TWI545127B - Methods for preparing copolymers of ethylene and α-olefins using advanced transition metal catalytic systems - Google Patents

Methods for preparing copolymers of ethylene and α-olefins using advanced transition metal catalytic systems Download PDF

Info

Publication number
TWI545127B
TWI545127B TW100122181A TW100122181A TWI545127B TW I545127 B TWI545127 B TW I545127B TW 100122181 A TW100122181 A TW 100122181A TW 100122181 A TW100122181 A TW 100122181A TW I545127 B TWI545127 B TW I545127B
Authority
TW
Taiwan
Prior art keywords
group
ethylene
methyl
alkyl
butyl
Prior art date
Application number
TW100122181A
Other languages
Chinese (zh)
Other versions
TW201302769A (en
Inventor
李豪晟
韓政錫
申東澈
李曉宣
吳春姬
Original Assignee
沙特基礎工業愛思開奈克斯林恩私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沙特基礎工業愛思開奈克斯林恩私人有限公司 filed Critical 沙特基礎工業愛思開奈克斯林恩私人有限公司
Priority to TW100122181A priority Critical patent/TWI545127B/en
Publication of TW201302769A publication Critical patent/TW201302769A/en
Application granted granted Critical
Publication of TWI545127B publication Critical patent/TWI545127B/en

Links

Description

使用先進過渡金屬催化系統以製備乙烯與α-烯烴之共聚物之方法 Method for preparing a copolymer of ethylene and an α-olefin using an advanced transition metal catalyst system

本發明係關於一種用以製備乙烯均聚物或乙烯與α-烯烴之共聚物的均相催化系統;更特定言之,係關於一種第4族過渡金屬催化劑,其中第4族過渡金屬係經一環戊二烯基衍生物及一給電子取代基交聯圍繞,該環戊二烯基衍生物之3,4位置係經烷基取代。此外,本發明關於一種包含此種過渡金屬催化劑與共催化劑之催化系統,該共催化劑係包含選自鋁氧烷及硼化合物中之一或多者;本發明尚關於一種使用該催化系統以製備乙烯均聚物或乙烯與α-烯烴之共聚物的方法。The present invention relates to a homogeneous catalytic system for preparing an ethylene homopolymer or a copolymer of ethylene and an α-olefin; more particularly, a Group 4 transition metal catalyst in which a Group 4 transition metal is The cyclopentadienyl derivative and an electron-donating substituent are cross-linked, and the 3,4 position of the cyclopentadienyl derivative is substituted with an alkyl group. Furthermore, the present invention relates to a catalytic system comprising such a transition metal catalyst and a cocatalyst comprising one or more selected from the group consisting of an aluminoxane and a boron compound; the present invention is also directed to a process for preparing the catalyst system A method of ethylene homopolymer or a copolymer of ethylene and an alpha olefin.

昔日,一般係使用一種稱為「齊格勒-納塔(Ziegler-Natta)」之催化系統來製備乙烯均聚物或與α-烯烴之共聚物,該催化系統係包含一作為主要催化劑之鈦或釩化合物以及一作為共催化劑之烷基鋁化合物。齊格勒-納塔催化系統對乙烯聚合作用而言雖具有高活性,但其卻具有非均勻之活性位置,導致所生產之聚合物具有寬廣的分子量分佈;特別是在乙烯與α-烯烴之共聚合作用上會具有非均勻之組成分佈。In the past, a catalyst system called "Ziegler-Natta" was generally used to prepare an ethylene homopolymer or a copolymer with an α-olefin. The catalytic system contains a titanium as a main catalyst. Or a vanadium compound and an alkyl aluminum compound as a cocatalyst. Although the Ziegler-Natta catalytic system is highly active for the polymerization of ethylene, it has a non-uniform active site, resulting in a broad molecular weight distribution of the polymer produced; especially in ethylene and alpha-olefins. The copolymerization will have a non-uniform composition distribution.

近來已發展出一種二茂金屬催化系統,其係由一周期表中之第4族過渡金屬(例如鈦、鋯、鉿等)之二茂金屬化合物與一共催化劑(例如甲基鋁氧烷)所組成。由於二茂金屬催化系統為一種具有單一活性位置之均相催化劑,因此相較於使用傳統之齊格勒-納塔催化系統之情況而言,其可用來製備具有較窄分子量分佈與較均勻之組成分佈的聚乙烯。舉例言之,歐洲專利申請公開案第320,762號與第3,726,325號、日本專利早期公開案第昭和63-092621號(Sho. 63-092621)、以及日本專利早期公開案第平成02-84405(Hei. 02-84405)與第平成03-2347號(Hei. 03-2347)均揭露有二茂金屬化合物,例如Cp2TiCl2、Cp2ZrCl2、Cp2ZrMeCl、Cp2ZrMe2、乙烯(IndH4)2ZrCl2等,其係經由甲基鋁氧烷共催化劑活化,俾使乙烯高度活潑地進行聚合,藉此製備分子量分佈(Mw/Mn)為1.5至2.0之聚乙烯。然而,此種催化系統卻難以獲得高分子量之聚合物。特別是當其應用於至少140℃之高溫下的溶液聚合作用時,聚合作用活性將大幅下降且主要會進行β-脫氫作用,因此,據了解,此種催化系統並不適用於製備重量平均分子量(Mw)為100,000或更高之高分子量聚合物。Recently, a metallocene catalytic system has been developed which is composed of a metallocene compound of a Group 4 transition metal (e.g., titanium, zirconium, hafnium, etc.) in a periodic table and a cocatalyst (e.g., methyl aluminoxane). composition. Since the metallocene catalyst system is a homogeneous catalyst with a single active site, it can be used to prepare a narrower molecular weight distribution and more uniform than in the case of a conventional Ziegler-Natta catalytic system. Composition of the distribution of polyethylene. For example, European Patent Application Publication Nos. 320,762 and 3,726,325, Japanese Patent Laid-Open Publication No. Sho 63-092621 (Sho. 63-092621), and Japanese Patent Laid-Open Publication No. 02-84405 (Hei. 02-84405) and Diping 03-2347 (Hei. 03-2347) both disclose metallocene compounds, such as Cp 2 TiCl 2 , Cp 2 ZrCl 2 , Cp 2 ZrMeCl, Cp 2 ZrMe 2 , ethylene (IndH 4 2 ZrCl 2 or the like, which is activated by a methylaluminoxane co-catalyst, and is highly polymerized by ethylene, thereby preparing a polyethylene having a molecular weight distribution (Mw/Mn) of 1.5 to 2.0. However, such a catalytic system is difficult to obtain a high molecular weight polymer. In particular, when it is applied to solution polymerization at a high temperature of at least 140 ° C, the polymerization activity is drastically reduced and mainly undergoes β-dehydrogenation. Therefore, it is understood that such a catalytic system is not suitable for preparing a weight average. A high molecular weight polymer having a molecular weight (Mw) of 100,000 or more.

美國專利第5,084,534號(Exxon公司所有)係揭露製備具1.8至3.0之狹窄分子量分佈與均勻組成分佈之共聚物,其係藉由在150至200℃下,使用(n-BuCp)2ZrCl2催化劑及甲基鋁氧烷共催化劑來單獨聚合乙烯或聚合乙烯與1-己烯或1-辛烯。此外,歐專利第0416815號與第0420436號(Dow公司所有)亦揭露一種催化劑,其結構係藉由連結一環狀之醯胺基至一環戊二烯配位基之方式予以幾何性控制,且其在漿料聚合作用或溶液聚合作用條件下單獨聚合乙烯或聚合乙烯與α-烯烴時展現高催化活性,並可同時增加與共單體之高反應性,因此可用來製備具均勻組成分佈之高分子量聚合物。然而,在二茂金屬催化劑中,上述催化劑之催化穩定性及共單體之併含在至少140℃之高溫溶液聚合作用條件下會隨著溫度上升而比例性地大幅劣化,因此會因高材料成本之原故而降低經濟效益,難以工業化。 U.S. Patent No. 5,084,534 (issued to Exxon) discloses the preparation of a copolymer having a narrow molecular weight distribution and a uniform composition distribution of from 1.8 to 3.0 by using (n-BuCp) 2 ZrCl 2 catalyst at 150 to 200 ° C. And a methylaluminoxane co-catalyst to polymerize ethylene alone or to polymerize ethylene with 1-hexene or 1-octene. In addition, European Patent No. 0416815 and No. 0420436 (owned by Dow Corporation) also disclose a catalyst whose structure is geometrically controlled by linking a cyclic amidino group to a cyclopentadienyl ligand, and It exhibits high catalytic activity when polymerizing ethylene alone or polymerizing ethylene and α-olefin under the conditions of slurry polymerization or solution polymerization, and can simultaneously increase the high reactivity with the comon, and thus can be used for preparing a uniform composition distribution. High molecular weight polymer. However, in the metallocene catalyst, the catalytic stability of the above catalyst and the comonomer are contained in a high-temperature solution polymerization condition of at least 140 ° C, which is proportionally greatly deteriorated as the temperature rises, and thus is caused by a high material. The cost is reduced, and the economic benefits are reduced, making it difficult to industrialize.

論及本發明之重點,本案發明人為解決先前技術中所面臨之問題進行深入且徹底的研究,發現一種幾何受限之催化劑,其中第4族過渡金屬係經一環戊二烯基衍生物及一給電子取代基交聯圍繞,該環戊二烯基衍生物之3,4位置經烷基取代,該催化劑能明顯地增進共單體之併含,使其適合用來在至少140℃之高溫下使用溶液聚合作用製備具有高分子量及高活性之乙烯均聚物或富彈性之乙烯與α-烯烴的共聚物。 In view of the gist of the present invention, the inventors of the present invention conducted intensive and thorough research to solve the problems faced in the prior art, and found a geometrically constrained catalyst in which a Group 4 transition metal is a cyclopentadienyl derivative and a The cross-linking of the electron-donating substituent surrounds the 3,4 position of the cyclopentadienyl derivative via an alkyl group, and the catalyst can significantly enhance the conjugation of the comon, making it suitable for use at temperatures of at least 140 ° C. A solution of ethylene having a high molecular weight and high activity or a copolymer of an elastic ethylene and an α-olefin is prepared by solution polymerization.

因此,本發明之一目的旨在提供一種具有單一活性位置之催化劑,其可展現優越的熱穩定性,並可增進共單體之併含;同時亦提供一種使用此種催化劑之高溫溶液聚合方法,就工業角度而言,其可輕易製得具各種特性之乙烯均聚物或乙烯與α-烯烴之共聚物。 Accordingly, it is an object of the present invention to provide a catalyst having a single active site which exhibits superior thermal stability and which enhances the co-monomers; and also provides a high temperature solution polymerization process using such a catalyst. From the industrial point of view, it is easy to produce an ethylene homopolymer having various characteristics or a copolymer of ethylene and an α-olefin.

一方面,為達成前述目的,本發明係提供一種如下化學式1所示之過渡金屬化合物,其中一作為中心金屬之周期表中之第4族過渡金屬係經一環戊二烯衍生物及一給電子取代基交聯圍繞,該環戊二烯衍生物之3,4位置上經烷基取代。此外,本發明亦提供一種催化劑組成物,包含上述之過渡金屬化合物及一選自鋁化合物、硼化合物及前述之混合物的共催化劑;以及提供一種使用該催化劑 組成物來製備乙烯均聚物或乙烯與α-烯烴共聚物之方法。 In one aspect, in order to achieve the above object, the present invention provides a transition metal compound represented by the following Chemical Formula 1, wherein a Group 4 transition metal in the periodic table of the central metal is a cyclopentadiene derivative and an electron donor The substituent is crosslinked and the cyclopentadiene derivative is substituted with an alkyl group at the 3,4 position. Furthermore, the present invention also provides a catalyst composition comprising the above transition metal compound and a cocatalyst selected from the group consisting of an aluminum compound, a boron compound and a mixture thereof; and providing a catalyst A composition for preparing an ethylene homopolymer or a copolymer of ethylene and an α-olefin.

其中,M為週期表中之第4族過渡金屬;R1及R2係獨立為一(C1-C7)烷基;D為-O-、-S-、-N(R5)-或-P(R6)-,其中R5及R6係獨立為氫原子、(C1-C20)烷基、(C3-C20)環烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基、(C1-C20)烷基羰基、或(C3-C20)環烷基羰基;R3及R4係獨立為氫原子、(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基、(C1-C20)烷氧基、或經(C1-C20)烷基或(C3-C20)環烷基取代之矽氧基;X係獨立為鹵素原子;(C1-C20)烷基;(C6-C30)芳基;(C6-C30)芳基(C1-C20)烷基;(C1-C20)烷氧基;經(C1-C20)烷基或(C3-C20)環烷基取代之矽氧基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之胺基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷 基矽基取代之醯胺基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之膦基;或經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之磷橋基(phosphido group),其中不包含X為環戊二烯基衍生物之情況;R1及R2中之烷基;R3及R4中之烷基、芳基、芳基烷基及烷氧基;R5及R6中之烷基、環烷基、芳基、芳基烷基、烷基羰基及環烷基羰基;X中之烷基、芳基、芳基烷基及烷氧基係可進一步經選自(C1-C20)烷基、(C3-C20)環烷基、(C6-C30)芳基及(C6-C30)芳基(C1-C20)烷基中之一或多者取代;以及n為一1至4之整數。 Wherein M is a Group 4 transition metal in the periodic table; R 1 and R 2 are independently a (C1-C7) alkyl group; D is -O-, -S-, -N(R 5 )- or - P(R 6 )-, wherein R 5 and R 6 are independently a hydrogen atom, (C1-C20)alkyl, (C3-C20)cycloalkyl, (C6-C30)aryl, (C6-C30) aryl a (C1-C20)alkyl group, a (C1-C20)alkylcarbonyl group, or a (C3-C20)cycloalkylcarbonyl group; R 3 and R 4 are independently a hydrogen atom, (C1-C20)alkyl group, (C6 -C30) aryl, (C6-C30) aryl (C1-C20) alkyl, (C1-C20) alkoxy, or substituted by (C1-C20)alkyl or (C3-C20)cycloalkyl Alkoxy; X is independently a halogen atom; (C1-C20)alkyl; (C6-C30) aryl; (C6-C30) aryl (C1-C20) alkyl; (C1-C20) alkoxy Alkyloxy substituted by (C1-C20)alkyl or (C3-C20)cycloalkyl; via (C1-C20)alkyl, (C6-C30)aryl, (C6-C30)aryl (C1 -C20)Alkyl or tri(C1-C20)alkylfluorenyl substituted amine; (C1-C20)alkyl, (C6-C30)aryl, (C6-C30)aryl (C1-C20) Alkyl or tri(C1-C20)alkylindenyl substituted guanamine; (C1-C20)alkyl, (C6-C30)aryl, (C6-C30)aryl(C1-C20)alkyl Or a tris(C1-C20)alkylindenyl substituted phosphino group; or via (C1-C20) An alkyl group, a (C6-C30) aryl group, a (C6-C30) aryl (C1-C20) alkyl group or a tris(C1-C20)alkylfluorenyl substituted phosphido group, which does not contain X It is a derivative of cyclopentadiene; 2 in the alkyl group R 1 and R; R 3 and R 4 are the alkyl, aryl, arylalkyl and alkoxy; R 5 and R 6 in the An alkyl group, a cycloalkyl group, an aryl group, an arylalkyl group, an alkylcarbonyl group and a cycloalkylcarbonyl group; the alkyl group, the aryl group, the arylalkyl group and the alkoxy group in X may be further selected from (C1- C20) one or more of an alkyl group, a (C3-C20) cycloalkyl group, a (C6-C30) aryl group, and a (C6-C30) aryl (C1-C20) alkyl group; and n is a 1 to An integer of 4.

另一方面,本發明係提供一種用以製備乙烯均聚物或乙烯與α-烯烴之共聚物的過渡金屬催化劑組成物,包含前述之過渡金屬化合物及一選自鋁化合物、硼化合物及前述之混合物的共催化劑;以及使用該過渡金屬化合物或該催化劑組成物所製得之乙烯均聚物或乙烯與α-烯烴之共聚物。 In another aspect, the present invention provides a transition metal catalyst composition for preparing an ethylene homopolymer or a copolymer of ethylene and an α-olefin, comprising the foregoing transition metal compound and one selected from the group consisting of an aluminum compound, a boron compound, and the foregoing a cocatalyst of the mixture; and an ethylene homopolymer or a copolymer of ethylene and an α-olefin obtained by using the transition metal compound or the catalyst composition.

以下將詳細說明本發明。特定言之,M較佳為鈦、鋯或鉿。同時,獨立位於環戊二烯基(能與M形成η5鍵)之3,4位置之R1及R2為(C1-C7)烷基,例如甲基、乙基、正丙基、異丙基、正丁基、二級丁基、三級丁基或正戊基,特別有用者為甲基。 The invention will be described in detail below. In particular, M is preferably titanium, zirconium or hafnium. Meanwhile, R 1 and R 2 independently located at the 3, 4 position of the cyclopentadienyl group (which can form a η 5 bond with M) are (C1-C7) alkyl groups such as methyl, ethyl, n-propyl and iso A propyl group, a n-butyl group, a secondary butyl group, a tert-butyl group or a n-pentyl group is particularly useful as a methyl group.

同時,R5及R6係獨立為氫原子、(C1-C20)烷基、(C3-C20)環烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基、(C1-C20)烷基羰基、或(C3-C20)環烷基羰基,更特定者為甲基、乙基、正丙基、異丙基、二級丁基、三級丁基、環己基、二環己基甲基、金剛烷基(adamantyl group)、苯基、苯基甲基、甲基羰基、乙基羰基、正丙基羰基、異丙基羰基、三級丁基羰基、或金剛烷基羰基。特別有用者為三級丁基。Meanwhile, R 5 and R 6 are independently a hydrogen atom, a (C1-C20) alkyl group, a (C3-C20) cycloalkyl group, a (C6-C30) aryl group, or a (C6-C30) aryl group (C1-C20). Alkyl, (C1-C20)alkylcarbonyl, or (C3-C20)cycloalkylcarbonyl, more specifically methyl, ethyl, n-propyl, isopropyl, secondary butyl, tert-butyl , cyclohexyl, dicyclohexylmethyl, adamantyl group, phenyl, phenylmethyl, methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, isopropylcarbonyl, tert-butylcarbonyl, Or adamantylcarbonyl. Particularly useful is a tertiary butyl group.

同時,與Si鍵結之R3及R4係獨立為氫原子、(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基、(C1-C20)烷氧基、或經(C1-C20)烷基或(C3-C20)環烷基取代之矽氧基;(C1-C20)烷基之實例係包含甲基、乙基、正丙基、異丙基、正丁基、二級丁基、三級丁基、正戊基、新戊基、戊基(amyl group)、正己基、正辛基、正癸基、正十二烷基、正十五烷基、或正二十烷基,特別有用者為甲基、乙基、異丙基、三級丁基、或戊基;(C6-C30)芳基或(C6-C30)芳基(C1-C20)烷基實例係包含苄基、(2-甲基苯基)甲基、(3-甲基苯基)甲基、(4-甲基苯基)甲基、(2,3-二甲基苯基)甲基、(2,4-二甲基苯基)甲基、(2,5-二甲基苯基)甲基、(2,6-二甲基苯基)甲基、(3,4-二甲基苯基)甲基、(4,6-二甲基苯基)甲基、(2,3,4-三甲基苯基)甲基、(2,3,5-三甲基苯基)甲基、(2,3,6-三甲基苯基)甲基、(3,4,5-三甲基苯基)甲基、(2,4,6-三甲基苯基)甲基、(2,3,4,5-四甲基苯基)甲基、(2,3,4,6-四甲基苯基)甲基、(2,3,5,6-四甲基苯基)甲基、(五甲基苯基)甲基、(乙基苯基)甲基、(正丙基苯基)甲基、(異丙基苯基)甲基、(正丁基苯基)甲基、(二級丁基苯基)甲基、(三級丁基苯基)甲基、(正戊基苯基)甲基、(新戊基苯基)甲基、(正己基苯基)甲基、(正辛基苯基)甲基、(正癸基苯基)甲基、(正十二烷基苯基)甲基、(正十四烷基苯基)甲基、萘基甲基、或蔥基甲基,特別有用者為苄基;(C1-C20)烷氧基之實例係包含甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、二級丁氧基、三級丁氧基、正戊氧基、新戊氧基、正己氧基、正辛氧基、正十二烷氧基、正十五烷氧基、或正二十烷氧基,特別有用者為甲氧基、乙氧基、異丙氧基、或三級丁氧基;經(C1-C20)烷基或(C3-C20)環烷基取代之矽氧基之實例係包含三甲基矽氧基、三乙基矽氧基、三-正丙基矽氧基;三異丙基矽氧基、三-正丁基矽氧基;三-二級丁基矽氧基、三-三級丁基矽氧基、三-異丁基矽氧基、三級丁基二甲基矽氧基;三-正戊基矽氧基、三-正己基矽氧基、或三環己基矽氧基,特別有用者為三甲基矽氧基或三級丁基二甲基矽氧基。Meanwhile, R 3 and R 4 bonded to Si are independently a hydrogen atom, a (C1-C20) alkyl group, a (C6-C30) aryl group, a (C6-C30) aryl group (C1-C20) alkyl group, ( C1-C20) alkoxy group, or an oxiranyl group substituted by (C1-C20) alkyl group or (C3-C20) cycloalkyl group; examples of (C1-C20) alkyl group containing methyl group, ethyl group, positive Propyl, isopropyl, n-butyl, secondary butyl, tert-butyl, n-pentyl, neopentyl, amyl group, n-hexyl, n-octyl, n-decyl, n-xyl Alkyl, n-pentadecyl, or n-icosyl, particularly useful as methyl, ethyl, isopropyl, tert-butyl, or pentyl; (C6-C30) aryl or (C6- C30) Examples of aryl (C1-C20) alkyl groups include benzyl, (2-methylphenyl)methyl, (3-methylphenyl)methyl, (4-methylphenyl)methyl, (2,3-dimethylphenyl)methyl, (2,4-dimethylphenyl)methyl, (2,5-dimethylphenyl)methyl, (2,6-dimethyl Phenyl)methyl, (3,4-dimethylphenyl)methyl, (4,6-dimethylphenyl)methyl, (2,3,4-trimethylphenyl)methyl, (2,3,5-trimethylphenyl)methyl, (2,3,6-trimethylphenyl)methyl, (3,4,5-trimethylphenyl)methyl, (2 ,4,6-trimethyl Methyl, (2,3,4,5-tetramethylphenyl)methyl, (2,3,4,6-tetramethylphenyl)methyl, (2,3,5,6- Tetramethylphenyl)methyl, (pentamethylphenyl)methyl, (ethylphenyl)methyl, (n-propylphenyl)methyl, (isopropylphenyl)methyl, (positive Butylphenyl)methyl, (secondary butylphenyl)methyl, (tris-butylphenyl)methyl, (n-pentylphenyl)methyl, (neopentylphenyl)methyl, (n-hexylphenyl)methyl, (n-octylphenyl)methyl, (n-decylphenyl)methyl, (n-dodecylphenyl)methyl, (n-tetradecylphenyl) Methyl, naphthylmethyl, or lysylmethyl, particularly useful as benzyl; examples of (C1-C20) alkoxy include methoxy, ethoxy, n-propoxy, isopropoxy , n-butoxy, 2,4-butoxy, tert-butoxy, n-pentyloxy, neopentyloxy, n-hexyloxy, n-octyloxy, n-dodecyloxy, n-pentadecanyloxy Or n-esadecyloxy, particularly useful as methoxy, ethoxy, isopropoxy or tert-butoxy; via (C1-C20)alkyl or (C3-C20)cycloalkyl Examples of substituted methoxy groups include trimethyl methoxy, triethyl Base oxy, tri-n-propyl decyloxy; triisopropyl decyloxy, tri-n-butyl decyloxy; tri-n-butyl decyloxy, tri-tertiary butyl fluorenyloxy , tri-isobutyl decyloxy, tert-butyl dimethyl methoxy oxy, tri-n-pentyl decyloxy, tri-n-hexyl decyloxy, or tricyclohexyl decyloxy, particularly useful Trimethyl decyloxy or tert-butyl dimethyl decyloxy.

X係獨立為鹵素原子;(C1-C20)烷基;(C6-C30)芳基;(C6-C30)芳基(C1-C20)烷基;(C1-C20)烷氧基;經(C1-C20)烷基或(C3-C20)環烷基取代之矽氧基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之胺基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之醯胺基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之膦基;或經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之磷橋基,其中不包含X為環戊二烯基衍生物之情況。鹵素原子之實例係包含氟、氯、溴或碘;(C1-C20)烷基之實例係包含甲基、乙基、正丙基、異丙基、正丁基、二級丁基、三級丁基、正戊基、新戊基、戊基、正己基、正辛基、正癸基、正十二烷基、正十五烷基、或正二十烷基,特別有用者為甲基、乙基、異丙基、三級丁基、或戊基;(C6-C30)芳基(C1-C20)烷基之實例係包含苄基、(2-甲基苯基)甲基、(3-甲基苯基)甲基、(4-甲基苯基)甲基、(2,3-二甲基苯基)甲基、(2,4-二甲基苯基)甲基、(2,5-二甲基苯基)甲基、(2,6-二甲基苯基)甲基、(3,4-二甲基苯基)甲基、(4,6-二甲基苯基)甲基、(2,3,4-三甲基苯基)甲基、(2,3,5-三甲基苯基)甲基、(2,3,6-三甲基苯基)甲基、(3,4,5-三甲基苯基)甲基、(2,4,6-三甲基苯基)甲基、(2,3,4,5-四甲基苯基)甲基、(2,3,4,6-四甲基苯基)甲基、(2,3,5,6-四甲基苯基)甲基、(五甲基苯基)甲基、(乙基苯基)甲基、(正丙基苯基)甲基、(異丙基苯基)甲基、(正丁基苯基)甲基、(二級丁基苯基)甲基、(三級丁基苯基)甲基、(正戊基苯基)甲基、(新戊基苯基)甲基、(正己基苯基)甲基、(正辛基苯基)甲基、(正癸基苯基)甲基、(正癸基苯基)甲基、(正十四烷基苯基)甲基、萘基甲基、或蔥基甲基,特別有用者為苄基;(C1-C20)烷氧基之實例係包括甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、二級丁氧基、三級丁氧基、正戊氧基、新戊氧基、正己氧基、正辛氧基、正十二烷氧基、正十五烷氧基、或正二十烷氧基,特別有用者為甲氧基、乙氧基、異丙氧基、或三級丁氧基;經(C1-C20)烷基或(C3-C20)環烷基取代之矽氧基的實例係包含三甲基矽氧基、三乙基矽氧基、三-正丙基矽氧基、三異丙基矽氧基、三-正丁基矽氧基、三-二級丁基矽氧基、三-三級丁基矽氧基、三-異丁基矽氧基、三級丁基二甲基矽氧基、三-正戊基矽氧基、三-正己基矽氧基、或三環己基矽氧基,特別有用者為三甲基矽氧基或三級丁基二甲基矽氧基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之胺基的實例係包含二甲基胺基、二乙基胺基、二-正丙基胺基、二異丙基 胺基、二-正丁基胺基、二-二級丁基胺基、二-三級丁基胺基、二異丁基胺基、三級丁基異丙基胺基、二-正己基胺基、二-正辛基胺基、二-正癸基胺基、二苯基胺基、二苄基胺基、甲基乙基胺基、甲基苯基胺基、苄基己基胺基、二三甲基矽基胺基或二-三級丁基二甲基矽基胺基,特別有用者為二甲基胺基或二乙基胺基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之醯胺基的實例係包含二苄基醯胺基、甲基乙基醯胺基、甲基苯基醯胺基、或苄基己基醯胺基,特別有用者為二苯基醯胺基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或三(C1-C20)烷基矽基取代之膦基的實例係包含二甲基膦基、二乙基膦基、二-正丙基膦基、二異丙基膦基、二-正丁基膦基、二-二級丁基膦基、二-三級丁基膦基、二異丁基膦基、三級丁基異丙基膦基、二-正己基膦基、二-正辛基膦基、二-正癸基膦基、二苯基膦基、二苄基膦基、甲基乙基膦基、甲基苯基膦基、苄基己基膦基、二三甲基矽基膦基或二-三級丁基二甲基矽基膦基;經(C1-C20)烷基、(C6-C30)芳基、(C6-C30)芳基(C1-C20)烷基或(C1-C20)烷基矽基取代之磷橋基的實例係包含二苄基磷橋基、甲基乙基磷橋基、甲基苯基磷橋基、苄基己基磷橋基或二三甲基矽基磷橋基。 X is independently a halogen atom; (C1-C20) alkyl; (C6-C30) aryl; (C6-C30) aryl (C1-C20) alkyl; (C1-C20) alkoxy; -C20)alkyl or (C3-C20)cycloalkyl substituted oxirane; (C1-C20)alkyl, (C6-C30) aryl, (C6-C30) aryl (C1-C20) alkane Amino group substituted with a tris(C1-C20)alkylfluorenyl group; via (C1-C20)alkyl, (C6-C30)aryl, (C6-C30)aryl(C1-C20)alkyl or tri (C1-C20)alkylmercapto-substituted guanamine; via (C1-C20)alkyl, (C6-C30)aryl, (C6-C30)aryl(C1-C20)alkyl or tri(C1) -C20)alkylthio-substituted phosphino group; or via (C1-C20)alkyl, (C6-C30)aryl, (C6-C30)aryl(C1-C20)alkyl or tri(C1-C20 An alkylphosphonium-substituted phosphorus bridging group in which the case where X is a cyclopentadienyl derivative is not included. Examples of the halogen atom include fluorine, chlorine, bromine or iodine; examples of the (C1-C20) alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, secondary butyl, and tertiary Butyl, n-pentyl, neopentyl, pentyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-pentadecyl, or n-icosyl, particularly useful as methyl , ethyl, isopropyl, tert-butyl or pentyl; (C6-C30) aryl (C1-C20) alkyl examples include benzyl, (2-methylphenyl)methyl, ( 3-methylphenyl)methyl, (4-methylphenyl)methyl, (2,3-dimethylphenyl)methyl, (2,4-dimethylphenyl)methyl, ( 2,5-Dimethylphenyl)methyl, (2,6-dimethylphenyl)methyl, (3,4-dimethylphenyl)methyl, (4,6-dimethylbenzene Methyl, (2,3,4-trimethylphenyl)methyl, (2,3,5-trimethylphenyl)methyl, (2,3,6-trimethylphenyl) Methyl, (3,4,5-trimethylphenyl)methyl, (2,4,6-trimethylphenyl)methyl, (2,3,4,5-tetramethylphenyl) Methyl, (2,3,4,6-tetramethylphenyl)methyl, (2,3,5,6-tetramethylphenyl)methyl, (pentamethylphenyl)methyl, ( Ethylphenyl)methyl, (positive C Phenyl)methyl, (isopropylphenyl)methyl, (n-butylphenyl)methyl, (secondary butylphenyl)methyl, (tri-butylphenyl)methyl, (positive Butyl phenyl)methyl, (neopentylphenyl)methyl, (n-hexylphenyl)methyl, (n-octylphenyl)methyl, (n-decylphenyl)methyl, (正癸Phenyl)methyl, (n-tetradecylphenyl)methyl, naphthylmethyl, or lysylmethyl, particularly useful as benzyl; examples of (C1-C20) alkoxy include A Oxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, di-butoxy, tert-butoxy, n-pentyloxy, neopentyloxy, n-hexyloxy, n-octyl Oxyl, n-dodecyloxy, n-pentadecanyloxy, or n-esotecyloxy, particularly useful as methoxy, ethoxy, isopropoxy or tert-butoxy; Examples of (C1-C20)alkyl or (C3-C20)cycloalkyl-substituted anthraceneoxy groups include trimethyldecyloxy, triethyldecyloxy, tri-n-propyldecyloxy, triiso Propyl decyloxy, tri-n-butyl decyloxy, tri-n-butyl decyloxy, tri-tert-butyl decyloxy, tri-isobutyl decyloxy, tertiary butyl Dimethyl methoxy, tri-n-pentyl decyloxy, tri-n-hexyl decyloxy, or tricyclohexyl decyloxy, particularly useful as trimethyl decyloxy or tert-butyl dimethyl Alkoxy; an amine group substituted with (C1-C20)alkyl, (C6-C30)aryl, (C6-C30)aryl(C1-C20)alkyl or tri(C1-C20)alkyldecyl Examples include dimethylamino, diethylamino, di-n-propylamino, diisopropyl Amino, di-n-butylamino, di-secondary butylamino, di-tertiary butylamino, diisobutylamino, tert-butyl isopropylamino, di-n-hexyl Amino, di-n-octylamino, di-n-decylamino, diphenylamino, dibenzylamino, methylethylamino, methylphenylamino, benzylhexylamino , bistrimethyldecylamino or di-tert-butyldimethylmercaptoamine, particularly useful as dimethylamino or diethylamino; via (C1-C20)alkyl, Examples of C6-C30) aryl, (C6-C30) aryl (C1-C20) alkyl or tri(C1-C20)alkyl fluorenyl substituted guanamine groups include dibenzyl guanylamino, methyl Ethyl decylamino, methylphenyl decylamino, or benzylhexyl decylamino, particularly useful as diphenylguanidinyl; via (C1-C20)alkyl, (C6-C30)aryl, Examples of (C6-C30) aryl (C1-C20) alkyl or tri(C1-C20)alkylfluorenyl substituted phosphino groups include dimethylphosphino, diethylphosphino, di-n-propyl Phosphyl, diisopropylphosphino, di-n-butylphosphino, di-tertiary butylphosphino, di-tertiary butylphosphino, diisobutylphosphino, tert-butyl isopropyl phosphine , bis-n-hexylphosphino, di-n-octylphosphino, di-n-decylphosphino, diphenylphosphino, dibenzylphosphino, methylethylphosphino, methylphenylphosphino , benzylhexylphosphino, ditrimethyldecylphosphino or di-tert-butyldimethylmethylphosphino; (C1-C20)alkyl, (C6-C30)aryl, (C6- C30) Examples of aryl (C1-C20) alkyl or (C1-C20)alkylfluorenyl substituted phosphorus bridging groups include dibenzylphosphonium bridging, methylethylphosphoryl bridging, methylphenylphosphorus A bridging group, a benzylhexylphosphoryl bridging group or a ditrimethylphosphonium phosphorus bridging group.

同時,n為一1至4之整數,係由過渡金屬之氧化數所選定,較佳為整數1或2。 Meanwhile, n is an integer of 1 to 4, which is selected from the oxidation number of the transition metal, preferably an integer of 1 or 2.

本發明係提供一種使用該過渡金屬化合物作為催化劑而製得之乙烯均聚物或乙烯與α-烯烴之共聚物。The present invention provides an ethylene homopolymer or a copolymer of ethylene and an α-olefin obtained by using the transition metal compound as a catalyst.

另一方面,為使用化學式1之過渡金屬化合物作為活化烯烴聚合作用之催化劑成分,當將本發明之過渡金屬化合物中之配位基X分離出並使其中心金屬陽離子化時,係採用硼化合物、鋁化合物或前述之混合物作為共催化劑,相當於具有有弱鍵結能力之中心離子(即陰離子)。對此,在配位基X為鹵素之情況下,負責用來移除少量極性材料(例如作為催化毒物之水)之鋁化合物可有如烷化劑之功用。On the other hand, in order to use the transition metal compound of Chemical Formula 1 as a catalyst component for activating olefin polymerization, when the ligand X in the transition metal compound of the present invention is separated and the center metal is cationized, a boron compound is used. The aluminum compound or the aforementioned mixture as a cocatalyst corresponds to a central ion (i.e., an anion) having a weak bonding ability. In this regard, in the case where the ligand X is a halogen, the aluminum compound responsible for removing a small amount of a polar material (for example, water as a catalytic poison) may function as an alkylating agent.

就用作本發明中之共催化劑而言,硼化合物可選自如下化學式2、3及4,如美國專利第5,198,401號中所揭露者。For use as a cocatalyst in the present invention, the boron compound may be selected from the following chemical formulas 2, 3 and 4, as disclosed in U.S. Patent No. 5,198,401.

[化學式2][Chemical Formula 2]

B(R7)3 B(R 7 ) 3

[化學式3][Chemical Formula 3]

[R8]+[B(R7)4]- [R 8 ] + [B(R 7 ) 4 ] -

[化學式4][Chemical Formula 4]

[(R9)qZH]+[B(R7)4]- [(R 9 ) q ZH] + [B(R 7 ) 4 ] -

在化學式2至4中,B為硼原子;R7為苯基,其中該苯基可進一步經三至五個選自以下群組之取代基所取代:氟原子、經氟取代或未經取代之(C1-C20)烷基及經氟取代或未經取代之(C1-C20)烷氧基;R8為(C5-C7)環烷基自由基、(C1-C20)烷基(C6-C20)芳基自由基或(C6-C30)芳基(C1-C20)烷基自由基,例如三苯基甲基自由基;Z為氮原子或磷原子;R9為(C1-C20)烷基自由基或經二個(C1-C4)烷基與一氮原子取代之苯胺自由基;以及q為一2或3之整數。In Chemical Formulas 2 to 4, B is a boron atom; R 7 is a phenyl group, wherein the phenyl group may be further substituted with three to five substituents selected from the group consisting of a fluorine atom, a fluorine substitution or an unsubstituted a (C1-C20) alkyl group and a fluorine-substituted or unsubstituted (C1-C20) alkoxy group; R 8 is a (C5-C7) cycloalkyl radical, (C1-C20) alkyl group (C6- C20) an aryl radical or a (C6-C30) aryl (C1-C20) alkyl radical such as a triphenylmethyl radical; Z is a nitrogen atom or a phosphorus atom; and R 9 is a (C1-C20) alkane a radical or an aniline radical substituted with two (C1-C4) alkyl groups and a nitrogen atom; and q is an integer of 2 or 3.

硼系共催化劑之較佳實例係包含選自以下群組中之一或多者:三(五氟苯基)硼烷、三(2,3,5,6-四氟苯基)硼烷、三(2,3,4,5-四氟苯基)硼烷、三(3,4,5-三氟苯基)硼烷、三(2,3,4-三氟苯基)硼烷、苯基二(五氟苯基)硼烷、四(五氟苯基)硼酸鹽、四(2,3,5,6-四氟苯基)硼酸鹽、四(2,3,4,5-四氟苯基)硼酸鹽、四(3,4,5-三氟苯基)硼酸鹽、四(2,2,4-三氟苯基)硼酸鹽、苯基二(五氟苯基)硼酸鹽及四(3,5-二三氟甲基苯基)硼酸鹽,前述之特定組合實例係包含二茂鐵四(五氟苯基)硼酸鹽、1,1’-二甲基二茂鐵四(五氟苯基)硼酸鹽、四(五氟苯基)硼酸鹽、三苯基甲基四(五氟苯基)硼酸鹽、三苯基甲基四(3,5-二三氟甲基苯基)硼酸鹽、三乙基銨四(五氟苯基)硼酸鹽、三丙基銨四(五氟苯基)硼酸鹽、三(正丁基)銨四(五氟苯基)硼酸鹽、三(正丁基)銨四(3,5-二三氟甲基苯基)硼酸鹽、N,N-二甲基苯銨四(五氟苯基)硼酸鹽、N,N-二乙基苯銨四(五氟苯基)硼酸鹽、N,N-2,4,6-五甲基苯銨四(五氟苯基)硼酸鹽、N,N-二甲基苯銨四(3,5-二三氟甲基苯基)硼酸鹽、二異丙基銨四(五氟苯基)硼酸鹽、二環己基銨四(五氟苯基)硼酸鹽、三苯基鏻四(五氟苯基)硼酸鹽、三(甲基苯基)鏻四(五氟苯基)硼酸鹽、或三(二甲基苯基)鏻四(五氟苯基)硼酸鹽,特別有用者為N,N-二甲基苯銨四(五氟苯基)硼酸鹽、三苯基甲基四(五氟苯基)硼酸鹽或三(五氟苯基)硼烷。 Preferred examples of the boron-based co-catalyst include one or more selected from the group consisting of tris(pentafluorophenyl)borane, tris(2,3,5,6-tetrafluorophenyl)borane, Tris(2,3,4,5-tetrafluorophenyl)borane, tris(3,4,5-trifluorophenyl)borane, tris(2,3,4-trifluorophenyl)borane, Phenyl bis(pentafluorophenyl)borane, tetrakis(pentafluorophenyl)borate, tetrakis(2,3,5,6-tetrafluorophenyl)borate, tetrakis (2,3,4,5- Tetrafluorophenyl)borate, tetrakis(3,4,5-trifluorophenyl)borate, tetrakis(2,2,4-trifluorophenyl)borate, phenylbis(pentafluorophenyl)borate Salt and tetrakis(3,5-ditrifluoromethylphenyl)borate, the specific combinations of the foregoing examples include ferrocene tetrakis(pentafluorophenyl)borate, 1,1'-dimethylferrocene Tetrakis(pentafluorophenyl)borate, tetrakis(pentafluorophenyl)borate, triphenylmethyltetrakis(pentafluorophenyl)borate, triphenylmethyltetrakis(3,5-ditrifluoromethyl) Phenyl)borate, triethylammonium tetrakis(pentafluorophenyl)borate, tripropylammonium tetrakis(pentafluorophenyl)borate, tris(n-butyl)ammonium tetrakis(pentafluorophenyl)borate Salt, tri(n-butyl)ammonium tetrakis(3,5-ditrifluoromethylphenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorobenzene) Borate, N,N-diethylanilinium tetrakis(pentafluorophenyl)borate, N,N-2,4,6-pentamethylanilinium tetrakis(pentafluorophenyl)borate, N, N-dimethylanilinium tetrakis(3,5-ditrifluoromethylphenyl)borate, diisopropylammonium tetrakis(pentafluorophenyl)borate, dicyclohexylammonium tetrakis(pentafluorophenyl) Borate, triphenylsulfonium tetrakis(pentafluorophenyl)borate, tris(methylphenyl)phosphonium tetrakis(pentafluorophenyl)borate, or tris(dimethylphenyl)phosphonium tetrakis(pentafluorobenzene) Boronate, particularly useful as N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, triphenylmethyltetrakis(pentafluorophenyl)borate or tris(pentafluorophenyl) Borane.

用於本發明中之鋁化合物可包含如下化學式5或6之鋁氧烷化合物、如下化學式7之有機鋁化合物或如下化學式8或9之有機鋁烴基氧化物化合物。 The aluminum compound used in the present invention may comprise an aluminoxane compound of the following Chemical Formula 5 or 6, an organoaluminum compound of the following Chemical Formula 7 or an organoaluminum based oxide compound of the following Chemical Formula 8 or 9.

[化學式5](-Al(R10)-O-)m [Chemical Formula 5] (-Al(R 10 )-O-) m

[化學式6][Chemical Formula 6]

(R10)2Al-(-O(R10)-)p-(R10)2 (R 10 ) 2 Al-(-O(R 10 )-) p -(R 10 ) 2

[化學式7][Chemical Formula 7]

(R11)rAl(E)3-r (R 11 ) r Al(E) 3-r

[化學式8][Chemical Formula 8]

(R12)2AlOR13 (R 12 ) 2 AlOR 13

[化學式9][Chemical Formula 9]

R12Al(OR13)2 R 12 Al(OR 13 ) 2

在化學式5至9中,R10為一線性或非線性之(C1-C20)烷基,較佳為甲基或異丁基;m及p係獨立為一5至20之整數;R11及R12係獨立為(C1-C20)烷基;E為氫原子或鹵素原子;r為一1至3之整數;以及R13為(C1-C20)烷基或(C6-C30)芳基。In Chemical Formulas 5 to 9, R 10 is a linear or non-linear (C1-C20) alkyl group, preferably a methyl group or an isobutyl group; m and p are independently an integer of 5 to 20; R 11 and R 12 is independently (C1-C20)alkyl; E is a hydrogen atom or a halogen atom; r is an integer of from 1 to 3; and R 13 is (C1-C20)alkyl or (C6-C30)aryl.

就用作共催化劑而言,鋁化合物為選自鋁氧烷及有機鋁中之一或多者,鋁氧烷化合物可包含甲基鋁氧烷、經改質之甲基鋁氧烷或四異丁基鋁氧烷;而有機鋁化合物係選自三烷基鋁、二烷基鋁氯化物、烷基鋁二氯化物及二烷基鋁氫化物。有機鋁化合物之特定實例係包含:含三甲基鋁、三乙基鋁、三丙基鋁、三異丁基鋁及三己基鋁之三烷基鋁;含二甲基鋁氯化物、二乙基鋁氯化物、二丙基鋁氯化物、二異丁基鋁氯化物及二己基鋁物氯化之二烷基鋁氯化物;含甲基鋁二氯化物、乙基鋁二氯化物、丙基鋁二氯化物、異丁基鋁二氯化物及己基鋁物二氯化物之烷基鋁二氯化物;以及含二甲基鋁氫化物、二乙基鋁氫化物、二丙基鋁氫化物、二異丁基鋁物及二己基鋁氫化物之二烷基鋁氫化物,特別有用者為三烷基鋁,更佳者為三乙基鋁或三異丁基鋁,其中中心過渡金屬(M)對鋁原子(Al)之莫耳比例為1:50至5,000。For use as a cocatalyst, the aluminum compound is one or more selected from the group consisting of aluminoxane and organoaluminum, and the aluminoxane compound may comprise methylaluminoxane, modified methyl aluminoxane or tetraiso Butyl aluminoxane; and the organoaluminum compound is selected from the group consisting of trialkyl aluminum, dialkyl aluminum chloride, alkyl aluminum dichloride, and dialkyl aluminum hydride. Specific examples of the organoaluminum compound include: trialkyl aluminum containing trimethyl aluminum, triethyl aluminum, tripropyl aluminum, triisobutyl aluminum, and trihexyl aluminum; containing dimethyl aluminum chloride, diethyl Base aluminum chloride, dipropyl aluminum chloride, diisobutyl aluminum chloride and dihexyl aluminum chloride dialkyl aluminum chloride; containing methyl aluminum dichloride, ethyl aluminum dichloride, C Alkali aluminum dichloride, isobutyl aluminum dichloride and alkyl aluminum dichloride of hexyl aluminum dichloride; and dimethyl aluminum hydride, diethyl aluminum hydride, dipropyl aluminum hydride a dialkyl aluminum hydride of diisobutylaluminum and dihexylaluminum hydride, particularly useful as a trialkylaluminum, more preferably triethylaluminum or triisobutylaluminum, wherein the central transition metal ( M) The molar ratio of aluminum atoms (Al) is 1:50 to 5,000.

就過渡金屬化合物對共催化劑之比例而言,中心過渡金屬(M)對硼原子(B)對鋁原子(Al)之莫耳比例為1:0.1至100:10至1,000,更佳者為1:0.5至5:25至500。可於上述範圍中製備乙烯均聚物或乙烯與α-烯烴之共聚物,該比例範圍可視反應純度而變。With respect to the ratio of the transition metal compound to the cocatalyst, the molar ratio of the central transition metal (M) to the boron atom (B) to the aluminum atom (Al) is from 1:0.1 to 100:10 to 1,000, more preferably 1 : 0.5 to 5:25 to 500. Ethylene homopolymers or copolymers of ethylene and alpha-olefins may be prepared in the above ranges, which may vary depending on the purity of the reaction.

在另一方面,本發明係提供一種使用該過渡金屬化合物作為催化劑組成物而製得之乙烯均聚物或乙烯與α-烯烴之共聚物,其製備方法係於溶液相中進行,藉由在適當溶劑之存在下使過渡金屬化合物、共催化劑及乙烯或α-烯烴共單體彼此接觸。對此,可將過渡金屬化合物及共催化劑成分分別加至反應器中,或者可將各個成分預先混合後再導入反應器中。In another aspect, the present invention provides an ethylene homopolymer or a copolymer of ethylene and an α-olefin obtained by using the transition metal compound as a catalyst composition, which is produced in a solution phase by The transition metal compound, the cocatalyst, and the ethylene or alpha-olefin comon are contacted with one another in the presence of a suitable solvent. In this regard, the transition metal compound and the co-catalyst component may be separately added to the reactor, or the components may be previously mixed and introduced into the reactor.

在製備方法中所用之有機溶劑較佳為(C3-C20)烴,其特定實例係包含丁烷、異丁烷、戊烷、己烷、庚烷、辛烷、異辛烷、壬烷、癸烷、十二烷、環己烷、甲基環己烷、苯、甲苯及二甲苯。The organic solvent used in the production method is preferably a (C3-C20) hydrocarbon, and specific examples thereof include butane, isobutane, pentane, hexane, heptane, octane, isooctane, decane, hydrazine. Alkanes, dodecane, cyclohexane, methylcyclohexane, benzene, toluene and xylene.

特定言之,在乙烯均聚物之製備中,可單獨使用乙烯單體,本發明中適合之乙烯壓力為1至1000大氣壓,較佳為10至150大氣壓。當壓力落於上述範圍時,可使用一由薄狀材料所製成之反應器且無須額外之壓縮處理,進而產生經濟效益並增加聚合物產率。聚合溫度為60至300℃,較佳者為80至250℃。若聚合溫度為80℃或更高,會因增進之共單體併含而製得低密度之聚合物。反之,若聚合溫度250℃或更低,可增加乙烯變成聚合物之轉化作用,進而獲得高密度之聚合物。Specifically, in the preparation of the ethylene homopolymer, an ethylene monomer can be used alone, and the ethylene pressure in the present invention is from 1 to 1,000 atm., preferably from 10 to 150 atm. When the pressure falls within the above range, a reactor made of a thin material can be used without additional compression treatment, thereby generating economic benefits and increasing polymer yield. The polymerization temperature is from 60 to 300 ° C, preferably from 80 to 250 ° C. If the polymerization temperature is 80 ° C or higher, a low density polymer can be obtained by enhancing the comonomer. On the other hand, if the polymerization temperature is 250 ° C or lower, the conversion of ethylene into a polymer can be increased, thereby obtaining a polymer having a high density.

同時,在使用該過渡金屬催化劑組成物來製備乙烯均聚物或乙烯與α-烯烴之共聚物的方法中,與乙烯聚合之共單體可包含(C3-C18)烴之α-烯烴,較佳係選自丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-庚烯、1-辛烯、1-癸烯、1-十一烯、1-十二烯、1-十四烯、1-十六烯、1-十八烯及二十烯(1-itocene)。更特定言之,1-丁烯、1-己烯、1-辛烯或1-癸烯可與乙烯進行共聚。在此情況下,較佳之乙烯壓力與聚合溫度係同於製備高密度聚乙烯者,而使用本發明方法所製得之乙烯共聚物中之乙烯含量為50重量%或更高,較佳為60重量%或更高,更佳為60至99重量%。如前所述,使用(C4-C10)烴之α-烯烴作為共單體時,所得線性低密度聚乙烯(LLDPE)的密度為0.850至0.950公克/立方公分,更佳可製得密度為0.860至0.940公克/立方公分之烯烴共聚物。Meanwhile, in the method of using the transition metal catalyst composition to prepare an ethylene homopolymer or a copolymer of ethylene and an α-olefin, the eupolymer polymerized with ethylene may comprise an α-olefin of a (C3-C18) hydrocarbon, Preferably, it is selected from the group consisting of propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-111 Alkene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and eicosene. More specifically, 1-butene, 1-hexene, 1-octene or 1-decene can be copolymerized with ethylene. In this case, it is preferred that the ethylene pressure and the polymerization temperature are the same as those for preparing the high-density polyethylene, and the ethylene content in the ethylene copolymer obtained by the method of the present invention is 50% by weight or more, preferably 60. The weight % or more, more preferably 60 to 99% by weight. As described above, when the (C4-C10) hydrocarbon α-olefin is used as a comonomer, the obtained linear low-density polyethylene (LLDPE) has a density of 0.850 to 0.950 g/cm 3 , more preferably a density of 0.860. An olefin copolymer of up to 0.940 g/cm 3 .

根據本發明,為在製備乙烯均聚物或共聚物時調節分子量,可使用氫作為分子量調節劑,俾使重量平均分子量(Mw)為80,000至500,000,且分子量分佈(重量平均分子量/數目平均分子量之比值)(Mw/Mn)為1.5至4.1。According to the present invention, in order to adjust the molecular weight in the preparation of the ethylene homopolymer or copolymer, hydrogen can be used as the molecular weight modifier, the weight average molecular weight (Mw) is from 80,000 to 500,000, and the molecular weight distribution (weight average molecular weight / number average molecular weight) The ratio (Mw/Mn) is from 1.5 to 4.1.

本發明之催化劑組成物在聚合反應器中係呈均勻型態,因此較佳係應用在不低於對應聚合物熔點之溫度下進行之溶液聚合作用。然而,如美國專利第4,752,597號中所揭露者,亦可在漿料聚合作用或氣相聚合作用中使用以多孔性金屬氧化物載體支撐上述過渡金屬化合物及共催化劑而產生之均相催化系統。The catalyst composition of the present invention is in a homogeneous form in the polymerization reactor, and therefore it is preferred to apply solution polymerization at a temperature not lower than the melting point of the corresponding polymer. However, as disclosed in U.S. Patent No. 4,752,597, a homogeneous catalytic system produced by supporting the above transition metal compound and a cocatalyst with a porous metal oxide support can also be used in slurry polymerization or gas phase polymerization.

根據本發明,可使用一簡單方法,藉由減少烷基數目(除環戊二烯之之特定部分外)來輕易地、高產率地生產過渡金屬化合物或含該過渡金屬化合物之催化劑組成物,因此產生經濟效益。再者,該催化劑具有熱穩定並因此得在高溫溶液聚合作用條件下之烯烴聚合作用時保持高催化活性,同時可高產率地製備高分子量之聚合物。此外,相較於習知之具有單一活性位置的二茂金屬系或非二茂金屬系之催化劑,該催化劑因增進共單體之併含,故其工業可用性較高。According to the present invention, a transition metal compound or a catalyst composition containing the transition metal compound can be easily and efficiently produced by reducing the number of alkyl groups (except for a specific portion of cyclopentadiene) using a simple method. Therefore, it produces economic benefits. Further, the catalyst is thermally stable and thus maintains high catalytic activity in the polymerization of an olefin under high-temperature solution polymerization conditions, and at the same time, a high molecular weight polymer can be produced in a high yield. Further, the catalyst has higher industrial availability because it enhances the conjugation of the comonomer compared to the conventional metallocene or non-metallocene catalyst having a single active site.

因此,可有效地利用本發明之過渡金屬催化劑組成物及製備方法來製備具有各種特性及彈性模數之乙烯與α-烯烴之共聚物。Therefore, the transition metal catalyst composition of the present invention and the preparation method can be effectively utilized to prepare a copolymer of ethylene and an α-olefin having various characteristics and elastic modulus.

可透過下列實施例以更加了解本發明,然該等實施例係用於例示,而非用來限制本發明。The invention is further understood by the following examples, which are intended to be illustrative and not restrictive.

除非另有說明,否則所有配位基與催化劑之合成測試皆於氮氣氛圍下,使用Schlenk或手套箱技術進行,且用於反應中之有機溶劑係於鈉金屬與二苯甲酮之存在下進行回流以移除水,隨後於使用前進行蒸餾。使用Bruker 500百萬赫茲之光譜儀於室溫下進行所合成之配位基及催化劑之1H-NMR分析。Unless otherwise stated, all ligand and catalyst synthesis tests were carried out under nitrogen atmosphere using Schlenk or glove box technology, and the organic solvent used in the reaction was carried out in the presence of sodium metal and benzophenone. Reflux to remove water and then distillate before use. 1 H-NMR analysis of the synthesized ligand and catalyst was carried out using a Bruker 500 megahertz spectrometer at room temperature.

就聚合溶劑而言,係連續地將環己烷通過反應器中之Q-5催化劑(商購自BASF)、二氧化矽凝膠及經活化之氧化鋁並以高純度之氮氣進行氣沸(bubbled),藉此充分地移除水、氧氣與其他催化劑毒化材料,隨後使用。In the case of a polymerization solvent, cyclohexane is continuously passed through a Q-5 catalyst (commercially available from BASF) in a reactor, a ceria gel and activated alumina, and is aerated with high purity nitrogen gas ( Bubbled), thereby sufficiently removing water, oxygen and other catalyst poisoning materials for subsequent use.

透過以下方法分析所得之聚合物。The obtained polymer was analyzed by the following method.

1. 熔流指數(Melt Flow Index,MI)1. Melt Flow Index (MI)

根據ASTM D 2839進行測量。Measurements were made in accordance with ASTM D 2839.

2. 密度2. Density

根據ASTM D 1505,使用密度梯度管進行測量。Measurements were made using a density gradient tube according to ASTM D 1505.

3. 熔點分析(Tm)3. Melting point analysis (Tm)

使用Dupont DSC2910,於氮氣氛圍中,以10℃/分鐘之速率之二階加熱條件進行測量。The measurement was carried out using a Dupont DSC2910 under a nitrogen atmosphere at a second-order heating condition at a rate of 10 ° C/min.

4. 分子量及分子量分佈4. Molecular weight and molecular weight distribution

使用裝備有PL Mixed-BX2+preCol之PL210 GPC,於135℃下,以1.0毫升/分鐘之速率及於1,2,3-三氯苯溶劑之存在下進行測量,並使用PL聚苯乙烯標準材料校正分子量。Using PL100 GPC equipped with PL Mixed-BX2+preCol, measuring at 135 ° C at a rate of 1.0 ml / min and in the presence of 1,2,3-trichlorobenzene solvent, and using PL polystyrene standards The material corrects the molecular weight.

5. 共聚物中之α-烯烴含量(重量%)5. α-olefin content in the copolymer (% by weight)

使用Bruker DRX500核磁共振光譜儀,於120℃下13C-NMR模式,以125百萬赫茲,在包含1,2,4-三氯苯/C6D6(7/3重量比例)之存在下進行測量。Using a Bruker DRX500 NMR spectrometer, in a 13 C-NMR mode at 120 ° C, at 125 MHz, in the presence of 1,2,4-trichlorobenzene/C 6 D 6 (7/3 by weight) measuring.

(參考文獻:Randal,J. C. JMS-Rev. Macromol. Chem. Phys. 1980,C29,201) (Reference: Randal, JC JMS-Rev. Macromol. Chem. Phys . 1980, C29 , 201)

[製備實施例1][Preparation Example 1]

合成(二氯)(三級丁基胺基)(3,4-二甲基環戊二烯基)(二甲基矽烷)鈦(IV)Synthesis of (dichloro) (tertiary butylamino) (3,4-dimethylcyclopentadienyl) (dimethyl decane) titanium (IV)

(1)合成巴豆酸異丙基酯(1) Synthesis of isopropyl crotonate

在一2公升燒瓶內,將巴豆酸(193.7公克,2.25莫耳)溶解至2-丙醇(860毫升,11.25莫耳)中,隨後進行充分攪拌,嗣後於該混合物中緩慢逐滴加入硫酸(24毫升,0.45莫耳)並回流攪拌達48小時或更久。將經攪拌之混合物冷卻至室溫,隨後以蒸餾水(1000毫升)洗滌所獲得之混合物,並將有機層分離、中和並進行大氣蒸餾(80℃),藉此獲得220公克(1.71莫耳,產率76.3%)之巴豆酸異丙基酯。 In a 2 liter flask, crotonic acid (193.7 grams, 2.25 moles) was dissolved in 2-propanol (860 ml, 11.25 moles), followed by thorough agitation, and sulfuric acid was slowly added dropwise to the mixture. 24 ml, 0.45 m) and reflux for up to 48 hours or longer. The stirred mixture was cooled to room temperature, and then the obtained mixture was washed with distilled water (1000 ml), and the organic layer was separated, neutralized, and subjected to atmospheric distillation (80 ° C), thereby obtaining 220 g (1.71 mol, Yield 76.3%) of isopropyl crotonic acid.

1H-NMR(C6D6)δ=1.01~1.06(d,6H),1.26~1.37(q,3H),5.01~5.08(m,1H),5.70~5.79(m,1H),6.82~6.93(m,1H)ppm 1 H-NMR(C 6 D 6 )δ=1.01~1.06(d,6H), 1.26~1.37(q,3H), 5.01~5.08(m,1H), 5.70~5.79(m,1H),6.82~ 6.93 (m, 1H) ppm

(2)合成3,4-二甲基-2-環戊烯酮(2) Synthesis of 3,4-dimethyl-2-cyclopentenone

添加1公升之多磷酸於2公升之燒瓶中並通入氮氣,隨後於100℃下回流攪拌,接著逐滴加入巴豆酸異丙基酯(76.9公克,0.6莫耳)於其中,將該混合物攪拌達3小時,以轉呈深褐色。將藉此獲得之混合物混合冰水(500毫升),隨後以碳酸鈉進行中和,嗣後以乙醚萃取有機層並接著進行真空蒸餾(105℃,40托耳),藉此獲得56公克(0.51莫耳,產率84.7%)、呈無色透明液體之3,4-二甲基-2-環戊烯酮。1 liter of polyphosphoric acid was added to a 2 liter flask and nitrogen gas was passed therethrough, followed by refluxing at 100 ° C, followed by dropwise addition of isopropyl crotonate (76.9 g, 0.6 mol), and the mixture was stirred. Up to 3 hours to turn dark brown. The mixture thus obtained was mixed with ice water (500 ml), followed by neutralization with sodium carbonate, and the organic layer was extracted with diethyl ether and then subjected to vacuum distillation (105 ° C, 40 Torr), whereby 56 g (0.51 mol) was obtained. Ear, yield 84.7%), 3,4-dimethyl-2-cyclopentenone as a colorless transparent liquid.

1H-NMR(CDCl3)δ=1.05~1.09(d,3H),1.83~1.87(q,1H),1.98(s,3H),2.45~2.51(q,1H),2.67~2.70(m,1H),5.73(s,1H) ppm 1 H-NMR (CDCl 3 ) δ = 1.05~1.09 (d, 3H), 1.83~1.87 (q, 1H), 1.98 (s, 3H), 2.45~2.51 (q, 1H), 2.67~2.70 (m, 1H), 5.73(s,1H) ppm

(3) 合成三級丁基-1-(3,4-二甲基環戊二烯基)-1,1-二甲基矽烷胺(3) Synthesis of tert-butyl-1-(3,4-dimethylcyclopentadienyl)-1,1-dimethyldecylamine

在氮氣氛圍下,將氫化鋰鋁(6.07公克,0.16莫耳)溶解至二乙基醚(250毫升)中,並在0℃下緩慢逐滴加入3,4-二甲基-2-環戊烯酮(33.95公克,0.31莫耳)至其中。進行達30分鐘之回流並透過室溫冷卻至0℃,隨後緩慢逐滴加入蒸餾水(15毫升)於其中並藉此移除未反應之氫化鋰鋁。緩慢地將反應混合物逐滴加入稀硫酸中並以二乙基醚萃取有機層,隨後進行真空蒸餾,藉此獲得21.2公克、呈黃色液體之2,3-二甲基環戊二烯。將此溶液轉移至燒瓶中並溶解於戊烷(200毫升)中,隨後於-78℃下緩慢逐滴加入正丁基鋰(141毫升,0.225莫耳,1.6 M)至其中。將溫度增加至室溫並隨後進行反應達12小時,藉此獲得10.5公克(產率46.9%)、呈偏白色粉體之1,2-二甲基環戊二烯基鋰。將5.45公克(54.5毫莫耳)粉體置入含二乙基醚(80毫升)之燒瓶中,隨後在-78℃下逐滴加入二氯二甲基矽烷(6.8毫升,54.5毫莫耳)至其中。隨後,將溫度升至室溫,並接著進行反應達12小時或更久。使用真空蒸餾移除二乙基醚並以戊烷洗滌所獲得之產物,藉此獲得6.35公克(產率62.4%)、呈黃色液體之二甲基矽基-3,4-二甲基環戊二烯基氯化物。在未經純化之情況下將此液體轉移至一燒瓶中並溶解於四氫呋喃(90毫升)中,隨後於-78℃下緩慢逐滴加入鋰-三級丁基胺(2.69公克,34.0毫莫耳)至其中。在室溫下進行反應達12小時或更久並使用真空乾燥以完全移除溶劑,隨後以經純化之戊烷萃取所得之產物,藉此獲得6.15公克(27.5毫莫耳,產率80.9%)、呈黃色液體之三級丁基-1-(3,4-二甲基環戊二烯基)-1,1-二甲基矽烷胺。 Lithium aluminum hydride (6.07 g, 0.16 mol) was dissolved in diethyl ether (250 ml) under nitrogen atmosphere, and 3,4-dimethyl-2-cyclopentane was slowly added dropwise at 0 °C. Enone (33.95 grams, 0.31 moles) was added to it. The reflux was carried out for 30 minutes and cooled to 0 ° C by room temperature, and then distilled water (15 ml) was slowly added dropwise thereto and the unreacted lithium aluminum hydride was removed therefrom. The reaction mixture was slowly added dropwise to dilute sulfuric acid and the organic layer was extracted with diethyl ether, followed by vacuum distillation, whereby 21.2 g of 2,3-dimethylcyclopentadiene as a yellow liquid was obtained. This solution was transferred to a flask and dissolved in pentane (200 ml), and then n-butyllithium (141 ml, 0.225 mol, 1.6 M) was slowly added dropwise thereto at -78 °C. The temperature was increased to room temperature and then the reaction was carried out for 12 hours, whereby 10.5 g (yield 46.9%) of 1,2-dimethylcyclopentadienyllithium which was a white powder was obtained. 5.45 g (54.5 mmol) of the powder was placed in a flask containing diethyl ether (80 ml), followed by dropwise addition of dichlorodimethylsilane (6.8 ml, 54.5 mmol) at -78 °C. To it. Subsequently, the temperature was raised to room temperature, and then the reaction was carried out for 12 hours or more. Diethyl ether was removed by vacuum distillation and the obtained product was washed with pentane, whereby 6.35 g (yield: 62.4%) of dimethyl decyl-3,4-dimethylcyclopentane as a yellow liquid was obtained. Dienyl chloride. This liquid was transferred to a flask without purification and dissolved in tetrahydrofuran (90 ml), followed by slowly dropwise addition of lithium-tertiary butylamine (2.69 g, 34.0 mmol) at -78 °C. ) to it. The reaction was carried out at room temperature for 12 hours or more and vacuum drying was used to completely remove the solvent, followed by extraction of the obtained product with purified pentane, whereby 6.15 g (27.5 mmol, yield 80.9%) was obtained. , a yellow liquid of tertiary butyl-1-(3,4-dimethylcyclopentadienyl)-1,1-dimethyldecylamine.

1H NMR(C6D6):δ=0.00(s,6H),0.28(s,3H),1.05(s,3H),1.07(s,9H),1.09(s,3H),1.85(s,2H),1.94(s,2H),1.98(s,6H),2.89(t,1H),3.17(t,1H),6.16(s,2H),6.31~6.70(m,1H)ppm 1 H NMR (C 6 D 6 ): δ = 0.00 (s, 6H), 0.28 (s, 3H), 1.05 (s, 3H), 1.07 (s, 9H), 1.09 (s, 3H), 1.85 (s) , 2H), 1.94 (s, 2H), 1.98 (s, 6H), 2.89 (t, 1H), 3.17 (t, 1H), 6.16 (s, 2H), 6.31 to 6.70 (m, 1H) ppm

(4)合成(二氯)(三級丁基胺基)(3,4-二甲基環戊二烯基)(二甲基矽烷)鈦(IV)(4) Synthesis of (dichloro) (tertiary butylamino) (3,4-dimethylcyclopentadienyl) (dimethyl decane) titanium (IV)

將三級丁基-1-(3,4-二甲基環戊二烯基)-1,1-二甲基矽烷胺(6.15公克,27.5毫莫耳)置入燒瓶中並在氮氣氛圍下溶解於二乙基醚(100毫升)中,隨後於-78℃下緩慢逐滴加入正丁基鋰(22.0毫升)至其中。將溫度逐漸升至室溫並進行反應達12小時或更久。使用真空乾燥以完全移除熔劑並以戊烷洗滌所得之產物,藉此獲得5.24公克(產率81.0%)、呈偏白色粉末之鋰(三級丁基胺基)(3,4-二甲基環戊二烯基)二甲基矽烷。將3.00公克(12.8毫莫耳)之該粉末與四氯二(四氫呋喃)鈦(IV)(4.26公克,12.8毫莫耳)一起置入燒杯中並加入甲苯(50毫升)至其中,以在80℃下進行反應達24小時或更久。將溫度降至室溫並進行過濾,藉此移除氯化鋰,接著使用真空乾燥移除溶劑,隨後以戊烷萃取所得之產物並進行再結晶,藉此獲得1.73公克(產率39.9%)、呈黃色固體之(二氯)(三級丁基胺基)(3,4-二甲基環戊二烯基)(二甲基矽烷)鈦(IV)。 Tert-butyl-1-(3,4-dimethylcyclopentadienyl)-1,1-dimethyldecylamine (6.15 g, 27.5 mmol) was placed in a flask under nitrogen It was dissolved in diethyl ether (100 ml), and then n-butyllithium (22.0 ml) was slowly added dropwise thereto at -78 °C. The temperature was gradually raised to room temperature and the reaction was carried out for 12 hours or longer. Vacuum drying was used to completely remove the flux and the obtained product was washed with pentane, thereby obtaining 5.24 g (yield 81.0%) of lithium (tris-butylamino) (3,4-dimethyl) as a white powder. Cyclopentadienyl) dimethyl decane. 3.00 g (12.8 mmol) of this powder was placed in a beaker with tetrachlorobis(tetrahydrofuran)titanium (IV) (4.26 g, 12.8 mmol) and toluene (50 ml) was added thereto to give The reaction was carried out at ° C for 24 hours or longer. The temperature was lowered to room temperature and filtered, thereby removing lithium chloride, followed by removal of the solvent by vacuum drying, followed by extraction of the obtained product with pentane and recrystallization, whereby 1.73 g (yield 39.9%) was obtained. (Dichloro) (tertiary butylamino) (3,4-dimethylcyclopentadienyl) (dimethyl decane) titanium (IV) as a yellow solid.

1H NMR(C6D6):δ=0.26(s,6H),1.40(s,9H),2.04(s,6H),5.91 (s,2H)ppm;13C NMR(C6D6):δ=0.97,13.41,33.18,105.91,123.05,127.84,128.22,133.45ppm 1 H NMR (C 6 D 6 ): δ = 0.26 (s, 6H), 1.40 (s, 9H), 2.04 (s, 6H), 5.91 (s, 2H) ppm; 13 C NMR (C 6 D 6 ) : δ = 0.97, 13.41, 33.18, 105.91, 123.05, 127.84, 128.22, 133.45 ppm

[製備實施例2][Preparation Example 2]

合成(二氯)(三級丁基胺基)(3,4-二甲基環戊二烯基)(二甲基矽烷)鋯(IV)Synthesis of (dichloro) (tertiary butylamino) (3,4-dimethylcyclopentadienyl) (dimethyl decane) zirconium (IV)

將鋰(三級丁基胺基)3,4-二甲基環戊二烯基二甲基矽烷(0.9公克,3.83毫莫耳)及氯化鋯(IV)(0.891公克,3.83毫莫耳)一起置入燒瓶中並加入甲苯(20毫升),以在80℃下進行反應達24小時或更久。將溫度降至室溫並進行過濾,藉此移除氯化鋰並使用真空乾燥移除溶劑,隨後以戊烷萃取所得之產物並進行再結晶,藉此獲得0.89公克(產率60.5%)、呈白褐色固體之(二氯)(三級丁基胺基)(3,4-二甲基環戊二烯基)(二甲基矽烷)鋯(IV)。 Lithium (tertiary butylamino) 3,4-dimethylcyclopentadienyl dimethyl decane (0.9 g, 3.83 mmol) and zirconium chloride (IV) (0.891 g, 3.83 mmol) The flask was placed together and toluene (20 ml) was added to carry out the reaction at 80 ° C for 24 hours or longer. The temperature was lowered to room temperature and filtered, thereby removing lithium chloride and removing the solvent using vacuum drying, followed by extracting the obtained product with pentane and performing recrystallization, thereby obtaining 0.89 g (yield 60.5%), (Dichloro) (tertiary butylamino) (3,4-dimethylcyclopentadienyl) (dimethyl decane) zirconium (IV) as a white-brown solid.

1H NMR(C6D6):δ=0.30(s,6H),1.31(s,9H),2.00(s,6H),5.90(s,2H)ppm;13C NMR(C6D6):δ=0.07,14.36,32.65,107.74,126.86,126.91,128.82,139.34ppm 1 H NMR (C 6 D 6 ): δ = 0.30 (s, 6H), 1.31 (s, 9H), 2.00 (s, 6H), 5.90 (s, 2H) ppm; 13 C NMR (C 6 D 6 ) :δ=0.07,14.36,32.65,107.74,126.86,126.91,128.82,139.34ppm

[比較製備實施例1][Comparative Preparation Example 1]

合成(二氯)(三級丁基胺基)(2,3,4,5-四甲基環戊二烯基)(二甲基矽烷)鈦(IV)Synthesis of (dichloro) (tertiary butylamino) (2,3,4,5-tetramethylcyclopentadienyl) (dimethyl decane) titanium (IV)

(1)合成(三級丁基胺基)(2,3,4,5-四甲基環戊-2,4-二烯基)二甲基矽烷(1) Synthesis of (tris-butylamino) (2,3,4,5-tetramethylcyclopenta-2,4-dienyl) dimethyl decane

將2,3,4,5-四甲基環戊-2,4-二烯(3.67公克,30毫莫耳)加入含有四氫呋喃(100毫升)之燒瓶中,於0℃下逐滴加入正丁基鋰(12 毫升)至其中,隨後反應溫度係逐漸升至室溫,以進行反應達8小時。將此溶液冷卻至-78℃,緩慢逐滴加入二氯甲基矽烷(3.87公克,30毫莫耳)至其中,隨後進行反應達12小時。在反應後,移除揮發性材料並以己烷(100毫升)萃取所得之產物,隨後移除揮發性材料,藉此獲得5.5公克、呈白黃色油體之(氯)(二甲基)(2,3,4,5-四甲基環戊二烯基)矽烷。在未經進一步純化之情況下,將藉此獲得之(氯)(二甲基)(2,3,4,5-四甲基環戊二烯基)矽烷溶於四氫呋喃(100毫升)中,隨後於0℃下逐滴加入鋰三級丁基醯胺(2.02公克)於其中並於室溫下進行反應達2小時。待反應後移除揮發性材料,並以己烷(100毫升)萃取經此獲得之產物,藉此獲得6.09公克(產率81%)、呈白黃色油體之(三級丁基胺基)(2,3,4,5-四甲基環戊-2,4-二烯基)二甲基矽烷。 2,3,4,5-Tetramethylcyclopenta-2,4-diene (3.67 g, 30 mmol) was added to a flask containing tetrahydrofuran (100 ml), and n-butyl was added dropwise at 0 °C. Lithium base (12 To the solution, the reaction temperature was gradually raised to room temperature to carry out the reaction for 8 hours. The solution was cooled to -78 ° C, and dichloromethyl decane (3.87 g, 30 mmol) was slowly added dropwise thereto, followed by a reaction for 12 hours. After the reaction, the volatile material was removed and the obtained product was extracted with hexane (100 mL), and then the volatile material was removed, thereby obtaining 5.5 g of (chloro) (dimethyl) as a white-yellow oil. 2,3,4,5-Tetramethylcyclopentadienyl)decane. The (chloro)(dimethyl)(2,3,4,5-tetramethylcyclopentadienyl)decane thus obtained was dissolved in tetrahydrofuran (100 ml) without further purification. Subsequently, lithium tributyl decylamine (2.02 g) was added dropwise at 0 ° C and the reaction was carried out at room temperature for 2 hours. After the reaction, the volatile material was removed, and the product obtained therefrom was extracted with hexane (100 ml), whereby 6.09 g (yield: 81%) of white yellow oil (tris-butylamino) was obtained. (2,3,4,5-Tetramethylcyclopenta-2,4-dienyl)dimethyloxane.

1H-NMR(C6D6)δ=0.11(s,6H),1.11(s,9H),1.86(s,6H),2.00(s,6H)2.78(s,1H)ppm 1 H-NMR (C 6 D 6 ) δ = 0.11 (s, 6H), 1.11 (s, 9H), 1.86 (s, 6H), 2.00 (s, 6H) 2.78 (s, 1H) ppm

(2)合成(二氯)(三級丁基胺基)(2,3,4,5-四甲基環戊二烯基)(二甲基矽烷)鈦(IV)(2) Synthesis of (dichloro) (tertiary butylamino) (2,3,4,5-tetramethylcyclopentadienyl) (dimethyl decane) titanium (IV)

將(三級丁基胺基)(2,3,4,5-四甲基環戊-2,4-二烯基)二甲基矽烷(6.09公克,24.2毫莫耳)溶於二乙基醚(100毫升)中,並於-78℃下逐滴加入正丁基鋰(9.7毫升)至其中,隨後將反應溫度逐漸升室溫並進行反應達12小時。待反應後移除揮發性材料,並以己烷(100毫升)萃取所得之產物,藉此獲得6.25公克之橘色固體。將藉此獲得之固體溶於甲苯(100毫升)中,並於-78℃下逐滴加入四氯鈦(IV)(4.50公克,23.7毫莫耳)至其中,隨後反應溫度係 升至室溫並進行反應達7小時。待完成反應後移除揮發性材料,以經純化戊烷(100毫升)萃取所得之產物並於-35℃下進行再結晶、過濾並隨後真空乾燥,藉此獲得0.87公克(產率10%)、呈橘色固體之(二氯)(三級丁基胺基)(2,3,4,5-四甲基環戊二烯基)(二甲基矽烷)鈦(IV)。 (Tris-butylamino)(2,3,4,5-tetramethylcyclopenta-2,4-dienyl)dimethyloxane (6.09 g, 24.2 mmol) dissolved in diethyl Into the ether (100 ml), n-butyllithium (9.7 ml) was added dropwise thereto at -78 ° C, and then the reaction temperature was gradually raised to room temperature and the reaction was carried out for 12 hours. After the reaction, the volatile material was removed, and the obtained product was extracted with hexane (100 ml), whereby 6.25 g of an orange solid was obtained. The solid thus obtained was dissolved in toluene (100 ml), and titanium tetrachloride (IV) (4.50 g, 23.7 mmol) was added dropwise thereto at -78 ° C, followed by a reaction temperature system. The temperature was raised to room temperature and the reaction was carried out for 7 hours. After the completion of the reaction, the volatile material was removed, and the obtained product was extracted with purified pentane (100 ml) and recrystallized at -35 ° C, filtered and then dried in vacuo, whereby 0.87 g (yield 10%) was obtained. (Dichloro) (tertiary butylamino) (2,3,4,5-tetramethylcyclopentadienyl) (dimethyl decane) titanium (IV) in an orange solid.

1H-NMR(C6D6)δ=0.43(s,6H),1.43(s,9H),2.00(s,6H),2.01(s,6H)ppm 1 H-NMR (C 6 D 6 ) δ = 0.43 (s, 6H), 1.43 (s, 9H), 2.00 (s, 6H), 2.01 (s, 6H) ppm

[比較製備實施例2][Comparative Preparation Example 2]

合成(二氯)(三級丁基胺基)(2,3,4,5-四甲基環戊二烯基)(二甲基矽烷)鋯(IV)Synthesis of (dichloro) (tertiary butylamino) (2,3,4,5-tetramethylcyclopentadienyl) (dimethyl decane) zirconium (IV)

以與比較製備實施例1相同之方式,惟使用5.52公克(23.7毫莫耳)之四氯鋯(IV)來合成1.3公克(產率13.3%)之(二氯)(三級丁基胺基)(2,3,4,5-四甲基環戊二烯基)(二甲基矽烷)鋯(IV)。 In the same manner as in Comparative Preparation Example 1, except that 5.52 g (23.7 mmol) of zirconium tetrachloride (IV) was used to synthesize 1.3 g (yield 13.3%) of (dichloro) (tertiary butylamino group). (2,3,4,5-tetramethylcyclopentadienyl) (dimethyl decane) zirconium (IV).

1H-NMR(C6D6)δ=0.40(s,6H),1.40(s,9H),1.97(s,6H),2.00(s,6H)ppm 1 H-NMR (C 6 D 6 ) δ = 0.40 (s, 6H), 1.40 (s, 9H), 1.97 (s, 6H), 2.00 (s, 6H) ppm

[實施例1][Example 1]

在使用批式聚合裝置下,透過下列步驟共聚合乙烯與1-辛烯。特定言之,係將1170毫升之環己烷與30毫升之1-辛烯加入至一2000毫升、經充分乾燥並經氮氣沖洗之不鏽鋼反應器中,隨後將22.1毫升之經改質之甲基鋁氧烷-7(商購自Akzo Nobel,經改質之MAO-7,7重量%之Al Isopar溶液)54.2mM之甲苯溶液進料至反應器中。將反應器之溫度上升至80℃,隨後相繼添加0.4 毫升之製備實施例1所合成的(二氯)(三級丁基胺基)(3,4-二甲基環戊二烯基)(二甲基矽烷)鈦(IV)(5.0mM甲苯溶液)與2.0毫升三苯基甲基四(五氟苯基)硼酸鹽(99%,Boulder Scientific)10mM甲苯溶液至其中,以乙烯調整反應器內部壓力至最高達30公斤/平方公分,接著進行聚合作用。在5分鐘之反應時間期間,溫度最高達162.2℃。待5分鐘過後,添加100毫升之含10體積%氫氯酸含水溶液之乙醇至其中,藉此終止聚合作用,隨後使用1.5公升之乙醇進行攪拌達1小時,接著過濾並分離反應產物。在60℃真空爐中乾燥經回收反應產物歷時8小時,產生62.8公克之聚合物。該聚合物之熔點為117.48℃,熔融指數為0.016且密度為0.9124公克/立方公分;利用凝膠色層分析之分析可得,重量平均分子量(Mw)為202,000公克/莫耳、分子量分佈(Mw/Mn)為4.05且1-辛烯之含量為7.68重量%。 Ethylene and 1-octene were copolymerized by the following procedure using a batch polymerization apparatus. Specifically, 1170 ml of cyclohexane and 30 ml of 1-octene were added to a 2000 ml, fully dried and nitrogen purged stainless steel reactor, followed by 22.1 ml of the modified methyl group. Aluminoxane-7 (commercially available from Akzo Nobel, modified MAO-7, 7 wt% Al Isopar solution) 54.2 mM toluene solution was fed to the reactor. The temperature of the reactor was raised to 80 ° C, followed by the sequential addition of 0.4 Preparation of (dichloro) (tertiary butylamino) (3,4-dimethylcyclopentadienyl) (dimethyl decane) titanium (IV) (5.0 mM toluene solution) prepared in Example 1 And 2.0 ml of triphenylmethyltetrakis(pentafluorophenyl)borate (99%, Boulder Scientific) 10 mM toluene solution, to adjust the internal pressure of the reactor to up to 30 kg / cm ^ 2 with ethylene, followed by polymerization effect. During the 5 minute reaction time, the temperature was up to 162.2 °C. After 5 minutes, 100 ml of ethanol containing 10% by volume aqueous hydrochloric acid solution was added thereto, whereby the polymerization was terminated, followed by stirring with 1.5 liters of ethanol for 1 hour, followed by filtration and separation of the reaction product. The recovered reaction product was dried in a vacuum oven at 60 ° C for 8 hours to yield 62.8 g of polymer. The polymer has a melting point of 117.48 ° C, a melt index of 0.016 and a density of 0.9124 g/cm 3 ; analysis by gel chromatography, weight average molecular weight (Mw) of 202,000 g/mole, molecular weight distribution (Mw) /Mn) was 4.05 and the content of 1-octene was 7.68 wt%.

[實施例2][Embodiment 2]

以與實施例1相同之方式共聚合乙烯與1-辛烯,惟在添加催化劑之前係將反應溫度升至最高達140℃。在5分鐘之反應時間期間,溫度係最高達180.9℃並最終獲得48.04公克之聚合物。該聚合物之熔點為119.02℃、熔融指數為1.5、密度為0.9152公克/立方公分,使用凝膠色層分析可得,Mw為109,100公克/莫耳、Mw/Mn為2.33及1-辛烯之含量為4.98重量%。 Ethylene and 1-octene were copolymerized in the same manner as in Example 1, except that the reaction temperature was raised up to 140 ° C before the addition of the catalyst. During the 5 minute reaction time, the temperature system was up to 180.9 ° C and finally 48.04 grams of polymer was obtained. The polymer has a melting point of 119.02 ° C, a melt index of 1.5, and a density of 0.9152 g/cm 3 , which can be obtained by gel chromatography, Mw of 109,100 g/m, Mw/Mn of 2.33 and 1-octene. The content was 4.98 wt%.

[實施例3][Example 3]

以與實施例1相同之方法共聚合乙烯與1-辛烯,惟添加0.4毫升之在製備實施例2中所合成之(二氯)(三級丁基胺基)(3,4-二甲基 環戊二烯基)(二甲基矽烷)鋯(IV)(5.0毫mM,甲苯溶液)並將反應時間設定為10分鐘。在10分鐘之反應時間期間,溫度係最高達98.2℃並最終獲得4.62公克之聚合物。該聚合物之熔點為133.28℃、熔融指數為0.165、密度為0.9370公克/立方公分,且在使用凝膠色層分析可得下,Mw為211,600公克/莫耳、Mw/Mn為3.13及1-辛烯之含量為0.82重量%。 Ethylene and 1-octene were copolymerized in the same manner as in Example 1, except that 0.4 ml of (dichloro) (tertiary butylamino) (3,4-dimethyl) synthesized in Preparation Example 2 was added. base Cyclopentadienyl) (dimethyl decane) zirconium (IV) (5.0 mM, toluene solution) and the reaction time was set to 10 minutes. During the 10 minute reaction time, the temperature system was up to 98.2 ° C and finally 4.62 grams of polymer was obtained. The polymer has a melting point of 133.28 ° C, a melt index of 0.165, a density of 0.9370 g/cm 3 , and Mw of 211,600 g/m, Mw/Mn of 3.13 and 1-, as determined by gel chromatography. The content of octene was 0.82% by weight.

[比較實施例1][Comparative Example 1]

以與實施例1相同之方式共聚合乙烯與1-辛烯,惟添加比較製備實施例1所合成之(二氯)(三級丁基胺基)(2,3,4,5-四甲基環戊二烯基)(二甲基矽烷)鈦(IV)。在5分鐘之反應時間期間,溫度最高達163.0℃,最終獲得66.68公克之聚合物。該聚合物之熔點為116.35℃、熔融指數為0.004、密度為0.9420公克/立方公分,且使用凝膠色層分析可得,Mw為247,800公克/莫耳、Mw/Mn為7.30及1-辛烯之含量為6.55重量%。 Ethylene and 1-octene were copolymerized in the same manner as in Example 1, except that (dichloro) (tertiary butylamino) (2,3,4,5-tetramethyl) synthesized in Comparative Preparation Example 1 was added. (cyclopentadienyl) (dimethyl decane) titanium (IV). During the reaction time of 5 minutes, the temperature was up to 163.0 ° C, and finally 66.68 grams of polymer was obtained. The polymer has a melting point of 116.35 ° C, a melt index of 0.004, a density of 0.9420 g/cm 3 , and is obtainable by gel chromatography, Mw of 247,800 g/mole, Mw/Mn of 7.30 and 1-octene. The content was 6.55 wt%.

[比較實施例2][Comparative Example 2]

以與實施例1相同之方式共聚合乙烯與1-辛烯,惟在添加催化劑前係將反應溫度升至最高達140℃並添加比較製備實施例1所合成之(二氯)(三級丁基胺基)(2,3,4,5-四甲基環戊二烯基)(二甲基矽烷)鈦(IV)。在5分鐘之反應時間期間,溫度最高達184.4℃並最終獲得40.03公克之聚合物。該聚合物之熔點為116.21℃、熔融指數為0.56、密度為0.9218公克/立方公分,且使用凝膠色層分析可得,Mw為106,000公克/莫耳、Mw/Mn為4.31及1-辛烯之含量為6.34重量%。 Ethylene and 1-octene were copolymerized in the same manner as in Example 1, except that the reaction temperature was raised up to 140 ° C before the addition of the catalyst and the (dichloro) (dichloro) synthesized in Comparative Preparation Example 1 was added. Amino) (2,3,4,5-tetramethylcyclopentadienyl) (dimethyl decane) titanium (IV). During the 5 minute reaction time, the temperature was up to 184.4 ° C and finally 40.03 grams of polymer was obtained. The polymer has a melting point of 116.21 ° C, a melt index of 0.56, a density of 0.9218 g/cm 3 , and is obtainable by gel chromatography, Mw of 106,000 g/mole, Mw/Mn of 4.31 and 1-octene. The content was 6.34% by weight.

[比較實施例3][Comparative Example 3]

以與實施例1相同之方式共聚合乙烯與1-辛烯,惟添加0.4毫升之比較製備實施例2所合成之(二氯)(三級丁基胺基)(2,3,4,5-四甲基環戊二烯基)(二甲基矽烷)鋯(IV)(5.0mM甲苯溶液)並將反應時間設定為10分鐘。在10分鐘之反應時間期間,溫度最高達102.1℃最終獲得16.49公克之聚合物。該聚合物之熔點為125.93℃、熔融指數為0.087、密度為0.9405公克/立方公分,且使用凝膠色層分析法可得,Mw為426,800公克/莫耳、Mw/Mn為3.31及1-辛烯之含量為2.2重量%。 Ethylene and 1-octene were copolymerized in the same manner as in Example 1, except that 0.4 ml of (dichloro) (tertiary butylamino) (2, 3, 4, 5) synthesized in Example 2 was prepared. -Tetramethylcyclopentadienyl) (dimethyl decane) zirconium (IV) (5.0 mM solution in toluene) and the reaction time was set to 10 minutes. During the 10 minute reaction time, the temperature reached up to 102.1 ° C and finally 16.49 grams of polymer was obtained. The polymer has a melting point of 125.93 ° C, a melt index of 0.087, a density of 0.9405 g/cm 3 , and is obtainable by gel chromatography, Mw of 426,800 g/mole, Mw/Mn of 3.31 and 1-octyl. The content of the alkene was 2.2% by weight.

從上述實施例可明顯看出,相較於比較實施例,在前述聚合條件下之單獨乙烯及組合1-辛烯之聚合作用中,可生產高產率的聚合物,並在相同條件下獲得具有較高1-辛烯含量之烯烴共聚物。特定言之,可從乙烯與1-辛烯中成功製備低密度之共聚物。 As is apparent from the above examples, in the polymerization of the individual ethylene and the combined 1-octene under the aforementioned polymerization conditions, a high yield of the polymer can be produced and obtained under the same conditions as compared with the comparative examples. A higher 1-octene content olefin copolymer. In particular, low density copolymers can be successfully prepared from ethylene and 1-octene.

雖已基於例示之目的揭露本發明之較佳實施態樣,然本領域中之技藝人士將明瞭可在不偏離本發明範圍與精神之情況下進行各種變化、添加及取代,如後附申請專利範圍所揭露者。 While the preferred embodiment of the present invention has been described by the embodiments of the present invention, it will be understood by those skilled in the art that various changes, additions and substitutions can be made without departing from the scope and spirit of the invention. The scope of the disclosure.

Claims (3)

一種製備乙烯與α-烯烴之共聚物之方法,其係使用一過渡金屬催化劑組成物,該過渡金屬催化劑組成物係包括一具如下化學式1之過渡金屬化合物以及一共催化劑選自鋁化合物、硼化合物及其混合物: 其中,M為鈦;R1及R2係獨立為(C1-C7)烷基,其獨立位於能與M形成η5鍵之環戊二烯基之3,4位置;D係-N(R5)-,其中R5係(C1-C20)烷基;R3及R4係獨立為(C1-C20)烷基;X係獨立為鹵素原子或(C1-C20)烷基;且n為2之整數;其中於反應器中該乙烯之壓力為6至150大氣壓,且聚合溫度為60至250℃;其中該α-烯烴係選自丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、 1-辛烯及1-癸烯中之一或多者,且該乙烯與α-烯烴之共聚物中的乙烯含量為50重量%或更多,熔點為117.48℃至119.02℃,密度為0.860至0.940公克/立方公分,重量平均分子量為80,000至500,000,且分子量分佈(Mw/Mn)為1.5至4.1。 A method for preparing a copolymer of ethylene and an α -olefin, which comprises using a transition metal catalyst composition comprising a transition metal compound of the following Chemical Formula 1 and a cocatalyst selected from the group consisting of an aluminum compound and a boron compound And mixtures thereof: Wherein M is titanium; R 1 and R 2 are independently (C1-C7)alkyl, which are independently located at the 3,4 position of a cyclopentadienyl group capable of forming an η 5 bond with M; D-N-R 5 )-, wherein R 5 is (C1-C20)alkyl; R 3 and R 4 are independently (C1-C20)alkyl; X is independently a halogen atom or (C1-C20)alkyl; and n is An integer of 2; wherein the pressure of the ethylene in the reactor is 6 to 150 atm, and the polymerization temperature is 60 to 250 ° C; wherein the α -olefin is selected from the group consisting of propylene, 1-butene, 1-pentene, 1- One or more of hexene, 1-heptene, 1-octene and 1-decene, and the ethylene content of the copolymer of ethylene and α -olefin is 50% by weight or more, and the melting point is 117.48 ° C. To 119.02 ° C, the density is from 0.860 to 0.940 g/cm 3 , the weight average molecular weight is from 80,000 to 500,000, and the molecular weight distribution (Mw/Mn) is from 1.5 to 4.1. 如請求項1之方法,其中R1及R2係獨立選自甲基、乙基、正丙基、異丙基、正丁基、二級丁基、三級丁基及正戊基;且R5係選自甲基、乙基、正丙基、異丙基、二級丁基、三級丁基。 The method of claim 1, wherein R 1 and R 2 are independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, dibutyl, tert-butyl and n-pentyl; R 5 is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, secondary butyl, and tertiary butyl. 如請求項1之方法,其中該鋁化合物係包含選自鋁氧烷及有機鋁中之一或多者的一共催化劑,且係選自甲基鋁氧烷、經改質之甲基鋁氧烷、四異丁基鋁氧烷、三烷基鋁、二烷基鋁氯化物、烷基鋁二氯化物、二烷基鋁氫化物及其混合物;以及該硼化合物共催化劑係選自N,N-二甲基苯胺四(五氯苯基)硼酸鹽、三苯基甲基四(五氟苯基)硼酸鹽及其混合物。 The method of claim 1, wherein the aluminum compound comprises a cocatalyst selected from one or more of aluminoxane and organoaluminum, and is selected from the group consisting of methylaluminoxane and modified methylaluminoxane. , tetraisobutylaluminoxane, trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, dialkylaluminum hydride, and mixtures thereof; and the boron compound cocatalyst is selected from N,N - dimethylaniline tetrakis(pentachlorophenyl)borate, triphenylmethyltetrakis(pentafluorophenyl)borate and mixtures thereof.
TW100122181A 2011-06-24 2011-06-24 Methods for preparing copolymers of ethylene and α-olefins using advanced transition metal catalytic systems TWI545127B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100122181A TWI545127B (en) 2011-06-24 2011-06-24 Methods for preparing copolymers of ethylene and α-olefins using advanced transition metal catalytic systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100122181A TWI545127B (en) 2011-06-24 2011-06-24 Methods for preparing copolymers of ethylene and α-olefins using advanced transition metal catalytic systems

Publications (2)

Publication Number Publication Date
TW201302769A TW201302769A (en) 2013-01-16
TWI545127B true TWI545127B (en) 2016-08-11

Family

ID=48137911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100122181A TWI545127B (en) 2011-06-24 2011-06-24 Methods for preparing copolymers of ethylene and α-olefins using advanced transition metal catalytic systems

Country Status (1)

Country Link
TW (1) TWI545127B (en)

Also Published As

Publication number Publication date
TW201302769A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101060838B1 (en) Bis-arylaryloxy catalyst system for preparing ethylene homopolymer or copolymer with α-olefin
KR100639696B1 (en) ARYLPHENOXY CATALYST SYSTEM FOR PRODUCING ETHYLENE HOMOPOLYMERS OR ETHYLENE COPOLYMERS WITH alpha;-OLEFINS
TWI585095B (en) New cyclopenta[b]fluorenyl transition metal compound, catalyst composition containing the same, and method of preparing ethylene homopolymer or copolymer of ethylene and α-olefin using the same
TWI431012B (en) Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
JP5422208B2 (en) Transition metal compound, transition metal catalyst composition containing the same, and method for producing ethylene homopolymer or copolymer of ethylene and α-olefin
KR101151606B1 (en) Transition metal complexes, catalysts composition containing the same, and process for preparing ethylene homopolymers or copolymers of ethylene and a-olefins using the same
KR101146875B1 (en) Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using the same
KR101470564B1 (en) Method for preparing elastomeric copolymers of ethylene and a-olefins
KR101889978B1 (en) new transition metal complex with annulated ring substituted arylphenoxy ligand, catalyst composition containing the same for olefin copolymerization and methods for preparing copolymers of ethylene and α-olefins or copolymers of ethylene and olefin-diene using the same
KR101141359B1 (en) Homogeneous catalyst system for producing ethylene homopolymer or ethylene copolymers with ?-olefins
US8993694B2 (en) Advanced transition metal catalytic systems in terms of comonomer incorporations and methods for preparing ethylene homopolymers or copolymers of ethylene and alpha-olefins using the same
KR102643986B1 (en) A novel indene-based transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
JP5839521B2 (en) Transition metal catalyst system excellent in copolymerizability and process for producing ethylene homopolymer or copolymer of ethylene and α-olefin using the same
KR20150138042A (en) NEW TRANSITION METAL COMPLEXES, CATALYST COMPOSITIONS CONTAINING THE SAME FOR OLEFIN POLYMERIZATION AND METHODS FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING THE SAME
KR101142122B1 (en) New transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and ?-olefins using the same
KR101889980B1 (en) New Transition metal complex having Quinolin-1(2H)-yl group and catalyst composition containing the same for olefin polymerization, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
TWI545127B (en) Methods for preparing copolymers of ethylene and α-olefins using advanced transition metal catalytic systems
KR101511742B1 (en) - Advanced transition metal catalytic systems in terms of comonomer incorporations and methods for preparing ethylene homopolymers or copolymers of ethylene and -olefins using the same
RU2575004C2 (en) Modern catalytic systems with transition metal based on comonomer incorporation and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using them
KR101889979B1 (en) new transition metal complex, catalyst composition containing the same for olefin polymerization and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
KR101831258B1 (en) New Transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same