TWI545738B - Unit pixel, photo-detection device and method of measuring a distance using the same - Google Patents

Unit pixel, photo-detection device and method of measuring a distance using the same Download PDF

Info

Publication number
TWI545738B
TWI545738B TW100128173A TW100128173A TWI545738B TW I545738 B TWI545738 B TW I545738B TW 100128173 A TW100128173 A TW 100128173A TW 100128173 A TW100128173 A TW 100128173A TW I545738 B TWI545738 B TW I545738B
Authority
TW
Taiwan
Prior art keywords
annular
gate
region
unit pixel
semiconductor substrate
Prior art date
Application number
TW100128173A
Other languages
Chinese (zh)
Other versions
TW201232770A (en
Inventor
艾瑞克R 佛桑
朴允童
Original Assignee
三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電子股份有限公司 filed Critical 三星電子股份有限公司
Publication of TW201232770A publication Critical patent/TW201232770A/en
Application granted granted Critical
Publication of TWI545738B publication Critical patent/TWI545738B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K3/00Baths; Douches; Appurtenances therefor
    • A47K3/28Showers or bathing douches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/18Roses; Shower heads
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/04Water-basin installations specially adapted to wash-basins or baths
    • E03C1/0408Water installations especially for showers
    • E03C1/0409Shower handles

Description

單位畫素、光偵測裝置以及使用該裝置測量距離的方法Unit pixel, light detecting device, and method for measuring distance using the same 【相關申請案】[related application]

本申請案主張2010年8月11日申請之美國臨時申請案第61/372,709號以及2011年1月18日申請之韓國專利申請案第2011-0004750號的優先權,所述申請案均以引用方式全文併入本文中。The present application claims priority to U.S. Provisional Application No. 61/372,709, filed on Aug. The manner is fully incorporated herein.

例示性實施例是關於光偵測裝置。更明確而言,例示性實施例是關於具有環形結構之單位畫素、包含具有環形結構之單位畫素的光偵測裝置,以及使用具有環形結構之單位畫素測量距離的方法。An exemplary embodiment relates to a light detecting device. More specifically, the exemplary embodiment relates to a unit pixel having a ring structure, a photodetecting device including a unit pixel having a ring structure, and a method of measuring a distance using a unit pixel having a ring structure.

影像感測器是將包含關於物件之影像及/或距離(亦即,深度)資訊之光學信號轉換成電信號的光偵測裝置。已開發出各種類型之影像感測器(諸如,電荷耦合裝置(charge-coupled device;CCD)影像感測器、CMOS影像感測器(CMOS image sensor,CIS)等)以提供關於物件之高品質影像資訊。近來,正研究並開發提供深度資訊以及二維影像資訊之三維(three-dimensional;3D)影像感測器。An image sensor is a light detecting device that converts an optical signal containing information about an image and/or distance (ie, depth) of an object into an electrical signal. Various types of image sensors (such as charge-coupled device (CCD) image sensors, CMOS image sensors (CIS), etc.) have been developed to provide high quality objects. Image information. Recently, three-dimensional (3D) image sensors providing depth information and two-dimensional image information are being researched and developed.

所述三維影像感測器可使用紅外光或近紅外光作為光源來獲得深度資訊。所述三維影像感測器可能具有比習知二維影像感測器低之信雜比(signal-to-noise ratio;SNR)以及靈敏度,此致使獲得不正確之深度資訊。The three-dimensional image sensor can use infrared light or near-infrared light as a light source to obtain depth information. The 3D image sensor may have a lower signal-to-noise ratio (SNR) and sensitivity than conventional 2D image sensors, which results in incorrect depth information.

一或多個實施例提供具有高靈敏度以及改良之信雜比的光偵測裝置之單位畫素。One or more embodiments provide unit pixels of a light detecting device having high sensitivity and improved signal to noise ratio.

一或多個實施例提供一種包括所述單位畫素之光偵測裝置。One or more embodiments provide a light detecting device including the unit pixel.

一或多個實施例提供一種使用所述光偵測裝置測量距物件之距離的方法。One or more embodiments provide a method of measuring the distance from an object using the light detecting device.

一或多個實施例可提供一種具有環形單接頭結構之單位畫素,所述單位畫素有效率地收集及排出光電荷以準確地測量距物件之距離。One or more embodiments may provide a unit pixel having a ring-shaped single-joint structure that efficiently collects and discharges photocharges to accurately measure the distance from the object.

一或多個實施例可提供一種包含單位畫素之畫素陣列以及光偵測裝置,其藉由整體地形成對應於單位畫素之最外部分的汲極區而不需要抗光暈結構,藉此改良總體設計容限。One or more embodiments may provide a pixel array including a unit pixel and a photodetecting device that integrally form a drain region corresponding to an outermost portion of a unit pixel without an antihalation structure. This improves the overall design tolerance.

一或多個實施例可提供一種光偵測裝置以及一種測量距離之方法,其可藉由視距物件之距離而使用可變二進位信號獲得深度資訊而具有高信雜比。One or more embodiments may provide a light detecting device and a method of measuring a distance, which can obtain depth information using a variable binary signal by a distance of a line-of-sight object and have a high signal-to-noise ratio.

一或多個實施例可提供包含於光偵測裝置中之單位畫素,所述單位畫素包含在半導體基板中之浮動擴散區、在所述半導體基板之上的環形收集閘極、在所述半導體基板之上的環形排出閘極,以及在所述半導體基板中的汲極區,其中所述收集閘極與所述排出閘極分別配置於所述浮動擴散區與所述汲極區之間。One or more embodiments may provide a unit pixel included in a photodetecting device, the unit pixel comprising a floating diffusion region in a semiconductor substrate, an annular collecting gate over the semiconductor substrate, An annular discharge gate over the semiconductor substrate, and a drain region in the semiconductor substrate, wherein the collector gate and the drain gate are respectively disposed in the floating diffusion region and the drain region between.

收集閘極可環繞浮動擴散區,排出閘極可環繞收集閘極,且汲極區可環繞排出閘極。The collection gate can surround the floating diffusion region, the discharge gate can surround the collection gate, and the drain region can surround the discharge gate.

浮動擴散區可位於中心,且與收集閘極以及排出閘極相比,汲極區相對於浮動擴散區而言位於最外面。The floating diffusion region can be centered and the drain region is located at the outermost side relative to the floating diffusion region as compared to the collector gate and the drain gate.

收集閘極以及排出閘極可能具有圓形或多邊形環形形狀。The collection gate and the discharge gate may have a circular or polygonal annular shape.

收集閘極信號與排出閘極信號可分別施加至收集閘極與排出閘極,其中在啟動收集閘極信號時,半導體基板中所產生之光電荷收集於浮動擴散區中,且其中在啟動排出閘極信號時,半導體基板中所產生之光電荷排出至汲極區中。The collecting gate signal and the discharging gate signal may be respectively applied to the collecting gate and the discharging gate, wherein when the collecting gate signal is started, the photocharge generated in the semiconductor substrate is collected in the floating diffusion region, and wherein the discharging is started At the gate signal, the photocharge generated in the semiconductor substrate is discharged into the drain region.

環形光電荷儲存區在半導體基板中且在浮動擴散區與汲極區之間,所述光電荷儲存區摻雜有傳導性類型與半導體基板之傳導性類型相反的雜質。The annular photocharge storage region is in the semiconductor substrate and between the floating diffusion region and the drain region, the photocharge storage region being doped with an impurity of a conductivity type opposite to that of the semiconductor substrate.

收集閘極與光電荷儲存區之內部部分可至少部分重疊,且其中排出閘極與光電荷儲存區之外部部分可至少部分重疊。The collection gate and the inner portion of the photocharge storage region may at least partially overlap, and wherein the discharge gate and the outer portion of the photocharge storage region may at least partially overlap.

收集閘極位於光電荷儲存區與浮動擴散區之間,且其中排出閘極位於光電荷儲存區與汲極區之間。The collection gate is located between the photocharge storage region and the floating diffusion region, and wherein the discharge gate is located between the photo charge storage region and the drain region.

所述單位畫素可包含在半導體基板中用以覆蓋光電荷儲存區的環形固定層,所述固定層摻雜有傳導性類型與光電荷儲存區之傳導性類型相反的雜質。The unit pixel may comprise an annular pinned layer in the semiconductor substrate for covering the photocharge storage region, the pinned layer being doped with an impurity of a conductivity type opposite to that of the photocharge storage region.

所述單位畫素可包含環形光閘極,其在半導體基板之上且在收集閘極與排出閘極之間,以及用以覆蓋光電荷儲存區。The unit pixel may include an annular light gate between the semiconductor substrate and between the collection gate and the discharge gate, and to cover the photocharge storage region.

所述半導體基板可包含摻雜有相同傳導性類型以及不同濃度之雜質的多個光電荷產生區。The semiconductor substrate may include a plurality of photocharge generating regions doped with impurities of the same conductivity type and different concentrations.

一或多個實施例可提供一種光偵測裝置,其包含:經組態以將所接收到之光轉換成電信號的感測單元,所述感測單元包含至少一個單位畫素;以及經組態以控制感測單元的控制單元。One or more embodiments may provide a light detecting device comprising: a sensing unit configured to convert received light into an electrical signal, the sensing unit comprising at least one unit pixel; A control unit configured to control the sensing unit.

所述感測單元可包含多個單位畫素排列成矩形或三角形柵格的畫素陣列。The sensing unit may include a pixel array in which a plurality of unit pixels are arranged in a rectangular or triangular grid.

所述多個單位畫素之汲極區可整體地形成且在半導體基板中在空間上彼此耦合。The plurality of unit pixel drain regions may be integrally formed and spatially coupled to each other in the semiconductor substrate.

所述多個單位畫素中之至少兩者的浮動擴散區可彼此電耦合且對應於畫素群組。The floating diffusion regions of at least two of the plurality of unit pixels may be electrically coupled to each other and to a pixel group.

在柵格之至少一個柵格點處可有規律地省略單位畫素,且所述感測單元在省略了單位畫素之柵格點處可包含讀出電路以提供所述多個單位畫素之輸出。The unit pixel may be regularly omitted at at least one grid point of the grid, and the sensing unit may include a readout circuit at the grid point where the unit pixel is omitted to provide the plurality of unit pixels The output.

所述多個單位畫素可包含色彩畫素以及深度畫素,且所述光偵測裝置可為三維影像感測器。The plurality of unit pixels may include a color pixel and a depth pixel, and the light detecting device may be a three-dimensional image sensor.

一或多個實施例可提供一種測量距離之方法,所述方法包含:向物件發射光;使用循環數目根據相對於所發射光之相位差而增加的多個二進位信號來將對應於所發射光的所接收到之光轉換成電信號;以及基於所述電信號來計算距所述物件之距離,其中使用單位畫素將所接收到之光轉換成電信號,所述單位畫素包含在半導體基板中之浮動擴散區、在半導體基板之上的環形收集閘極、在半導體基板之上的環形排出閘極,以及在半導體基板中的汲極區,其中收集閘極與排出閘極分別配置於浮動擴散區與汲極區之間。One or more embodiments may provide a method of measuring a distance, the method comprising: emitting light to an object; using a plurality of binary signals that are increased according to a phase difference with respect to the emitted light, corresponding to the emitted The received light of the light is converted into an electrical signal; and a distance from the object is calculated based on the electrical signal, wherein the received pixel is converted into an electrical signal using a unit pixel, the unit pixel being included in a floating diffusion region in the semiconductor substrate, an annular collection gate over the semiconductor substrate, an annular discharge gate over the semiconductor substrate, and a drain region in the semiconductor substrate, wherein the collection gate and the discharge gate are respectively disposed Between the floating diffusion zone and the bungee zone.

所述多個二進位信號之占空率可根據相對於所發射光之相位差而增加。The duty ratio of the plurality of binary signals may be increased according to a phase difference with respect to the emitted light.

將所接收到之光轉換成電信號可包含:在啟動所述多個二進位信號時在浮動擴散區中收集由所接收到之光產生的光電荷;以及在撤銷啟動(deactivate)所述多個二進位信號時將由所接收到之光產生的光電荷排出至汲極區中。Converting the received light into an electrical signal can include: collecting photocharges generated by the received light in a floating diffusion region when the plurality of binary signals are activated; and deactivateing the plurality of The binary carry signal discharges the photocharge generated by the received light into the drain region.

所述方法可包含:調整所述多個二進位信號之相位以及占空率使之集中於對應於所計算出之距離的相位;以及使用具有經調整之相位以及占空率之多個二進位信號來校正距物件之距離。The method can include: adjusting a phase of the plurality of binary signals and a duty ratio to focus on a phase corresponding to the calculated distance; and using a plurality of binary bits having an adjusted phase and a duty ratio Signal to correct the distance from the object.

一或多個實施例可提供一種測量距離之方法,所述方法包含:向物件發射光;使用循環數目根據相對於所發射光之相位差而增加的多個二進位信號來將對應於所發射光的所接收到之光轉換成電信號;以及基於所述電信號來計算距所述物件之距離,其中使用具有環形結構之單接頭畫素來將所接收到之光轉換成電信號,其中所述畫素之浮動擴散區位於環形結構之中心處,且所述畫素之汲極區配置於環形結構之外部部分處。One or more embodiments may provide a method of measuring a distance, the method comprising: emitting light to an object; using a plurality of binary signals that are increased according to a phase difference with respect to the emitted light, corresponding to the emitted Converting the received light of the light into an electrical signal; and calculating a distance from the object based on the electrical signal, wherein a single connector pixel having a ring structure is used to convert the received light into an electrical signal, wherein The floating diffusion region of the pixel is located at the center of the annular structure, and the drain region of the pixel is disposed at an outer portion of the annular structure.

在下文參看附圖來更充分地描述各種例示性實施例,一些例示性實施例展示於附圖中。然而,特徵可以許多不同形式來具體化且不應被理解為限於本文所陳述之例示性實施例。在諸圖中,為清楚起見,可誇示層及區之大小以及相對大小。Various illustrative embodiments are described more fully hereinafter with reference to the accompanying drawings. However, the features may be embodied in many different forms and should not be construed as being limited to the illustrative embodiments set forth herein. In the figures, the size and relative sizes of layers and regions may be exaggerated for clarity.

應理解,當一個元件或層被稱為“在”另一元件或層“上”、“連接至”或“耦合至”另一元件或層時,其可直接在另一元件或層上、直接連接或直接耦合至另一元件或層,或可存在介入元件或層。相反,當一個元件被稱為“直接在”另一元件或層“上”、“直接連接至”或“直接耦合至”另一元件或層時,不存在介入元件或層。相似數字貫穿本說明來指代相似元件。如本文中所使用,術語“及/或”包含相關聯之所列出項中之一或多者的任何以及所有組合。It will be understood that when an element or layer is referred to as "on", "connected to" or "coupled to" another element or layer, Directly coupled or directly coupled to another element or layer, or an intervening element or layer may be present. In contrast, when an element is referred to as “directly on,” “directly connected,” or “directly connected” or “directly connected” to another element or layer, there are no intervening elements or layers. Like numbers refer to like elements throughout the description. The term "and/or" as used herein includes any and all combinations of one or more of the associated listed items.

應理解,雖然本文中可使用術語第一、第二、第三等等來描述各種元件、組件、區、層及/或區段,但此等元件、組件、區、層及/或區段不應受此等術語限制。此等術語僅用以區別一個元件、組件、區、層或區段與另一區、層或區段。因此,在不偏離本發明概念之教示的情況下,下文所論述之第一元件、組件、區、層或區段可被稱為第二元件、組件、區、層或區段。It will be understood that the terms first, second, third, etc. may be used to describe various elements, components, regions, layers and/or sections, but such elements, components, regions, layers and/or sections It should not be limited by these terms. The terms are only used to distinguish one element, component, region, layer or section from another. Thus, a first element, component, region, layer or section discussed hereinafter may be referred to as a second element, component, region, layer or section, without departing from the teachings of the invention.

為易於描述,在本文中可使用諸如“下”、“下方”、“下部”、“上方”、“上部”以及其類似者之空間相關術語來描述諸圖中所說明之一個元件或特徵與另一(些)元件或特徵的關係。應理解,所述空間相關術語意欲包含除了諸圖中描繪之定向外的使用中或操作中的裝置的不同定向。舉例而言,若諸圖中之裝置翻轉,則描述為在其他元件或特徵“下方”或“下”之元件將因此定向為在其他元件或特徵“上方”。因此,例示性術語“下方”可包含上方以及下方之定向。所述裝置可以其他方式定向(旋轉90度或處於其他定向),且相應地解譯本文所使用之空間相關描述詞。此外,“在”其他元件“之間”或“環繞”其他元件之元件可沿同一平面或不同平面來在其他元件之間或環繞其他元件。更明確而言,例如,所述元件可沿與所述其他元件中沿另一元件延伸之一或多者不同的平面延伸,但自平面圖看,所述元件可在所述其他元件之間及/或環繞所述其他元件。For ease of description, spatially related terms such as "lower", "lower", "lower", "above", "upper", and the like may be used herein to describe one element or feature described in the figures. The relationship of another component or feature. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the Figures. For example, elements that are "under" or "beneath" or "an" or "an" Thus, the exemplary term "lower" can encompass the orientation above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially related descriptors used herein interpreted accordingly. In addition, elements "between" or "circum" other elements may be "between" or "an" or "an" More specifically, for example, the elements may extend along a different plane than one or more of the other elements extending along the other element, but the elements may be between the other elements and / or surround the other components.

本文中所使用之術語是僅為達成描述特定例示性實施例之目的且不意欲限制本發明概念。除非上下文另外清楚地指示,否則如本文中所使用,單數形式“一”以及“所述”意欲亦包含複數形式。進一步理解,術語“包括”在本說明書中使用時指定所述特徵、整數、步驟、操作、元件及/或組件之存在,但不排除一或多個其他特徵、整數、步驟、操作、元件、組件及/或其群組的存在或添加。The terminology used herein is for the purpose of the description of the particular exemplary embodiments As used herein, the singular forms "" It is further understood that the terms "comprises" or "an" The presence or addition of components and/or their groups.

本文中參看為理想化例示性實施例(及中間結構)之圖解說明的橫截面圖來描述例示性實施例。因而,應預期由於(例如)製造技術及/或容差而引起的相對於諸圖之形狀的變化。因此,例示性實施例不應被理解為限於本文中所說明之區之特定形狀,而應包含由(例如)製造導致之形狀偏差。舉例而言,說明為矩形之經植入區將通常具有修圓或彎曲特徵及/或在其邊緣處之植入濃度的梯度,而非自經植入區至非植入區之二元改變。同樣,藉由植入形成之埋入區可在埋入區與植入藉以發生之表面之間的區中導致某植入。因此,諸圖中所說明之區本質上為示意性的,且其形狀不意欲說明裝置之區之實際形狀且不意欲限制本發明概念之範疇。Exemplary embodiments are described herein with reference to the cross-sectional illustrations of the illustrative exemplary embodiments (and intermediate structures). Thus, variations from the shapes of the figures may be expected due to, for example, manufacturing techniques and/or tolerances. Therefore, the exemplary embodiments should not be construed as limited to the specific shapes of the regions described herein, but should include the shape variations resulting from, for example, manufacturing. For example, an implanted region illustrated as a rectangle will typically have a rounded or curved feature and/or a gradient of implant concentration at its edges rather than a binary change from the implanted region to the non-implanted region. . Likewise, a buried region formed by implantation can result in some implantation in the region between the buried region and the surface from which the implantation takes place. The area illustrated in the figures is therefore illustrative in nature and is not intended to limit the scope of the invention.

除非另有定義,否則本文所使用之所有術語(包括科技術語)具有與一般熟習本發明概念所屬技術者所通常理解之涵義相同的涵義。應進一步理解,術語(諸如,在常用辭典中所定義之術語)應被解譯為具有與其在相關技術之情形中的涵義一致的涵義且除非本文中明確定義否則將不以理想化或過度形式化之意義來加以解譯。All terms (including technical terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. It is to be further understood that a term (such as a term defined in a commonly used dictionary) should be interpreted as having a meaning consistent with its meaning in the context of the related art and will not be idealized or over-formed unless explicitly defined herein. The meaning of the meaning is interpreted.

圖1說明光偵測裝置之單位畫素之例示性實施例的佈局圖。1 illustrates a layout of an exemplary embodiment of a unit pixel of a light detecting device.

參看圖1,單位畫素可包含第一區REG1、第二區REG2及第三區REG3。第一區REG1可位於單位畫素之中心處。第二區REG2可環繞第一區REG1。第三區REG3可環繞第二區REG2。單位畫素可具有環形結構。第一區REG1、第二區REG2及/或第三區REG3可各自具有環形結構,例如,圓形、多邊形環結構。更明確而言,雖然在圖1中說明圓形單位畫素之實例,但單位畫素之環形結構的實施例不限於圓形,而是可為(例如)多邊形或正多邊形。Referring to FIG. 1, a unit pixel may include a first area REG1, a second area REG2, and a third area REG3. The first zone REG1 can be located at the center of the unit pixel. The second zone REG2 may surround the first zone REG1. The third zone REG3 can surround the second zone REG2. The unit pixel can have a ring structure. The first region REG1, the second region REG2, and/or the third region REG3 may each have a ring structure, for example, a circular, polygonal ring structure. More specifically, although an example of a circular unit pixel is illustrated in FIG. 1, an embodiment of the ring structure of the unit pixel is not limited to a circle, but may be, for example, a polygon or a regular polygon.

如下文將參看圖2至圖12所詳細描述的,第一區REG1可對應於用於收集光電荷之浮動擴散區。第三區REG3可對應於用於排出光電荷之汲極區。在第一區REG1與第三區REG3之間的第二區REG2可對應於形成至少一個閘極之閘極區。As will be described in detail below with reference to FIGS. 2 through 12, the first region REG1 may correspond to a floating diffusion region for collecting photocharges. The third region REG3 may correspond to a drain region for discharging photocharges. The second region REG2 between the first region REG1 and the third region REG3 may correspond to a gate region forming at least one gate.

在一些實施例中,單位畫素可使用半導體基板藉由CMOS製程形成。與習知CMOS製程類似,作為第一區REG1之浮動擴散區及作為第三區REG3之汲極區可使用離子植入製程或其類似製程而形成於半導體基板中。作為第二區REG2之閘極區可使用沈積製程、蝕刻製程等而形成於半導體基板之上。In some embodiments, the unit pixel can be formed by a CMOS process using a semiconductor substrate. Similar to the conventional CMOS process, the floating diffusion region as the first region REG1 and the drain region as the third region REG3 can be formed in the semiconductor substrate using an ion implantation process or the like. The gate region as the second region REG2 may be formed on the semiconductor substrate using a deposition process, an etching process, or the like.

圖2說明光偵測裝置之單位畫素100之例示性實施例的平面圖。2 illustrates a plan view of an exemplary embodiment of a unit pixel 100 of a light detecting device.

參看圖2,單位畫素100可包含浮動擴散區110、收集閘極120、排出閘極130以及汲極區140。收集閘極120可形成於半導體基板之上。當自單位畫素100之頂部觀看時,收集閘極120可具有環繞形成於半導體基板中之浮動擴散區110的環形形狀。排出閘極130可形成於半導體基板之上。當自頂部觀看時,排出閘極130可具有環繞收集閘極120之環形形狀。汲極區140可形成於半導體基板中。當自頂部觀看時,汲極區140可環繞排出閘極130。汲極區140可具有環形形狀。Referring to FIG. 2, the unit pixel 100 can include a floating diffusion region 110, a collection gate 120, a drain gate 130, and a drain region 140. The collection gate 120 may be formed over the semiconductor substrate. The collection gate 120 may have an annular shape surrounding the floating diffusion region 110 formed in the semiconductor substrate when viewed from the top of the unit pixel 100. The drain gate 130 may be formed over the semiconductor substrate. The discharge gate 130 may have an annular shape surrounding the collection gate 120 when viewed from the top. The drain region 140 may be formed in a semiconductor substrate. The drain region 140 may surround the drain gate 130 when viewed from the top. The drain region 140 may have a ring shape.

如下文將參看圖3及圖4所詳細描述的,單位畫素100可藉由CMOS製程而形成於半導體基板上。浮動擴散區110以及汲極區140可形成於半導體基板中。收集閘極120以及排出閘極130可形成於半導體基板之上。As will be described in detail below with reference to FIGS. 3 and 4, the unit pixel 100 can be formed on a semiconductor substrate by a CMOS process. The floating diffusion region 110 and the drain region 140 may be formed in a semiconductor substrate. The collection gate 120 and the discharge gate 130 may be formed over the semiconductor substrate.

雖然環形收集閘極120以及環形排出閘極130在圖2中說明為具有圓形形狀,但實施例不限於此。舉例而言,環形收集閘極120以及環形排出閘極130可具有正多邊形形狀,如(例如)圖15及圖16中所大致繪示。Although the annular collecting gate 120 and the annular discharge gate 130 are illustrated as having a circular shape in FIG. 2, the embodiment is not limited thereto. For example, the annular collection gate 120 and the annular discharge gate 130 can have a regular polygonal shape, as generally depicted, for example, in FIGS. 15 and 16.

更明確而言,例如,在一或多個實施例中,汲極區140之內邊緣140i可具有與收集閘極120以及排出閘極130相同之形狀。汲極區140之外邊緣140o可具有與收集閘極120及/或排出閘極130相同或不同之形狀。舉例而言,在多個單位畫素排列成陣列之情況下,鄰近單位畫素之汲極區可在空間上彼此耦合且可整體地形成於半導體基板中。在此等實施例中,由於汲極區是整體形成的,因此汲極區之外邊緣可能並非針對特定單位畫素而界定的。More specifically, for example, in one or more embodiments, the inner edge 140i of the drain region 140 can have the same shape as the collection gate 120 and the drain gate 130. The outer edge 140o of the drain region 140 may have the same or a different shape than the collection gate 120 and/or the discharge gate 130. For example, in the case where a plurality of unit pixels are arranged in an array, the drain regions of the adjacent unit pixels may be spatially coupled to each other and may be integrally formed in the semiconductor substrate. In such embodiments, since the drain region is integrally formed, the outer edge of the drain region may not be defined for a particular unit pixel.

圖3及圖4說明沿圖2之線I1-I2截取的單位畫素100之例示性實施例的橫截面圖。由於圖2之單位畫素100具有關於中心實質上圓形對稱之環形結構,因此線I1-I2可為穿過單位畫素100之中心的任何線。3 and 4 illustrate cross-sectional views of an exemplary embodiment of a unit pixel 100 taken along line I1-I2 of FIG. Since the unit pixel 100 of FIG. 2 has a ring structure that is substantially circularly symmetric about the center, the line I1-I2 can be any line that passes through the center of the unit pixel 100.

參看圖3,單位畫素100a可包含形成於半導體基板10中的浮動擴散區110、形成於半導體基板10之上的收集閘極120、形成於半導體基板10之上的排出閘極130,以及形成於半導體基板10中的汲極區140。如上文所描述,浮動擴散區110、收集閘極120、排出閘極130以及汲極區140可各自具有關於垂直中心軸VC實質上圓形對稱之環形結構。Referring to FIG. 3, the unit pixel 100a may include a floating diffusion region 110 formed in the semiconductor substrate 10, a collection gate 120 formed over the semiconductor substrate 10, a discharge gate 130 formed over the semiconductor substrate 10, and formed The drain region 140 in the semiconductor substrate 10. As described above, the floating diffusion region 110, the collection gate 120, the discharge gate 130, and the drain region 140 may each have an annular structure that is substantially circularly symmetric about the vertical central axis VC.

浮動擴散區110以及汲極區140可自半導體基板10之上表面延伸至半導體基板10中。浮動擴散區110以及汲極區140可使用(例如)離子植入製程或其類似製程來形成。收集閘極120以及排出閘極130可使用沈積製程、蝕刻製程等而形成於半導體基板10之上。收集閘極120以及排出閘極130可與半導體基板10之上表面間隔開。雖然未說明,但諸如氧化層之絕緣層可形成於半導體基板10之上表面與收集閘極120以及排出閘極130之間。The floating diffusion region 110 and the drain region 140 may extend from the upper surface of the semiconductor substrate 10 into the semiconductor substrate 10. The floating diffusion region 110 and the drain region 140 can be formed using, for example, an ion implantation process or the like. The collection gate 120 and the discharge gate 130 may be formed on the semiconductor substrate 10 using a deposition process, an etching process, or the like. The collection gate 120 and the discharge gate 130 may be spaced apart from the upper surface of the semiconductor substrate 10. Although not illustrated, an insulating layer such as an oxide layer may be formed between the upper surface of the semiconductor substrate 10 and the collection gate 120 and the discharge gate 130.

收集閘極120以及排出閘極130可包含(例如)多晶矽、透明傳導氧化物(transparent conducting oxide;TCO),諸如氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋅(ZnO)、二氧化鈦(TiO2)等。The collection gate 120 and the discharge gate 130 may comprise, for example, polysilicon, transparent conducting oxide (TCO), such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), titanium dioxide. (TiO 2 ) and the like.

更明確而言,例如,在入射於單位畫素100a上之光穿過半導體基板10之上表面的一或多個實施例中,收集閘極120以及排出閘極130可包含(例如)透明傳導氧化物。在入射於單位畫素100a上之光穿過半導體基板10之下表面的一或多個實施例中,收集閘極120以及排出閘極130可包含(例如)非透明傳導氧化物。More specifically, for example, in one or more embodiments in which light incident on the unit pixel 100a passes through the upper surface of the semiconductor substrate 10, the collection gate 120 and the discharge gate 130 may include, for example, transparent conduction. Oxide. In one or more embodiments in which light incident on the unit pixel 100a passes through the lower surface of the semiconductor substrate 10, the collection gate 120 and the discharge gate 130 may comprise, for example, a non-transparent conductive oxide.

參看圖3及圖4,單位畫素100a可包含光電荷儲存區150。光電荷儲存區150可形成於半導體基板10中且位於浮動擴散區110與汲極區140之間。光電荷儲存區150可具有環形形狀。光電荷儲存區150可摻雜有傳導性類型與半導體基板10之傳導性類型相反的雜質。光電荷儲存區150可與浮動擴散區110以及汲極區140間隔開。光電荷儲存區150可與收集閘極120以及排出閘極130至少部分重疊。在一些實施例中,半導體基板10可為P型半導體基板,且光電荷儲存區150可摻雜有N型雜質。在其他實施例中,半導體基板10可為N型半導體基板或可包含N型井,而光電荷儲存區150可摻雜有P型雜質。Referring to Figures 3 and 4, the unit pixel 100a can include a photocharge storage region 150. Photocharge storage region 150 may be formed in semiconductor substrate 10 and between floating diffusion region 110 and drain region 140. The photo charge storage region 150 may have a ring shape. The photocharge storage region 150 may be doped with an impurity of a conductivity type opposite to that of the semiconductor substrate 10. Photocharge storage region 150 can be spaced apart from floating diffusion region 110 and drain region 140. The photo-charge storage region 150 can at least partially overlap the collection gate 120 and the discharge gate 130. In some embodiments, the semiconductor substrate 10 can be a P-type semiconductor substrate, and the photo-charge storage region 150 can be doped with N-type impurities. In other embodiments, the semiconductor substrate 10 can be an N-type semiconductor substrate or can include an N-type well, and the photo-charge storage region 150 can be doped with a P-type impurity.

更明確而言,如圖3中所說明,在一或多個實施例中,收集閘極120可形成為環形形狀且可覆蓋光電荷儲存區150之內部部分。排出閘極130可形成為環形形狀以覆蓋光電荷儲存區150之外部部分。收集閘極120可與排出閘極130間隔開。在此等實施例中,光電荷儲存區150可首先形成為環形形狀,且閘極120、130可隨後根據光電荷儲存區150之形狀而形成為其各別環形形狀以便覆蓋光電荷儲存區150之各別部分。More specifically, as illustrated in FIG. 3, in one or more embodiments, the collection gate 120 can be formed in a ring shape and can cover an inner portion of the photocharge storage region 150. The drain gate 130 may be formed in a ring shape to cover an outer portion of the photo charge storage region 150. The collection gate 120 can be spaced apart from the discharge gate 130. In such embodiments, the photocharge storage region 150 may first be formed into a ring shape, and the gates 120, 130 may then be formed into their respective annular shapes in accordance with the shape of the photocharge storage region 150 to cover the photocharge storage region 150. The individual parts.

可將收集閘極信號CG以及排出閘極信號DRG分別施加至收集閘極120以及排出閘極130。在一些實施例中,可互補地啟動收集閘極信號CG以及排出閘極信號DRG(參見(例如)圖5及圖6)。若啟動收集閘極信號CG,則在半導體基板10的在收集閘極120之下的區中或在光電荷儲存區150與浮動擴散區110之間的區中形成通道。若啟動排出閘極信號DRG,則在半導體基板10的在排出閘極130之下的區中或在光電荷儲存區150與汲極區140之間的區中形成通道。The collection gate signal CG and the discharge gate signal DRG may be applied to the collection gate 120 and the discharge gate 130, respectively. In some embodiments, the collection gate signal CG and the drain gate signal DRG can be complementarily activated (see, for example, Figures 5 and 6). If the collection gate signal CG is activated, a channel is formed in a region of the semiconductor substrate 10 below the collection gate 120 or in a region between the photocharge storage region 150 and the floating diffusion region 110. If the discharge gate signal DRG is activated, a channel is formed in a region of the semiconductor substrate 10 below the discharge gate 130 or in a region between the photo charge storage region 150 and the drain region 140.

因此,在啟動收集閘極信號CG時,在半導體基板10中產生之光電荷可收集至浮動擴散區110中。在啟動排出閘極信號DRG時,半導體基板10中所產生之光電荷可排出至汲極區140中。施加至汲極區140之汲極電壓DR可具有根據半導體基板10之傳導性類型以及排出閘極信號DRG之電壓位準的適當電壓位準。Therefore, photo charges generated in the semiconductor substrate 10 can be collected into the floating diffusion region 110 at the time of starting the collection of the gate signal CG. When the discharge gate signal DRG is activated, the photocharge generated in the semiconductor substrate 10 can be discharged into the drain region 140. The drain voltage DR applied to the drain region 140 may have an appropriate voltage level according to the conductivity type of the semiconductor substrate 10 and the voltage level of the drain gate signal DRG.

飛行時間(time-of-flight;TOF)光偵測裝置測量由物件反射之光以確定距所述物件之距離。通常,使用兩個二進位或四個二進位之鎖定類型偵測方法被廣泛地用以確定距離。A time-of-flight (TOF) light detecting device measures the light reflected by the object to determine the distance from the object. In general, lock type detection methods using two binary or four binary are widely used to determine the distance.

在典型鎖定類型偵測方法中,此等二進位彼此相移180度(在兩個二進位之情況下)或90度(在四個二進位之情況下),且將經正弦調變之波或50%作用時間循環之脈衝串信號用於所述二進位。對於鎖定類型偵測方法而言,通常使用具有多接頭結構之單位畫素,在其中光電荷儲存區及/或光電荷產生區由多個浮動擴散區共用。In a typical lock type detection method, these binary bits are phase shifted from each other by 180 degrees (in the case of two binary bits) or 90 degrees (in the case of four binary bits), and the sinusoidal modulated wave Or a 50% duty cycle pulse signal is used for the binary. For the lock type detection method, a unit pixel having a multi-tie structure in which a photocharge storage region and/or a photocharge generation region are shared by a plurality of floating diffusion regions is generally used.

參看圖1至圖3,在一或多個實施例中,單一浮動擴散區(例如,110)可與光電荷儲存區(例如,150)相關聯,使得每單位畫素僅需要一個浮動擴散區(例如,110)以提供輸出。更明確而言,如上文所描述,單位畫素100可具有環繞在中心之浮動擴散區110的環形結構。在一或多個實施例中,可包含最外之汲極區140以排出(例如)在非所要之時段期間產生的非所要之光電荷。Referring to Figures 1 through 3, in one or more embodiments, a single floating diffusion region (e.g., 110) can be associated with a photocharge storage region (e.g., 150) such that only one floating diffusion region is required per unit of pixel. (for example, 110) to provide an output. More specifically, as described above, the unit pixel 100 may have a ring structure surrounding the central floating diffusion region 110. In one or more embodiments, the outermost drain region 140 can be included to expel, for example, undesired photocharges generated during undesired periods.

浮動擴散區110中所收集之光電荷可經由下文所描述之讀出電路而輸出為浮動擴散電壓FD,且可轉換成對應於所收集之光電荷之量的電信號。因此,在一或多個實施例中,單位畫素100可用作使用一個浮動擴散區110提供輸出的單接頭偵測器。The photocharge collected in the floating diffusion region 110 can be output as a floating diffusion voltage FD via a readout circuit described below, and can be converted into an electrical signal corresponding to the amount of collected photocharge. Thus, in one or more embodiments, unit pixel 100 can be used as a single-link detector that provides output using one floating diffusion region 110.

參看圖4,與圖3之單位畫素100a類似的單位畫素100b可包含形成於半導體基板10'中的浮動擴散區110、形成於半導體基板10’之上的收集閘極120、形成於半導體基板10'之上的排出閘極130,以及形成於半導體基板10'中的汲極區140。單位畫素100b亦可包含上文所描述之光電荷儲存區150。將省略對圖3及圖4之例示性實施例的相似組件之重複描述。亦即,大體上,在下文將僅描述圖3之單位畫素100a與圖4之單位畫素100b之間的差異。Referring to FIG. 4, a unit pixel 100b similar to the unit pixel 100a of FIG. 3 may include a floating diffusion region 110 formed in the semiconductor substrate 10', a collection gate 120 formed over the semiconductor substrate 10', and formed in the semiconductor. A discharge gate 130 over the substrate 10', and a drain region 140 formed in the semiconductor substrate 10'. The unit pixel 100b may also include the photocharge storage region 150 described above. Repetitive descriptions of similar components of the exemplary embodiments of FIGS. 3 and 4 will be omitted. That is, in general, only the difference between the unit pixel 100a of FIG. 3 and the unit pixel 100b of FIG. 4 will be described below.

參看圖4,圖4之單位畫素100b之半導體基板10'可包含摻雜有相同傳導性類型及不同濃度之雜質的多個區11、13以及15。舉例而言,在半導體基板10'具有P型傳導性之情況下,半導體基板10'自半導體基板10'之上表面開始依序可包含P區11、P-區13以及P+區15。P-區13比P區11摻雜程度輕,且P+區15比P區11摻雜程度重。Referring to FIG. 4, the semiconductor substrate 10' of the unit pixel 100b of FIG. 4 may include a plurality of regions 11, 13, and 15 doped with impurities of the same conductivity type and different concentrations. For example, in the case where the semiconductor substrate 10' has P-type conductivity, the semiconductor substrate 10' may sequentially include the P region 11, the P-region 13, and the P+ region 15 from the upper surface of the semiconductor substrate 10'. The P-region 13 is lighter than the P region 11 and the P+ region 15 is heavier than the P region 11.

在使用波長範圍為約700 nm至約850 nm之近紅外(near-infrared;NIR)光作為TOF光偵測裝置中之光源的情況下,可使用P型半導體基板作為半導體基板10'。在一或多個實施例中,P-區13之厚度之範圍可為約2 μm至約20 μm。更明確而言,例如,在一些實施例中,P-區13之厚度之範圍可為約3 μm至約5 μm。In the case of using near-infrared (NIR) light having a wavelength ranging from about 700 nm to about 850 nm as a light source in the TOF photodetecting device, a P-type semiconductor substrate can be used as the semiconductor substrate 10'. In one or more embodiments, the thickness of the P-region 13 can range from about 2 μm to about 20 μm. More specifically, for example, in some embodiments, the thickness of the P-region 13 can range from about 3 μm to about 5 μm.

入射於單位畫素100b上之光子可進入P-區13,且可在P-區13中產生電子-電洞對。亦即,P-區13可對應於主要光電荷產生區,光電荷可主要在所述主要光電荷產生區中產生。作為少數載流子產生之光電子可移動至在光電荷儲存區150與P-區13之間的邊界處的N-P接面之空乏區中,且可接著擴散並收集於光電荷儲存區150中。光電荷儲存區150可實質上完全空乏,且可與電荷耦合裝置CCD之埋入通道類似。此外,由於重摻雜之P+區15位於P-區13下方,因此在P-區13與P+區15之間的邊界附近產生的光電子可傾向於移動至N-P接面部分中。Photons incident on the unit pixel 100b can enter the P-region 13, and an electron-hole pair can be generated in the P-region 13. That is, the P-region 13 may correspond to a main photocharge generating region, and photocharges may be mainly generated in the main photocharge generating region. The photoelectrons generated as minority carriers can be moved into the depletion region of the N-P junction at the boundary between the photocharge storage region 150 and the P-region 13, and can then be diffused and collected in the photocharge storage region 150. The photo-charge storage region 150 can be substantially completely depleted and can be similar to the buried channel of the charge coupled device CCD. Furthermore, since the heavily doped P+ region 15 is located below the P-region 13, photoelectrons generated near the boundary between the P-region 13 and the P+ region 15 may tend to move into the N-P junction portion.

如上文所描述,半導體基板10可包含摻雜有不同濃度之雜質的多個光電荷產生區11、13以及15,且可改良單位畫素100b之靈敏度。As described above, the semiconductor substrate 10 may include a plurality of photocharge generating regions 11, 13, and 15 doped with impurities of different concentrations, and the sensitivity of the unit pixel 100b may be improved.

圖5及圖6說明用於描述在圖3及圖4之單位畫素中光電荷之水平移動的實例的橫截面圖。更明確而言,圖5說明在收集模式(collection mode)下操作的圖4之單位畫素100b,且圖6說明在拒絕模式(rejection mode)下操作的圖4之單位畫素100b。5 and 6 illustrate cross-sectional views for describing an example of horizontal movement of photocharges in the unit pixels of Figs. 3 and 4. More specifically, FIG. 5 illustrates the unit pixel 100b of FIG. 4 operating in a collection mode, and FIG. 6 illustrates the unit pixel 100b of FIG. 4 operating in a rejection mode.

參看圖5,在收集模式下,啟動施加至收集閘極120之收集閘極信號CG,且撤銷啟動施加至排出閘極130之排出閘極信號DRG。舉例而言,可將收集閘極信號CG啟動至約3.3 V之相對較高電壓,且可將排出閘極信號DRG撤銷啟動至約0.0 V之相對較低電壓。Referring to FIG. 5, in the collection mode, the collection gate signal CG applied to the collection gate 120 is activated and the discharge gate signal DRG applied to the discharge gate 130 is deactivated. For example, the collector gate signal CG can be activated to a relatively high voltage of approximately 3.3 V, and the drain gate signal DRG can be deactivated to a relatively low voltage of approximately 0.0 V.

如圖5中所說明,電位壁(potential wall)可形成於汲極區140與光電荷儲存區150之間,且可阻擋光電子之移動。擴散至光電荷儲存區150中之光電子可經由在半導體基板10'之上表面附近形成於光電荷儲存區150與浮動擴散區110之間的通道而收集於浮動擴散區110中。由於單位畫素具有環形結構,因此光電子可水平地朝中心移動(亦即,在向心方向上),且因此可收集於浮動擴散區110中。As illustrated in FIG. 5, a potential wall may be formed between the drain region 140 and the photocharge storage region 150 and may block the movement of photoelectrons. The photoelectrons diffused into the photocharge storage region 150 may be collected in the floating diffusion region 110 via a channel formed between the photocharge storage region 150 and the floating diffusion region 110 near the upper surface of the semiconductor substrate 10'. Since the unit pixel has a ring structure, the photoelectrons can move horizontally toward the center (that is, in the centripetal direction), and thus can be collected in the floating diffusion region 110.

參看圖6,在拒絕模式下,撤銷啟動施加至收集閘極120之收集閘極信號CG,且啟動施加至排出閘極130之排出閘極信號DRG。舉例而言,可將收集閘極信號CG撤銷啟動至約0.0 V之相對較低電壓,且可將排出閘極信號DRG啟動至約3.3 V之相對較高電壓。Referring to FIG. 6, in the reject mode, the collection gate signal CG applied to the collection gate 120 is deactivated and the discharge gate signal DRG applied to the discharge gate 130 is activated. For example, the collector gate signal CG can be deactivated to a relatively low voltage of about 0.0 V, and the drain gate signal DRG can be activated to a relatively high voltage of about 3.3 V.

如圖6中所說明,電位壁可形成於浮動擴散區110與光電荷儲存區150之間,且可阻擋光電子之移動。擴散至光電荷儲存區150中之光電子可經由在半導體基板10'之上表面附近形成於光電荷儲存區150與汲極區140之間的通道而排出至汲極區140中。由於單位畫素具有環形結構,因此光電子可水平地遠離中心移動(亦即,在離心方向上),且因此可排出至汲極區140中。As illustrated in FIG. 6, a potential wall can be formed between the floating diffusion region 110 and the photo-charge storage region 150 and can block the movement of photoelectrons. Photoelectrons diffused into the photocharge storage region 150 may be discharged into the drain region 140 via a channel formed between the photocharge storage region 150 and the drain region 140 near the upper surface of the semiconductor substrate 10'. Since the unit pixel has a ring structure, the photoelectrons can be moved horizontally away from the center (i.e., in the centrifugal direction), and thus can be discharged into the drain region 140.

如圖5及圖6中所說明,汲極電壓DR可維持於適當電壓位準之偏壓電壓。舉例而言,汲極電壓DR可為包含單位畫素(例如,100b)之光偵測裝置的電源電壓。As illustrated in Figures 5 and 6, the drain voltage DR can be maintained at a suitable voltage level bias voltage. For example, the drain voltage DR may be a power supply voltage of a photodetecting device including a unit pixel (eg, 100b).

包含(例如)如上文所描述之環形結構的單位畫素(例如,100a、100b)之一或多個實施例可允許光電荷根據閘極信號CG及DRG藉由在向心方向上之水平移動而被收集或藉由在離心方向上之水平移動而被排出,且可改良單位畫素(例如,100a、100b)之靈敏度及/或信雜比。單位畫素(例如,100a、100b)之一或多個實施例可使得能夠藉由重複將所要電荷載流子轉移至浮動擴散區110的收集模式及將非所要電荷載流子排出至汲極區140的拒絕模式來獲得精確之深度資訊。One or more embodiments including, for example, a unit pixel (e.g., 100a, 100b) of a ring structure as described above may allow photocharges to be moved horizontally in a centripetal direction according to gate signals CG and DRG. It is collected or discharged by horizontal movement in the centrifugal direction, and the sensitivity and/or the signal-to-noise ratio of the unit pixels (for example, 100a, 100b) can be improved. One or more embodiments of unit pixels (e.g., 100a, 100b) may enable the discharge mode of the desired charge carriers to the floating diffusion region 110 and the discharge of undesired charge carriers to the drain The rejection mode of zone 140 is used to obtain accurate depth information.

雖然在圖5及圖6中分別說明了在收集模式及拒絕模式下操作之例示性單位畫素100b,但單位畫素100b可根據施加電壓之方式而在其他模式下操作。舉例而言,可將中間位準之偏壓電壓施加於收集閘極120及排出閘極130。在一或多個實施例中,在P-區13中產生之載流子可收集於光電荷儲存區150中,且汲極區140可充當抗光暈汲極。其後,在啟動收集閘極信號CG時,光電荷儲存區150中所收集之載流子可轉移至浮動擴散區110。藉由將此模式應用於單位畫素,可執行相關雙重取樣(correlated double sampling;CDS),且可提供影像資訊以及深度資訊。Although the exemplary unit pixel 100b operating in the collection mode and the rejection mode is illustrated in FIGS. 5 and 6, respectively, the unit pixel 100b can be operated in other modes depending on the manner in which the voltage is applied. For example, an intermediate level bias voltage can be applied to the collection gate 120 and the discharge gate 130. In one or more embodiments, carriers generated in P-region 13 may be collected in photo-charge storage region 150, and drain region 140 may serve as an anti-halation dipole. Thereafter, the carriers collected in the photocharge storage region 150 may be transferred to the floating diffusion region 110 when the collection of the gate signal CG is initiated. By applying this pattern to unit pixels, correlated double sampling (CDS) can be performed, and image information and depth information can be provided.

用於實施圖5及圖6中所說明之電位分佈的單位畫素之特定結構以及閘極信號CG及DRG與汲極電壓DG之特定電壓位準可藉由過程模擬及/或模型化來確定。The specific structure of the unit pixel used to implement the potential distribution illustrated in FIGS. 5 and 6 and the specific voltage levels of the gate signals CG and DRG and the drain voltage DG can be determined by process simulation and/or modeling. .

圖7說明光偵測裝置之單位畫素200之另一例示性實施例的平面圖。圖8以及圖9說明圖7之單位畫素200之例示性實施例的橫截面圖。大體上,在下文將僅描述圖7之單位畫素200與圖2之單位畫素100之間的差異。FIG. 7 illustrates a plan view of another exemplary embodiment of a unit pixel 200 of a light detecting device. 8 and 9 illustrate cross-sectional views of an exemplary embodiment of the unit pixel 200 of FIG. In general, only the difference between the unit pixel 200 of FIG. 7 and the unit pixel 100 of FIG. 2 will be described below.

參看圖7,單位畫素200可包含浮動擴散區210、收集閘極220、排出閘極230以及汲極區240。與圖2之單位畫素100類似,當自單位畫素200之頂部觀看時,收集閘極220可形成於半導體基板101上。收集閘極220可具有環繞形成於半導體基板101中之浮動擴散區210的環形形狀。排出閘極230可形成於半導體基板101上。排出閘極230可具有環繞收集閘極220之環形形狀。汲極區240可形成於半導體基板101中,且汲極區240可環繞排出閘極230。參看圖7,單位畫素200可包含固定層270。固定層270可在收集閘極220與排出閘極230之間延伸。Referring to FIG. 7, unit pixel 200 can include floating diffusion region 210, collection gate 220, drain gate 230, and drain region 240. Similar to the unit pixel 100 of FIG. 2, the collection gate 220 may be formed on the semiconductor substrate 101 when viewed from the top of the unit pixel 200. The collection gate 220 may have an annular shape surrounding a floating diffusion region 210 formed in the semiconductor substrate 101. The discharge gate 230 may be formed on the semiconductor substrate 101. The discharge gate 230 may have an annular shape surrounding the collection gate 220. The drain region 240 may be formed in the semiconductor substrate 101, and the drain region 240 may surround the discharge gate 230. Referring to FIG. 7, unit pixel 200 can include a fixed layer 270. The pinned layer 270 can extend between the collector gate 220 and the drain gate 230.

更明確而言,參看圖8,單位畫素200a可更包含在半導體基板101中且在浮動擴散區210與汲極區240之間形成為環形形狀的光電荷儲存區250。光電荷儲存區250可摻雜有傳導性類型與半導體基板101之傳導性類型相反的雜質。More specifically, referring to FIG. 8, the unit pixel 200a may further include a photocharge storage region 250 formed in the semiconductor substrate 101 and formed in a ring shape between the floating diffusion region 210 and the drain region 240. The photocharge storage region 250 may be doped with an impurity of a conductivity type opposite to that of the semiconductor substrate 101.

在圖2之單位畫素100中,收集閘極120及排出閘極130可經形成以分別覆蓋光電荷儲存區150之部分。在圖8之例示性實施例中,收集閘極220以及排出閘極230不與光電荷儲存區250重疊。參看圖8,圖8之單位畫素200a,收集閘極220可在光電荷儲存區250與浮動擴散區210之間形成為環形形狀,且排出閘極230可在光電荷儲存區250與汲極區240之間形成為環形形狀。In the unit pixel 100 of FIG. 2, the collection gate 120 and the discharge gate 130 may be formed to cover portions of the photocharge storage region 150, respectively. In the exemplary embodiment of FIG. 8, the collection gate 220 and the drain gate 230 do not overlap the photocharge storage region 250. Referring to FIG. 8, the unit pixel 200a of FIG. 8, the collection gate 220 may be formed in a ring shape between the photocharge storage region 250 and the floating diffusion region 210, and the discharge gate 230 may be in the photocharge storage region 250 and the drain. The regions 240 are formed in a ring shape.

參看圖8,固定層270可在半導體基板101中形成為環形形狀。固定層270可覆蓋光電荷儲存單元250。固定層270可摻雜有傳導性類型與光電荷儲存單元250之傳導性類型相反的雜質。舉例而言,光電荷儲存單元250可摻雜有N型雜質,且固定層270可摻雜有P型雜質。固定層270可減少暗電流,且可藉由減少可能存在於半導體基板101之表面處的缺陷之效應而使電位在整個光電荷儲存單元250中更均一。此外,藉由減小光電荷儲存單元250之摻雜濃度,排出閘極230以及收集閘極220之電位可變得陡峭,此可導致光電荷之快速水平移動。Referring to FIG. 8, the pinned layer 270 may be formed in a ring shape in the semiconductor substrate 101. The pinned layer 270 can cover the photo charge storage unit 250. The pinned layer 270 may be doped with an impurity of a conductivity type opposite to that of the photocharge storage unit 250. For example, the photo-charge storage unit 250 may be doped with an N-type impurity, and the fixed layer 270 may be doped with a P-type impurity. The pinned layer 270 can reduce dark current and can make the potential more uniform throughout the photocharge storage unit 250 by reducing the effects of defects that may be present at the surface of the semiconductor substrate 101. Furthermore, by reducing the doping concentration of the photo-charge storage unit 250, the potential of the discharge gate 230 and the collection gate 220 can become steep, which can result in rapid horizontal movement of the photocharge.

與圖8之單位畫素200a相比,圖9之單位畫素200b之半導體基板101'包含摻雜有相同傳導性類型及不同濃度之雜質的多個光電荷產生區11、13以及15。Compared with the unit pixel 200a of FIG. 8, the semiconductor substrate 101' of the unit pixel 200b of FIG. 9 includes a plurality of photocharge generating regions 11, 13, and 15 doped with impurities of the same conductivity type and different concentrations.

舉例而言,在半導體基板101'具有P型傳導性之情況下,半導體基板101'自半導體基板101'之上表面開始依序可包含P區11、P-區13以及P+區15。P-區13比P區11摻雜程度輕,且P+區15比P區11摻雜程度重。在此種情況下,與P+區15類似,固定層270可重摻雜有P-型雜質。For example, in the case where the semiconductor substrate 101' has P-type conductivity, the semiconductor substrate 101' may sequentially include the P region 11, the P-region 13, and the P+ region 15 from the upper surface of the semiconductor substrate 101'. The P-region 13 is lighter than the P region 11 and the P+ region 15 is heavier than the P region 11. In this case, similar to the P+ region 15, the pinned layer 270 may be heavily doped with P-type impurities.

如上文所描述,由於重摻雜之P+區15位於P-區13下方,因此在P-區13與P+區15之間的邊界附近產生的光電子可傾向於移動至N-P接面部分中。因此,可藉由在半導體基板101'中形成摻雜有不同濃度之雜質的多個光電荷產生區11、13以及15來改良單位畫素200b之靈敏度。As described above, since the heavily doped P+ region 15 is located below the P-region 13, photoelectrons generated near the boundary between the P-region 13 and the P+ region 15 may tend to move into the N-P junction portion. Therefore, the sensitivity of the unit pixel 200b can be improved by forming a plurality of photocharge generating regions 11, 13 and 15 doped with impurities of different concentrations in the semiconductor substrate 101'.

圖10說明光偵測裝置之單位畫素300之另一例示性實施例的平面圖。圖11以及圖12說明圖10之單位畫素300之例示性實施例的橫截面圖。FIG. 10 illustrates a plan view of another exemplary embodiment of a unit pixel 300 of a light detecting device. 11 and 12 illustrate cross-sectional views of an exemplary embodiment of the unit pixel 300 of FIG.

參看圖10,單位畫素300可包含浮動擴散區310、收集閘極320、排出閘極330、汲極區340以及光閘極370。參看圖10,與圖2之單位畫素100以及圖7之單位畫素200類似,當自單位畫素300之頂部觀看時,收集閘極320可形成於半導體基板201上。收集閘極320可具有環繞形成於半導體基板201中之浮動擴散區310的環形形狀。排出閘極330可形成於半導體基板201之上。排出閘極330可具有環繞收集閘極320之環形形狀。汲極區340可形成於半導體基板201中。汲極區340可環繞排出閘極330。Referring to FIG. 10, the unit pixel 300 may include a floating diffusion region 310, a collection gate 320, a discharge gate 330, a drain region 340, and a photoresist gate 370. Referring to FIG. 10, similar to the unit pixel 100 of FIG. 2 and the unit pixel 200 of FIG. 7, the collection gate 320 may be formed on the semiconductor substrate 201 when viewed from the top of the unit pixel 300. The collection gate 320 may have an annular shape surrounding the floating diffusion region 310 formed in the semiconductor substrate 201. The drain gate 330 may be formed over the semiconductor substrate 201. The discharge gate 330 may have an annular shape surrounding the collection gate 320. The drain region 340 may be formed in the semiconductor substrate 201. The drain region 340 can surround the drain gate 330.

如圖11中所說明,單位畫素300a可更包含光電荷儲存區350。光電荷儲存區350可在半導體基板201中且在浮動擴散區310與汲極區340之間形成為環形形狀。光電荷儲存區350可摻雜有傳導性類型與半導體基板10之傳導性類型相反的雜質。As illustrated in FIG. 11, the unit pixel 300a may further include a photo charge storage region 350. The photocharge storage region 350 may be formed in a ring shape in the semiconductor substrate 201 and between the floating diffusion region 310 and the drain region 340. The photocharge storage region 350 may be doped with an impurity of a conductivity type opposite to that of the semiconductor substrate 10.

在圖2之單位畫素100中,收集閘極120及排出閘極130可經形成以分別覆蓋光電荷儲存區150之部分。在圖11之例示性實施例中,收集閘極320及排出閘極330不與光電荷儲存區350重疊。在圖11之單位畫素300a中,收集閘極320在光電荷儲存區350與浮動擴散區310之間形成為環形形狀,且排出閘極330在光電荷儲存區350與汲極區340之間形成為環形形狀。In the unit pixel 100 of FIG. 2, the collection gate 120 and the discharge gate 130 may be formed to cover portions of the photocharge storage region 150, respectively. In the exemplary embodiment of FIG. 11, the collection gate 320 and the drain gate 330 do not overlap the photocharge storage region 350. In the unit pixel 300a of FIG. 11, the collection gate 320 is formed in a ring shape between the photo charge storage region 350 and the floating diffusion region 310, and the discharge gate 330 is between the photo charge storage region 350 and the drain region 340. Formed into a ring shape.

參看圖11,單位畫素300a可包含光閘極370,所述光閘極370在半導體基板201之上且在收集閘極320與排出閘極330之間形成為環形形狀以覆蓋光電荷儲存單元350。光閘極370可藉由預定偏壓電壓VB來加偏壓以代替圖8中所說明之固定層270來誘發適當之電位分佈。被施加偏壓電壓VB之光閘極370可減少暗電流,且可藉由減少可能存在於半導體基板201之表面處的缺陷之效應,而使電位在整個光電荷儲存單元350中更均一。此外,藉由減小光電荷儲存單元350之摻雜濃度,排出閘極330及收集閘極320之電位可變得陡峭,此導致光電荷之快速水平移動。Referring to FIG. 11, the unit pixel 300a may include a photo-gate 370 formed over the semiconductor substrate 201 and formed in a ring shape between the collection gate 320 and the discharge gate 330 to cover the photo-charge storage unit. 350. The photogate 370 can be biased by a predetermined bias voltage VB instead of the pinned layer 270 illustrated in FIG. 8 to induce an appropriate potential distribution. The photo-gate 370 to which the bias voltage VB is applied can reduce dark current, and can make the potential more uniform throughout the photo-charge storage unit 350 by reducing the effect of defects that may exist at the surface of the semiconductor substrate 201. Furthermore, by reducing the doping concentration of the photo-charge storage unit 350, the potential of the discharge gate 330 and the collection gate 320 can become steep, which results in rapid horizontal movement of the photocharge.

與圖11之單位畫素300a相比,圖12之單位畫素300b之半導體基板201'包含摻雜有相同傳導性類型及不同濃度之雜質的多個光電荷產生區11、13以及15。Compared with the unit pixel 300a of FIG. 11, the semiconductor substrate 201' of the unit pixel 300b of FIG. 12 includes a plurality of photocharge generating regions 11, 13, and 15 doped with impurities of the same conductivity type and different concentrations.

舉例而言,在半導體基板201'具有P型傳導性之情況下,半導體基板201'自半導體基板201'之上表面開始依序可包含P區11、P-區13以及P+區15。P-區13比P區11摻雜程度輕,且P+區15比P區11摻雜程度重。For example, in the case where the semiconductor substrate 201' has P-type conductivity, the semiconductor substrate 201' may sequentially include the P region 11, the P-region 13, and the P+ region 15 from the upper surface of the semiconductor substrate 201'. The P-region 13 is lighter than the P region 11 and the P+ region 15 is heavier than the P region 11.

如上文所描述,由於重摻雜之P+區15位於P-區13下方,因此在P-區13與P+區15之間的邊界附近產生的光電子可傾向於移動至N-P接面部分中。單位畫素300b之一或多個實施例可使得能夠藉由在半導體基板201'中形成摻雜有不同濃度之雜質的多個光電荷產生區11、13以及15來改良單位畫素(例如,300b)之靈敏度。As described above, since the heavily doped P+ region 15 is located below the P-region 13, photoelectrons generated near the boundary between the P-region 13 and the P+ region 15 may tend to move into the N-P junction portion. One or more embodiments of the unit pixel 300b may enable unit pixels to be improved by forming a plurality of photocharge generating regions 11, 13 and 15 doped with impurities of different concentrations in the semiconductor substrate 201' (for example, 300b) sensitivity.

圖13至圖17說明畫素陣列之例示性實施例的圖。13 through 17 illustrate diagrams of an illustrative embodiment of a pixel array.

參看圖13,畫素陣列410包含排列成矩形柵格之多個單位畫素412。單位畫素412可具有環形結構且可對應於上文參看圖1至圖12所描述之單位畫素(例如,100、200、300)。所述矩形柵格可包含藉由四個鄰近單位畫素界定的正方形415,且一個單位畫素可位於每一柵格點處。Referring to Figure 13, pixel array 410 includes a plurality of unit pixels 412 arranged in a rectangular grid. The unit pixel 412 may have a ring structure and may correspond to the unit pixels (eg, 100, 200, 300) described above with reference to FIGS. 1 through 12. The rectangular grid may comprise a square 415 defined by four adjacent unit pixels, and one unit pixel may be located at each grid point.

在單位畫素412排列成陣列之情況下,鄰近單位畫素之汲極區417可在空間上彼此耦合,且可整體地形成於半導體基板中。在此等實施例中,由於汲極區是整體形成的,因此汲極區之外邊緣可能並非針對特定單位畫素而界定的。根據例示性實施例,在包含單位畫素412之畫素陣列410中,由於整合式汲極區417執行抗光暈功能,因此可能不需要額外抗光暈結構。In the case where the unit pixels 412 are arranged in an array, the drain regions 417 adjacent to the unit pixels may be spatially coupled to each other and may be integrally formed in the semiconductor substrate. In such embodiments, since the drain region is integrally formed, the outer edge of the drain region may not be defined for a particular unit pixel. In accordance with an exemplary embodiment, in the pixel array 410 comprising unit pixels 412, since the integrated bungee region 417 performs an anti-halation function, an additional anti-halation structure may not be required.

此外,在使用上文所描述之一或多個特徵之一或多個實施例中,由於所有汲極區可實質上彼此耦合且每一單位畫素可作為提供一個輸出之單接頭偵測器操作,因此可改良總體佈局容限。Moreover, in using one or more of the features described above, since all of the drain regions can be substantially coupled to each other and each unit pixel can be used as a single connector detector that provides an output Operation, thus improving the overall layout tolerance.

參看圖14,畫素陣列420包含排列成三角形柵格之多個單位畫素412。單位畫素412可具有上文參看圖1至圖12所描述之環形結構。所述三角形柵格可包含藉由三個鄰近單位畫素界定的三角形425,且一個單位畫素可位於每一柵格點處。Referring to Figure 14, pixel array 420 includes a plurality of unit pixels 412 arranged in a triangular grid. The unit pixel 412 may have the ring structure described above with reference to FIGS. 1 through 12. The triangular grid may comprise a triangle 425 defined by three adjacent unit pixels, and one unit pixel may be located at each grid point.

參看圖15,畫素陣列430包含排列成矩形柵格之多個單位畫素432。單位畫素432可具有上文參看圖1至圖12所描述之環形結構。更明確而言,例如,如圖15中所說明,單位畫素432中之一或多者可具有八邊形之環形結構。Referring to Figure 15, pixel array 430 includes a plurality of unit pixels 432 arranged in a rectangular grid. The unit pixel 432 may have the ring structure described above with reference to FIGS. 1 through 12. More specifically, for example, as illustrated in FIG. 15, one or more of the unit pixels 432 may have an octagonal ring structure.

參看圖16,畫素陣列440包含排列成三角形柵格之多個單位畫素442。單位畫素442可具有上文參看圖1至圖12所描述之環形結構。更明確而言,例如,如圖16中所說明,單位畫素442中之一或多者可具有六邊形之環形結構。Referring to Figure 16, pixel array 440 includes a plurality of unit pixels 442 arranged in a triangular grid. The unit pixel 442 may have the ring structure described above with reference to FIGS. 1 through 12. More specifically, for example, as illustrated in FIG. 16, one or more of the unit pixels 442 may have a hexagonal ring structure.

如圖13至圖16中所說明,根據例示性實施例之單位畫素可具有圓形或任何多邊形之環形結構。舉例而言,單位畫素可具有矩形之環形結構。此外,具有任何環形結構之單位畫素可排列成矩形柵格或三角形柵格。As illustrated in FIGS. 13-16, a unit pixel according to an exemplary embodiment may have a circular or any polygonal ring structure. For example, the unit pixel can have a rectangular ring structure. Further, unit pixels having any ring structure may be arranged in a rectangular grid or a triangular grid.

參看圖17,畫素陣列450包含排列成三角形柵格之多個單位畫素452。在一些實施例中,畫素陣列450中所包含的兩個或兩個以上單位畫素之浮動擴散區可彼此電耦合,且所述兩個或兩個以上單位畫素可形成畫素群組。Referring to Figure 17, pixel array 450 includes a plurality of unit pixels 452 arranged in a triangular grid. In some embodiments, the floating diffusion regions of two or more unit pixels included in the pixel array 450 may be electrically coupled to each other, and the two or more unit pixels may form a pixel group. .

舉例而言,如圖17中所說明,七個單位畫素452之浮動擴散區可彼此電耦合,且所述七個單位畫素452可形成畫素群組451。圖17說明此等畫素群組451規則地排列的畫素陣列450之實例。浮動擴散區之電連接453可包含將浮動擴散區電耦合至上部金屬層的層間連接件(諸如,介層孔)以及所述金屬層中之經圖案化佈線。在一或多個實施例中,藉由將(例如)TOF光偵測裝置中所使用之畫素陣列450之多個單位畫素452分組,TOF偵測裝置之靈敏度可得到改良且可具有相對較高之靈敏度。For example, as illustrated in FIG. 17, the floating diffusion regions of the seven unit pixels 452 can be electrically coupled to each other, and the seven unit pixels 452 can form a pixel group 451. FIG. 17 illustrates an example of a pixel array 450 that is regularly arranged by such pixel groups 451. The electrical connection 453 of the floating diffusion region can include an interlayer connection (such as a via) that electrically couples the floating diffusion region to the upper metal layer and patterned wiring in the metal layer. In one or more embodiments, the sensitivity of the TOF detection device can be improved and can be relatively correlated by grouping, for example, a plurality of unit pixels 452 of the pixel array 450 used in the TOF photodetection device. Higher sensitivity.

在一或多個實施例中,在某些柵格點處可有規律地省略或跳過單位畫素。更明確而言,例如,在未配置有單位畫素之區RDC處,可安置讀出電路以提供單位畫素452或畫素群組451之輸出。每一讀出電路可包含下文參看圖18所描述之電晶體。在一或多個實施例中,如上文所描述,由於可將單位畫素452分組且可有效率地安置讀出電路,因此可改良畫素陣列450之總體設計容限。In one or more embodiments, unit pixels can be regularly omitted or skipped at certain grid points. More specifically, for example, at a region RDC where no unit pixel is configured, a readout circuit can be placed to provide an output of unit pixel 452 or pixel group 451. Each readout circuit can include a transistor as described below with reference to FIG. In one or more embodiments, as described above, the overall design tolerances of the pixel array 450 can be improved since the unit pixels 452 can be grouped and the readout circuitry can be efficiently placed.

圖18說明用於提供單位畫素(例如,圖2之單位畫素100)之輸出的讀出電路30之例示性實施例的示意圖。FIG. 18 illustrates a schematic diagram of an illustrative embodiment of a readout circuit 30 for providing an output of a unit pixel (e.g., unit pixel 100 of FIG. 2).

參看圖18,可使用讀出電路30以讀取單位畫素(例如,圖2之單位畫素100)之輸出。更明確而言,讀出電路30可將單位畫素100之輸出轉換成電信號。來自讀出電路30的經轉換輸出可提供至外部電路(未圖示)。如上文所描述,單位畫素100可具有環形結構且可作為單接頭偵測器操作。此外,如上文所描述,單位畫素100可包含浮動擴散區110、收集閘極120、排出閘極130以及汲極區140。Referring to Figure 18, readout circuitry 30 can be used to read the output of a unit pixel (e.g., unit pixel 100 of Figure 2). More specifically, readout circuitry 30 can convert the output of unit pixel 100 into an electrical signal. The converted output from the readout circuitry 30 can be provided to an external circuit (not shown). As described above, the unit pixel 100 can have a ring structure and can operate as a single connector detector. Moreover, as described above, the unit pixel 100 can include a floating diffusion region 110, a collection gate 120, a drain gate 130, and a drain region 140.

參看圖18,讀出電路30可包含源極隨耦器電晶體T1、選擇電晶體T2以及重設電晶體T3。重設電晶體T3可回應於重設信號RST將浮動擴散區110之電壓FD初始化至重設電壓VRST。浮動擴散區110耦合至源極隨耦器電晶體T1之閘極。若在收集光電荷之後回應於選擇信號SEL來接通選擇電晶體T2,則經由輸出線LO將對應於浮動擴散區110之電壓FD的電信號提供至外部電路。Referring to FIG. 18, the readout circuit 30 can include a source follower transistor T1, a selection transistor T2, and a reset transistor T3. The reset transistor T3 can initialize the voltage FD of the floating diffusion region 110 to the reset voltage VRST in response to the reset signal RST. Floating diffusion region 110 is coupled to the gate of source follower transistor T1. If the selection transistor T2 is turned on in response to the selection signal SEL after the photocharge is collected, the electric signal corresponding to the voltage FD of the floating diffusion region 110 is supplied to the external circuit via the output line LO.

如上文所描述,可藉由圖18中所說明之讀出電路30將對應於單位畫素100之輸出的浮動擴散區110之電壓FD提供至外部電路。在一或多個實施例中,讀出電路30可安置於未配置單位畫素之區(例如,圖17之RDC)處。或者,例如,在一或多個實施例中,讀出電路30可安置於畫素陣列外。As described above, the voltage FD of the floating diffusion region 110 corresponding to the output of the unit pixel 100 can be supplied to the external circuit by the readout circuit 30 illustrated in FIG. In one or more embodiments, readout circuitry 30 can be disposed at an unconfigured unit pixel region (e.g., RDC of Figure 17). Alternatively, for example, in one or more embodiments, readout circuitry 30 can be disposed outside of the pixel array.

圖19說明光偵測裝置600之例示性實施例的方塊圖。FIG. 19 illustrates a block diagram of an exemplary embodiment of a light detecting device 600.

參看圖19,光偵測裝置600可包含感測單元610以及控制感測單元610之控制單元630。感測單元610可包含將所接收到之光RL轉換成電信號DATA的至少一個單位畫素。單位畫素可為上文參看圖1至圖12描述之環形結構的單接頭畫素,例如單位畫素100、200、300。舉例而言,單位畫素可包含:浮動擴散區,其形成於半導體基板中;環形收集閘極,其形成於半導體基板之上使得收集閘極環繞浮動擴散區;環形排出閘極,其形成於半導體基板之上使得排出閘極環繞收集閘極;以及汲極區,其形成於半導體基板中使得汲極區環繞排出閘極。Referring to FIG. 19, the light detecting device 600 can include a sensing unit 610 and a control unit 630 that controls the sensing unit 610. The sensing unit 610 can include at least one unit pixel that converts the received light RL into an electrical signal DATA. The unit pixel can be a single connector pixel of the ring structure described above with reference to Figures 1 through 12, such as unit pixels 100, 200, 300. For example, the unit pixel may include: a floating diffusion region formed in the semiconductor substrate; an annular collecting gate formed on the semiconductor substrate such that the collecting gate surrounds the floating diffusion region; and an annular discharge gate formed on the Above the semiconductor substrate, the discharge gate surrounds the collection gate; and a drain region is formed in the semiconductor substrate such that the drain region surrounds the discharge gate.

控制單元630可包含:光源LS,其向物件60發射光EL;二進位信號產生器BN,其產生收集閘極信號CG以及排出閘極信號DRG;以及控制器CTRL,其控制光偵測裝置600之總體操作。The control unit 630 may include: a light source LS that emits light EL to the object 60; a binary signal generator BN that generates a collection gate signal CG and a discharge gate signal DRG; and a controller CTRL that controls the light detecting device 600 The overall operation.

光源LS可發射具有預定波長之光EL。舉例而言,光源LS可發射紅外光或近紅外光。由光源LS產生的所發射光EL可藉由透鏡51聚焦於物件60上。光源LS可由控制器CTRL控制以輸出所發射光EL,使得所發射光EL之強度週期性地改變。舉例而言,所發射光EL可為具有連續脈衝之脈衝串信號。光源LS可以發光二極體LED、雷射二極體或其類似者來實施。The light source LS can emit light EL having a predetermined wavelength. For example, the light source LS can emit infrared light or near-infrared light. The emitted light EL generated by the light source LS can be focused on the object 60 by the lens 51. The light source LS can be controlled by the controller CTRL to output the emitted light EL such that the intensity of the emitted light EL periodically changes. For example, the emitted light EL can be a burst signal having a continuous pulse. The light source LS can be implemented by a light emitting diode LED, a laser diode, or the like.

二進位信號產生器BN產生用於操作感測單元610中所包含之環形單位畫素的收集閘極信號CG以及排出閘極信號DRG。可互補地啟動收集閘極信號CG與排出閘極信號DRG。如上文所描述,若啟動收集閘極信號CG,則在半導體基板的在收集閘極之下的區中或在光電荷儲存區與浮動擴散區之間的區中形成通道。若啟動排出閘極信號DRG,則在半導體基板的在排出閘極之下的區中或在光電荷儲存區與汲極區之間的區中形成通道。The binary signal generator BN generates a collection gate signal CG and a discharge gate signal DRG for operating the ring unit pixels included in the sensing unit 610. The collection gate signal CG and the discharge gate signal DRG can be activated complementarily. As described above, if the collection gate signal CG is activated, a channel is formed in a region of the semiconductor substrate below the collection gate or in a region between the photo charge storage region and the floating diffusion region. If the discharge gate signal DRG is activated, a channel is formed in the region of the semiconductor substrate below the discharge gate or in the region between the photocharge storage region and the drain region.

因此,在啟動收集閘極信號CG時,在半導體基板中產生之光電荷收集於浮動擴散區中,且在啟動排出閘極信號DRG時,在半導體基板中產生之光電荷排出至汲極區中。Therefore, when the gate signal CG is started to be collected, the photocharge generated in the semiconductor substrate is collected in the floating diffusion region, and when the discharge gate signal DRG is activated, the photocharge generated in the semiconductor substrate is discharged into the drain region. .

如下文將描述,收集閘極信號CG可包含循環數目根據相對於所發射光EL之相位差而增加的多個二進位信號CGi,光偵測裝置600可藉由將所接收到之光RL轉換成電信號來獲得深度資訊,其中所接收到之光RL已藉由物件60反射且經由透鏡53進入感測單元610。As will be described later, the collection gate signal CG may include a plurality of binary signals CGi whose number of cycles is increased according to a phase difference with respect to the emitted light EL, and the light detecting device 600 may convert the received light RL by The electrical signal is derived to obtain depth information, wherein the received light RL has been reflected by the object 60 and enters the sensing unit 610 via the lens 53.

在一或多個實施例中,感測單元610可包含上文所描述之單位畫素(或畫素群組)以及用於將單位畫素之輸出轉換成數位信號的類比數位轉換單元ADC。In one or more embodiments, the sensing unit 610 can include the unit pixel (or pixel group) described above and an analog digital conversion unit ADC for converting the output of the unit pixel into a digital signal.

在一或多個實施例中,感測單元610可包含畫素陣列PX,所述畫素陣列PX包含排列成陣列之多個單位畫素(或多個畫素群組)。在此等實施例中,感測單元610可包含類比數位轉換單元ADC以及用於選擇畫素陣列PX中之特定單位畫素的選擇電路ROW、COL。In one or more embodiments, the sensing unit 610 can include a pixel array PX including a plurality of unit pixels (or a plurality of pixel groups) arranged in an array. In such embodiments, the sensing unit 610 can include an analog digital conversion unit ADC and selection circuits ROW, COL for selecting a particular unit pixel in the pixel array PX.

在一或多個實施例中,類比數位轉換單元ADC可執行使用分別耦合至多個行線之多個類比數位轉換器來並行地轉換類比信號的行類比數位轉換,或可執行使用單一類比數位轉換器來串行地轉換類比信號的單一類比數位轉換。In one or more embodiments, the analog-to-digital conversion unit ADC can perform row analog digital conversion of analog signals in parallel using a plurality of analog-to-digital converters coupled to a plurality of row lines, respectively, or can perform single analog-to-digital conversion A serial analog to digital conversion of analog signals.

在一或多個實施例中,類比數位轉換單元ADC可包含用於提取有效信號分量的相關雙重取樣(CDS)單元。In one or more embodiments, the analog digital conversion unit ADC can include a correlated double sampling (CDS) unit for extracting valid signal components.

在一些實施例中,CDS單元可執行類比雙重取樣(analog double sampling;ADS),類比雙重取樣基於表示重設分量之類比重設信號以及表示信號分量之類比資料信號來提取有效信號分量。In some embodiments, the CDS unit may perform analog double sampling (ADS), which extracts valid signal components based on a proportioned signal representing a reset component and an analog data signal representing the signal component.

在其他實施例中,CDS單元可執行數位雙重取樣(digital double sampling;DDS),數位雙重取樣將類比重設信號以及類比資料信號轉換成兩個數位信號,以提取所述兩個數位信號之間的差作為有效信號分量。In other embodiments, the CDS unit may perform digital double sampling (DDS), which converts the class-specific signal and the analog data signal into two digital signals to extract between the two digital signals. The difference is taken as the effective signal component.

在另外之其他實施例中,CDS單元可執行雙相關雙重取樣,雙相關雙重取樣執行類比雙重取樣以及數位雙重取樣。In still other embodiments, the CDS unit may perform dual correlation double sampling, dual correlation double sampling performing analog double sampling and digital double sampling.

圖20說明測量距離之方法的例示性實施例的流程圖。Figure 20 illustrates a flow chart of an illustrative embodiment of a method of measuring distance.

參看圖19以及圖20,光源LS向物件60發射光EL(S110)。感測單元610使用多個可變二進位信號將所接收到之光RL(其已由物件60反射且進入感測單元610)轉換成電信號(S120),其中多個可變二進位信號之循環數目根據相對於所發射光EL之相位差而增加。所述多個可變二進位信號可包含於由二進位信號產生器BN產生之互補閘極信號CG以及DRG中。下文將參看圖21至圖25來詳細地描述包含所述多個可變二進位信號之收集閘極信號CG以及排出閘極信號DG。控制器CTRL基於自感測單元610提供之資料信號DATA來計算距物件60之距離(S130)。Referring to Fig. 19 and Fig. 20, the light source LS emits light EL to the object 60 (S110). The sensing unit 610 converts the received light RL (which has been reflected by the object 60 and enters the sensing unit 610) into an electrical signal using a plurality of variable binary signals (S120), wherein the plurality of variable binary signals The number of cycles is increased in accordance with the phase difference with respect to the emitted light EL. The plurality of variable binary signals may be included in the complementary gate signals CG and DRG generated by the binary signal generator BN. The collection gate signal CG and the discharge gate signal DG including the plurality of variable binary signals will be described in detail below with reference to FIGS. 21 to 25. The controller CTRL calculates the distance from the object 60 based on the data signal DATA supplied from the sensing unit 610 (S130).

圖21說明用於描述用於將所接收到之光轉換成電信號的信號之時序圖的例示性實施例。Figure 21 illustrates an illustrative embodiment for describing a timing diagram of signals used to convert received light into electrical signals.

參看圖21,由光偵測裝置600之光源LS產生之所發射光EL可為包含具有預定週期To之脈衝的脈衝串信號。所發射光EL由位於距離Z處之物件60反射,且作為所接收到之光RL到達光偵測裝置600。可使用表達成“Tf=2Z/C”之方程式來計算光偵測裝置600至物件60之距離Z,其中C表示光速,且Tf表示所發射光EL與所接收到之光RL之間的相位差。Referring to Fig. 21, the emitted light EL generated by the light source LS of the photodetecting device 600 may be a burst signal including a pulse having a predetermined period To. The emitted light EL is reflected by the object 60 located at a distance Z, and reaches the photodetecting device 600 as the received light RL. The distance Z of the light detecting device 600 to the object 60 can be calculated using an equation expressed as "Tf=2Z/C", where C represents the speed of light, and Tf represents the phase between the emitted light EL and the received light RL difference.

可使用多個二進位信號來獲得所發射光EL與所接收到之光RL之間的相位差Tf。圖21說明相對於所發射光EL之相位差為Ti以及每週期To之啟動持續時間為Wi的一個二進位信號CGi。將在下文參看圖22以及圖23來描述多個二進位信號間之關係。舉例而言,可使用二進位信號CGi以及反相二進位信號DRGi作為上文參看圖2至圖6所描述之單位畫素100的閘極信號。A plurality of binary signals can be used to obtain a phase difference Tf between the emitted light EL and the received light RL. Fig. 21 illustrates a binary signal CGi whose phase difference with respect to the emitted light EL is Ti and the start duration of each cycle To is Wi. The relationship between a plurality of binary signals will be described below with reference to FIGS. 22 and 23. For example, the binary signal CGi and the inverted binary signal DRGi can be used as the gate signal of the unit pixel 100 described above with reference to FIGS. 2 through 6.

二進位信號CGi可作為收集閘極信號CG而施加至收集閘極120,且反相二進位信號DRGi可作為排出閘極信號DRG而施加至排出閘極130。當在半導體基板10中回應於所接收到之光RL而產生光電荷時,在第一時間Tr期間將所產生之光電荷排出至汲極區140中,且在第二時間Tc期間將所產生之光電荷收集於浮動擴散區110中。The binary signal CGi can be applied to the collection gate 120 as the collection gate signal CG, and the inverted binary signal DRGi can be applied to the discharge gate 130 as the discharge gate signal DRG. When a photocharge is generated in response to the received light RL in the semiconductor substrate 10, the generated photocharge is discharged into the drain region 140 during the first time Tr, and will be generated during the second time Tc. The photocharge is collected in the floating diffusion region 110.

在感測時間TS期間重複光電荷之此拒絕以及收集,重複次數對應於二進位信號CGi中所包含之循環的數目。在讀出時間TR期間,可接著藉由圖18中所說明之讀出電路30來輸出收集於擴散浮動區110中之光電荷的量。This rejection and collection of photocharges is repeated during the sensing time TS, the number of repetitions corresponding to the number of cycles included in the binary signal CGi. During the readout time TR, the amount of photocharge collected in the diffusion floating region 110 can then be output by the readout circuit 30 illustrated in FIG.

圖22以及圖23說明可由圖20中所說明之測量距離的方法使用的可變二進位信號之實例的例示性時序圖。22 and 23 illustrate an exemplary timing diagram of an example of a variable binary signal that can be used by the method of measuring distance illustrated in FIG.

參看圖22,多個可變二進位信號CG1、CG2、……、CGk具有根據相對於所發射光EL之相位差T2、……、Tk增加的循環數目。舉例而言,相對於所發射光EL之相位差為0的第一二進位信號CG1可能具有最低循環數目,循環數目可隨著相對於所發射光EL之相位差增加而逐漸增加,且相對於所發射光EL之相位差最大的第k個二進位信號CGk可能具有最高循環數目。換言之,使用第一二進位信號CG1之第一感測時間TS1(=To*nl)最短,且使用第k個二進位信號CGk之第k個感測時間TSk(=To*nk)最長。Referring to Fig. 22, a plurality of variable binary signals CG1, CG2, ..., CGk have a number of cycles which are increased in accordance with phase differences T2, ..., Tk with respect to the emitted light EL. For example, the first binary signal CG1 having a phase difference of 0 with respect to the emitted light EL may have the lowest number of cycles, and the number of cycles may gradually increase as the phase difference with respect to the emitted light EL increases, and is relative to The kth binary signal CGk having the largest phase difference of the emitted light EL may have the highest number of cycles. In other words, the first sensing time TS1 (=To*nl) using the first binary signal CG1 is the shortest, and the kth sensing time TSk (=To*nk) using the kth binary signal CGk is the longest.

隨著光偵測裝置600至物件60之距離Z增加,或隨著所發射光EL與所接收到之光RL之間的相位差Tf增加,所接收到之光RL的強度與距離Z之平方成反比例地減小。因此,如上文所描述,由於所述多個二進位信號CGi中所包含之循環的數目根據相對於所發射光EL之相位差Ti而增加,因此感測時間TSi可隨著距物件60之距離Z增加而增加,進而改良信雜比(SNR)。此外,可藉由視距離Z而施加此增益來改良光偵測裝置600之動態範圍。As the distance Z between the light detecting device 600 and the object 60 increases, or as the phase difference Tf between the emitted light EL and the received light RL increases, the intensity of the received light RL and the square of the distance Z It decreases in inverse proportion. Therefore, as described above, since the number of cycles included in the plurality of binary signals CGi increases according to the phase difference Ti with respect to the emitted light EL, the sensing time TSi may be from the distance from the object 60 Z increases and increases, thereby improving the signal-to-noise ratio (SNR). In addition, the gain can be improved by the viewing distance Z to improve the dynamic range of the photodetecting device 600.

在一些實施例中,所述多個二進位信號CGi可變化以使得占空率(Wi/To)根據相對於所發射光EL之相位差Ti而增加。亦即,所述多個二進位信號Cgi的每週期To之啟動持續時間Wi可能根據相對於所發射光EL之相位差Ti而增加。In some embodiments, the plurality of binary signals CGi may be varied such that the duty ratio (Wi/To) is increased according to a phase difference Ti relative to the emitted light EL. That is, the start duration Wi of each period To of the plurality of binary signals Cgi may increase according to the phase difference Ti with respect to the emitted light EL.

大體上,隨著距物件60之距離Z增加,距離Z之精確性的必要性可降低。因此,多個二進位信號CGi之啟動持續時間Wi可根據距離Z而增加以增加增益,藉此改良信雜比。In general, as the distance Z from the object 60 increases, the necessity of the accuracy of the distance Z can be reduced. Therefore, the start duration Wi of the plurality of binary signals CGi can be increased according to the distance Z to increase the gain, thereby improving the signal-to-noise ratio.

圖22中所說明之多個二進位信號CGi可分別施加至不同單位畫素。舉例而言,在多個單位畫素排列成具有多個列以及多個行之陣列的情況下,可將同一二進位信號施加至同一列之單位畫素,且可將不同二進位信號施加至不同列之單位畫素。在此種情況下,各別感測時間TS1可實質上緊接著有對應之讀出時間TR,且因此可在影像感測器中執行有效之滾動圖框操作(rolling frame operation)。The plurality of binary signals CGi illustrated in FIG. 22 can be applied to different unit pixels, respectively. For example, in the case where a plurality of unit pixels are arranged in an array having a plurality of columns and a plurality of rows, the same binary signal can be applied to the unit pixels of the same column, and different binary signals can be applied. To the different units of the pixel. In this case, the respective sensing time TS1 may be substantially followed by a corresponding readout time TR, and thus an effective rolling frame operation may be performed in the image sensor.

圖23說明將多個可變二進位信號CGi施加至一個單位畫素的實例之例示性時序圖。為便利起見,在圖23中僅放大了兩個二進位信號CG2以及CGk,其他二進位信號之特徵可為類似的。亦即,多個可變二進位信號CGi具有根據相對於所發射光EL之相位差Ti增加的循環數目ni。因此,使用相對於所發射光EL之相位差T1最小的第一二進位信號CG1的第一感測時間TS1(=To*n1)最短,且使用相對於所發射光EL之相位差T1最大的第k個二進位信號CGk的第k個感測時間TSk(=To*nk)最長。如上文所描述,所述多個二進位信號CGi可變化以使得占空率(Wi/To)根據相對於所發射光EL之相位差Ti而增加。在所述多個二進位信號CGi施加至一個單位畫素之情況下,各別感測時間TSi可分別實質上緊接著有對應之讀出時間TR。FIG. 23 illustrates an exemplary timing chart of an example of applying a plurality of variable binary signals CGi to one unit pixel. For convenience, only two binary signals CG2 and CGk are amplified in FIG. 23, and the characteristics of the other binary signals may be similar. That is, the plurality of variable binary signals CGi have a number of cycles ni increased according to the phase difference Ti with respect to the emitted light EL. Therefore, the first sensing time TS1 (=To*n1) using the first binary signal CG1 which is the smallest with respect to the phase difference T1 of the emitted light EL is the shortest, and the phase difference T1 with respect to the emitted light EL is the largest. The kth sensing time TSk (=To*nk) of the kth binary carry signal CGk is the longest. As described above, the plurality of binary signals CGi may be varied such that the duty ratio (Wi/To) is increased in accordance with the phase difference Ti with respect to the emitted light EL. In the case where the plurality of binary signals CGi are applied to one unit pixel, the respective sensing times TSi may be substantially followed by corresponding reading times TR, respectively.

圖24說明例示性可變二進位信號之圖。圖25說明圖24中所說明之可變二進位信號之例示性相位、啟動持續時間之長度以及循環數目的圖表。Figure 24 illustrates a diagram of an exemplary variable binary signal. Figure 25 illustrates a graph of an exemplary phase of the variable binary signal illustrated in Figure 24, the length of the start-up duration, and the number of cycles.

更明確而言,圖24說明可用於測量所發射光EL與所接收到之光RL之間的相位差Tf的多個可變二進位信號CG1至CG10的實例。舉例而言,在提供深度資訊以及移動影像資訊之三維影像感測器在30 fps下操作的情況中,可將包含約三千萬個占空率為約20%的光脈衝的脈衝串信號用作所發射光EL。在此等實施例中,例如,當忽略讀出時間時,對應於一個圖框的所發射光EL之循環數目可為約一百萬個。在圖24中,每一二進位信號CGi之寬度可表示啟動持續時間Wi。如圖24中所說明,鄰近二進位信號之啟動持續時間可彼此重疊。More specifically, FIG. 24 illustrates an example of a plurality of variable binary signals CG1 to CG10 that can be used to measure the phase difference Tf between the emitted light EL and the received light RL. For example, in the case where the 3D image sensor providing depth information and moving image information is operated at 30 fps, a pulse train signal containing about 30 million light pulses having a duty ratio of about 20% can be used. The emitted light EL. In such embodiments, for example, when the readout time is ignored, the number of cycles of the emitted light EL corresponding to one frame may be about one million. In FIG. 24, the width of each binary signal CGi may represent the startup duration Wi. As illustrated in Figure 24, the startup durations of adjacent binary signals may overlap each other.

舉例而言,第二二進位信號CG2之啟動持續時間W2的約50%可與第三二進位信號CG3之啟動持續時間W3重疊,且第三二進位信號CG3之啟動持續時間W3可相對於第二二進位信號CG2之啟動持續時間W2增加了約10%。可變二進位信號CGi之時間差Ti、啟動持續時間Wi以及循環數目ni之實例說明於圖25中。在圖25中,M表示所有循環之數目ni的總和。For example, about 50% of the start duration W2 of the second binary signal CG2 may overlap with the start duration W3 of the third binary signal CG3, and the start duration W3 of the third binary signal CG3 may be relative to the first The start-up duration W2 of the binary carry signal CG2 is increased by about 10%. An example of the time difference Ti of the variable binary signal CGi, the startup duration Wi, and the number of cycles ni is illustrated in FIG. In Fig. 25, M represents the sum of the numbers ni of all the cycles.

如上文所描述,可使用可變二進位信號CGi來收集光電荷,且可基於所收集之光電荷的量以及可變二進位信號CGi之相位來計算距物件之距離Z。As described above, the variable binary signal CGi can be used to collect the photocharge, and the distance Z from the object can be calculated based on the amount of photocharge collected and the phase of the variable binary signal CGi.

圖26說明測量距離之方法的例示性實施例的流程圖。Figure 26 illustrates a flow chart of an illustrative embodiment of a method of measuring distance.

參看圖19以及圖26,光源LS向物件60發射光EL(S210)。感測單元610使用可變二進位信號將所接收到之光RL(其已由物件60反射且進入感測單元610)轉換成電信號(S220)。如上文所描述,可變二進位信號中所包含之循環的數目可根據相對於所發射光EL之相位差而增加。此外,可變二進位信號之占空率可根據相對於所發射光EL之相位差而增加。控制器CTRL基於自感測單元610提供之資料信號DATA來計算距物件60之距離(S230)。控制器CTRL控制二進位信號產生器BN以調整二進位信號之相位以及占空率以使之集中於對應於所計算出之距離的相位(S240)。可使用具有經調整之相位以及占空率的多個二進位信號來校正距物件之距離(S250)。Referring to Figures 19 and 26, the light source LS emits light EL to the object 60 (S210). The sensing unit 610 converts the received light RL (which has been reflected by the object 60 and enters the sensing unit 610) into an electrical signal using a variable binary signal (S220). As described above, the number of cycles included in the variable binary signal can be increased in accordance with the phase difference with respect to the emitted light EL. Furthermore, the duty ratio of the variable binary signal can be increased in accordance with the phase difference with respect to the emitted light EL. The controller CTRL calculates the distance from the object 60 based on the data signal DATA supplied from the sensing unit 610 (S230). The controller CTRL controls the binary signal generator BN to adjust the phase of the binary signal and the duty ratio to concentrate on the phase corresponding to the calculated distance (S240). A plurality of binary signals having adjusted phases and duty ratios may be used to correct the distance from the object (S250).

圖27說明例示性可變二進位信號之圖。圖28說明圖27中所說明之可變二進位信號之例示性相位、啟動持續時間之長度以及循環數目的圖。圖29說明例示性經調整二進位信號之圖。Figure 27 illustrates a diagram of an exemplary variable binary signal. Figure 28 illustrates a diagram of an exemplary phase of the variable binary signal illustrated in Figure 27, the length of the start-up duration, and the number of cycles. Figure 29 illustrates a diagram of an exemplary adjusted binary signal.

更明確而言,圖27說明可用於測量所發射光EL與所接收到之光RL之間的相位差Tf的四個可變二進位信號CG1、CG2、CG3以及CG4的實例。在圖27中,在使用占空率約50%之所發射光EL的情況下所接收到之光RL的實例以虛線來說明。四個二進位信號CG1、CG2、CG3以及CG4之時間差Ti、啟動持續時間Wi以及循環數目ni之實例說明於圖28中。如圖27以及圖28中所說明,四個二進位信號CG1、CG2、CG3以及CG4可具有相同啟動持續時間Wi,且循環數目ni根據相對於所發射光EL之相位差Ti而增加。More specifically, FIG. 27 illustrates an example of four variable binary signals CG1, CG2, CG3, and CG4 that can be used to measure the phase difference Tf between the emitted light EL and the received light RL. In Fig. 27, an example of the light RL received in the case of using the emitted light EL having a duty ratio of about 50% is illustrated by a broken line. An example of the time difference Ti of the four binary signals CG1, CG2, CG3, and CG4, the startup duration Wi, and the number of cycles ni is illustrated in FIG. As illustrated in FIGS. 27 and 28, the four binary signals CG1, CG2, CG3, and CG4 may have the same startup duration Wi, and the number of cycles ni is increased according to the phase difference Ti with respect to the emitted light EL.

控制器CTRL可使用此等二進位信號CGi基於自感測單元610提供之電信號DATA來計算距物件60之距離,且可控制二進位信號產生器BN以調整二進位信號CGi之相位以及占空率使之集中於對應於所計算出之距離的相位。圖29說明以此方式調整之二進位信號CGi'的實例。The controller CTRL can calculate the distance from the object 60 based on the electrical signal DATA provided from the sensing unit 610 using the binary signal CGi, and can control the binary signal generator BN to adjust the phase of the binary signal CGi and the duty The rate is concentrated on the phase corresponding to the calculated distance. Fig. 29 illustrates an example of the binary carry signal CGi' adjusted in this manner.

如圖29中所說明,可獲得更精確之資料,且可藉由使用經調整以集中於所接收到之光RL之脈衝的二進位信號CGi'來精確地校正距物件之距離Z。舉例而言,在人臉辨識安全系統中,可使用圖27以及圖28之二進位信號CGi來測量距人臉之平均距離,且可使用基於測量結果加以調整的圖29之二進位信號CGi'來在平均距離周圍再次掃描人臉。As illustrated in Figure 29, more accurate data can be obtained and the distance Z from the object can be accurately corrected by using a binary signal CGi' adjusted to focus on the pulse of the received light RL. For example, in the face recognition security system, the average distance from the face can be measured using the carry signal CGi of FIG. 27 and FIG. 28, and the binary carry signal CGi' of FIG. 29 adjusted based on the measurement result can be used. To scan the face again around the average distance.

圖30說明三維影像感測器之感測單元的例示性實施例的圖。更明確而言,圖30說明在圖19之光偵測裝置600為三維影像感測器之情況下的感測單元610a之實例。Figure 30 illustrates a diagram of an illustrative embodiment of a sensing unit of a three-dimensional image sensor. More specifically, FIG. 30 illustrates an example of the sensing unit 610a in the case where the light detecting device 600 of FIG. 19 is a three-dimensional image sensor.

參看圖30,感測單元610a可包含排列有多個色彩畫素以及多個深度畫素的畫素陣列C/Z PX、色彩畫素選擇電路CROW及CCOL、深度畫素選擇電路ZROW及ZCOL、色彩畫素轉換器CADC,以及深度畫素轉換器ZADC。色彩畫素選擇電路CROW及CCOL以及色彩畫素轉換器CADC可藉由控制畫素陣列C/Z PX中所包含之色彩畫素來提供影像資訊CDATA,且深度畫素選擇電路ZROW及ZCOL以及深度畫素轉換器ZADC可藉由控制畫素陣列C/Z PX中所包含之深度畫素來提供深度資訊ZDATA。Referring to FIG. 30, the sensing unit 610a may include a pixel array C/Z PX, a color pixel selection circuit CROW and CCOL, a depth pixel selection circuit ZROW and ZCOL, in which a plurality of color pixels and a plurality of depth pixels are arranged, Color Pixel Converter CADC, and Deep Pixel Converter ZADC. The color pixel selection circuits CROW and CCOL and the color pixel converter CADC can provide image information CDATA by controlling the color pixels contained in the pixel array C/Z PX, and the depth pixel selection circuits ZROW and ZCOL and the depth drawing The prime converter ZADC can provide depth information ZDATA by controlling the depth pixels contained in the pixel array C/Z PX.

如上文所描述,在三維影像感測器中,用於控制色彩畫素之組件與用於控制深度畫素之組件可獨立地操作以提供影像之色彩資料CDATA以及深度資料ZDATA。As described above, in the three-dimensional image sensor, the components for controlling the color pixels and the components for controlling the depth pixels can operate independently to provide the color data CDATA of the image and the depth data ZDATA.

圖31說明可用於圖30之感測單元中的畫素陣列之例示性實施例的圖。31 illustrates a diagram of an illustrative embodiment of a pixel array that can be used in the sensing unit of FIG.

參看圖31,畫素陣列C/Z PX包含排列成三角形柵格之多個單位畫素R、G、B以及Z。單位畫素R、G、B以及Z可具有上文參看圖2至圖12所描述之環形結構。單位畫素R、G、B以及Z包含多個色彩畫素R、G以及B與多個深度畫素Z。色彩畫素R、G以及B可包含綠色畫素G、紅色畫素R以及藍色畫素B。如圖31中所說明,色彩畫素R、G以及B可在單位畫素之基礎上執行光偵測以改良解析度,且深度畫素Z可在畫素群組之基礎上執行光偵測以改良靈敏度。舉例而言,如上文所描述,一個畫素群組80中所包含之四個深度畫素Z的浮動擴散區可彼此電耦合,且一個畫素群組80之四個深度畫素Z可整體地操作。Referring to Fig. 31, the pixel array C/Z PX includes a plurality of unit pixels R, G, B, and Z arranged in a triangular grid. The unit pixels R, G, B, and Z may have the ring structure described above with reference to FIGS. 2 through 12. The unit pixels R, G, B, and Z include a plurality of color pixels R, G, and B and a plurality of depth pixels Z. The color pixels R, G, and B may include a green pixel G, a red pixel R, and a blue pixel B. As illustrated in FIG. 31, color pixels R, G, and B perform light detection on a unit pixel basis to improve resolution, and depth pixel Z performs light detection on a pixel group basis. To improve sensitivity. For example, as described above, the floating diffusion regions of the four depth pixels Z included in one pixel group 80 can be electrically coupled to each other, and the four depth pixels Z of one pixel group 80 can be integrated. Operation.

色彩畫素選擇電路CROW及CCOL以及色彩畫素轉換器CADC可對色彩畫素R、G以及B執行感測操作以及讀出操作,且深度畫素選擇電路ZROW及ZCOL以及深度畫素轉換器ZADC可對深度畫素Z執行感測操作以及讀出操作。上文所描述之多個可變二進位信號CGi可應用於深度畫素Z之閘極以獲得表示深度資訊之資料ZDATA。色彩畫素R、G以及B與深度畫素Z可回應於不同閘極信號而在不同頻率下操作。The color pixel selection circuits CROW and CCOL and the color pixel converter CADC perform sensing operations and readout operations on the color pixels R, G, and B, and the depth pixel selection circuits ZROW and ZCOL and the depth pixel converter ZADC A sensing operation and a readout operation can be performed on the depth pixel Z. The plurality of variable binary signals CGi described above can be applied to the gate of the depth pixel Z to obtain the material ZDATA representing the depth information. The color pixels R, G, and B and the depth pixel Z can operate at different frequencies in response to different gate signals.

圖32說明包含三維影像感測器之相機的例示性實施例的方塊圖。Figure 32 illustrates a block diagram of an illustrative embodiment of a camera including a three dimensional image sensor.

參看圖32,相機800包含光接收透鏡810、三維影像感測器900以及引擎單元840。三維影像感測器900可包含三維影像感測器晶片820以及光源模組830。根據實施例,三維影像感測器晶片820以及光源模組830可以分離之裝置來實施,或光源模組830之至少一部分可包含於三維影像感測器晶片820中。在一些實施例中,光接收透鏡810可包含於三維影像感測器晶片820中。Referring to FIG. 32, the camera 800 includes a light receiving lens 810, a three-dimensional image sensor 900, and an engine unit 840. The 3D image sensor 900 can include a 3D image sensor wafer 820 and a light source module 830. According to an embodiment, the 3D image sensor wafer 820 and the light source module 830 may be implemented by separate devices, or at least a portion of the light source module 830 may be included in the 3D image sensor wafer 820. In some embodiments, the light receiving lens 810 can be included in the three dimensional image sensor wafer 820.

光接收透鏡810可將入射光聚焦於三維影像感測器晶片820之光接收區(例如,包含於畫素陣列中之深度畫素及/或色彩畫素)上。三維影像感測器晶片820可基於穿過光接收透鏡810之入射光而產生包含深度資訊及/或色彩影像資訊的資料DATA1。舉例而言,由三維影像感測器晶片820產生之資料DATA1可包含使用自光源模組830發射之紅外光或近紅外光產生的深度資料以及使用外部可見光產生之拜耳圖案的RGB資料。三維影像感測器晶片820可基於時脈信號CLK將資料DATA1提供至引擎單元840。在一些實施例中,三維影像感測器晶片820可經由行動產業處理器介面MIPI及/或相機串行介面CSI與引擎單元840介接。The light receiving lens 810 can focus the incident light onto a light receiving area of the three dimensional image sensor wafer 820 (eg, a depth pixel and/or a color pixel included in the pixel array). The three-dimensional image sensor wafer 820 can generate data DATA1 including depth information and/or color image information based on incident light passing through the light receiving lens 810. For example, the data DATA1 generated by the three-dimensional image sensor chip 820 may include depth data generated using infrared light or near-infrared light emitted from the light source module 830 and RGB data of a Bayer pattern generated using external visible light. The 3D image sensor wafer 820 can provide the data DATA1 to the engine unit 840 based on the clock signal CLK. In some embodiments, the 3D image sensor die 820 can interface with the engine unit 840 via the mobile industry processor interface MIPI and/or the camera serial interface CSI.

引擎單元840控制三維影像感測器900。引擎單元840可處理自三維影像感測器晶片820接收到之資料DATA1。舉例而言,引擎單元840可基於自三維影像感測器晶片820接收到之資料DATA1來產生三維色彩資料。在其他實例中,引擎單元840可基於資料DATA1中所包含之RGB資料來產生包含亮度分量、藍色亮度差異分量以及紅色亮度差異分量的YUV資料,或壓縮資料(諸如,聯合影像專家群(joint photography experts group;JPEG)資料)。引擎單元840可連接至主機/應用程式850且可基於主時脈MCLK將資料DATA2提供至主機/應用程式850。此外,引擎單元840可經由串行周邊介面(serial peripheral interface;SPI)及/或內部積體電路(inter integrated circuit;I2C)來與主機/應用程式850介接。The engine unit 840 controls the three-dimensional image sensor 900. The engine unit 840 can process the data DATA1 received from the 3D image sensor wafer 820. For example, the engine unit 840 can generate three-dimensional color data based on the data DATA1 received from the three-dimensional image sensor wafer 820. In other examples, engine unit 840 may generate YUV data including luminance components, blue luminance difference components, and red luminance difference components, or compressed data based on RGB data contained in data DATA1 (eg, joint imaging expert group (joint) Photography experts group; JPEG) data). Engine unit 840 can be coupled to host/application 850 and can provide data DATA2 to host/application 850 based on primary clock MCLK. In addition, the engine unit 840 can interface with the host/application 850 via a serial peripheral interface (SPI) and/or an inter integrated circuit (I2C).

圖33說明可用於圖33之計算系統中的介面之例示性實施例的方塊圖。33 illustrates a block diagram of an illustrative embodiment of an interface that may be used in the computing system of FIG.

參看圖33,計算系統1000可包含處理器1010、記憶體裝置1020、儲存裝置1030、輸入/輸出裝置1040、電源供應器1050以及三維影像感測器900。雖然在圖33中未說明,但計算系統1000可更包含與視訊卡、音效卡、記憶體卡、USB裝置或其他電子裝置通信的埠。Referring to FIG. 33, computing system 1000 can include processor 1010, memory device 1020, storage device 1030, input/output device 1040, power supply 1050, and three-dimensional image sensor 900. Although not illustrated in FIG. 33, computing system 1000 can further include communication with a video card, sound card, memory card, USB device, or other electronic device.

處理器1010可執行各種計算或任務。根據實施例,處理器1010可為微處理器或CPU。處理器1010可經由位址匯流排、控制匯流排及/或資料匯流排而與記憶體裝置1020、儲存裝置1030以及輸入/輸出裝置1040通信。在一些實施例中,處理器1010可耦合至擴充匯流排,諸如周邊組件互連(peripheral component interconnection;PCI)匯流排。記憶體裝置1020可儲存用於操作計算系統1000之資料。舉例而言,記憶體裝置1020可以下列各者來實施:動態隨機存取記憶體(dynamic random access memory;DRAM)裝置、行動DRAM裝置、靜態隨機存取記憶體(static random access memory;SRAM)裝置、相位隨機存取記憶體(phase random access memory;PRAM)裝置、鐵電隨機存取記憶體(ferroelectric random access memory;FRAM)裝置、電阻式隨機存取記憶體(resistive random access memory;RRAM)裝置,及/或磁性隨機存取記憶體(magnetic random access memory;MRAM)裝置。儲存裝置可包含固態磁碟機(solid state drive;SSD)、硬磁碟機(hard disk drive;HDD)、CD-ROM等。輸入/輸出裝置1040可包含輸入裝置(例如,鍵盤、小鍵盤、滑鼠等)以及輸出裝置(例如,印表機、顯示裝置等)。電源供應器1050供應用於計算系統1000之操作電壓。The processor 1010 can perform various calculations or tasks. According to an embodiment, the processor 1010 can be a microprocessor or a CPU. The processor 1010 can communicate with the memory device 1020, the storage device 1030, and the input/output device 1040 via an address bus, a control bus, and/or a data bus. In some embodiments, processor 1010 can be coupled to an expansion bus, such as a peripheral component interconnection (PCI) bus. The memory device 1020 can store data for operating the computing system 1000. For example, the memory device 1020 can be implemented by: a dynamic random access memory (DRAM) device, a mobile DRAM device, and a static random access memory (SRAM) device. Phase random access memory (PRAM) device, ferroelectric random access memory (FRAM) device, resistive random access memory (RRAM) device And/or a magnetic random access memory (MRAM) device. The storage device may include a solid state drive (SSD), a hard disk drive (HDD), a CD-ROM, and the like. Input/output device 1040 can include input devices (eg, a keyboard, keypad, mouse, etc.) and output devices (eg, printers, display devices, etc.). Power supply 1050 supplies an operating voltage for computing system 1000.

三維影像感測器900可經由匯流排或其他通信連結與處理器1010通信。如上文所描述,三維影像感測器900可包含具有環形結構之單位畫素,其作為單接頭偵測器操作。此外,如上文所描述,三維影像感測器900可使用多個可變二進位信號來測量距物件之距離。因此,可改良靈敏度以及信雜比。三維影像感測器900可與處理器1010整合於一個晶片中,或三維影像感測器900與處理器1010可實施為分離晶片。The three-dimensional image sensor 900 can communicate with the processor 1010 via a bus or other communication link. As described above, the three-dimensional image sensor 900 can include a unit pixel having a ring structure that operates as a single-joint detector. Moreover, as described above, the three-dimensional image sensor 900 can use a plurality of variable binary signals to measure the distance from the object. Therefore, sensitivity and signal to noise ratio can be improved. The 3D image sensor 900 can be integrated into the processor with the processor 1010, or the 3D image sensor 900 and the processor 1010 can be implemented as separate wafers.

三維影像感測器900可以各種形式來封裝,諸如層疊封裝(package on package;PoP)、球狀柵格陣列(ball grid array;BGA)、晶片尺度封裝(chip scale package;CSP)、塑膠引線晶片載體(plastic leaded chip carrier;PLCC)、塑膠雙排型封裝(plastic dual in-line package;PDIP)、疊片中晶粒包裝(die in waffle pack)、晶圓中晶粒形式、板上晶片(chip on board;COB)、陶瓷雙排型封裝(ceramic dual in-line package;CERDIP)、塑膠公制方形扁平封裝(plastic metric quad flat pack;MQFP)、薄方形扁平封裝(thin quad flat pack;TQFP)、小外形IC(small outline IC;SOIC)、收縮型小外形封裝(shrink small outline package;SSOP)、薄小外形封裝(thin small outline package;TSOP)、系統級封裝(system in package;SIP)、多晶片封裝(multi chip package;MCP)、晶圓級製造封裝(wafer-level fabricated package;WFP),或晶圓級處理堆疊封裝(wafer-level processed stack package;WSP)。The three-dimensional image sensor 900 can be packaged in various forms, such as a package on package (PoP), a ball grid array (BGA), a chip scale package (CSP), a plastic lead wafer. Plastic leaded chip carrier (PLCC), plastic dual in-line package (PDIP), die in waffle pack, wafer in wafer form, on-board wafer ( Chip on board; COB), ceramic dual in-line package (CERDIP), plastic metric quad flat pack (MQFP), thin quad flat pack (TQFP) , small outline IC (SOIC), shrink small outline package (SSOP), thin small outline package (TSOP), system in package (SIP), A multi-chip package (MCP), a wafer-level fabricated package (WFP), or a wafer-level processed stack package (WSP).

計算系統1000可為使用三維影像感測器之任何計算系統。舉例而言,計算系統1000可包含數位相機、行動電話、智慧型電話、攜帶型多媒體播放器(portable multimedia player;PMP)、個人數位助理(personal digital assistant;PDA)等。Computing system 1000 can be any computing system that uses a three-dimensional image sensor. For example, computing system 1000 can include a digital camera, a mobile phone, a smart phone, a portable multimedia player (PMP), a personal digital assistant (PDA), and the like.

圖34說明可用於圖33之計算系統中的介面之例示性實施例的方塊圖。FIG. 34 illustrates a block diagram of an exemplary embodiment of an interface that may be used in the computing system of FIG.

參看圖34,計算系統1100可藉由使用或支援行動產業處理器介面(MIPI)介面之資料處理裝置來實施。計算系統1100可包含應用程式處理器1110、三維影像感測器1140、顯示裝置1150等。應用程式處理器1110之CSI主機1112可執行經由相機串行介面(CSI)與三維影像感測器1140之CSI裝置1141的串行通信。在一些實施例中,CSI主機1112可包含解串器(DES),且CSI裝置1141可包含串聯器(SER)。應用程式處理器1110之DSI主機1111可執行經由顯示串行介面(DSI)與顯示裝置1150之DSI裝置1151的串行通信。Referring to Figure 34, computing system 1100 can be implemented by using or supporting a data processing device of the Mobile Industry Processor Interface (MIPI) interface. Computing system 1100 can include an application processor 1110, a three-dimensional image sensor 1140, a display device 1150, and the like. The CSI host 1112 of the application processor 1110 can perform serial communication with the CSI device 1141 of the 3D image sensor 1140 via a camera serial interface (CSI). In some embodiments, CSI host 1112 can include a deserializer (DES), and CSI device 1141 can include a serializer (SER). The DSI host 1111 of the application processor 1110 can perform serial communication with the DSI device 1151 of the display device 1150 via a display serial interface (DSI).

在一些實施例中,DSI主機1111可包含串聯器(SER),且DSI裝置1151可包含解串器(DES)。計算系統1100可更包含執行與應用程式處理器1110之通信的射頻(radio frequency;RF)晶片1160。計算系統1100之實體層(PHY)1113以及RF晶片1160之實體層(PHY)1161可基於MIPI DigRF來執行資料通信。應用程式處理器1110可更包含控制PHY 1161之資料通信的DigRF主控裝置(DigRF MASTER)1114。In some embodiments, DSI host 1111 can include a serializer (SER), and DSI device 1151 can include a deserializer (DES). Computing system 1100 can further include a radio frequency (RF) wafer 1160 that performs communication with application processor 1110. The physical layer (PHY) 1113 of the computing system 1100 and the physical layer (PHY) 1161 of the RF chip 1160 can perform data communication based on the MIPI DigRF. The application processor 1110 may further include a DigRF master (DigRF MASTER) 1114 that controls data communication of the PHY 1161.

計算系統1100可更包含全球定位系統(global positioning System;GPS)1120、儲存器1170、MIC 1180、DRAM裝置1185以及揚聲器1190。另外,計算系統1100可使用以下各者來執行通信:超寬頻(ultra wideband;UWB)1120、無線區域網路(wireless local area network;WLAN)1220、微波存取全球互通(worldwide interoperability for microwave access;WIMAX)1230等。然而,電裝置1000之結構以及介面不限於此。The computing system 1100 can further include a global positioning system (GPS) 1120, a storage 1170, a MIC 1180, a DRAM device 1185, and a speaker 1190. In addition, the computing system 1100 can perform communication using: ultra wideband (UWB) 1120, wireless local area network (WLAN) 1220, and global interoperability for microwave access; WIMAX) 1230 and so on. However, the structure and interface of the electrical device 1000 are not limited thereto.

本文中所描述之特徵及/或實施例可應用於任何光偵測裝置,諸如提供關於物件之影像資訊以及深度資訊的三維影像感測器。舉例而言,一或多個實施例可應用於計算系統,諸如人臉辨識安全系統、桌上型電腦、膝上型電腦、數位相機、三維相機、視訊攝錄影機、蜂巢式電話、智慧型電話、個人數位助理(PDA)、掃描器、視訊電話、數位電視、導航系統、觀測系統、自動聚焦系統、追蹤系統、運動捕獲系統、影像穩定系統等。The features and/or embodiments described herein are applicable to any light detecting device, such as a three dimensional image sensor that provides image information and depth information about the object. For example, one or more embodiments may be applied to computing systems such as face recognition security systems, desktop computers, laptop computers, digital cameras, three-dimensional cameras, video camcorders, cellular phones, smart Telephones, personal digital assistants (PDAs), scanners, video phones, digital televisions, navigation systems, observing systems, autofocus systems, tracking systems, motion capture systems, image stabilization systems, and more.

前述內容說明了例示性實施例且不被理解為其限制。雖然已描述了少許例示性實施例,但熟習此項技術者將容易地瞭解到,在本質上不脫離本發明概念之新穎教示以及優點的情況下,例示性實施例之許多修改為可能的。因此,所有此等修改意欲包含於如申請專利範圍中所界定的本發明概念之範疇內。因此,應理解,前述內容說明了各種例示性實施例但不應被理解為限於所揭露之特定例示性實施例,且所揭露例示性實施例之修改以及其他例示性實施例意欲包含於所附申請專利範圍之範疇內。The foregoing describes illustrative embodiments and is not to be considered as limiting. While a few exemplifying embodiments have been described, it will be understood by those skilled in the art that many modifications of the exemplary embodiments are possible without departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of the inventive concepts as defined in the appended claims. Therefore, the present invention is to be understood as being limited to the specific illustrative embodiments of the invention and the invention Within the scope of the patent application.

10...半導體基板10. . . Semiconductor substrate

10'...半導體基板10'. . . Semiconductor substrate

11...P區11. . . P area

13...P-區13. . . P-zone

15...P+區15. . . P+ area

30...讀出電路30. . . Readout circuit

51...透鏡51. . . lens

53...透鏡53. . . lens

60...物件60. . . object

80...畫素群組80. . . Pixel group

100...單位畫素100. . . Unit pixel

100a...單位畫素100a. . . Unit pixel

100b...單位畫素100b. . . Unit pixel

101...半導體基板101. . . Semiconductor substrate

101'...半導體基板101'. . . Semiconductor substrate

110...浮動擴散區110. . . Floating diffusion zone

120...收集閘極120. . . Collecting gate

130...排出閘極130. . . Discharge gate

140...汲極區140. . . Bungee area

140i...內邊緣140i. . . Inner edge

140o...外邊緣140o. . . Outer edge

150...光電荷儲存區150. . . Photocharge storage area

200...單位畫素200. . . Unit pixel

200a...單位畫素200a. . . Unit pixel

200b...單位畫素200b. . . Unit pixel

201...半導體基板201. . . Semiconductor substrate

201'...半導體基板201'. . . Semiconductor substrate

210...浮動擴散區210. . . Floating diffusion zone

220...收集閘極220. . . Collecting gate

230...排出閘極230. . . Discharge gate

240...汲極區240. . . Bungee area

250...光電荷儲存區250. . . Photocharge storage area

270...固定層270. . . Fixed layer

300...單位畫素300. . . Unit pixel

300a...單位畫素300a. . . Unit pixel

300b...單位畫素300b. . . Unit pixel

310...浮動擴散區310. . . Floating diffusion zone

320...收集閘極320. . . Collecting gate

330...排出閘極330. . . Discharge gate

340...汲極區340. . . Bungee area

350...光電荷儲存區350. . . Photocharge storage area

370...光閘極370. . . Light gate

410...畫素陣列410. . . Pixel array

412...單位畫素412. . . Unit pixel

415...正方形415. . . square

417...汲極區417. . . Bungee area

420...畫素陣列420. . . Pixel array

425...三角形425. . . triangle

430...畫素陣列430. . . Pixel array

432...單位畫素432. . . Unit pixel

440...畫素陣列440. . . Pixel array

442...單位畫素442. . . Unit pixel

450...畫素陣列450. . . Pixel array

451...畫素群組451. . . Pixel group

452...單位畫素452. . . Unit pixel

453...電連接453. . . Electrical connection

600...光偵測裝置600. . . Light detecting device

610...控制感測單元610. . . Control sensing unit

610a...感測單元610a. . . Sensing unit

630...控制單元630. . . control unit

800...相機800. . . camera

810...光接收透鏡810. . . Light receiving lens

820...三維影像感測器晶片820. . . 3D image sensor chip

830...光源模組830. . . Light source module

840...引擎單元840. . . Engine unit

850...主機/應用程式850. . . Host/application

900...三維影像感測器900. . . 3D image sensor

1000...計算系統1000. . . Computing system

1010...處理器1010. . . processor

1020...記憶體裝置1020. . . Memory device

1030...儲存裝置1030. . . Storage device

1040...輸入/輸出裝置1040. . . Input/output device

1050...電源供應器1050. . . Power Supplier

1100...計算系統1100. . . Computing system

1110...應用程式處理器1110. . . Application processor

1111...DSI主機1111. . . DSI host

1112...CSI主機1112. . . CSI host

1113...實體層1113. . . Physical layer

1114...DigRF主控裝置1114. . . DigRF master control unit

1120...全球定位系統1120. . . Global Positioning System

1140...三維影像感測器1140. . . 3D image sensor

1141...CSI裝置1141. . . CSI device

1150...顯示裝置1150. . . Display device

1151...DSI裝置1151. . . DSI device

1160...射頻晶片1160. . . RF chip

1161...實體層1161. . . Physical layer

1170...儲存器1170. . . Storage

1180...MIC1180. . . MIC

1185...DRAM裝置1185. . . DRAM device

1190...揚聲器1190. . . speaker

1210...超寬頻1210. . . Ultra-wideband

1220...無線區域網路1220. . . Wireless local area network

1230...微波存取全球互通1230. . . Microwave access global interoperability

S110~S130、S210~S250...步驟S110~S130, S210~S250. . . step

ADC...類比數位轉換單元ADC. . . Analog digital conversion unit

BN...二進位信號產生器BN. . . Binary signal generator

CADC...色彩畫素轉換器CADC. . . Color pixel converter

CCOL...色彩畫素選擇電路CCOL. . . Color pixel selection circuit

CDATA...影像資訊CDATA. . . Image information

CG...收集閘極信號CG. . . Collecting gate signals

CG1-CGk、CG1’-CG4’、CGi...二進位信號CG1-CGk, CG1’-CG4’, CGi. . . Binary signal

CLK...時脈信號CLK. . . Clock signal

COL...選擇電路COL. . . Selection circuit

CROW...色彩畫素選擇電路CROW. . . Color pixel selection circuit

CTRL...控制器CTRL. . . Controller

C/ZPX...畫素陣列C/ZPX. . . Pixel array

DATA...電信號DATA. . . electric signal

DATA1...資料DATA1. . . data

DATA2...資料DATA2. . . data

DR...汲極電壓DR. . . Buckling voltage

DRG...排出閘極信號DRG. . . Discharge gate signal

DRGi...反相二進位信號DRGi. . . Inverted binary signal

EL...所發射光EL. . . Emitted light

FD...浮動擴散電壓FD. . . Floating diffusion voltage

LO...輸出線LO. . . Output line

LS...光源LS. . . light source

MCLK...主時脈MCLK. . . Main clock

PX...畫素陣列PX. . . Pixel array

RDC...單位畫素不處於之區RDC. . . Unit pixels are not in the area

RL...所接收到之光RL. . . The light received

ROW‧‧‧選擇電路 ROW‧‧‧Selection circuit

RST‧‧‧重設信號 RST‧‧‧Reset signal

R、G、B、Z‧‧‧單位畫素 R, G, B, Z‧‧‧ unit pixels

SEL‧‧‧選擇信號 SEL‧‧‧Selection signal

T1‧‧‧源極隨耦器電晶體 T1‧‧‧ source follower transistor

T1-Tk‧‧‧相位差 T1-Tk‧‧‧ phase difference

T2‧‧‧選擇電晶體 T2‧‧‧Selective crystal

T3‧‧‧重設電晶體 T3‧‧‧Reset the transistor

Tc‧‧‧第二時間 Tc‧‧‧ second time

Tf‧‧‧所發射光EL與所接收到之光RL之間的相位差 Phase difference between the emitted light EL of Tf‧‧‧ and the received light RL

Ti‧‧‧相對於所發射光EL之相位差 The phase difference of Ti‧‧‧ relative to the emitted light EL

To‧‧‧週期 To‧‧ cycle

Tr‧‧‧第一時間 Tr‧‧‧First time

TR‧‧‧讀出時間 TR‧‧‧Reading time

TS‧‧‧感測時間 TS‧‧‧Sensing time

TS1-TSk‧‧‧感測時間 TS1-TSk‧‧‧Sensing time

VB‧‧‧預定偏壓電壓 VB‧‧‧predetermined bias voltage

VC‧‧‧垂直中心軸 VC‧‧‧ vertical center axis

VRST‧‧‧重設電壓 VRST‧‧‧Reset voltage

W1、W2、Wi‧‧‧啟動持續時間 W1, W2, Wi‧‧‧ start duration

Z‧‧‧距離 Z‧‧‧ distance

ZADC‧‧‧深度畫素轉換器 ZADC‧‧‧Deep Pixel Converter

ZCOL‧‧‧深度畫素選擇電路 ZCOL‧‧‧Deep pixel selection circuit

ZDATA‧‧‧深度資訊 ZDATA‧‧‧In-depth information

ZROW‧‧‧深度畫素選擇電路 ZROW‧‧‧Deep pixel selection circuit

圖1說明光偵測裝置之單位畫素之例示性實施例的佈局圖。1 illustrates a layout of an exemplary embodiment of a unit pixel of a light detecting device.

圖2說明光偵測裝置之單位畫素之例示性實施例的平面圖。2 illustrates a plan view of an exemplary embodiment of a unit pixel of a light detecting device.

圖3以及圖4說明圖2之單位畫素之例示性實施例的橫截面圖。3 and 4 illustrate cross-sectional views of an exemplary embodiment of the unit pixel of Fig. 2.

圖5以及圖6說明用於描述在圖3以及圖4之單位畫素中光電荷之水平移動的實例的橫截面圖。5 and 6 illustrate cross-sectional views for describing an example of horizontal movement of photocharges in the unit pixels of Figs. 3 and 4.

圖7說明光偵測裝置之單位畫素之另一例示性實施例的平面圖。Figure 7 illustrates a plan view of another exemplary embodiment of a unit pixel of a light detecting device.

圖8以及圖9說明圖7之單位畫素之例示性實施例的橫截面圖。8 and 9 illustrate cross-sectional views of an exemplary embodiment of the unit pixel of Fig. 7.

圖10說明光偵測裝置之單位畫素之另一例示性實施例的平面圖。Figure 10 illustrates a plan view of another exemplary embodiment of a unit pixel of a light detecting device.

圖11以及圖12說明圖10之單位畫素之例示性實施例的橫截面圖。11 and 12 illustrate cross-sectional views of an exemplary embodiment of the unit pixel of Fig. 10.

圖13至圖17說明畫素陣列之例示性實施例的圖。13 through 17 illustrate diagrams of an illustrative embodiment of a pixel array.

圖18說明用於提供單位畫素之輸出的讀出電路之例示性實施例的示意圖。Figure 18 illustrates a schematic diagram of an illustrative embodiment of a readout circuit for providing an output of a unit pixel.

圖19說明光偵測裝置之例示性實施例的方塊圖。Figure 19 illustrates a block diagram of an exemplary embodiment of a light detecting device.

圖20說明測量距離之方法的例示性實施例的流程圖。Figure 20 illustrates a flow chart of an illustrative embodiment of a method of measuring distance.

圖21說明可用於將接收到之光轉換成電信號的例示性信號的例示性時序圖。21 illustrates an exemplary timing diagram of an exemplary signal that can be used to convert received light into an electrical signal.

圖22以及圖23說明可由圖20中所說明之測量距離的方法使用的可變二進位信號之實例的例示性時序圖。22 and 23 illustrate an exemplary timing diagram of an example of a variable binary signal that can be used by the method of measuring distance illustrated in FIG.

圖24說明例示性可變二進位信號之圖。Figure 24 illustrates a diagram of an exemplary variable binary signal.

圖25說明圖24中所說明之可變二進位信號之例示性相位、啟動持續時間之長度以及循環數目的圖表。Figure 25 illustrates a graph of an exemplary phase of the variable binary signal illustrated in Figure 24, the length of the start-up duration, and the number of cycles.

圖26說明測量距離之方法的例示性實施例的流程圖。Figure 26 illustrates a flow chart of an illustrative embodiment of a method of measuring distance.

圖27說明例示性可變二進位信號之圖。Figure 27 illustrates a diagram of an exemplary variable binary signal.

圖28說明圖27中所說明之可變二進位信號之例示性相位、啟動持續時間之長度以及循環數目的圖。Figure 28 illustrates a diagram of an exemplary phase of the variable binary signal illustrated in Figure 27, the length of the start-up duration, and the number of cycles.

圖29說明例示性經調整二進位信號之圖。Figure 29 illustrates a diagram of an exemplary adjusted binary signal.

圖30說明三維影像感測器之感測單元的例示性實施例的圖。Figure 30 illustrates a diagram of an illustrative embodiment of a sensing unit of a three-dimensional image sensor.

圖31說明可用於圖30之感測單元中的畫素陣列之例示性實施例的圖。31 illustrates a diagram of an illustrative embodiment of a pixel array that can be used in the sensing unit of FIG.

圖32說明包含三維影像感測器之相機的例示性實施例的方塊圖。Figure 32 illustrates a block diagram of an illustrative embodiment of a camera including a three dimensional image sensor.

圖33說明包含三維影像感測器之計算系統的例示性實施例的方塊圖。Figure 33 illustrates a block diagram of an illustrative embodiment of a computing system including a three-dimensional image sensor.

圖34說明可用於圖33之計算系統中的介面之例示性實施例的方塊圖。FIG. 34 illustrates a block diagram of an exemplary embodiment of an interface that may be used in the computing system of FIG.

Claims (10)

一種包含於光偵測裝置中之單位畫素,所述單位畫素包括:在半導體基板中之浮動擴散區;在所述半導體基板之上的環形收集閘極;在所述半導體基板之上的環形排出閘極;以及在所述半導體基板中之汲極區,其中所述環形收集閘極與所述環形排出閘極分別配置於所述浮動擴散區與所述汲極區之間,其中所述環形收集閘極環繞所述浮動擴散區,所述環形排出閘極環繞所述環形收集閘極,且所述汲極區環繞所述環形排出閘極。 A unit pixel included in a photodetecting device, the unit pixel comprising: a floating diffusion region in a semiconductor substrate; an annular collecting gate over the semiconductor substrate; and a semiconductor substrate An annular discharge gate; and a drain region in the semiconductor substrate, wherein the annular collector gate and the annular discharge gate are respectively disposed between the floating diffusion region and the drain region, wherein An annular collecting gate surrounds the floating diffusion region, the annular discharge gate surrounds the annular collecting gate, and the drain region surrounds the annular discharge gate. 如申請專利範圍第1項所述之包含於光偵測裝置中之單位畫素,其中所述浮動擴散區位於中心,且相對於所述浮動擴散區而言,與所述環形收集閘極以及所述環形排出閘極相比,所述汲極區在最外面。 The unit pixel included in the photodetecting device according to claim 1, wherein the floating diffusion region is located at a center, and the annular collecting gate is opposite to the floating diffusion region. The drain region is at the outermost side of the annular discharge gate. 如申請專利範圍第1項所述之包含於光偵測裝置中之單位畫素,其中所述環形收集閘極以及所述環形排出閘極具有圓形或多邊形環形形狀。 The unit pixel included in the photodetecting device according to claim 1, wherein the annular collecting gate and the annular discharging gate have a circular or polygonal annular shape. 如申請專利範圍第1項所述之包含於光偵測裝置中之單位畫素,其中環形收集閘極信號與環形排出閘極信號分別施加至所述環形收集閘極與所述環形排出閘極,其中,在啟動所述環形收集閘極信號時,所述半導體基板中所產生之光電荷收集於所述浮動擴散區中,且其中,在啟動所述環形排出閘極信號時,所述半導體 基板中所產生之所述光電荷排出至所述汲極區中。 The unit pixel included in the photodetecting device according to claim 1, wherein an annular collecting gate signal and an annular discharging gate signal are respectively applied to the annular collecting gate and the annular discharging gate. Wherein, when the ring collecting gate signal is activated, photocharges generated in the semiconductor substrate are collected in the floating diffusion region, and wherein the semiconductor is activated when the ring discharge gate signal is activated The photocharge generated in the substrate is discharged into the drain region. 如申請專利範圍第1項所述之包含於光偵測裝置中之單位畫素,其更包括:在所述半導體基板中且在所述浮動擴散區與所述汲極區之間的環形光電荷儲存區,所述環形光電荷儲存區摻雜有傳導性類型與所述半導體基板之傳導性類型相反的雜質。 The unit pixel included in the photodetecting device according to claim 1, further comprising: ring light in the semiconductor substrate and between the floating diffusion region and the drain region In the charge storage region, the annular photocharge storage region is doped with an impurity of a conductivity type opposite to that of the semiconductor substrate. 如申請專利範圍第5項所述之包含於光偵測裝置中之單位畫素,其中所述環形收集閘極與所述環形光電荷儲存區之內部部分至少部分重疊;且其中所述環形排出閘極與所述環形光電荷儲存區之外部部分至少部分重疊。 The unit pixel included in the photodetecting device of claim 5, wherein the annular collecting gate at least partially overlaps an inner portion of the annular photocharge storage region; and wherein the annular discharge The gate at least partially overlaps an outer portion of the annular photocharge storage region. 如申請專利範圍第5項所述之包含於光偵測裝置中之單位畫素,其中所述環形收集閘極位於所述環形光電荷儲存區與所述浮動擴散區之間,且其中所述環形排出閘極位於所述環形光電荷儲存區與所述汲極區之間。 The unit pixel included in the photodetecting device according to claim 5, wherein the annular collecting gate is located between the annular photocharge storage region and the floating diffusion region, and wherein the An annular discharge gate is located between the annular photocharge storage region and the drain region. 如申請專利範圍第7項所述之包含於光偵測裝置中之單位畫素,其更包括:在所述半導體基板中用以覆蓋所述環形光電荷儲存區的環形固定層,所述環形固定層摻雜有傳導性類型與所述環形光電荷儲存區之傳導性類型相反的雜質。 The unit pixel included in the photodetecting device of claim 7, further comprising: an annular fixed layer in the semiconductor substrate for covering the annular photocharge storage region, the ring The pinned layer is doped with an impurity of a conductivity type opposite that of the annular photocharge storage region. 如申請專利範圍第7項所述之包含於光偵測裝置中之單位畫素,其更包括: 在所述半導體基板之上且在所述環形收集閘極與所述環形排出閘極之間用以覆蓋所述環形光電荷儲存區的環形光閘極。 The unit pixel included in the photodetecting device as described in claim 7 of the patent application further includes: An annular optical gate is disposed over the semiconductor substrate and between the annular collecting gate and the annular discharge gate to cover the annular photocharge storage region. 如申請專利範圍第1項所述之包含於光偵測裝置中之單位畫素,其中所述半導體基板包含摻雜有相同傳導性類型以及不同濃度之雜質的多個光電荷產生區。 The unit pixel included in the photodetecting device according to claim 1, wherein the semiconductor substrate comprises a plurality of photocharge generating regions doped with impurities of the same conductivity type and different concentrations.
TW100128173A 2010-08-11 2011-08-08 Unit pixel, photo-detection device and method of measuring a distance using the same TWI545738B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37270910P 2010-08-11 2010-08-11
KR1020110004750A KR101818587B1 (en) 2010-08-11 2011-01-18 Unit pixel, photo-detection device and method of measuring a distance using the same

Publications (2)

Publication Number Publication Date
TW201232770A TW201232770A (en) 2012-08-01
TWI545738B true TWI545738B (en) 2016-08-11

Family

ID=45838071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128173A TWI545738B (en) 2010-08-11 2011-08-08 Unit pixel, photo-detection device and method of measuring a distance using the same

Country Status (2)

Country Link
KR (1) KR101818587B1 (en)
TW (1) TWI545738B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102070778B1 (en) 2012-11-23 2020-03-02 엘지전자 주식회사 Rgb-ir sensor with pixels array and apparatus and method for obtaining 3d image using the same
KR102466856B1 (en) * 2016-04-20 2022-11-15 에스케이하이닉스 주식회사 Image Sensor Having Phase Difference Sensing Pixel Arranged as Irregular Hexagon Shape
US11355537B2 (en) * 2019-10-16 2022-06-07 Omnivision Technologies, Inc. Vertical gate structure and layout in a CMOS image sensor
EP3812801A1 (en) 2019-10-23 2021-04-28 Samsung Electronics Co., Ltd. Image sensor including color separating lens array and electronic device including the image sensor
US11682685B2 (en) 2019-10-24 2023-06-20 Samsung Electronics Co., Ltd. Color separation element and image sensor including the same
KR20210120536A (en) * 2020-03-27 2021-10-07 에스케이하이닉스 주식회사 Image sensing device
KR20210125744A (en) * 2020-04-09 2021-10-19 에스케이하이닉스 주식회사 Image sensing device
US11227958B2 (en) * 2020-04-30 2022-01-18 Taiwan Semiconductor Manufacturing Co., Ltd. Circular grating structure for photonic device
KR20220094846A (en) * 2020-12-29 2022-07-06 에스케이하이닉스 주식회사 Image Sensing Device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8264581B2 (en) * 2008-07-17 2012-09-11 Microsoft International Holdings B.V. CMOS photogate 3D camera system having improved charge sensing cell and pixel geometry

Also Published As

Publication number Publication date
TW201232770A (en) 2012-08-01
KR20120015257A (en) 2012-02-21
KR101818587B1 (en) 2018-01-15

Similar Documents

Publication Publication Date Title
US8687174B2 (en) Unit pixel, photo-detection device and method of measuring a distance using the same
TWI545738B (en) Unit pixel, photo-detection device and method of measuring a distance using the same
US10396119B2 (en) Unit pixel of image sensor, image sensor including the same and method of manufacturing image sensor
US9225922B2 (en) Image-sensing devices and methods of operating the same
US9324758B2 (en) Depth pixel included in three-dimensional image sensor and three-dimensional image sensor including the same
US9159751B2 (en) Unit pixel of image sensor and image sensor including the same
KR102007279B1 (en) Depth pixel included in three-dimensional image sensor, three-dimensional image sensor including the same and method of operating depth pixel included in three-dimensional image sensor
US9805476B2 (en) Distance sensor and image processing system including the same
US20150228679A1 (en) Unit pixel of image sensor and image sensor including the same
US20130119234A1 (en) Unit pixel and three-dimensional image sensor including the same
US20160013240A1 (en) Pixel of an image sensor, and image sensor
US20120268566A1 (en) Three-dimensional color image sensors having spaced-apart multi-pixel color regions therein
US9103722B2 (en) Unit pixels, depth sensors and three-dimensional image sensors including the same
KR102066603B1 (en) Image sensor having the 3d photoelectric conversion device
KR20160026299A (en) image sensor and manufacturing method thereof
US11627266B2 (en) Depth pixel having multi-tap structure and time-of-flight sensor including the same
Ito et al. A back illuminated 10μm spad pixel array comprising full trench isolation and cu-cu bonding with over 14% pde at 940nm
US20130248954A1 (en) Unit Pixel of Image Sensor and Image Sensor Including the Same
KR20120107755A (en) Pixel array of an image sensor and method of manufacturing a pixel array of an image sensor
US20220208815A1 (en) Image sensing device
US11011561B2 (en) Pixel and image sensor including the same
US20230118540A1 (en) Image sensing device
JP2023067863A (en) Image sensing device