TWI545540B - Displaying apparatus with titled screen and display driving method thereof - Google Patents
Displaying apparatus with titled screen and display driving method thereof Download PDFInfo
- Publication number
- TWI545540B TWI545540B TW103141963A TW103141963A TWI545540B TW I545540 B TWI545540 B TW I545540B TW 103141963 A TW103141963 A TW 103141963A TW 103141963 A TW103141963 A TW 103141963A TW I545540 B TWI545540 B TW I545540B
- Authority
- TW
- Taiwan
- Prior art keywords
- original
- frame
- frame rate
- value
- frames
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 16
- 230000015654 memory Effects 0.000 claims description 13
- 238000012937 correction Methods 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 18
- 230000007246 mechanism Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 241001270131 Agaricus moelleri Species 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Description
本發明是有關於一種拼接屏顯示裝置,且特別是有關於拼接屏顯示裝置的驅動技術。 The present invention relates to a splicing screen display device, and more particularly to a driving technique for a splicing screen display device.
對於大的顯示面積,例如是數位廣告看板,或是室內電視牆等,由於顯示面積遠大單一個顯示裝置的面積,因此會以拼接屏顯示裝置來顯示影像。 For a large display area, such as a digital billboard, or an indoor video wall, since the display area is much larger than the area of a single display device, the image is displayed by the splicing screen display device.
所謂的屏顯示裝置,其是有多個次螢幕(tile screen)分別顯示一個影像的一部份,而這些次螢幕拼接成一個大尺寸的顯示螢幕。圖1繪示傳統拼接屏的架構示意圖。參閱圖1,大尺寸的拼接屏100是由多個小尺寸的次螢幕102以MxN矩陣方式拼接所成。於此,M值一般是大於N值,但也可以是等於N而構成一個方型大尺寸的拼接屏100。每一個次螢幕102會顯示一張影像所對應的一部份,而這些次螢幕102個別的影像組合後徑成為一張完整要顯示的影像。 The so-called screen display device has a plurality of tile screens respectively displaying a part of an image, and the secondary screens are spliced into a large-sized display screen. FIG. 1 is a schematic diagram showing the structure of a conventional splicing screen. Referring to FIG. 1, a large-sized splicing screen 100 is formed by splicing a plurality of small-sized secondary screens 102 in an MxN matrix manner. Here, the M value is generally larger than the N value, but may be equal to N to form a splicing screen 100 having a large square shape. Each of the secondary screens 102 displays a portion corresponding to an image, and the individual images of the secondary screens 102 combine to form a complete image to be displayed.
就目前發光元件(Light-Emitting Device,LED)陣列的拼接屏產品,其使用LED驅動器來驅動LED陣列,而達到顯示效果。以已間距(pitch)為P1.488的規格為例,一片12cm見方的次螢幕,基於一個色彩畫素是由是由紅、綠、藍三個LED組成,其大約需要6400個燈珠,而在一般使用16通道的驅動器,其約略需要60顆驅動器。這對於細間距(fine pitch)的要求而言,所需的LED驅動器會更多。這不僅是對於細間距下會有散熱的問題,而在製造工藝上也會有限制。 In the current splicing screen product of a Light-Emitting Device (LED) array, an LED driver is used to drive the LED array to achieve a display effect. Taking the pitch of P1.488 as an example, a 12cm square secondary screen, based on a color pixel, is composed of three LEDs of red, green and blue, which requires about 6,400 beads. In general, a 16-channel driver is used, which requires approximately 60 drivers. This requires more LED drivers for fine pitch requirements. This is not only a problem of heat dissipation at fine pitches, but also a limitation in the manufacturing process.
圖2繪示傳統次螢幕102的架構示意圖。參閱圖2,對於一個次螢幕102,其利用n條掃描線來顯示影像,而每一條掃描線上有m個畫素。每一個單色的畫素是一個LED燈珠。如此在掃描完n條掃描線後就可以呈現此次螢幕102所要顯示的影像,其是整體影像的一部份。畫素一般是由發光元件(Light-emitting device)所構成,然而也可以是液晶(LC)畫素。又一個顏色畫素一般是由紅/綠/藍三個畫素所構成,藉由紅/綠/藍三個畫素的別灰階值來組合成所要呈現的顏色。因此,在次螢幕102仍是會有一些數量的n條掃描線,以及掃描線上有一些數量的m個畫素。對於這些m×n×3個顏色畫素的啟動是由多個驅動器提供的多個通到來驅動,對應每一個顏色畫素,將所需要的灰階值轉換成電壓而驅動這些m×n×3個顏色畫素的發光元件,使對應發出所需要的亮度。因此,對於一個次螢幕102,由於驅動器的通道數量低,傳統上需要很大數量的驅動器,會造成散熱等等的問題。 FIG. 2 is a schematic diagram showing the architecture of a conventional secondary screen 102. Referring to FIG. 2, for a secondary screen 102, n scan lines are used to display images, and each scan line has m pixels. Each monochromatic pixel is an LED lamp bead. Thus, after scanning the n scan lines, the image to be displayed on the screen 102 can be presented, which is a part of the overall image. The pixels are generally composed of a light-emitting device, but may be a liquid crystal (LC) pixel. Another color pixel is generally composed of three pixels of red/green/blue, and is combined into the color to be presented by the other gray scale values of the red/green/blue three pixels. Therefore, there will still be some number of n scan lines on the secondary screen 102, and some number of m pixels on the scan line. The activation of these m×n×3 color pixels is driven by a plurality of drivers provided by a plurality of drivers, and corresponding to each color pixel, the required grayscale values are converted into voltages to drive the m×n× The light-emitting elements of the three color pixels enable the corresponding brightness to be emitted. Therefore, for a secondary screen 102, since the number of channels of the driver is low, a large number of drivers are conventionally required, which causes problems such as heat dissipation and the like.
更具體而言,圖3繪示傳統拼接屏100的驅動機制示意圖。參閱圖3,主機50會將所要顯示的影像的數位圖框資料,輸 入給控制器60(Controller,TC)。控制器60控制多個驅動器62。這些驅動器62所提供的通道會對應連接到拼接屏100的畫素,因此在一次的影像顯示中,由控制器60透過這些驅動器62將每一個畫素的發光源元件依照預定亮度的灰階數啟動,而構成一個顯示影像。這些驅動器62如前述,實際上是分組而對應設置在這些次螢幕102的背後。 More specifically, FIG. 3 is a schematic diagram showing the driving mechanism of the conventional splicing screen 100. Referring to FIG. 3, the host 50 will input the digital frame data of the image to be displayed. The controller 60 (Controller, TC) is fed. The controller 60 controls a plurality of drivers 62. The channels provided by these drivers 62 correspond to the pixels connected to the splicing screen 100. Therefore, in one image display, the controller 60 transmits the illuminating source elements of each pixel according to the predetermined brightness by the driver 62. Start up to form a display image. These drivers 62 are actually grouped and are disposed behind the secondary screens 102 as described above.
傳統驅動次螢幕102的方式是採用低成本而僅具有小數量通道(channel)的驅動器62,這些驅動器62是直接配置在次螢幕102的背後與線路基板連接。然而一個次螢幕102仍是具有相當數量的m×n×3個顏色畫素,因此一個次螢幕102會需要多個驅動器62。當影像的影像解析度日漸提高,次螢幕102的影像解析度(m×n)也會隨之提高。如此,次螢幕102所需要的驅動器62的數量也會提高,其可能導致一個次螢幕102需要更多數量驅動器的設置,其除了佈滿次螢幕102背後可用的面積,也可能造成無法足夠容置這些驅動器的問題,更會造成散熱問題。 The conventional method of driving the secondary screen 102 is to use a driver 62 having a low cost and having only a small number of channels, which are directly disposed at the back of the secondary screen 102 to be connected to the circuit substrate. However, one secondary screen 102 still has a significant number of m x n x 3 color pixels, so a secondary screen 102 would require multiple drivers 62. As the image resolution of the image increases, the image resolution (m×n) of the secondary screen 102 also increases. As such, the number of drivers 62 required for the secondary screen 102 will also increase, which may result in a secondary screen 102 requiring a greater number of drivers, which may not be adequately accommodated except for the area available behind the secondary screen 102. These drive problems can cause heat dissipation problems.
因此,傳統拼接屏100的驅動方式有必要更改設計,因應影像趨向高解析度的情形。 Therefore, it is necessary to change the design of the conventional splicing screen 100 in response to the situation that the image tends to be high resolution.
本發明提供拼接屏顯示裝置以及其顯示驅動方法,至少除了可以降低次螢幕所使用的驅動器數量。另外,也可以增加顯示影像的色彩層次。 The present invention provides a splicing screen display device and a display driving method thereof, at least in addition to reducing the number of drivers used in the secondary screen. In addition, you can increase the color level of the displayed image.
本發明一實施例,提供一種拼接屏顯示裝置,包括一顯示螢幕,由多個次螢幕所拼接成。多個資料驅動器,分別驅動該 些次螢幕。圖框速率控制電路,依照接收影像的一原始圖框速率,以K倍數增加該原始圖框速率,K為大於或等於2的整數,如此對應該原始圖框速率所決定的一個圖框期間,會產生K個圖框給該些資料驅動器。該圖框速率控制電路也對每一個畫素的一原始灰階值做修正,而決定在該K個圖框中有一數量的圖框是以該原始灰階值增加一個灰階後的灰階值來顯示,該數量是0至K-1的其中一個。 According to an embodiment of the invention, a splicing screen display device includes a display screen that is spliced by a plurality of secondary screens. Multiple data drives, respectively driving the Some screens. The frame rate control circuit increases the original frame rate by a multiple of K according to an original frame rate of the received image, and K is an integer greater than or equal to 2, so as to correspond to a frame period determined by the original frame rate, K frames will be generated for these data drives. The frame rate control circuit also corrects an original grayscale value of each pixel, and determines that a number of frames in the K frame are grayscales after adding a grayscale to the original grayscale value. The value is displayed, and the number is one of 0 to K-1.
本發明另一實施例,提供一種顯示驅動方法,使用於一拼接屏顯示裝置,其中該拼接屏顯示裝置包括顯示螢幕、多個資料驅動器以及圖框速率控制電路,該顯示螢幕是由多個次螢幕拼接所成。該顯示驅動方法包括:配置該些資料驅動器,以分別驅動該些次螢幕;藉由該圖框速率控制電路,依照接收影像的一原始圖框速率,以K倍數增加該原始圖框速率,K為大於或等於2的整數,如此對應該原始圖框速率所決定的一個圖框期間,會產生K個圖框給該些資料驅動器;以及藉由該圖框速率控制電路,對每一個畫素的一原始灰階值做修正,而決定在該K個圖框中有一數量的圖框是以該原始灰階值增加一個灰階後的修正灰階值來顯示,該數量是0至K-1的其中一個。 Another embodiment of the present invention provides a display driving method for a splicing screen display device, wherein the splicing screen display device includes a display screen, a plurality of data drivers, and a frame rate control circuit. The display screen is composed of multiple times. Screen stitching. The display driving method includes: configuring the data drivers to respectively drive the plurality of screens; and the frame rate control circuit increases the original frame rate by a K factor according to an original frame rate of the received image, K An integer greater than or equal to 2, such that during a frame determined by the original frame rate, K frames are generated for the data drivers; and by the frame rate control circuit, for each pixel An original grayscale value is corrected, and it is determined that a number of frames in the K frame are displayed by adding a grayscale value to the original grayscale value, and the number is 0 to K- One of the ones.
本發明一實施例,該K值是2L,L為自然數。 In an embodiment of the invention, the K value is 2 L and L is a natural number.
在一實施例,其L值是2。該2L個圖框整體所產生的灰階值是對該原始灰階值增加0、1/4、2/4或3/4的灰階程度,其中0對應該畫素在該2L個圖框中都顯示原始該原始灰階值;1/4對應該畫素在該2L個圖框中有3個圖框顯示該原始灰階值,而有1個圖框顯示原始該原始灰階值加上該一個灰階的該修正灰階值; 2/4表示該畫素在該2L個圖框中有2個圖框顯示該原始灰階值,而有2個圖框顯示該原始灰階值加上該一個灰階的該修正灰階值;3/4表示該畫素在該2L個圖框中有1個圖框顯示該原始灰階值,而有3個圖框顯示該原始灰階值加上該一個灰階的該修正灰階值。 In one embodiment, the L value is two. The grayscale value generated by the whole of the 2 L frames is a grayscale degree of 0, 1/4, 2/4 or 3/4 of the original grayscale value, wherein 0 corresponds to the pixel in the 2 L The original grayscale value is displayed in the frame; 1/4 of the corresponding pixels in the 2 L frames have 3 frames showing the original grayscale value, and 1 frame shows the original grayscale The step value is added to the modified gray scale value of the one gray scale; 2/4 indicates that the pixel has 2 frames in the 2 L frames to display the original gray scale value, and 2 frames show the The original gray scale value is added to the modified gray scale value of the one gray scale; 3/4 indicates that the pixel has 1 frame in the 2 L frames to display the original gray scale value, and there are 3 frames The original grayscale value is added plus the modified grayscale value of the one grayscale.
在一實施例,該影像是儲存在一圖框記憶體,而依照該些次螢幕的組合,對應分配給該些次螢幕。 In one embodiment, the image is stored in a frame memory, and correspondingly assigned to the plurality of screens according to the combination of the plurality of screens.
在一實施例,該影像對應該些次螢幕預先分配後,分別儲存於對應該些次螢幕的多個圖框記憶體。 In one embodiment, the image is pre-allocated to the screens and then stored in a plurality of frame memories corresponding to the screens.
在一實施例,該原始圖框速率是60Hz或是50Hz。該K個圖框的圖框速率是240Hz或是200Hz。 In an embodiment, the original frame rate is 60 Hz or 50 Hz. The frame rate of the K frames is 240 Hz or 200 Hz.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
50‧‧‧主機 50‧‧‧Host
60‧‧‧控制器(C) 60‧‧‧Controller (C)
62‧‧‧驅動器 62‧‧‧ drive
100‧‧‧拼接屏 100‧‧‧Splicing screen
102‧‧‧次螢幕 102‧‧‧ screens
210‧‧‧時序控制器(TC) 210‧‧‧Sequence Controller (TC)
212‧‧‧圖框速率控制電路(FRC) 212‧‧‧ Frame Rate Control Circuit (FRC)
220‧‧‧資料驅動器 220‧‧‧Data Drive
222‧‧‧閘極驅動器 222‧‧‧ gate driver
S250~S256‧‧‧步驟 S250~S256‧‧‧Steps
圖1繪示傳統拼接屏的架構示意圖。 FIG. 1 is a schematic diagram showing the structure of a conventional splicing screen.
圖2繪示傳統次螢幕102的架構示意圖。 FIG. 2 is a schematic diagram showing the architecture of a conventional secondary screen 102.
圖3繪示傳統拼接屏100的驅動機制示意圖。 FIG. 3 is a schematic diagram showing the driving mechanism of the conventional splicing screen 100.
圖4繪示依照本發明的一實施例的一種拼接屏顯示裝置示意圖。 4 is a schematic diagram of a splicing screen display device according to an embodiment of the invention.
圖5(a)-5(b)繪示依照本發明的一實施例,拼接屏顯示裝置符合VESA標準的驅動訊號示意圖。 5(a)-5(b) are schematic diagrams showing driving signals of a splicing screen display device conforming to the VESA standard according to an embodiment of the invention.
圖6繪示依照本發明的一實施例,一種顯示驅動方法示意圖。 FIG. 6 is a schematic diagram of a display driving method according to an embodiment of the invention.
圖7繪示依照本發明的一實施例,一種顯示驅動方法示意圖。 FIG. 7 is a schematic diagram of a display driving method according to an embodiment of the invention.
圖8繪示依照本發明的一實施例,灰階值與灰階電壓的關係示意圖。 FIG. 8 is a schematic diagram showing the relationship between gray scale values and gray scale voltages according to an embodiment of the invention.
圖9繪示依照本發明的一實施例,圖框速率控制電路產生灰階修正的機制示意圖。 FIG. 9 is a schematic diagram of a mechanism for generating a grayscale correction by a frame rate control circuit according to an embodiment of the invention.
本發明提出對拼接屏顯示裝置的驅動機制,除了可以降低次螢幕所使用的驅動器數量,另外也可以增加顯示影像的色彩層次。以下舉一些實施例來說明本發明,但是本發明不僅限於所舉的實施例。 The invention proposes a driving mechanism for the splicing screen display device, in addition to reducing the number of drivers used in the secondary screen, and also increasing the color gradation of the displayed image. The invention is illustrated by the following examples, but the invention is not limited to the examples.
在考慮如何減少一個次螢幕所需要的驅動器的數量的問提上,本發明提出可以使用在一般平板顯示面板所使用的驅動器,而不再使用拼接屏傳統的驅動器。 In considering the problem of how to reduce the number of drivers required for a secondary screen, the present invention proposes to use a driver used in a general flat panel display without using a conventional driver of the splicing screen.
本發明提出的驅動架構,使用如平板顯示器的資料驅動器(source driver)與閘極驅動器的方式來推動LED畫素。另外由於單一個次螢幕,其影像解析度相對是較低,因此可以將原先的數位訊號重新分配處理。另外,也可以產生較快的圖框率,來增加灰階解析度,以增加色彩層次,而展現更豐富的色彩。 The driving architecture proposed by the present invention uses a source driver such as a flat panel display and a gate driver to drive LED pixels. In addition, since the image resolution is relatively low due to a single screen, the original digital signal can be redistributed. In addition, it is also possible to generate a faster frame rate to increase the grayscale resolution to increase the color gradation and to display richer colors.
圖4繪示依照本發明的一實施例的一種拼接屏顯示裝置示意圖。參閱圖4,由於目前平板顯示面板的影像解析度遠比一個次螢幕102的影像解析度大。一般的平板顯示器例如是液晶顯示面板(LCD panel)或是發光元件顯示面板(LED panel),其影像解析度例如720x480、1920x1080或是甚至更高的影像解析度。因此使用在平板顯示面板的驅動器,例如單一顆資料驅動器220而言, 其具有的驅動通道數量就大於拼接屏100中的一個次螢幕所需要的通道數量。因此,本發明的一個次螢幕,就資料驅動器而言,其例如僅需要一個即可,又或是因應更高的影像解析度的研發,可以僅使用少量的資料驅動器即可驅動一個次螢幕。由於是採用資料驅動器220與閘極驅動器222的驅動方式,其需要時序控制器(TC)210對資料驅動器220與閘極驅動器222的控制機制,也因應更改即可。 4 is a schematic diagram of a splicing screen display device according to an embodiment of the invention. Referring to FIG. 4, the image resolution of the flat panel display panel is far greater than that of the secondary screen 102. A typical flat panel display is, for example, a liquid crystal display panel (LCD panel) or a light emitting element display panel (LED panel), and its image resolution is, for example, 720×480, 1920×1080 or even higher image resolution. Therefore, in the case of a driver for a flat panel display panel, such as a single data driver 220, It has a larger number of drive channels than the number of channels required for one of the secondary screens in the splicing screen 100. Therefore, in the secondary screen of the present invention, for the data driver, for example, only one need is needed, or in response to the development of higher image resolution, a single screen can be driven by only a small number of data drivers. Since the driving mode of the data driver 220 and the gate driver 222 is adopted, the control mechanism of the data controller 220 and the gate driver 222 by the timing controller (TC) 210 is required, and it is also required to be changed.
如此在本發明的拼接屏顯示裝置中,對於一個次螢幕所需要的資料驅動器220的數量可以減少至一個,或是少量,不會影響散熱的問題,因此能因應高影像解析度的顯示。 Thus, in the splicing screen display device of the present invention, the number of data drivers 220 required for one sub-screen can be reduced to one, or a small amount, without affecting the problem of heat dissipation, and thus can be displayed in response to high image resolution.
圖5(a)-5(b)繪示依照本發明的一實施例,拼接屏顯示裝置符合VESA標準的驅動訊號示意圖。參閱圖5(a),在VESA標準下,垂直同步訊號(Vsync)是對應一個圖框,因此一張影像的數位資料,其也是所謂的圖框資料,會在一個垂直同步訊號的期間輸入。換句話說,垂直同步訊號的頻率就是圖框速率,一般是60Hz或是50Hz。當垂直同步訊號的脈衝產生後,水平同步訊號(Hsync)由閘極驅動器產生,以掃描每一條線的影像,其也就是在一個垂直同步訊號的週期內,需要發出n個脈衝訊號再加上前後的緩衝期間的緩衝脈衝。而在水平同步訊號(Hsync)的週期之間,發出訊號(DE)以定義由資料驅動器輸入資料得時間,其就是在一條掃描線上的m個畫素分別的灰階電壓需要在訊號(DE)的週期內驅動次螢幕。圖5(b)是水平同步訊號(Hsync)與訊號(DE)較明確的時序關係。訊號(DE)在高準位期間需要驅動一條水平掃描線的畫素對應灰階值的顯示。如此,一個垂直同步訊號(Vsync)促發一個圖框的 顯示。 5(a)-5(b) are schematic diagrams showing driving signals of a splicing screen display device conforming to the VESA standard according to an embodiment of the invention. Referring to FIG. 5(a), under the VESA standard, the vertical sync signal (Vsync) corresponds to a frame, so the digital data of one image, which is also called frame data, is input during a vertical sync signal. In other words, the frequency of the vertical sync signal is the frame rate, which is typically 60 Hz or 50 Hz. When the pulse of the vertical sync signal is generated, the horizontal sync signal (Hsync) is generated by the gate driver to scan the image of each line, that is, during the period of a vertical sync signal, n pulse signals are required to be added. Buffer pulses during buffering before and after. Between the periods of the horizontal sync signal (Hsync), a signal (DE) is issued to define the time input by the data driver, that is, the gray scale voltages of the m pixels on a scan line need to be in the signal (DE). Drive the secondary screen during the cycle. Figure 5(b) shows the timing relationship between the horizontal sync signal (Hsync) and the signal (DE). The signal (DE) needs to drive the display of the grayscale value of the pixel of a horizontal scan line during the high level. So, a vertical sync signal (Vsync) triggers a frame display.
本發明採用平板顯示器的驅動器來驅動次螢幕。由於平板顯示器的驅動器基於其顯示效能,其時脈可以更快,例如可以達到240Hz或是更高的圖框速率。這樣的圖框速率對於一個次螢幕的顯示,其驅動能力是大於需求。另外,對於標準60Hz的圖框速率,其相當於一個畫素在相同的灰階下,會維持約1/60秒的顯示時間。又,由於拼接屏所顯示的影像,其灰階解析度較小,例如是6位元的解析度,也就是說灰階值只有26=64個灰階值,因此色彩層次不足,而一般使用在平板顯示器的影像,其灰階解析度可達到28=256個灰階值的變化。因此,本發明在使用高驅動通道及高圖框速率的資料驅動器時,除了降低在一個次螢幕所使用的資料驅動器的數量,例如是1個即可,另外本發明也提出採用圖框速率控制(Frame Rate Control,FRC)電路212,例如圖4所示,因而可以達到更大的色彩解析度,其機制將描述於後。圖框速率控制(FRC)電路212一般會整合在時序控制器(TC)210中,但是這不是唯一的方式。 The present invention employs a flat panel display driver to drive the secondary screen. Since the driver of a flat panel display is based on its display performance, its clock speed can be faster, for example, a frame rate of 240 Hz or higher can be achieved. Such a frame rate for a secondary screen display, its driving ability is greater than the demand. In addition, for a standard 60 Hz frame rate, it is equivalent to one pixel at the same gray level, which will maintain a display time of about 1/60 second. Moreover, due to the image displayed by the splicing screen, the gray scale resolution is small, for example, the resolution of 6 bits, that is, the gray scale value is only 2 6 = 64 gray scale values, so the color level is insufficient, and generally The image used in the flat panel display has a grayscale resolution of up to 2 8 = 256 grayscale values. Therefore, in the present invention, when using a high drive channel and a high frame rate data driver, in addition to reducing the number of data drivers used in one secondary screen, for example, one, and the present invention also proposes to adopt frame rate control. A Frame Rate Control (FRC) circuit 212, such as that shown in Figure 4, can achieve greater color resolution, the mechanism of which will be described later. Frame Rate Control (FRC) circuit 212 is typically integrated into timing controller (TC) 210, but this is not the only way.
圖6繪示依照本發明的一實施例,一種顯示驅動方法示意圖。先描述基本的處理流程。參閱圖6,在步驟S250,將要輸入要顯示的完整圖框資料,儲存於圖框記憶體中。在步驟S252,藉由分配單元依據拼接屏100的次螢幕的矩陣結構,是當將影像分割,以能適當分配到每一個次螢幕上。在步驟S254,圖框速率控制電路會改變原始例如60Hz的圖框速率成完較高的圖框速率,例如是240Hz。依照允許的最高圖框速率,一般是60Hz的2L倍,L是自然數,即是1、2、3、…、N。於此其上限值是取決驅 動器的最高圖框速率。以240Hz的圖框速率,其也就是相對60Hz增加4倍的圖框速率。因此60Hz的原始一個圖框的期間,可以改變有4個圖框。有就是在60Hz的一個垂直同步訊號的週期,在240Hz下,改變為4個垂直同步訊號,因此除了原始的影像外,還可以再插入三張影像的顯示,其灰階值的改會在後面圖8、圖9詳細描述。經過步驟S254對圖框速率的調整後,在步驟S256,包括原始圖框資料以及插入的圖框資料會經過資料驅動器而依序驅動次螢幕顯示這些影像。 FIG. 6 is a schematic diagram of a display driving method according to an embodiment of the invention. The basic processing flow will be described first. Referring to FIG. 6, in step S250, the complete frame material to be displayed is input and stored in the frame memory. In step S252, the allocation unit is based on the matrix structure of the secondary screen of the splicing screen 100, when the image is divided so as to be properly allocated to each of the secondary screens. At step S254, the frame rate control circuit changes the original frame rate, e.g., 60 Hz, to a higher frame rate, such as 240 Hz. According to the highest frame rate allowed, it is generally 2 L times 60 Hz, and L is a natural number, that is, 1, 2, 3, ..., N. The upper limit here depends on the highest frame rate of the drive. At a frame rate of 240 Hz, which is a frame rate that is increased by 4 times relative to 60 Hz. Therefore, during the original frame of 60 Hz, there are 4 frames that can be changed. There is a vertical sync signal period of 60 Hz, at 240 Hz, changed to 4 vertical sync signals, so in addition to the original image, you can insert another three image display, the grayscale value will be changed later 8 and 9 are described in detail. After the adjustment of the frame rate in step S254, in step S256, the original frame data and the inserted frame data are sequentially driven to display the images through the data driver.
圖7繪示依照本發明的一實施例,一種顯示驅動方法示意圖。圖7繪示另一種變化的實施例,但是機制仍與圖6相似,其間的差異如下。於圖7的實施例,每一個次螢幕會設置對應的圖框記憶體,此圖框記憶體的容量僅需要能夠儲存次螢幕的影像即可。相對於圖6,在圖7的步驟S250與步驟S252互換。在步驟S252,對於輸入要顯示的影像,在尚未儲存到圖框記憶體前就先分配好,之後在步驟S250將分配好的次圖框資料,分別儲存到對應的次圖框記憶體中。之後的步驟S254與步驟S256則相同於圖6。 FIG. 7 is a schematic diagram of a display driving method according to an embodiment of the invention. Figure 7 depicts another variation of the embodiment, but the mechanism is still similar to Figure 6, with the differences as follows. In the embodiment of FIG. 7, each of the secondary screens is provided with a corresponding frame memory, and the capacity of the frame memory only needs to be able to store the image of the secondary screen. With respect to Fig. 6, step S250 and step S252 of Fig. 7 are interchanged. In step S252, the input image to be displayed is allocated before the frame memory is stored, and then the allocated sub-frame data is stored in the corresponding sub-frame memory in step S250. Subsequent steps S254 and S256 are the same as in FIG.
以下描述圖框速率控制(FRC)電路212對灰階值的修正機制。如一般所知,以紅/綠/藍三個畫素來組成一個色彩畫素,其是利用其三個單色的畫素,依照灰階值產生此單色的亮度,而由紅、綠、藍三個單色畫素的亮度混合出一個色彩畫素。因此,灰階值的變化都會產生呈現出來的色彩變化。另外基於人眼的視覺暫留的特性,所改受的顏色一般是在16.67ms所接收的綜合色彩來決定,因此所增加的圖框速率可以用來調整最後由多個圖框所混合 的灰階值。 The correction mechanism of the grayscale value by the frame rate control (FRC) circuit 212 is described below. As is generally known, a color pixel is composed of three pixels of red/green/blue, which uses its three monochromatic pixels to generate the brightness of the single color according to the gray scale value, and is composed of red, green, The brightness of the blue three monochromatic pixels blends a color pixel. Therefore, changes in the grayscale value will produce a color change that is presented. In addition, based on the characteristics of the human eye's persistence of vision, the color to be changed is generally determined by the integrated color received at 16.67 ms, so the increased frame rate can be used to adjust the final mixture of multiple frames. Grayscale value.
首先描數位的灰階與實際驅動的灰階電壓。由於液晶化素或是LED化素的亮度是由施加的電壓或示電流所決定,且一般不是線性的變化。圖8繪示依照本發明的一實施例,灰階值與灰階電壓的關係示意圖。參閱圖8,一個單色的畫素,以6位元的灰階值為例,其有線性的64個灰階,但是對應每一個灰階所需要的驅動電壓不是線性,因此需要利用伽瑪曲線來修正驅動電壓,如此對於一個灰階值gi,利用伽瑪曲線得到對應的驅動電壓Vi。但是基於例如是6位元的電路,其也僅會產生64種電壓。因此,灰階解析度就是64階。 First, the gray level of the digit is compared with the gray scale voltage actually driven. Since the brightness of liquid crystallin or LED is determined by the applied voltage or current, it is generally not a linear change. FIG. 8 is a schematic diagram showing the relationship between gray scale values and gray scale voltages according to an embodiment of the invention. Referring to Figure 8, a monochromatic pixel, taking the 6-bit grayscale value as an example, has a linear 64 grayscale, but the driving voltage required for each grayscale is not linear, so gamma needs to be utilized. The curve is used to correct the driving voltage, so that for a gray scale value g i , the corresponding driving voltage V i is obtained by using the gamma curve. But based on, for example, a 6-bit circuit, it will only generate 64 voltages. Therefore, the grayscale resolution is 64 steps.
以下描述如何在6位元的64個灰階下,藉由圖框速率控制(FRC)電路212產生其他的灰階。圖9繪示依照本發明的一實施例,圖框速率控制電路產生灰階修正的機制示意圖。參閱圖9,以240Hz的圖框速率為例來描述,其在60Hz圖框速率下的一個圖框,可以藉由圖框速率控制(FRC)電路212產生對應的4個圖框,以f1、f2、f3、f4來表示。對於一個畫素,其原始預定要顯示的灰階值例如是gi。 The following describes how to generate other gray levels by the frame rate control (FRC) circuit 212 under 64 gray levels of 6 bits. FIG. 9 is a schematic diagram of a mechanism for generating a grayscale correction by a frame rate control circuit according to an embodiment of the invention. Referring to FIG. 9, a frame rate of 240 Hz is taken as an example. A frame at a frame rate of 60 Hz can generate corresponding frames by frame rate control (FRC) circuit 212 to f1. Expressed by f2, f3, and f4. For a pixel, the grayscale value that it is originally intended to display is, for example, g i .
如果在這4個圖框f1~f4都是顯示gi的灰階值,則這4個圖框f1~f4混合後仍維持灰階值gi,因此灰階值的修正為0。如果在這4個圖框f1~f4中的任一個圖框,其例如是圖框f1,而將此圖框f1的此畫素的灰階值gi加1成為gi+1。另外其他的三個圖框f2~f4則維持顯示灰階值gi。如此,這4個圖框f1~f4混合後可以得到增加1/4灰階的修正。如果在這4個圖框f1~f4中的任二個圖框,其例如是圖框f1、f2,而將此圖框f1、f2的此畫素的灰階 值gi加1成為gi+1。另外其他的二個圖框f3、f4則維持顯示灰階值gi。如此,這4個圖框f1~f4混合後可以得到增加2/4灰階的修正。如果在這4個圖框f1~f4中的任三個圖框,其例如是圖框f1、f2、f3,而將此圖框f1、f2、f3的此畫素的灰階值gi加1成為gi+1。另外其他的一個圖框f4則維持顯示灰階值gi。如此,這4個圖框f1~f4混合後可以得到增加3/4灰階的修正。 If the gray scale values of g i are displayed in the four frames f1 to f4, the gray scale values g i are maintained after the four frames f1 to f4 are mixed, so the correction of the gray scale values is zero. If any of the four frames f1 to f4 is, for example, the frame f1, the grayscale value g i of the pixel of the frame f1 is incremented by 1 to become g i +1. In addition, the other three frames f2 to f4 maintain the gray scale value g i . In this way, the four frames f1 to f4 can be mixed to obtain a correction of 1/4 gray scale. If any two of the four frames f1 to f4 are, for example, frames f1 and f2, the grayscale value g i of the pixel of the frames f1 and f2 is incremented by 1 to become g i +1. In addition, the other two frames f3 and f4 maintain the gray scale value gi. In this way, the four frames f1 to f4 are mixed to obtain a correction of increasing the 2/4 gray scale. If any three of the four frames f1 to f4 are, for example, frames f1, f2, and f3, the grayscale value g i of the pixels of the frames f1, f2, and f3 is added. 1 becomes g i +1. In addition, the other frame f4 maintains the gray scale value g i . In this way, the four frames f1 to f4 are mixed to obtain a correction of increasing the 3/4 gray scale.
基於上述的機制,雖然電路是屬於6位元的電路,在增加圖框速率後,在此實施例可以達到對應在8位元電路的效果,具有256灰階的變化。由於圖框速率控制電路可以增加到256灰階的變化,因此圖框速率控制電路對於要顯示的影像,有具有影像處理的功能,以具有256灰階變化的條件下,修正畫素的灰階值,使具有更豐富的色彩變化。 Based on the above mechanism, although the circuit is a 6-bit circuit, after increasing the frame rate, the effect corresponding to the 8-bit circuit can be achieved in this embodiment, with a variation of 256 gray levels. Since the frame rate control circuit can be increased to 256 grayscale changes, the frame rate control circuit has an image processing function for the image to be displayed, and the gray scale of the pixel is corrected under the condition of 256 grayscale changes. The value is such that it has a richer color change.
於此要注意的是,圖框速率的不限於實施例所舉4倍(240Hz)的增加,其他的120Hz或是480Hz也都可以依同理適用,而灰階的解析度也同理可以增加。於此,這階倍增的圖框速率是2L,L=1,2,…,其因此與灰階的位元可以一致。這也都是將時脈倍頻來產生。 It should be noted that the frame rate is not limited to the increase of 4 times (240 Hz) in the embodiment, and the other 120 Hz or 480 Hz can be applied equally, and the resolution of the gray scale can be increased by the same reason. . Here, the frame rate of this order multiplication is 2 L , L=1, 2, . . . , which is therefore consistent with the bits of the gray scale. This is also generated by multiplying the clock.
然而,就一般性而言,依照相同的機制,其他的圖框速率如180Hz、360Hz等等也能達到,其中頻率的增加需要不同的電路,不僅是如120Hz或是480Hz等藉由倍頻即可達成。180Hz與360Hz為例,其相對60Hz是產生3個、6個圖框,而灰階值的調整是以1/3、1/6為一個灰階單位來切割以進行調整。另外,如果灰階電路本就是8位元或是更高位元的解析度,其仍可利用FRC電路,增加其灰階解析度,而不限於6位元的灰階電路。 However, in general, according to the same mechanism, other frame rates such as 180 Hz, 360 Hz, etc. can also be achieved, wherein the increase of the frequency requires different circuits, not only by frequency doubling, such as 120 Hz or 480 Hz. Can be achieved. For example, 180 Hz and 360 Hz, three or six frames are generated relative to 60 Hz, and the gray scale value is adjusted by 1/3 and 1/6 as a gray scale unit for adjustment. In addition, if the gray-scale circuit is the resolution of 8-bit or higher, it can still use the FRC circuit to increase its gray-scale resolution, and is not limited to a 6-bit gray-scale circuit.
換句話說,就一般性的特徵,本發明的FRC電路依照驅動器最大可能的驅動速率,可以K倍數增加原始圖框速率,K為大於或等於2的整數。如此對應原始圖框速率所決定的一個圖框期間,會產生K個圖框給資料驅動器。圖框速率控制電路也對每一個畫素的一原始灰階值做修正,而決定在該K個圖框中有一數量的圖框是以該原始灰階值增加一個灰階後的修正灰階值來顯示,該數量是0至K-1的其中一個。 In other words, with respect to the general feature, the FRC circuit of the present invention can increase the original frame rate by K multiple according to the maximum possible driving rate of the driver, and K is an integer greater than or equal to 2. In this way, corresponding to the frame rate determined by the original frame rate, K frames are generated for the data driver. The frame rate control circuit also corrects an original grayscale value of each pixel, and determines that a number of frames in the K frame are modified grayscales after adding a grayscale to the original grayscale value. The value is displayed, and the number is one of 0 to K-1.
又,由於不同的播放格式,例如NTSC與PAL的不同,其影像播放速率為50Hz,而本發明也適用於50Hz的播放速率。 Moreover, due to different playback formats, such as NTSC and PAL, the video playback rate is 50 Hz, and the present invention is also applicable to a 50 Hz playback rate.
綜上所述,本發明在拼接屏的應用上,提出一個次螢幕就資料驅動器而言,能夠僅使用一個或是少量資料驅動器來驅動,如此可以避免當影像解析度大量增加時,過多數量的驅動器占據可用面積的情形。另外,基於資料驅動器的驅動速度加快,藉由FRC電路的處理,可以更增加灰階解析度,使影像色彩的變化更為豐富。 In summary, the present invention provides a secondary screen for the data driver, which can be driven by only one or a small number of data drivers, so as to avoid an excessive number of images when the image resolution is greatly increased. The case where the drive occupies a usable area. In addition, based on the speed of the data driver, the processing of the FRC circuit can increase the grayscale resolution and enrich the color of the image.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
50‧‧‧主機 50‧‧‧Host
100‧‧‧拼接屏 100‧‧‧Splicing screen
210‧‧‧時序控制器(TC) 210‧‧‧Sequence Controller (TC)
212‧‧‧圖框速率控制電路(FRC) 212‧‧‧ Frame Rate Control Circuit (FRC)
220‧‧‧資料驅動器 220‧‧‧Data Drive
222‧‧‧閘極驅動器 222‧‧‧ gate driver
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103141963A TWI545540B (en) | 2014-12-03 | 2014-12-03 | Displaying apparatus with titled screen and display driving method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103141963A TWI545540B (en) | 2014-12-03 | 2014-12-03 | Displaying apparatus with titled screen and display driving method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201621858A TW201621858A (en) | 2016-06-16 |
TWI545540B true TWI545540B (en) | 2016-08-11 |
Family
ID=56755552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103141963A TWI545540B (en) | 2014-12-03 | 2014-12-03 | Displaying apparatus with titled screen and display driving method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI545540B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI669816B (en) * | 2018-04-18 | 2019-08-21 | 友達光電股份有限公司 | Tiling display panel and manufacturing method thereof |
TWI714334B (en) * | 2019-11-05 | 2020-12-21 | 新唐科技股份有限公司 | Control device, display device and operation method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10996912B2 (en) * | 2018-08-03 | 2021-05-04 | Innolux Corporation | Tiled display system and tiled display device |
CN111326115A (en) * | 2020-03-11 | 2020-06-23 | 武汉华星光电半导体显示技术有限公司 | Display device and method for adjusting brightness of OLED spliced screen |
-
2014
- 2014-12-03 TW TW103141963A patent/TWI545540B/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI669816B (en) * | 2018-04-18 | 2019-08-21 | 友達光電股份有限公司 | Tiling display panel and manufacturing method thereof |
TWI714334B (en) * | 2019-11-05 | 2020-12-21 | 新唐科技股份有限公司 | Control device, display device and operation method thereof |
US11455941B2 (en) | 2019-11-05 | 2022-09-27 | Nuvoton Technology Corporation | Control device, display device and operation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201621858A (en) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8115725B2 (en) | Liquid crystal display device for compensating a pixel data in accordance with areas of a liquid crystal display panel and sub-frames, and driving method thereof | |
US10438527B2 (en) | Display device and method of driving the display device | |
KR102353218B1 (en) | Display apparatus and method for driving thereof | |
US8502810B2 (en) | Display device and display method | |
US10269285B2 (en) | Display device and method of driving the same | |
WO2021046757A1 (en) | Display device and driving method thereof | |
US8564627B2 (en) | Image display device and method of driving image display device | |
JP4218249B2 (en) | Display device | |
KR102529503B1 (en) | Display Apparatus and Driving Method of the same | |
KR101626742B1 (en) | System for Displaying Multi Video | |
US20030132901A1 (en) | Field sequential color display device | |
US8432337B2 (en) | Method of controlling luminance of a light source and display apparatus for performing the method | |
US20070152945A1 (en) | Liquid crystal display of field sequential color type and method for driving the same | |
JP2008015430A (en) | Liquid crystal display device, drive control circuit and driving method used for liquid crystal display device | |
US20120249617A1 (en) | Display unit and displaying method | |
WO2012141156A1 (en) | Display device and control method for display device | |
TWI545540B (en) | Displaying apparatus with titled screen and display driving method thereof | |
JP2013083978A (en) | Display device and driving method for the same | |
JP6910246B2 (en) | Liquid crystal display device and image display method | |
US20170047021A1 (en) | Display device | |
US11070776B2 (en) | Light source drive device, light source drive method, and display apparatus | |
KR20150075641A (en) | Liquid crystal display device and driving method thereof | |
JP2009186800A (en) | Display method and flicker determination method of display device | |
US20110273484A1 (en) | Method for controlling the display circuit and backlight of a display device | |
US10573253B2 (en) | Display apparatus with reduced amount of calculation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |