第一多階延遲迴路100、一第二多階延遲迴路200、複數個比較器300、運算模組400、解碼器500、處理模組600、一第一預先處理邏輯電路700以及一第二預先處理邏輯電路800。第2A圖與第2B圖係分別為該第一預先處理邏輯電路與第二預先處理邏輯電路之電路示意圖。以下關於本發明之詳細技術內容,請同時參照第1、2A~2B圖所示,茲詳細說明如下。 Please refer to FIG. 1 , which is a circuit diagram of a circular micro-scale time digital converter according to an embodiment of the invention, comprising: a first multi-order delay loop 100 , a second multi-order delay loop 200 , and a plurality of The comparator 300, the computing module 400, the decoder 500, the processing module 600, a first pre-processing logic circuit 700, and a second pre-processing logic circuit 800. 2A and 2B are circuit diagrams of the first pre-processing logic circuit and the second pre-processing logic circuit, respectively. The following detailed description of the technical contents of the present invention will be made by referring to the first, second, and second embodiments, and will be described in detail below.

根據本發明之實施例,第一多階延遲迴路100係用以接收一領先訊號In_a,且第一多階延遲迴路100包括複數個第一延遲單元S1~S8,使得該領先訊號In_a每經過一個第一延遲單元係被延遲一第一延遲時間tL,該領先訊號In_a在經過複數個該第一延遲時間tL後係為一第一脈波訊號週期性地在第一多階延遲迴路100中重覆運行。在本實施例中係以第一延遲單元之數量為8個作為一示範例之說明,然本發明並不以此數量為限。設計者當可根據其電路之規格自行調整之,惟依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。 According to an embodiment of the invention, the first multi-stage delay loop 100 is configured to receive a lead signal In_a, and the first multi-stage delay loop 100 includes a plurality of first delay units S1 S S8 such that the lead signal In_a passes each time The first delay unit is delayed by a first delay time t L , and the leading signal In_a is a first pulse signal periodically after the plurality of first delay times t L periodically in the first multi-order delay loop 100 Repeated operation. In the present embodiment, the number of the first delay units is 8 as an example, but the invention is not limited thereto. The designer can adjust it according to the specifications of the circuit, and the equivalent changes or modifications made in accordance with the spirit of the present invention should still be covered by the patent of the present invention.

同樣地,第二多階延遲迴路200係用以接收一落後訊號In_b,且第二多階延遲迴路200包括複數個第二延遲單元F1~F8,使得該落後訊號In_b每經過一個第二延遲單元係被延遲一第二延遲時間tD,該落後訊號In_b在經過複數個該第二延遲時間tD後係為一第二脈波訊號週期性地在第二多階延遲迴路200中重覆運行。 Similarly, the second multi-stage delay circuit 200 is configured to receive a backward signal In_b, and the second multi-order delay circuit 200 includes a plurality of second delay units F1 F F8, such that the backward signal In_b passes through a second delay unit. After being delayed by a second delay time t D , the backward signal In_b is periodically re-run in the second multi-order delay loop 200 after a plurality of the second delay times t D . .

每一比較器300係耦接於每一第一延遲單元與第二延遲單元之間,例如:第一延遲單元S1與第二延遲單元F1、第一延遲單元S2與第二延遲單元F2......第一延遲單元S8與第二延遲單元F8之間,以比較出第一脈波訊號在經過各個第一延遲時間tL與第二脈波訊號在經過各個第二延遲時間tD後之時間差,並且根據該些時間差輸出比較訊號Vc。根據本發明之實施例,其中第一延遲單元S1~S8與第二延遲單元F1~F8例如可為一多工器(MUX)延遲單元。 Each comparator 300 is coupled between each of the first delay unit and the second delay unit, for example, a first delay unit S1 and a second delay unit F1, a first delay unit S2 and a second delay unit F2.. ... between the first delay unit S8 and the second delay unit F8, to compare the first pulse wave signal after each first delay time t L and the second pulse wave signal after each second delay time t D The time difference thereafter, and the comparison signal V c is output based on the time differences. According to an embodiment of the present invention, the first delay units S1 S S8 and the second delay units F1 FF8 may be, for example, a multiplexer (MUX) delay unit.

運算模組400係電性耦接於該第一多階延遲迴路100與該第二多階延遲迴路200,以計數第一脈波訊號與第二脈波訊號分別於該第一多 階延遲迴路100與該第二多階延遲迴路200中的運行次數。根據本發明之實施例,其中運算模組400更包括有一粗計數器(coarse counter)402、一細計數器(fine counter)404、以及一計數冗餘校正器(counter redundancy corrector)406。當領先訊號In_a進入第一多階延遲迴路100之第一延遲單元S1經過一時間t1後,第一延遲單元S1係切換成閉迴路,並產生一個脈寬等於t1的第一脈波訊號持續在第一多階延遲迴路100中運行,此時的偵測模式類似一般的傳統延遲序列的時間數位轉換器,每當脈波訊號經過節點L8時,粗計數器402的值即會加一。至於,當落後訊號In_b進入第二多階延遲迴路200後,此時間數位轉換器即會轉變為微刻度偵測模式,也就是粗計數器402會關閉,然後切換成細計數器404開始計數。換言之,本發明係利用領先訊號In_a進入第一多階延遲迴路100時,粗計數器402開始計數,直到落後訊號In_b進入第二多階延遲迴路200時,粗計數器402乃停止計數,而切換至細計數器404開始計數。本發明即可分別利用粗計數器402計算該第一脈波訊號於該第一多階延遲迴路100中的運行次數,以及利用該細計數器404計算第二脈波訊號於該第二多階延遲迴路200中的運行次數。 The computing module 400 is electrically coupled to the first multi-order delay loop 100 and the second multi-step delay loop 200 to count the first pulse signal and the second pulse signal respectively in the first multi-order delay loop. 100 and the number of runs in the second multi-order delay loop 200. According to an embodiment of the present invention, the operation module 400 further includes a coarse counter 402, a fine counter 404, and a counter redundancy corrector 406. When the signal In_a leading into the first multi-stage delay circuit 100 of the first delay unit S1 elapsed after a time t 1, the system of the first delay unit S1 is switched to the closed loop, and generates a first pulse width equal to the pulse signal t 1 Continuously running in the first multi-stage delay loop 100, the detection mode at this time is similar to the conventional digital delay converter of the conventional delay sequence. When the pulse signal passes through the node L8, the value of the coarse counter 402 is incremented by one. As for the backward signal In_b entering the second multi-stage delay loop 200, the time digital converter will change to the micro-scale detection mode, that is, the coarse counter 402 will be turned off, and then switched to the fine counter 404 to start counting. In other words, when the present invention enters the first multi-stage delay loop 100 by using the leading signal In_a, the coarse counter 402 starts counting until the backward signal In_b enters the second multi-stage delay loop 200, and the coarse counter 402 stops counting and switches to fine Counter 404 begins counting. In the present invention, the coarse pulse counter 402 can be used to calculate the number of operations of the first pulse signal in the first multi-order delay loop 100, and the second pulse signal is used to calculate the second pulse signal in the second multi-step delay loop. The number of runs in 200.

解碼器500係電性耦接於比較器300,並接收上述之比較訊號Vc。根據本發明之實施例,由於該第二延遲時間tD係設計為小於該第一延遲時間tL,因此在第二多階延遲迴路200中的第二脈波訊號會逐漸追上第一多階延遲迴路100的第一脈波訊號,此時的運作模式係會與傳統的微刻度時間數位轉換器類似。故,當比較器300偵測到比較訊號Vc由高準位切換至低準位時,代表第一脈波訊號與第二脈波訊號之間已不具有時間差,也就是第一脈波訊號已同步於第二脈波訊號。此時偵測完畢,解碼器500係將這時候 的比較訊號Vc解碼為一解碼訊號VD輸出。最後,耦接該解碼器500與該運算模組400之一處理模組600係接收該解碼訊號VD以及上述運算模組400之計數結果,據以產生一數位訊號VO輸出。藉此,本發明所揭露之環狀微刻度時間數位轉換器係可將領先訊號In_a與落後訊號In_b之時間差轉換為該數位訊號VO輸出。 The decoder 500 is electrically coupled to the comparator 300 and receives the comparison signal V c described above. According to the embodiment of the present invention, since the second delay time t D is designed to be smaller than the first delay time t L , the second pulse signal in the second multi-order delay loop 200 gradually catches up with the first The first pulse signal of the delay circuit 100 is similar to the conventional micro-scale time digital converter. Therefore, when the comparator 300 detects that the comparison signal V c is switched from the high level to the low level, it represents that there is no time difference between the first pulse signal and the second pulse signal, that is, the first pulse signal. Has been synchronized to the second pulse signal. At this time, the detection is completed, and the decoder 500 decodes the comparison signal V c at this time into a decoded signal V D output. Finally, the processing module 600 coupled to the decoder 500 and the computing module 400 receives the decoded signal V D and the counting result of the computing module 400 to generate a digital signal V O output. Therefore, the ring-shaped micro-scale time digital converter disclosed in the present invention can convert the time difference between the leading signal In_a and the backward signal In_b into the digital signal V O output.

更進一步而言,第2A圖與第2B圖所示之第一預先處理邏輯電路700與第二預先處理邏輯電路800係分別由複數個多階延遲單元組成。如第2A圖所示,第一預先處理邏輯電路700係包括複數個第一預先延遲單元P1~P8,在本實施例中同樣地係以8階多工器延遲單元來說明,然本發明當不以此為限。其中,每一第一預先延遲單元P1~P8係對應產生一第三延遲時間,一起始領先訊號VF係由第一預先處理邏輯電路700之第一預先延遲單元P1所接收,並控制該起始領先訊號VF在經過複數個該第三延遲時間後成為前述的領先訊號In_a。同樣地,第二預先處理邏輯電路800係包括複數個第二預先延遲單元Q1~Q8,在本實施例中同樣地係以8階多工器延遲單元來說明,然本發明當不以此為限。其中,每一第二預先延遲單元Q1~Q8係對應產生一第四延遲時間,一起始落後訊號VS係由第二預先處理邏輯電路800之第二預先延遲單元Q1所接收,並控制該起始落後訊號VS在經過複數個該第四延遲時間後成為前述的落後訊號In_b。本發明係控制預先處理邏輯電路中的延遲時間(即第三延遲時間與第四延遲時間)等於環狀微刻度時間數位轉換器中的第一延遲時間tL,以期幫助選擇落後訊號In_b該輸入上排迴路之第二延遲單元F1或F5,更可以提供計數冗餘校正器406做判斷,藉此可以減少時間數位轉換器的偵測時間以及校正運算模組的計數錯誤(容後詳 述)。 Furthermore, the first pre-processing logic circuit 700 and the second pre-processing logic circuit 800 shown in FIGS. 2A and 2B are respectively composed of a plurality of multi-order delay units. As shown in FIG. 2A, the first pre-processing logic circuit 700 includes a plurality of first pre-delay units P1 to P8, which are similarly described in the present embodiment by an 8-order multiplexer delay unit. Not limited to this. Each of the first pre-delay units P1 - P8 generates a third delay time, and an initial leading signal V F is received by the first pre-delay unit P1 of the first pre-processing logic circuit 700, and controls the The leading signal V F becomes the aforementioned leading signal In_a after a plurality of the third delay times. Similarly, the second pre-processing logic circuit 800 includes a plurality of second pre-delay units Q1 - Q8, which are similarly illustrated in the present embodiment by an 8-order multiplexer delay unit, but the present invention does not limit. Each of the second pre-delay units Q1 - Q8 generates a fourth delay time, and a start backward signal V S is received by the second pre-delay unit Q1 of the second pre-processing logic circuit 800, and controls the The start-and-go signal V S becomes the aforementioned backward signal In_b after a plurality of the fourth delay time. The present invention controls the delay time (ie, the third delay time and the fourth delay time) in the pre-processing logic circuit to be equal to the first delay time t L in the ring-shaped micro-scale time digital converter, in order to help select the backward signal In_b. The second delay unit F1 or F5 of the upper circuit can further provide the counting redundancy corrector 406 for judgment, thereby reducing the detection time of the time digital converter and correcting the counting error of the computing module (described later) .

詳細而言,落後訊號In_b該由第二延遲單元F1或F5進入是由預先處理邏輯電路來做決定。如第2B圖所示,一預先比較器10係用以比較一半落後訊號QD4與一全延遲訊號L8,以決定落後訊號In_b進入第二多階延遲迴路200之位置。如前所述,在本實施例中,當第一延遲單元、第二延遲單元、第一預先延遲單元與第二預先延遲單元之數量係各自為N個,且N之值等於8時,起始落後訊號VS在經過(tL*8/2)的延遲時間(4tL)後會成為該半落後訊號QD4,而領先訊號In_a在經過(tL*8)的延遲時間後成為該全延遲訊號L8。是以,根據本發明之實施例,當起始落後訊號VS進入第二預先處理邏輯電路800後,預先比較器10會比較半落後訊號QD4與全延遲訊號L8這兩個訊號,當全延遲訊號L8領先半落後訊號QD4,落後訊號In_b會經由該第二多階延遲迴路200中之第五個第二延遲單元F5進入延遲迴路中;至於,當半落後訊號QD4領先全延遲訊號L8時,落後訊號In_b係由該第二多階延遲迴路200中之第一個第二延遲單元F1所接收,藉由此預先處理邏輯電路之判斷,本發明可大幅地減少時間數位轉換器所需的偵測時間,而根據實際的模擬結果,本發明約可提供高達1.5GHz的操作速度。 In detail, the entry of the backward signal In_b by the second delay unit F1 or F5 is determined by the pre-processing logic circuit. As shown in FIG. 2B, a pre-comparator 10 is used to compare the half backward signal Q D4 with a full delay signal L8 to determine the position of the backward signal In_b to enter the second multi-order delay loop 200. As described above, in this embodiment, when the number of the first delay unit, the second delay unit, the first pre-delay unit, and the second pre-delay unit is N, and the value of N is equal to 8, beginning backward signal V S after (t L * 8/2) delay time (4t L) becomes the half backward signal Q D4, the leading signal In_a after (t L * 8) the delay time becomes the Full delay signal L8. Therefore, according to the embodiment of the present invention, when the initial backward signal V S enters the second pre-processing logic circuit 800, the pre-comparator 10 compares the two signals of the half-back signal Q D4 and the full delay signal L8. The delay signal L8 leads the semi-backward signal Q D4 , and the backward signal In_b enters the delay loop via the fifth second delay unit F5 of the second multi-stage delay loop 200; as for the half-back signal Q D4 leads the full delay signal At L8, the backward signal In_b is received by the first second delay unit F1 of the second multi-order delay loop 200. By the judgment of the pre-processing logic circuit, the present invention can greatly reduce the time digital converter. The required detection time, and according to the actual simulation results, the present invention can provide an operating speed of up to 1.5 GHz.

再者,請參閱第3圖所示,其係為根據本發明實施例之計數冗餘校正器之電路示意圖。其中,計數冗餘校正器406係包括複數個正反器301a,301b,301c,301d與多工器303a,303b。承前所述,當領先訊號In_a進入多階延遲單元之環狀微刻度時間數位轉換器後,粗計數器402係開始運作,此時細計數器404係為關閉狀態。以8階延遲單元時間數位轉換器為例子,計數冗餘校正器406中具有相位誤差偵測之功效,其係比較起始落後訊號VS 與全延遲訊號L8,並在該二訊號VS和L8相位差距小於或等於計數冗餘校正器406之緩衝時間tc時會有值輸出於節點B1和B2。根據本發明之實施例,計數冗餘校正器406之緩衝時間tc例如可設定為100ps,該緩衝時間tc之數值大小係根據本發明之模擬結果在切換粗計數器402至細計數器404不會產生計數錯誤的情況下所決定。 Furthermore, please refer to FIG. 3, which is a circuit diagram of a counting redundancy corrector according to an embodiment of the present invention. The counting redundancy corrector 406 includes a plurality of flip-flops 301a, 301b, 301c, 301d and multiplexers 303a, 303b. As described above, when the leading signal In_a enters the circular micro-scale time-digit converter of the multi-stage delay unit, the coarse counter 402 starts to operate, and the fine counter 404 is turned off. Taking the 8th order delay unit time digital converter as an example, the counting redundancy corrector 406 has the effect of phase error detection, which compares the initial backward signal V S with the full delay signal L8, and in the second signal V S and When the L8 phase difference is less than or equal to the buffering time t c of the count redundancy corrector 406, a value is output to the nodes B1 and B2. According to an embodiment of the present invention, the buffering time t c of the counting redundancy corrector 406 can be set, for example, to 100 ps, and the magnitude of the buffering time t c is not changed in the switching of the coarse counter 402 to the fine counter 404 according to the simulation result of the present invention. Determined if a count error occurs.

第4A圖與第4B圖係各自為計數冗餘校正器中節點L8a與ena之訊號波形示意圖,其中計數冗餘校正器406係利用其相位誤差偵測之功效,判斷起始落後訊號VS與全延遲訊號L8間之時間差,當起始落後訊號VS領先全延遲訊號L8之時間為tc之內,則節點B2會上升至高電位,而節點B1維持為0,此時計數冗餘校正器406會控制粗計數器402提早關閉,而切換至細計數器404開始計數,如第4C圖所示。相反地,根據本發明之實施例,當全延遲訊號L8領先起始落後訊號VS之時間為tc之內,那麼節點B1會上升至高電位而節點B2維持為0,在此情況下,如第4D圖所示,則計數冗餘校正器406會控制延後切換粗計數器402到細計數器404的時間,以延遲細計數器404開始計數,是以,利用此技術特徵,本發明所提出之計數冗餘校正器不僅能夠使用較少的硬體消耗,更可進一步藉由相位偵測,達到校正計數錯誤之目的。 4A and 4B are respectively schematic diagrams of the signal waveforms of the nodes L8a and ena in the counting redundancy corrector, wherein the counting redundancy corrector 406 uses the effect of the phase error detection to determine the initial backward signal V S and The time difference between the full delay signal L8, when the initial backward signal V S leads the full delay signal L8 for t c , the node B 2 will rise to the high potential, and the node B 1 maintains the 0, and the counting redundancy The corrector 406 will control the coarse counter 402 to close early, and switch to the fine counter 404 to begin counting, as shown in FIG. 4C. Conversely, according to an embodiment of the present invention, when the time of the full delay signal L8 leading the start backward signal V S is within t c , the node B 1 will rise to a high level and the node B 2 will remain at 0, in which case As shown in FIG. 4D, the count redundancy corrector 406 controls the time for delaying the switching of the coarse counter 402 to the fine counter 404 to delay the start of the fine counter 404, so that the present invention is utilized. The counting redundancy corrector can not only use less hardware consumption, but also further correct the counting error by phase detection.

以下,本發明係提供第5圖與第6圖,其係為根據本發明實施例之環狀微刻度時間數位轉換器的詳細時間運作示意圖,以說明當領先訊號In_a與落後訊號In_b之間存在一相位差等於Tp時,多階延遲單元之環狀微刻度時間數位轉換器係如何將該相位差轉換為數位碼輸出。其中,如圖所示,Tp係為領先訊號In_a與落後訊號In_b之時間差,Nc係為粗計數器之計數 結果,tL係為第一多階延遲迴路100中第一延遲單元之第一延遲時間,NF係為細計數器之計數結果,tD係為第二多階延遲迴路200中第二延遲單元之第二延遲時間,VD係為解碼器500將比較器300提供之比較訊號Vc解碼後的訊號,TL係為第一脈波訊號在經過(S1~S8)之延遲後的時間差(TL=8tL),TD係為第二脈波訊號在經過(F1~F8)之延遲後的時間差(TD=8tD),TS係為Tp除以TL之餘數,tR係等於tL-tD,L1、D1、D5係分別為第一延遲單元S1、第二延遲單元F1以及F5的輸出波形,如第5圖與第6圖所示,本發明係解釋當領先訊號In_a與落後訊號In_b之間存在一相位差等於Tp時,多階延遲單元之環狀微刻度時間數位轉換器係如何將該相位差轉換為數位碼輸出。 In the following, the present invention provides FIG. 5 and FIG. 6 , which are detailed time operation diagrams of a ring-shaped micro-scale time digital converter according to an embodiment of the present invention, to illustrate that between the leading signal In_a and the backward signal In_b a phase difference equal to T p, cyclic micro time scale digital converter based multi-stage delay unit of how the phase conversion are digital code output. As shown in the figure, T p is the time difference between the leading signal In_a and the backward signal In_b, N c is the counting result of the coarse counter, and t L is the first of the first delay unit in the first multi-stage delay loop 100 The delay time, N F is the counting result of the fine counter, t D is the second delay time of the second delay unit in the second multi-order delay loop 200, and V D is the comparison signal provided by the decoder 500 to the comparator 300 The signal after V c decoding, T L is the time difference (T L =8t L ) after the delay of the first pulse signal (S1~S8), and the T D is the second pulse signal passing (F1~ F8) The time difference after delay (T D =8t D ), T S is the remainder of T p divided by T L , t R is equal to t L -t D , L1, D1, D5 are the first delay unit respectively S1, the second delay unit and an output waveform F1 to F5, as shown in FIG. 5 and FIG. 6, the invention is explained when there is a phase difference equal to T p between the leading signal and the backward signal IN_B In_a, multi-step delay The unit's ring-shaped micro-scale time-to-digital converter converts the phase difference into a digital code output.

首先,如第5圖所示,當T p -N c ×8×t L < T L 時,落後訊號In_b係會由第二多階延遲迴路200中的第一個延遲單元F1進入迴路,此時相位差係符合下式(1):T p =N c ×8×t L +N F ×8×(t L -t D )+V D ×(t L -t D ) (1),以確定第二多階延遲迴路200中的落後訊號In_b會逐漸追上領先訊號In_a。另一方面而言,如第6圖所示,當 T L <T p -N c ×8×t L <T L 時,則落後訊號In_b係會由第二多階延遲迴路200中的第五個延遲單元F5進入迴路,此時相位差則符合下式(2):T p =N c ×8×t L +(N F +4)×8×(t L -t D )+[((V D +4)mod8)×(t L -t D )] (2) First, as shown in Figure 5, when T p - N c × 8 × t L < When T L , the backward signal In_b enters the loop by the first delay unit F1 in the second multi-order delay loop 200, and the phase difference is in accordance with the following formula (1): T p = N c × 8 × t L + N F × 8 × ( t L - t D ) + V D × ( t L - t D ) (1), to determine that the backward signal In_b in the second multi-order delay loop 200 gradually catches up with the leading signal In_a. On the other hand, as shown in Figure 6, when When T L < T p - N c × 8 × t L < T L , the backward signal In_b is entered into the loop by the fifth delay unit F5 in the second multi-stage delay loop 200, and the phase difference is in accordance with the next step. Equation (2): T p = N c × 8 × t L + ( N F + 4) × 8 × ( t L - t D ) + [(( V D +4) mod8) × ( t L - t D )] (2)

是以,綜上所述,本發明係大幅簡化習見技術之時間數位轉換器,並藉由相關控制電路的整合,使得本發明所揭露之環狀微刻度時間數位轉換器可以透過較少的硬體消耗來達成運作。除此之外,利用正向的多工器作為多階延遲迴路中的延遲單元,更可符合相鄰輸出訊號不具有反 向的問題,且每個多工器延遲單元都具有自動歸零以及加速重置速度之特性,更可進一步地增加本發明環狀微刻度時間數位轉換器之重置速度,藉此降低電路的設計複雜度及設計成本。 Therefore, in summary, the present invention greatly simplifies the time digital converter of the prior art, and by the integration of the related control circuits, the circular micro-scale time digital converter disclosed in the present invention can transmit less hard. Body consumption to achieve the operation. In addition, the forward multiplexer is used as the delay unit in the multi-order delay loop, and the adjacent output signals are not in opposition. The problem of the orientation, and each multiplexer delay unit has the characteristics of auto-zeroing and accelerating the reset speed, and further increasing the reset speed of the ring-shaped micro-scale time-digit converter of the present invention, thereby reducing the circuit Design complexity and design cost.

再者,為了加速偵測速度,本發明所揭露之環狀微刻度時間數位轉換器,更可進一步地利用預先處理邏輯電路判斷出落後訊號進入環狀微刻度延遲迴路中的位置。除此之外,利用該預先處理邏輯電路之偵測結果,本發明所揭露之計數冗餘校正器更可進一步地決定由粗計數器切換至細計數器之時間,藉此達到校正習見計數錯誤之問題。 Furthermore, in order to speed up the detection speed, the ring-shaped micro-scale time digital converter disclosed in the present invention can further utilize the pre-processing logic circuit to determine the position of the backward signal into the annular micro-scale delay loop. In addition, by using the detection result of the pre-processing logic circuit, the counting redundancy corrector disclosed by the present invention can further determine the time from the coarse counter to the fine counter, thereby achieving the problem of correcting the counting error. .

以上所述之諸多實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。 The embodiments described above are merely illustrative of the technical spirit and characteristics of the present invention, and the objects of the present invention can be understood by those skilled in the art and are not limited thereto. Equivalent changes or modifications made by the spirit of the present invention should still be included in the scope of the present invention.

100‧‧‧第一多階延遲迴路 100‧‧‧ first multi-order delay loop

200‧‧‧第二多階延遲迴路 200‧‧‧ second multi-order delay loop

300‧‧‧比較器 300‧‧‧ comparator

400‧‧‧運算模組 400‧‧‧ Computing Module

402‧‧‧粗計數器 402‧‧‧ coarse counter

404‧‧‧細計數器 404‧‧‧ fine counter

406‧‧‧計數冗餘校正器 406‧‧‧Counting redundancy corrector

500‧‧‧解碼器 500‧‧‧Decoder

600‧‧‧處理模組 600‧‧‧Processing module

700‧‧‧第一預先處理邏輯電路 700‧‧‧First pre-processing logic

800‧‧‧第二預先處理邏輯電路 800‧‧‧Second pre-processing logic

Claims (15)

一種環狀微刻度時間數位轉換器,其係將所接收到的一領先訊號與一落後訊號之時間差轉換為一數位訊號輸出,該環狀微刻度時間數位轉換器包括:一第一多階延遲迴路,係接收該領先訊號,並控制該領先訊號經多階延遲後形成一第一脈波訊號週期性地在該第一多階延遲迴路中重覆運行;一第二多階延遲迴路,係接收該落後訊號,並控制該落後訊號經多階延遲後形成一第二脈波訊號週期性地在該第二多階延遲迴路中重覆運行;複數個比較器,耦接於該第一多階延遲迴路與該第二多階延遲迴路,該些比較器係比較該第一脈波訊號與該第二脈波訊號之時間差,並據以輸出一比較訊號;一運算模組,耦接該第一多階延遲迴路與該第二多階延遲迴路,以計數該第一脈波訊號與該第二脈波訊號分別於該第一多階延遲迴路與該第二多階延遲迴路中的運行次數;一解碼器,耦接該些比較器,其中當該比較訊號由高準位切換至低準位時,該第一脈波訊號係與該第二脈波訊號同步,並且該解碼器係將該比較訊號解碼為一解碼訊號輸出;以及一處理模組,耦接該解碼器與該運算模組,該處理模組係接收該解碼訊號以及該運算模組之計數結果,以產生該數位訊號輸出。 An annular micro-scale time-to-digital converter converts a received time difference between a leading signal and a backward signal into a digital signal output, the circular micro-scale time digital converter comprising: a first multi-order delay The loop receives the leading signal and controls the leading signal to form a first pulse signal periodically after the multi-step delay to repeatedly operate in the first multi-order delay loop; a second multi-order delay loop Receiving the backward signal, and controlling the backward signal to form a second pulse signal after the multi-step delay periodically to repeatedly run in the second multi-order delay loop; the plurality of comparators coupled to the first plurality a step delay loop and the second multi-order delay loop, wherein the comparators compare a time difference between the first pulse signal and the second pulse signal, and output a comparison signal; and an operation module coupled to the a first multi-order delay loop and the second multi-order delay loop to count the operation of the first pulse signal and the second pulse signal in the first multi-order delay loop and the second multi-order delay loop, respectively frequency; The decoder is coupled to the comparators, wherein when the comparison signal is switched from a high level to a low level, the first pulse signal is synchronized with the second pulse signal, and the decoder compares the comparison The signal is decoded into a decoded signal output; and a processing module is coupled to the decoder and the computing module. The processing module receives the decoded signal and the counting result of the computing module to generate the digital signal output. 如請求項1所述之環狀微刻度時間數位轉換器,其中該第一多階延遲迴路 更包括複數個第一延遲單元,使得該領先訊號每經過一個該第一延遲單元係被延遲一第一延遲時間,該領先訊號在經過複數個該第一延遲時間後係為該第一脈波訊號,該第二多階延遲迴路更包括複數個第二延遲單元,使得該落後訊號每經過一個該第二延遲單元係被延遲一第二延遲時間,該落後訊號在經過複數個該第二延遲時間後係為該第二脈波訊號,每一該比較器係耦接於各該第一延遲單元與各該第二延遲單元之間,以比較該第一脈波訊號在經過各該第一延遲時間與該第二脈波訊號在經過各該第二延遲時間後之時間差,並根據該些時間差輸出該比較訊號。 The ring-shaped micro-scale time digital converter according to claim 1, wherein the first multi-order delay circuit Further comprising a plurality of first delay units, such that the leading signal is delayed by a first delay time after each of the first delay units, and the leading signal is the first pulse after a plurality of the first delay times a signal, the second multi-step delay loop further includes a plurality of second delay units, such that the backward signal is delayed by a second delay time after each of the second delay units, and the backward signal is subjected to the plurality of the second delays After the time is the second pulse signal, each of the comparators is coupled between each of the first delay units and each of the second delay units to compare the first pulse signals through each of the first The delay time and the time difference of the second pulse signal after each of the second delay times are performed, and the comparison signal is output according to the time differences. 如請求項2所述之環狀微刻度時間數位轉換器,其中該第一延遲單元與該第二延遲單元係為一多工器(MUX)延遲單元。 The ring-shaped micro-scale time-digit converter of claim 2, wherein the first delay unit and the second delay unit are a multiplexer (MUX) delay unit. 如請求項2所述之環狀微刻度時間數位轉換器,更包括一第一預先處理邏輯電路,該第一預先處理邏輯電路係包括複數個第一預先延遲單元,每一該第一預先延遲單元係對應產生一第三延遲時間,其中該第一預先處理邏輯電路係接收一起始領先訊號,並控制該起始領先訊號在經過複數個該第三延遲時間後成為該領先訊號。 The ring-shaped micro-scale time-digit converter according to claim 2, further comprising a first pre-processing logic circuit, wherein the first pre-processing logic circuit comprises a plurality of first pre-delay units, each of the first pre-delay The unit correspondingly generates a third delay time, wherein the first pre-processing logic circuit receives an initial leading signal and controls the initial leading signal to become the leading signal after a plurality of the third delay times. 如請求項4所述之環狀微刻度時間數位轉換器,更包括一第二預先處理邏輯電路,該第二預先處理邏輯電路係包括複數個第二預先延遲單元,每一該第二預先延遲單元係對應產生一第四延遲時間,其中該第二預先處理邏輯電路係接收一起始落後訊號,並控制該起始落後訊號在經過複數個該第四延遲時間後成為該落後訊號。 The ring-shaped micro-scale time-digit converter according to claim 4, further comprising a second pre-processing logic circuit, the second pre-processing logic circuit comprising a plurality of second pre-delay units, each of the second pre-delay The unit correspondingly generates a fourth delay time, wherein the second pre-processing logic circuit receives a start backward signal, and controls the start backward signal to become the backward signal after the plurality of the fourth delay time. 如請求項5所述之環狀微刻度時間數位轉換器,其中該第三延遲時間與該第四延遲時間係等於該第一延遲時間,且該第二延遲時間係小於該第一 延遲時間。 The ring-shaped micro-scale time-digit converter of claim 5, wherein the third delay time and the fourth delay time are equal to the first delay time, and the second delay time is less than the first delay. 如請求項5所述之環狀微刻度時間數位轉換器,更包括一預先比較器,該預先比較器係比較一半落後訊號與一全延遲訊號,以決定該落後訊號進入該第二多階延遲迴路之位置,其中該些第一延遲單元、該些第二延遲單元、該些第一預先延遲單元與該些第二預先延遲單元之數量係各自為N個,且N為正整數,該第一延遲時間、該第三延遲時間與該第四延遲時間係為tL,該第二延遲時間係為tD,該起始落後訊號在經過(tL*N/2)的延遲時間後成為該半落後訊號,該領先訊號在經過(tL*N)的延遲時間後成為該全延遲訊號。 The ring-shaped micro-scale time-digit converter according to claim 5, further comprising a pre-comparator, wherein the pre-comparator compares the half backward signal with a full delay signal to determine the backward signal to enter the second multi-order delay a position of the loop, wherein the first delay unit, the second delay unit, the first pre-delay unit, and the second pre-delay units are each N, and N is a positive integer, the first a delay time, the third delay time and the fourth delay time are t L , and the second delay time is t D , and the initial backward signal becomes after a delay time of (t L *N/2) The half-lag signal, the leading signal becomes the full delay signal after a delay time of (t L *N). 如請求項7所述之環狀微刻度時間數位轉換器,其中該N=8。 The ring-shaped micro-scale time-digit converter of claim 7, wherein the N=8. 如請求項8所述之環狀微刻度時間數位轉換器,其中該半落後訊號領先該全延遲訊號時,該落後訊號係由該第二多階延遲迴路中之第一個該第二延遲單元所接收。 The ring-shaped micro-scale time-digit converter according to claim 8, wherein the backward signal is caused by the first one of the second multi-order delay circuits when the half-lag signal leads the full delay signal Received. 如請求項8所述之環狀微刻度時間數位轉換器,其中該全延遲訊號領先該半落後訊號時,該落後訊號係由該第二多階延遲迴路中之第五個該第二延遲單元所接收。 The ring-shaped micro-scale time-digit converter according to claim 8, wherein when the full-delay signal leads the half-lag signal, the backward signal is the fifth one of the second multi-stage delay circuits. Received. 如請求項5所述之環狀微刻度時間數位轉換器,其中該運算模組更包括一粗計數器與一細計數器,其係各自耦接於該第一多階延遲迴路與該第二多階延遲迴路,其中該領先訊號進入該第一多階延遲迴路時,該粗計數器係開始計數,直到該落後訊號進入該第二多階延遲迴路時,該粗計數器係停止計數,而該細計數器開始計數,以分別利用該粗計數器計算該第一脈波訊號於該第一多階延遲迴路中的運行次數,以及利用該細計數 器計算該第二脈波訊號於該第二多階延遲迴路中的運行次數。 The ring-shaped micro-scale time-digit converter of claim 5, wherein the operation module further comprises a coarse counter and a fine counter, each of which is coupled to the first multi-order delay loop and the second multi-step a delay loop, wherein when the leading signal enters the first multi-stage delay loop, the coarse counter starts counting until the backward signal enters the second multi-stage delay loop, the coarse counter stops counting, and the fine counter starts Counting, respectively, using the coarse counter to calculate the number of runs of the first pulse signal in the first multi-order delay loop, and using the fine count The controller calculates the number of operations of the second pulse signal in the second multi-order delay loop. 如請求項11所述之環狀微刻度時間數位轉換器,其中該運算模組更包括一計數冗餘校正器,其係比較該起始落後訊號與一全延遲訊號,以決定該細計數器是否開始計數,其中該些第一延遲單元、該些第二延遲單元、該些第一預先延遲單元與該些第二預先延遲單元之數量係各自為N個,且N為正整數,該第一延遲時間、該第三延遲時間與該第四延遲時間係為tL,該第二延遲時間係為tD,該領先訊號在經過(tL*N)的延遲時間後成為該全延遲訊號。 The cyclic micro-scale time digital converter according to claim 11, wherein the operation module further comprises a count redundancy corrector, which compares the start backward signal with a full delay signal to determine whether the fine counter is Starting to count, wherein the number of the first delay unit, the second delay unit, the first pre-delay unit, and the second pre-delay units are each N, and N is a positive integer, the first The delay time, the third delay time and the fourth delay time are t L , and the second delay time is t D , and the leading signal becomes the full delay signal after a delay time of (t L *N). 如請求項12所述之環狀微刻度時間數位轉換器,其中該起始落後訊號領先該全延遲訊號時,該粗計數器係提早關閉,以切換至該細計數器開始計數。 The circular micro-scale time digital converter according to claim 12, wherein when the initial backward signal leads the full delay signal, the coarse counter is turned off early to switch to the fine counter to start counting. 如請求項12所述之環狀微刻度時間數位轉換器,其中該全延遲訊號領先該起始落後訊號時,該粗計數器係延後關閉,以延遲該細計數器開始計數。 The circular micro-scale time digital converter according to claim 12, wherein when the full delay signal leads the start backward signal, the coarse counter is delayed to delay the fine counter to start counting. 如請求項12所述之環狀微刻度時間數位轉換器,其中該計數冗餘校正器係具有一緩衝時間,該起始落後訊號與該全延遲訊號間之時間差係小於或等於該緩衝時間。 The circular micro-scale time-digit converter of claim 12, wherein the counting redundancy corrector has a buffering time, and a time difference between the initial backward signal and the full-delay signal is less than or equal to the buffering time.
TW103130762A 2014-09-05 2014-09-05 Cyclic vernier ring time-to-digital converter TWI545904B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103130762A TWI545904B (en) 2014-09-05 2014-09-05 Cyclic vernier ring time-to-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103130762A TWI545904B (en) 2014-09-05 2014-09-05 Cyclic vernier ring time-to-digital converter

Publications (2)

Publication Number Publication Date
TW201611526A TW201611526A (en) 2016-03-16
TWI545904B true TWI545904B (en) 2016-08-11

Family

ID=56085317

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103130762A TWI545904B (en) 2014-09-05 2014-09-05 Cyclic vernier ring time-to-digital converter

Country Status (1)

Country Link
TW (1) TWI545904B (en)

Also Published As

Publication number Publication date
TW201611526A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
US8081013B1 (en) Digital phase and frequency detector
US7629915B2 (en) High resolution time-to-digital converter and method thereof
KR101082415B1 (en) Hierarchical Time to Digital Converter
JP5561010B2 (en) Successive comparison type AD converter and method of adjusting operation clock of successive approximation type AD converter
CN106059574B (en) Circuit for digitizing phase difference, PLL circuit and method therefor
KR101632657B1 (en) Time-to-digital convertoer and all-digital phase locked loop
KR101212625B1 (en) Time to digital converter and operating method thereof
WO2010104164A1 (en) Digital phase comparator
TWI445313B (en) Delayed locking circuit with twisted clocks
JP2010130699A (en) Time-to-digital converter, and digital phase-locked loop
US8866522B1 (en) Digital delay-locked loop circuit using phase-inversion algorithm and method for controlling the same
WO2013069173A1 (en) Digital time difference converter
US10496041B2 (en) Time-to-digital converter circuit
JP5807065B2 (en) Phase comparison device and DLL circuit
WO2012120569A1 (en) Phase-to-digital conversion circuit and phase-to-digital converter provided therewith
WO2019117803A1 (en) Time-to-digital converter
CN104935345A (en) System and method for a time-to-digital converter
US9793914B2 (en) Analog-to-digital converter, electronic device, and method of controlling analog-to-digital converter
TWI545904B (en) Cyclic vernier ring time-to-digital converter
TWI685200B (en) Synchronous mirror delay circuit and operation method for synchronous mirror delay
WO2019210642A1 (en) Novel time-to-digital converter
JP2004214825A (en) Frequency comparator
JPWO2010032830A1 (en) Digital phase comparator and method
JP2006287484A (en) Clock data recovery circuit
El-Shafie et al. An all-digital DLL using novel harmonic-free and multi-bit SAR techniques

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees