TWI543427B - Charging system containing a fuel cell and battery with materials and methods of assembly for a fuel cell utilizing an anionic exchange membrane and fuel cell cartridge designs - Google Patents

Charging system containing a fuel cell and battery with materials and methods of assembly for a fuel cell utilizing an anionic exchange membrane and fuel cell cartridge designs Download PDF

Info

Publication number
TWI543427B
TWI543427B TW103116767A TW103116767A TWI543427B TW I543427 B TWI543427 B TW I543427B TW 103116767 A TW103116767 A TW 103116767A TW 103116767 A TW103116767 A TW 103116767A TW I543427 B TWI543427 B TW I543427B
Authority
TW
Taiwan
Prior art keywords
fuel cell
fuel
battery
power
current
Prior art date
Application number
TW103116767A
Other languages
Chinese (zh)
Other versions
TW201501396A (en
Inventor
杰拉德C 德科托
德瑞克 雷曼
沙力 科羅斯
科里納G 馬爾居尼亞奴
Original Assignee
尼亞動力系統公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尼亞動力系統公司 filed Critical 尼亞動力系統公司
Publication of TW201501396A publication Critical patent/TW201501396A/en
Application granted granted Critical
Publication of TWI543427B publication Critical patent/TWI543427B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Description

具有燃料電池以及電池的充電系統、以及利用陰離子交換膜以及燃料電池匣設計的燃料電池之組裝材料以及方法 Assembly system and method for fuel cell and battery charging system, and fuel cell designed using anion exchange membrane and fuel cell cartridge

本發明係提供一種作為可攜式混合式發電裝置的燃料電池,電池以及電源管理系統,以及使用燃料源產生以及儲存電力以對移動式電子裝置充電,更特別的是,本發明提供一種結合聚合物電極組件(PEA)、副電池以即可移除匣的混合式直接燃料電池,材料以及組裝方法以製造利用陰離子交換膜的燃料電池,副電池結合板上電子零件以提供電力作為移動式電子裝置的專用充電器,用於此燃料電池系統的可移除匣構造之被動設計之描述。 The present invention provides a fuel cell, a battery and a power management system as a portable hybrid power generating device, and uses a fuel source to generate and store power to charge a mobile electronic device, and more particularly, the present invention provides a combined polymerization. a liquid electrode assembly (PEA), a secondary battery, a hybrid direct fuel cell that can remove germanium, a material and an assembly method to manufacture a fuel cell using an anion exchange membrane, and a secondary battery to combine electronic components on the board to provide power as a mobile electronic A dedicated charger for the device, a description of the passive design of the removable crucible configuration for this fuel cell system.

燃料電池係為電化學裝置,其將反應的化學能量轉換成電力,如第1圖所繪示。在此電池中,在薄膜110或115所隔離之電極120/122以及125/127供應燃料以及氧化劑(通常是空氣中的氧氣)。理論上,只要燃料以及氧化劑供應至電極,燃料電池可產生電能。燃料電池之優點在於 燃料的高能量密度,如表1所示,以及可做為離網(離網)電源的可攜性以及效能。 A fuel cell is an electrochemical device that converts the chemical energy of a reaction into electricity, as depicted in Figure 1. In this cell, the electrodes 120/122 and 125/127 isolated from the membrane 110 or 115 supply fuel and an oxidant (typically oxygen in the air). In theory, a fuel cell can generate electrical energy as long as the fuel and oxidant are supplied to the electrodes. The advantage of a fuel cell is that The high energy density of the fuel, as shown in Table 1, and the portability and performance of the off-grid (off-grid) power supply.

目前已知有各種燃料電池。常見範例包含使用氫氣或甲醇、以及以其他酒精作為燃料的燃料電池。直接燃料電池係直接氧化燃料而不須重組含氫的液體、固體或氣體燃料,例如酒精、多元醇(甲醇、乙醇、乙二醇以及甘油)以及其他直接氧化燃料電池。 Various fuel cells are currently known. Common examples include fuel cells that use hydrogen or methanol, as well as other alcohols. Direct fuel cells are direct oxidation fuels without the need to reconstitute hydrogen-containing liquid, solid or gaseous fuels such as alcohols, polyols (methanol, ethanol, ethylene glycol, and glycerin) and other direct oxidation fuel cells.

燃料電池之共同構件係電解液、導電離子聚合薄膜以及電極(陽極以及陰極)。電極包含催化金屬或金屬粒子,其通常散佈在導電性、多孔的支撐材料上。電極結合催化劑以提高電極上的反應速率。薄膜係扮演分隔複數個電極以及讓離子傳輸或傳導的角色。離子交換聚合物電解質薄膜可為任一陽離子導電聚合物或陰離子導電聚合物。 Common components of fuel cells are electrolytes, conductive ionomeric films, and electrodes (anode and cathode). The electrodes comprise catalytic metal or metal particles that are typically interspersed on a conductive, porous support material. The electrode binds the catalyst to increase the rate of reaction on the electrode. The film system acts to separate a plurality of electrodes and to transport or conduct ions. The ion exchange polymer electrolyte membrane can be any cationic conductive polymer or an anion conductive polymer.

[1] D. L. Anglin, D. R. Sadoway, "Battery", in AccessScience@McGraw-Hill, http://www.accessscience.com, DOI 10.1036/1097-8542.075200 [ 1 ] DL Anglin, DR Sadoway, "Battery", in AccessScience@McGraw-Hill, http://www.accessscience.com, DOI 10.1036/1097-8542.075200

[2] B. Sorensen, Hydrogen and Fuel Cells: Emerging technologies and applications, Elsevier Academic Press, Burlington, MA, 2005. [ 2 ] B. Sorensen, Hydrogen and Fuel Cells: Emerging technologies and applications , Elsevier Academic Press, Burlington, MA, 2005.

[3] National Research Council and National Academy of Engineering of the Engineering of the National Academies, The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, The National Academies Press, Washington, D.C., 2004. [3] National Research Council and National Academy of Engineering of the Engineering of the National Academies, The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, The National Academies Press, Washington, DC, 2004.

在一些實施例中,係提供能最佳化燃料電池之能量密度的方法以及系統。燃料電池可維持在最佳功率狀態,使用一內部可充電電池以容納任何偏離燃料電池之最佳功率狀態的負載功率。外部電池充電器(即外部電源)亦能接收可變的負載需求,其可對內部電池充電。此種混合式燃料電池構造能夠利用一功率管理系統以控制燃料電池、內部電池以及外部電池充電器以提供最佳功率效率。 In some embodiments, methods and systems are provided that optimize the energy density of a fuel cell. The fuel cell can be maintained at an optimal power state, using an internal rechargeable battery to accommodate any load power that deviates from the optimal power state of the fuel cell. An external battery charger (ie, an external power source) can also receive variable load requirements that can charge the internal battery. Such a hybrid fuel cell configuration can utilize a power management system to control the fuel cell, internal battery, and external battery charger to provide optimum power efficiency.

在一些實施例中,揭露用於燃料電池系統的複數個燃料匣,其提供用於燃料電池且容易操作的燃料容置匣。燃料電池匣為可移除的匣設計構造用以傳送燃料。燃料匣能包含燃料電池之燃料的容器,以及一“被動”機制(即最小的使用者互動或電子式控制機制)來注入燃料以及抽出用於清潔的外來液體或其他液體。 In some embodiments, a plurality of fuel cartridges for a fuel cell system are disclosed that provide a fuel containment cartridge for a fuel cell that is easy to operate. The fuel cell cartridge is designed to be removable to transport fuel. The fuel can contain a container of fuel for the fuel cell, and a "passive" mechanism (ie, minimal user interaction or electronic control mechanism) to inject fuel and extract foreign or other liquid for cleaning.

在一些實施例中,係提供組裝材料以及組裝方法以製造利用陰離子交換膜的鹼性燃料電池,其結合此陰離子交換膜、油墨催化劑以及電流集電器以取得高程度的催化活性表面區域。燃料電池能包含薄膜電極組件(MEA)貼合以及油墨配置、微流體通道、共用燃料以及電解質室,藉此每個燃料室都有多個陰極,以及用於集合電流的整合性外部匯流排。 In some embodiments, an assembly material and assembly method are provided to fabricate an alkaline fuel cell utilizing an anion exchange membrane that incorporates the anion exchange membrane, ink catalyst, and current collector to achieve a high degree of catalytically active surface area. The fuel cell can include a membrane electrode assembly (MEA) fit and an ink configuration, a microfluidic channel, a common fuel, and an electrolyte chamber whereby each fuel chamber has a plurality of cathodes and an integrated external bus for collecting current.

110‧‧‧薄膜 110‧‧‧film

120‧‧‧電極 120‧‧‧electrode

122‧‧‧電極 122‧‧‧ electrodes

115‧‧‧薄膜 115‧‧‧film

125‧‧‧電極 125‧‧‧electrode

127‧‧‧電極 127‧‧‧electrode

210‧‧‧低電流狀態 210‧‧‧Low current state

220‧‧‧中電流狀態 220‧‧‧current current status

230‧‧‧高電流狀態 230‧‧‧High current state

250‧‧‧電流密度有限範圍 250‧‧‧Limited current density range

300‧‧‧燃料電池系統 300‧‧‧ fuel cell system

310‧‧‧燃料電池 310‧‧‧ fuel cell

312‧‧‧傳輸電流 312‧‧‧Transmission current

314‧‧‧傳輸電流 314‧‧‧Transmission current

320‧‧‧電池 320‧‧‧Battery

322‧‧‧放電電流 322‧‧‧discharge current

324‧‧‧充電電流 324‧‧‧Charging current

330‧‧‧控制器 330‧‧‧ Controller

390‧‧‧負載 390‧‧‧load

392‧‧‧負載電流 392‧‧‧Load current

394‧‧‧負載電流 394‧‧‧Load current

400‧‧‧燃料電池系統 400‧‧‧ fuel cell system

410‧‧‧燃料電池 410‧‧‧ fuel cell

415‧‧‧傳輸電流 415‧‧‧Transmission current

420‧‧‧內部電池 420‧‧‧Internal battery

425‧‧‧電流 425‧‧‧ Current

430‧‧‧控制器 430‧‧‧ Controller

440‧‧‧電池 440‧‧‧Battery

445‧‧‧電流 445‧‧‧ Current

490‧‧‧負載 490‧‧‧load

495‧‧‧負載電流 495‧‧‧Load current

500‧‧‧燃料電池系統 500‧‧‧ fuel cell system

510‧‧‧燃料電池 510‧‧‧ fuel cell

515‧‧‧傳輸電力 515‧‧‧Transmission of electricity

517‧‧‧傳輸電力 517‧‧‧Transmission of electricity

520‧‧‧內部電池 520‧‧‧Internal battery

525‧‧‧增加電力 525‧‧‧Adding electricity

530‧‧‧控制器 530‧‧‧ Controller

541‧‧‧電路 541‧‧‧ Circuitry

550‧‧‧電路 550‧‧‧ Circuit

547‧‧‧電流 547‧‧‧ Current

590‧‧‧負載 590‧‧‧load

595‧‧‧電力 595‧‧‧Power

610‧‧‧燃料電池室 610‧‧‧fuel cell room

620‧‧‧入口埠及出口埠 620‧‧‧Environmental and export regulations

630‧‧‧外殼 630‧‧‧ Shell

640‧‧‧印刷電路板(PCB)組件 640‧‧‧Printed circuit board (PCB) components

650‧‧‧USB端 650‧‧‧USB end

660‧‧‧指示器 660‧‧‧ indicator

670‧‧‧內部電池 670‧‧‧Internal battery

900‧‧‧燃料電池匣 900‧‧‧ fuel cell匣

905‧‧‧燃料電池匣 905‧‧‧ fuel cell 匣

910‧‧‧活塞 910‧‧‧Piston

920‧‧‧容器 920‧‧‧ Container

925‧‧‧容器 925‧‧‧ container

930‧‧‧截止閥 930‧‧‧ Globe Valve

935‧‧‧截止閥 935‧‧‧ Globe Valve

940‧‧‧燃料電池系統 940‧‧‧ fuel cell system

950‧‧‧容器 950‧‧‧ container

955‧‧‧容器 955‧‧‧ Container

960‧‧‧截止閥 960‧‧‧ Globe Valve

965‧‧‧截止閥 965‧‧‧ Globe Valve

970‧‧‧燃料袋腔 970‧‧‧fuel pocket

975‧‧‧匣殼 975‧‧‧ clam shell

980‧‧‧燃料袋腔 980‧‧‧fuel pocket

990‧‧‧出口埠 990‧‧‧Export

1000‧‧‧單向閥門 1000‧‧‧ one-way valve

1005‧‧‧單向閥門 1005‧‧‧ one-way valve

1010‧‧‧球 1010‧‧‧ ball

1015‧‧‧彈簧 1015‧‧‧ Spring

1020‧‧‧通氣管 1020‧‧‧ snorkel

1030‧‧‧導管 1030‧‧‧ catheter

1050‧‧‧流體 1050‧‧‧ fluid

1100‧‧‧燃料電池匣 1100‧‧‧ fuel cell 匣

1130‧‧‧埠 1130‧‧‧埠

1135‧‧‧埠 1135‧‧‧埠

1110‧‧‧活塞 1110‧‧‧Piston

1117‧‧‧燃料 1117‧‧‧fuel

1120‧‧‧容器 1120‧‧‧ Container

1125‧‧‧容器 1125‧‧‧ Container

1127‧‧‧燃料 1127‧‧‧fuel

1105‧‧‧燃料匣 1105‧‧‧fuels

1150‧‧‧注入 1150‧‧‧Injection

1155‧‧‧抽出 1155‧‧‧Extracted

1160‧‧‧燃料室 1160‧‧‧fuel room

1170‧‧‧活塞 1170‧‧‧Piston

1210‧‧‧聚合物薄膜 1210‧‧‧ polymer film

1220‧‧‧催化劑層 1220‧‧‧ catalyst layer

1225‧‧‧催化劑層 1225‧‧‧ catalyst layer

1260‧‧‧接觸件 1260‧‧‧Contacts

1230‧‧‧氣體擴散層 1230‧‧‧ gas diffusion layer

1235‧‧‧氣體擴散層 1235‧‧‧ gas diffusion layer

1240‧‧‧燃料側 1240‧‧‧fuel side

1245‧‧‧空氣側 1245‧‧‧Air side

1250‧‧‧電流集電器 1250‧‧‧ Current collector

1255‧‧‧電流集電器 1255‧‧‧current collector

1270‧‧‧PEA 1270‧‧‧PEA

1275‧‧‧PEA 1275‧‧‧PEA

1310‧‧‧聚合物薄膜 1310‧‧‧ polymer film

1320‧‧‧催化劑層 1320‧‧‧ catalyst layer

1325‧‧‧催化劑層 1325‧‧‧ catalyst layer

1330‧‧‧氣體擴散層 1330‧‧‧ gas diffusion layer

1335‧‧‧氣體擴散層 1335‧‧‧ gas diffusion layer

1340‧‧‧燃料 1340‧‧‧fuel

1345‧‧‧空氣 1345‧‧‧air

1350‧‧‧電流集電器 1350‧‧‧ Current collector

1352‧‧‧接觸件 1352‧‧‧Contacts

1354‧‧‧電極層 1354‧‧‧electrode layer

1355‧‧‧電流集電器 1355‧‧‧current collector

1357‧‧‧接觸件 1357‧‧‧Contacts

1359‧‧‧電極層 1359‧‧‧electrode layer

1370‧‧‧電極 1370‧‧‧ electrodes

1375‧‧‧電極 1375‧‧‧electrode

1380‧‧‧蓋體 1380‧‧‧ cover

1385‧‧‧蓋體 1385‧‧‧ cover

1390‧‧‧貼合層 1390‧‧‧Fitting layer

1395‧‧‧貼合層 1395‧‧‧Fitting layer

1410‧‧‧薄膜 1410‧‧‧film

1450‧‧‧電極 1450‧‧‧electrode

1455‧‧‧電極 1455‧‧‧electrode

1460‧‧‧壓力 1460‧‧‧ Pressure

1480‧‧‧支撐件 1480‧‧‧Support

1485‧‧‧支撐件 1485‧‧‧Support

1490‧‧‧液體層貼合離子 1490‧‧‧Liquid layer bonding ions

1495‧‧‧液體層貼合離子 1495‧‧‧Liquid layer bonding ions

1710‧‧‧罩板 1710‧‧‧ hood

1720‧‧‧燃料室 1720‧‧‧fuel room

1725‧‧‧燃料儲存室 1725‧‧‧fuel storage room

1730‧‧‧薄膜電極組件 1730‧‧‧Thin electrode assembly

1740‧‧‧空氣室 1740‧‧ Air chamber

1790‧‧‧流體匯流排 1790‧‧‧ fluid busbar

1795‧‧‧微流體通道 1795‧‧‧microfluidic channel

1825‧‧‧燃料室 1825‧‧‧fuel room

1890‧‧‧流體匯流排 1890‧‧‧ fluid busbar

1895‧‧‧微流體通道 1895‧‧‧microfluidic channel

1910‧‧‧罩板 1910‧‧‧ hood

1920‧‧‧燃料儲存器 1920‧‧‧ fuel storage

1930‧‧‧薄膜電極組件 1930‧‧‧Metal electrode assembly

1940‧‧‧空氣儲存器 1940‧‧ Air storage

1990‧‧‧流體匯流排 1990‧‧‧ Fluid Busbar

1995‧‧‧微流體通道 1995‧‧‧Microfluidic channel

2020‧‧‧燃料室 2020‧‧‧fuel room

2025‧‧‧隔室 2025‧‧ ‧ compartment

2030‧‧‧薄膜電極組件 2030‧‧‧Metal electrode assembly

2120‧‧‧燃料室 2120‧‧‧fuel room

2125‧‧‧大隔間 2125‧‧‧ Large compartment

2130‧‧‧薄膜電極組件 2130‧‧‧Thin electrode assembly

2220‧‧‧燃料室 2220‧‧‧fuel room

2230‧‧‧薄膜電極組件 2230‧‧‧Thin electrode assembly

2330‧‧‧燃料電池 2330‧‧‧ fuel cell

2380‧‧‧共同匯流排 2380‧‧‧Common bus

第1A圖至第1B圖為燃料電池的示意圖。 1A to 1B are schematic views of a fuel cell.

第2A圖為一極化曲線,其顯示燃料電池之可逆的以及不可逆的能量耗損,其顯示僅在有限範圍的電流密度內保證固定電壓以及輸出端,因此不能良好穩定在電流密度之特定範圍外的電壓以及功率突波。 Figure 2A is a polarization curve showing the reversible and irreversible energy loss of the fuel cell, which shows that the fixed voltage and the output are only guaranteed within a limited range of current densities, and therefore cannot be well stabilized outside the specific range of current density. Voltage and power surge.

第2B圖為施加至負載之電流密度適合最高能量密度以及最高功率輸出的最佳極化狀態。 Figure 2B shows the optimum polarization state for the current density applied to the load for the highest energy density and highest power output.

第3A圖至第3C圖為本案較佳實施例之燃料電池系統。 3A to 3C are fuel cell systems of the preferred embodiment of the present invention.

第4圖為本案較佳實施例之燃料電池系統。 Figure 4 is a fuel cell system of the preferred embodiment of the present invention.

第5圖為本案較佳實施例之燃料電池系統,其顯示用以獲取以及分配功率的電性布局圖。 Figure 5 is a fuel cell system of the preferred embodiment of the present invention showing an electrical layout for acquiring and distributing power.

第6圖為本案較佳實施例之一包含燃料電池、電池以及功率管理與傳送系統的外部殼體。 Figure 6 is a diagram showing an outer casing of a fuel cell, a battery, and a power management and delivery system in accordance with one embodiment of the present invention.

第7A圖至第7C圖為本案較佳實施例之操作具有電源管理系統之燃料電池的流程圖。 7A through 7C are flow diagrams showing the operation of a fuel cell having a power management system in accordance with a preferred embodiment of the present invention.

第8A圖至第8B圖為本案較佳實施例之操作具有電源管理系統之燃料電池的流程圖。 8A through 8B are flow diagrams of a fuel cell having a power management system in accordance with a preferred embodiment of the present invention.

第9A圖至第9E圖為本案較佳實施例之燃料電池匣。可用於串聯具有相同直徑格式參數的兩個同心圓筒(例如圓筒內有圓筒)或其他形狀的腔室(例如活塞殼內可折疊袋室),藉此可從燃料電池的洞取出用過的燃料,而使用相同的匣傳輸新的燃料至燃料電池。此匣構造的優點在於匣的動作軌跡能最小化,注入以及抽出燃料能夠發生同一移動中。 9A to 9E are fuel cell cartridges of the preferred embodiment of the present invention. Can be used to connect two concentric cylinders with the same diameter format parameters (for example, a cylinder in a cylinder) or other shaped chambers (such as a collapsible bag chamber in a piston housing), thereby being able to be taken out of the hole of the fuel cell The fuel is passed, and the same helium is used to transfer the new fuel to the fuel cell. The advantage of this 匣 construction is that the trajectory of the 匣 can be minimized, and the injection and extraction of fuel can occur in the same movement.

第10A圖至第10B圖為本案較佳實施例之單向閥門。 10A to 10B are the one-way valves of the preferred embodiment of the present invention.

第11A圖至第11B圖為本案較佳實施例之燃料電池匣,其顯示含有以似活塞作動移除或填充的圓筒或其他形狀的腔室的範例。可藉由使用者手動、彈簧、壓縮氣體、磁性耦合或重力輔助來驅動活塞頭。 11A through 11B are fuel cell cartridges of the preferred embodiment of the present invention, showing an example of a chamber containing a cylinder or other shape that is removed or filled by a piston-like action. The piston head can be driven by a user manually, spring, compressed gas, magnetic coupling or gravity assist.

第12圖為本案較佳實施例之聚合物電極組件。 Figure 12 is a polymer electrode assembly of the preferred embodiment of the present invention.

第13A圖至第13B圖為本案較佳實施例之薄膜電極組件。 13A to 13B are film electrode assemblies of the preferred embodiment of the present invention.

第14A圖至第14B圖為本案較佳實施例之用於薄膜電極組件的貼合製 程,其顯示相對於陰離子MEA之側邊的不鏽鋼網形成電性接觸的高表面區域。 14A to 14B are the bonding system for the thin film electrode assembly of the preferred embodiment of the present invention. Process, which shows a high surface area that forms electrical contact with respect to the stainless steel mesh on the sides of the anionic MEA.

第15圖為本案較佳實施例之加壓以及固化周期。在關閉之前,可施加固定溫度、壓力及時間,其中結合離子聚合物(Ionomer)狀態的液體,可貼合不鏽鋼網到陰離子交換膜的背面。 Figure 15 is a view of the pressurization and curing cycle of the preferred embodiment of the present invention. Prior to shutdown, a fixed temperature, pressure, and time can be applied, wherein the liquid in the ionic polymer (Ionomer) state can conform to the stainless steel mesh to the back of the anion exchange membrane.

第16圖為本案較佳實施例之組裝薄膜電極組件的流程圖。 Figure 16 is a flow chart of the assembled membrane electrode assembly of the preferred embodiment of the present invention.

第17A圖至第17B圖為本案較佳實施例之多個燃料電池共用流體匯流排。MEA、電流集電器、外部電性連接器係與微流體通道板整合。 17A to 17B are diagrams showing a plurality of fuel cell shared fluid bus bars of the preferred embodiment of the present invention. The MEA, current collector, and external electrical connector are integrated with the microfluidic channel plate.

第18圖為本案較佳實施例之燃料電池的透視圖。 Figure 18 is a perspective view of a fuel cell of the preferred embodiment of the present invention.

第19A圖至第19C圖為本案較佳實施例之燃料電池的透視圖。流體燃料可傳送至多個燃料電池,藉此液體進入所有並聯的燃料電池室。燃料可藉由共用流體匯流排以及嵌入式微通道的方式傳送。空氣可透過微穿孔層傳送,而微穿孔層亦嵌入燃料電池壁中。 19A to 19C are perspective views of a fuel cell of the preferred embodiment of the present invention. The fluid fuel can be delivered to a plurality of fuel cells whereby liquid enters all of the parallel fuel cell chambers. Fuel can be delivered by means of a shared fluid bus and embedded microchannels. Air is transported through the microperforated layer and the microperforated layer is also embedded in the fuel cell wall.

第20A圖至第20B圖為本案較佳實施例之提供燃料至多個陽極的燃料室。 20A to 20B are views showing a fuel chamber for supplying fuel to a plurality of anodes according to a preferred embodiment of the present invention.

第21A圖至第21B圖為本案較佳實施例之提供燃料至多個陽極的燃料室。 21A-21B illustrate a fuel chamber providing fuel to a plurality of anodes in accordance with a preferred embodiment of the present invention.

第22圖為本案較佳實施例之提供燃料至多個陽極的燃料室。DGFC電池能共用一可充填的陽極室。DGFC單元能共用一可充填的陽極室。其好處在於最後電池組的格式參數上的彈性、燃料電池(並聯或串聯)之電性狀態之變化性、最後電池組容量最小化以及減少流體通道至電池的複雜度。 Figure 22 is a fuel chamber providing fuel to a plurality of anodes in accordance with a preferred embodiment of the present invention. The DGFC battery can share a fillable anode chamber. The DGFC unit can share a fillable anode chamber. The benefits are the flexibility in the final battery pack's format parameters, the variability in the electrical state of the fuel cell (parallel or series), the final battery pack capacity minimization, and the reduced fluid path to battery complexity.

第23A圖至第23B圖為本案較佳實施例之具有整合性匯流排的燃料電池。燃料電池能利用可從多個並聯或串聯堆疊的電池收集電流的電性 匯流排。如果有策略地放置圍繞每一燃料電池,多個匯流排可最小化IR損耗。 23A to 23B are diagrams showing a fuel cell having an integrated bus bar according to a preferred embodiment of the present invention. Fuel cells can utilize electrical properties that can collect current from multiple batteries stacked in parallel or in series Bus bar. Multiple busbars minimize IR losses if strategically placed around each fuel cell.

於此使用,詞彙“與/或”包含一或多個相關條列項目之任何或所有組合。當“至少其一”之敘述前綴於一元件清單前時,係修飾整個清單元件而非修飾清單中之個別元件。 As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. When the phrase "at least one of" is preceded by a list of elements, the entire list of elements is modified instead of the individual elements in the list.

在一些實施例中,係提供可最佳化燃料電池之能量密度的方法以及系統。電源管理系統能夠預先決定燃料電池系統之最佳能量密度之電流狀態,以及設定在此狀態下操作燃料電池的燃料電池功率傳輸條件。例如,如果負載需求超過最佳功率傳送狀態,內部可充電電池能傳送功率要求上的落差,以維持燃料電池之輸出在最佳電流密度。在一些實施例中,可使用小型內部可充電電池,以及可藉由外部電池充電器容置高負載需求,其能對內部電池充電,例如以固定充電速率。在此混合式燃料電池構造中,可充電電池係容納輸出端負載的負載需求峰值,而燃料電池能提供能量密度以及離網(off-grid)使用效能的增益。 In some embodiments, methods and systems are provided that can optimize the energy density of a fuel cell. The power management system is capable of predetermining the current state of the optimal energy density of the fuel cell system and setting the fuel cell power transmission conditions for operating the fuel cell in this state. For example, if the load demand exceeds the optimal power transfer state, the internal rechargeable battery can deliver a drop in power requirements to maintain the output of the fuel cell at an optimum current density. In some embodiments, a small internal rechargeable battery can be used, and a high load requirement can be accommodated by an external battery charger that can charge the internal battery, for example at a fixed charging rate. In this hybrid fuel cell configuration, the rechargeable battery accommodates the load demand peak of the output load, while the fuel cell provides energy density and off-grid performance gain.

在一些實施例中,係提供用於混合式燃料電池與電池的可攜式電源系統的電源管理系統,其能優化燃料電池以及燃料之能量密度。電源管理系統能利用副電池以及板上電子零件以提供電力作為移動式電子裝置的專用充電器,其可優化燃料電池以及燃料之能量密度。 In some embodiments, a power management system for a portable power system for a hybrid fuel cell and battery is provided that optimizes the energy density of the fuel cell and fuel. The power management system can utilize the secondary battery and on-board electronic components to provide power as a dedicated charger for mobile electronic devices that optimizes the energy density of the fuel cell and fuel.

燃料電池在將化學能量轉換成可用電能上不是100%的效率。亦即,熱力學上可逆的以及不可逆的能量耗損發生在電化學以及電池位準。可逆的能量耗損係歸咎於溫度、催化劑部位反應性以及壓力條件。不可逆的能量耗損係由於:活化極化效率、或相比於理想化學計量的慢效 率的電化學反應、電池內電阻值造成的歐姆極化效率耗損(例如電解質中離子流之離子阻值)、以及外部電路以及電池內的電阻值,而在高電流密度濃度下質量轉移反應部分之慢效率的效率耗損將導致低電子產生。最終,質量轉移係電流產生的主要速率限制現象,在此現象中化學反應無法夠快速發生以保持電流消耗。 Fuel cells are not 100% efficient in converting chemical energy into usable electrical energy. That is, thermodynamically reversible and irreversible energy losses occur in electrochemical and battery levels. Reversible energy losses are due to temperature, catalyst site reactivity, and pressure conditions. Irreversible energy loss due to: activation polarization efficiency, or slow response compared to ideal stoichiometry The rate of electrochemical reaction, the ohmic polarization efficiency loss caused by the internal resistance of the battery (such as the ion resistance of the ion current in the electrolyte), and the resistance value of the external circuit and the battery, and the mass transfer reaction part at the high current density concentration Slow efficiency efficiencies will result in low electron generation. Ultimately, mass transfer is the main rate limiting phenomenon produced by currents, in which the chemical reaction does not occur quickly enough to maintain current consumption.

燃料電池之可逆以及不可逆的能量耗損係通常繪示成極化曲線,如第2A圖所示。如圖所示,在電流密度之不同操作狀態內發生的能量耗損,例如低電流狀態210、中電流狀態220、以及高電流狀態230。此代表燃料電池之輸出電壓以及功率,係高度依賴電流密度及所施加的負載。結果是僅在電流密度有限範圍250保證固定電壓與輸出,因此無法有效穩定電流密度之特定範圍外的電壓以及功率突波,如第2B圖所繪示。 The reversible and irreversible energy loss of a fuel cell is typically plotted as a polarization curve, as shown in Figure 2A. As shown, energy losses occur in different operating states of current density, such as low current state 210, medium current state 220, and high current state 230. This represents the output voltage and power of the fuel cell, which is highly dependent on the current density and the applied load. As a result, the fixed voltage and output are guaranteed only in the current density limited range 250, so that voltages outside the specific range of current density and power surges cannot be effectively stabilized, as shown in FIG. 2B.

當燃料電池的能量密度高時(例如,甲醇:4,400Wh/L),必須設計燃料電池系統使得極化特性對使用者可用的輸出電壓與電流有最小影響。此技術包含使用電子式直流對直流功率轉換元件,其將燃料電池的輸出轉換成標準、可預測的電壓以及功率輸出。然而,直流對直流轉換器以及相關的變流器設計與產品有幾個缺點,能充分符合現代混合式電源系統之功能需求的元件是困難製造。例如,直流對直流功率轉換器通常將燃料電池之最佳電流-電壓轉換成負載的理想電流或電壓。此技術通常不提供針對大電壓突值的緩衝器,其通常是標準電子裝置具備的。進一步,直流對直流轉換根據燃料電池之不可逆能量耗損不能優化燃料元件的能量密度。亦即,當能量耗損係有限的,直流對直流功率轉換調節不能致使或確保燃料電池操作在最高效率產生能量的極化狀態。 When the energy density of the fuel cell is high (eg, methanol: 4,400 Wh/L), the fuel cell system must be designed such that the polarization characteristics have minimal impact on the output voltage and current available to the user. This technology involves the use of an electronic DC-to-DC power conversion component that converts the output of the fuel cell into a standard, predictable voltage and power output. However, DC-to-DC converters and associated converter designs and products have several drawbacks, and components that fully meet the functional requirements of modern hybrid power systems are difficult to manufacture. For example, a DC-to-DC power converter typically converts the optimum current-voltage of a fuel cell into an ideal current or voltage of the load. This technique typically does not provide a buffer for large voltage spikes, which are typically found in standard electronic devices. Further, the DC-to-DC conversion cannot optimize the energy density of the fuel element based on the irreversible energy consumption of the fuel cell. That is, when the energy consumption is limited, the DC-to-DC power conversion adjustment cannot cause or ensure that the fuel cell operates at the highest efficiency to generate energy in a polarization state.

在一些實施例中,燃料電池系統設計以及操作燃料電池系統的方法係提供以優化燃料電池以及燃料之能量密度。此方法能包含設計 燃料電池系統使得所施加負載之電流密度總是在適合最高能量密度的最佳極化狀態,例如,燃料電池與燃料之最大功率輸出。 In some embodiments, fuel cell system design and methods of operating a fuel cell system are provided to optimize the energy density of the fuel cell and fuel. This method can include design The fuel cell system allows the current density of the applied load to always be at the optimum polarization state for the highest energy density, for example, the maximum power output of the fuel cell and fuel.

外部電池係用以對燃料電池提供補充電源。例如,燃料電池能提供電力以操作車輛,且當車輛必須比燃料電池能提供的更多電力時電池能提供車輛補充電源,例如在加速度或爬山期間。在此架構下,沒有考慮燃料電池功率最佳化。取而代之地,外部電池係設計以操作超過燃料電池能傳輸的最大功率。 The external battery is used to provide supplemental power to the fuel cell. For example, a fuel cell can provide power to operate a vehicle, and the battery can provide supplemental power to the vehicle when the vehicle must provide more power than the fuel cell can provide, for example, during acceleration or mountain climbing. Under this architecture, fuel cell power optimization is not considered. Instead, the external battery is designed to operate beyond the maximum power that the fuel cell can transmit.

在一些實施例中,燃料電池系統能包含燃料電池、內部電源(例如電池)、可充電電池的電路、以及優化燃料電池的電源管理系統,例如,控制從燃料電池輸出/輸入功率的方向以維持燃料電池在最佳功率。當負載需求超過燃料電池之最佳功率狀態時管理系統能夠從電池提供額外的電力給負載。當負載需求超過燃料電池之最佳功率狀態時管理系統能夠從電池提供額外的電力給負載。 In some embodiments, a fuel cell system can include a fuel cell, an internal power source (eg, a battery), a circuit for a rechargeable battery, and a power management system that optimizes the fuel cell, for example, controlling the direction of output/input power from the fuel cell to maintain The fuel cell is at the best power. The management system is able to provide additional power from the battery to the load when the load demand exceeds the optimal power state of the fuel cell. The management system is able to provide additional power from the battery to the load when the load demand exceeds the optimal power state of the fuel cell.

第3A圖至第3C圖繪示根據一些實施例之燃料電池系統。在第3A圖,燃料電池系統300包含一燃料電池310、一內部電池320以及一控制器330。當傳輸功率給負載390時,燃料電池系統300係用以利用燃料電池310之最佳功率狀態。控制器330係控制燃料電池310以及電池320之功率傳輸,例如,控制電池320傳輸功率至負載390,或控制燃料電池充電電池320。控制器330具有燃料電池310之操作特性,例如燃料電池之最佳的操作狀態,以及能夠使用此資訊以控制電力流向電池或從電池流出,藉此以最大化燃料電池310之功率密度。或者,控制器330具有燃料電池310之其他特性,例如放電電流、功率損耗,以及能夠使用此資訊以判斷最佳功率狀態。 3A through 3C illustrate a fuel cell system in accordance with some embodiments. In FIG. 3A, the fuel cell system 300 includes a fuel cell 310, an internal battery 320, and a controller 330. When power is transferred to the load 390, the fuel cell system 300 is utilized to utilize the optimal power state of the fuel cell 310. The controller 330 controls the power transfer of the fuel cell 310 and the battery 320, for example, controlling the battery 320 to transmit power to the load 390, or controlling the fuel cell rechargeable battery 320. Controller 330 has operational characteristics of fuel cell 310, such as an optimal operating state of the fuel cell, and can use this information to control the flow of power to or from the battery, thereby maximizing the power density of fuel cell 310. Alternatively, controller 330 has other characteristics of fuel cell 310, such as discharge current, power loss, and the ability to use this information to determine the optimal power state.

第3B圖至第3C圖顯示燃料電池系統300之不同操作模 式,其含有放電或充電電池320以維持燃料電池310在最佳功率傳輸狀態。在第3B圖,控制器330能感測負載390所需要的負載電流392,且超過燃料電池310之最佳功率狀態。控制器330能根據最佳功率狀態指示燃料電池傳輸電流312。控制器330亦能指示電池320放電電流322,其係負載電流392與最佳傳輸電流312之間的差值。在第3C圖,控制器330能感測負載390所需要的負載電流394,且其低於燃料電池310之最佳功率狀態。控制器330能根據最佳功率狀態指示燃料電池傳輸電流314。控制器330亦能指示電池320接收充電電流324,其係最佳電流314與負載電流394之間的差值。如此,內部電池320能作為一緩衝,讓燃料電池在最佳比率下傳輸功率,在負載需求偶而高於或低於燃料電池之最佳功率狀態下防護燃料電池。 Figures 3B through 3C show different modes of operation of the fuel cell system 300 The battery contains a discharge or rechargeable battery 320 to maintain the fuel cell 310 in an optimal power transfer state. In FIG. 3B, controller 330 can sense the load current 392 required by load 390 and exceed the optimal power state of fuel cell 310. Controller 330 can indicate fuel cell transmission current 312 based on the optimal power state. Controller 330 can also indicate battery 320 discharge current 322, which is the difference between load current 392 and optimal transmission current 312. At FIG. 3C, controller 330 can sense the load current 394 required by load 390 and is below the optimal power state of fuel cell 310. Controller 330 can indicate fuel cell transmission current 314 based on the optimal power state. Controller 330 can also instruct battery 320 to receive charging current 324, which is the difference between optimum current 314 and load current 394. As such, the internal battery 320 acts as a buffer for the fuel cell to deliver power at an optimal ratio, protecting the fuel cell when the load demand is occasionally higher or lower than the optimal power state of the fuel cell.

在一些實施例中,燃料電池可僅在最佳功率狀態下提供電力,如此控制器僅需調節內部電池之放電或充電。 In some embodiments, the fuel cell can provide power only at the optimal power state, such that the controller only needs to regulate the discharge or charging of the internal battery.

在一些實施例中,例如,燃料電池系統能包含電壓功率轉換器或電壓轉換器,以匹配不同構件之間的電壓。例如,可有一負責燃料電池之電壓與負載的匹配的轉換器,一負責內部電池之電壓與負載的匹配的轉換器,以及負責外部電池之電壓與負載的匹配的轉換器。 In some embodiments, for example, a fuel cell system can include a voltage power converter or voltage converter to match voltages between different components. For example, there may be a converter that is responsible for matching the voltage and load of the fuel cell, a converter that is responsible for matching the voltage and load of the internal battery, and a converter that is responsible for matching the voltage and load of the external battery.

在一些實施例中,例如,內部電池可為小型電池以優化燃料電池系統之效率。小型內部電池能夠處理負載需求的小變動,例如略高或略低於燃料電池之最佳傳輸功率的負載功率。如果電池之容量不夠處理負載需求與燃料電池之最佳功率狀態之間的差值,針對大的變動,外部電源,例如一外部電池,可在高峰負載需求期間對內部電池充電。當內部電池充滿電時外部電池可用於從燃料電池接收電力,例如,當最佳功率高於負載需求時燃料電池在功率轉移流程期間能對外部電池充電。 In some embodiments, for example, the internal battery can be a small battery to optimize the efficiency of the fuel cell system. The small internal battery is capable of handling small variations in load demand, such as load power that is slightly higher or slightly lower than the optimal transmission power of the fuel cell. If the capacity of the battery is insufficient to handle the difference between the load demand and the optimal power state of the fuel cell, for large variations, an external power source, such as an external battery, can charge the internal battery during peak load demand. The external battery can be used to receive power from the fuel cell when the internal battery is fully charged, for example, the fuel cell can charge the external battery during the power transfer process when the optimal power is above the load demand.

在一些實施例中,電源管理系統能在多個功率傳輸模式下操作。第一模式係當負載需求在燃料電池之最佳功率輸出狀態之內。在此模式,燃料電池能在最佳的燃料電池功率效率下傳輸所有電力至負載。第二模式係當負載需求略不同於燃料電池之最佳功率輸出狀態時,例如高於或低於最佳功率區。在此模式,燃料電池仍然能以內部電池供應或接收功率差值而操作在最佳輸出狀態,例如,如果負載需求超過最佳功率輸出,內部電池能夠提供電力差值。如果負載需求小於最佳功率輸出,則功率差值可用於充電內部電池。第三模式係當負載需求顯著不同於燃料電池之最佳功率輸出狀態。在此模式,燃料電池仍然能以外部電池供應或接收電力差值而操作在最佳輸出狀態。例如,如果負載需求超過最佳功率輸出,內部電池能在外部電池充電電力之協助下提供電力差值。例如,燃料電池系統可包含一充電電路,用以讓外部電源以固定電流充電流程對內部電池充電。如果負載需求小於最佳功率輸出,則電力差值可用於充電內部電池及/或外部電池。 In some embodiments, the power management system is capable of operating in multiple power transfer modes. The first mode is when the load demand is within the optimal power output state of the fuel cell. In this mode, the fuel cell can deliver all of the power to the load at optimal fuel cell power efficiency. The second mode is when the load demand is slightly different from the optimal power output state of the fuel cell, such as above or below the optimal power zone. In this mode, the fuel cell can still operate at an optimal output state with an internal battery supply or received power difference, for example, if the load demand exceeds the optimal power output, the internal battery can provide a power difference. If the load demand is less than the optimal power output, the power difference can be used to charge the internal battery. The third mode is when the load demand is significantly different from the optimal power output state of the fuel cell. In this mode, the fuel cell can still operate in an optimal output state with an external battery supply or a received power difference. For example, if the load demand exceeds the optimal power output, the internal battery can provide a power difference with the assistance of external battery charging power. For example, the fuel cell system can include a charging circuit for the external power source to charge the internal battery in a fixed current charging process. If the load demand is less than the optimal power output, the power difference can be used to charge the internal battery and/or the external battery.

第4圖為本案較佳實施例之燃料電池系統。燃料電池系統400包含一燃料電池410、一內部電池420以及一控制器430。控制器430可用以接收外部電池440之電源,例如一外部電池。當傳輸電力給負載490時,燃料電池系統400係利用燃料電池410之最佳功率狀態。控制器430係控制燃料電池410以及內部電池420與外部電池440之功率傳輸,例如,控制內部電池420及/或外部電池440傳輸電力至負載490,或控制燃料電池充電內部電池420及/或外部電池440。控制器430具有燃料電池410之操作特性,例如燃料電池之最佳的操作狀態,以及能夠使用此資訊以控制電力流向電池或從電池流出,藉此以最大化燃料電池410之功率密度。或者,控制器430具有燃料電池410之其他特性,例如放電電流v功率損耗, 以及能夠使用此資訊以判斷燃料電池410之最佳功率狀態。 Figure 4 is a fuel cell system of the preferred embodiment of the present invention. The fuel cell system 400 includes a fuel cell 410, an internal battery 420, and a controller 430. Controller 430 can be used to receive power from external battery 440, such as an external battery. When power is transferred to the load 490, the fuel cell system 400 utilizes the optimal power state of the fuel cell 410. The controller 430 controls the power transfer of the fuel cell 410 and the internal battery 420 and the external battery 440, for example, controlling the internal battery 420 and/or the external battery 440 to transfer power to the load 490, or controlling the fuel cell to charge the internal battery 420 and/or external Battery 440. The controller 430 has operational characteristics of the fuel cell 410, such as an optimal operating state of the fuel cell, and can use this information to control the flow of power to or from the battery, thereby maximizing the power density of the fuel cell 410. Alternatively, controller 430 has other characteristics of fuel cell 410, such as discharge current v power loss, And this information can be used to determine the optimal power state of the fuel cell 410.

例如,控制器430能感測負載490所需要的負載電流495,其超過燃料電池410之最佳功率狀態。控制器430能根據最佳功率狀態指示燃料電池傳輸電流415。控制器430亦能指示內部電池420及/或外部電池440釋出電流425及/或445,其係負載電流495與最佳電流415之間的差值。或者,控制器430能感測負載電流495,其低於燃料電池410之最佳功率狀態。控制器430能根據最佳功率狀態指示燃料電池傳輸電流415。控制器430亦能指示內部電池420及/或440接收充電電流425及/或445,其係最佳電流415與負載電流495之間的差值。如此,內部電池420及/或440能作為一緩衝,讓燃料電池在最佳速率下傳輸電力,在負載需求偶而高於或低於燃料電池之最佳功率狀態下防護燃料電池。 For example, controller 430 can sense the load current 495 required by load 490 that exceeds the optimal power state of fuel cell 410. Controller 430 can indicate fuel cell transmission current 415 based on the optimal power state. Controller 430 can also instruct internal battery 420 and/or external battery 440 to release current 425 and/or 445, which is the difference between load current 495 and optimum current 415. Alternatively, controller 430 can sense load current 495 that is lower than the optimal power state of fuel cell 410. Controller 430 can indicate fuel cell transmission current 415 based on the optimal power state. Controller 430 can also instruct internal battery 420 and/or 440 to receive charging current 425 and/or 445, which is the difference between optimum current 415 and load current 495. As such, the internal batteries 420 and/or 440 can act as a buffer for the fuel cell to transmit power at an optimal rate, protecting the fuel cell when the load demand is occasionally higher or lower than the optimal power state of the fuel cell.

在一些實施例中,燃料電池可僅在最佳功率狀態下提供電力,如此控制器僅需調節內部電池之放電或充電。可包含其他元件,例如電源或電壓轉換器,以及複數個燃料匣連接器。 In some embodiments, the fuel cell can provide power only at the optimal power state, such that the controller only needs to regulate the discharge or charging of the internal battery. Other components may be included, such as a power or voltage converter, and a plurality of fuel port connectors.

可使用其他構造,例如外部電池440可對內部電池420充電,以及從外部電池440傳輸的電力可由內部電池420提供。第5圖為本案較佳實施例之燃料電池系統。燃料電池系統500包含一燃料電池510、一內部電池520以及一控制器530。電路541,例如可增加一具有mini USB連接頭的隔離電路,以連接外部電源,例如外部電池。可增加另一電路550,例如具有標準USB連接頭的隔離電路,以連接外部負載。 Other configurations may be used, such as external battery 440 to charge internal battery 420, and power transmitted from external battery 440 may be provided by internal battery 420. Figure 5 is a fuel cell system of the preferred embodiment of the present invention. The fuel cell system 500 includes a fuel cell 510, an internal battery 520, and a controller 530. Circuit 541, for example, may add an isolation circuit with a mini USB connector to connect an external power source, such as an external battery. Another circuit 550 can be added, such as an isolation circuit with a standard USB connector to connect an external load.

控制器530可透過連接電路541接收外部電源,例如一外部電池。外部電源可釋出電流547對內部電池520充電。當傳輸電力給負載590時,燃料電池系統500係用以利用燃料電池510之最佳功率狀態。控制器530係控制燃料電池510之功率傳輸,例如,從燃料電池510傳輸 電力517至電池520進行充電,或從燃料電池510透過輸出連接電路550傳輸電力515至負載590。控制器530能控制輸出連接電路550從內部電池520增加電力525到燃料電池510輸出的電力515,以提供電力595至負載590。控制器530能控制燃料電池510以優化燃料電池之功率傳輸。 The controller 530 can receive an external power source through the connection circuit 541, such as an external battery. An external power source can release current 547 to charge internal battery 520. When power is delivered to the load 590, the fuel cell system 500 is utilized to utilize the optimal power state of the fuel cell 510. Controller 530 controls the power transfer of fuel cell 510, for example, from fuel cell 510 Power 517 to battery 520 is charged, or power 515 is transmitted from fuel cell 510 through output connection circuit 550 to load 590. The controller 530 can control the output connection circuit 550 to add power 525 from the internal battery 520 to the power 515 output by the fuel cell 510 to provide power 595 to the load 590. Controller 530 can control fuel cell 510 to optimize power transfer of the fuel cell.

在一些實施例中,燃料電池可僅在最佳功率狀態下提供電力,如此控制器僅需調節內部電池之放電或充電。可包含其他元件,例如電源或電壓轉換器,以及複數個燃料匣連接器。 In some embodiments, the fuel cell can provide power only at the optimal power state, such that the controller only needs to regulate the discharge or charging of the internal battery. Other components may be included, such as a power or voltage converter, and a plurality of fuel port connectors.

在一些實施例中,燃料電池系統係提供作為電子裝置的專用充電器。充電系統能包含一燃料電池、一內部電池以及一管理燃料電池以及內部電池的微控制器。可包含額外的電子元件,例如標準USB輸出源,以及mini USB電路連接器以對內部電池充電。 In some embodiments, a fuel cell system provides a dedicated charger as an electronic device. The charging system can include a fuel cell, an internal battery, and a microcontroller that manages the fuel cell and the internal battery. Additional electronics, such as a standard USB output source, and a mini USB circuit connector can be included to charge the internal battery.

第6圖為本案較佳實施例之一包含燃料電池、電池以及功率管理與傳送系統的外部殼體。含有一薄膜電極組件框的燃料電池室610係安置在外殼630內,其包含薄膜電極組件以及電子零件。燃料電池室610亦能包含燃料入口埠及出口埠620。殼體630亦能包含內部電池670、印刷電路板(PCB)組件640、以及電源管理電子平台。USB端650可提供外部連接,例如電力輸出以及電池充電輸入。亦能提供指示器660,例如LED電池指示器以及充電狀態指示器。 Figure 6 is a diagram showing an outer casing of a fuel cell, a battery, and a power management and delivery system in accordance with one embodiment of the present invention. A fuel cell chamber 610 comprising a membrane electrode assembly frame is disposed within a housing 630 that includes a membrane electrode assembly and electronic components. Fuel cell chamber 610 can also include a fuel inlet port and an outlet port 620. The housing 630 can also include an internal battery 670, a printed circuit board (PCB) assembly 640, and a power management electronics platform. The USB port 650 can provide external connections such as power output and battery charging input. An indicator 660, such as an LED battery indicator and a state of charge indicator, can also be provided.

例如,燃料電池能包含能供應1.6V@0.56A(燃料耗盡時可降至0.8V)以及驅動升壓轉換的內部燃料電池,以及一內部電池充電器。內部電池可為鋰離子電池,其為產業標準16850型,2200mAh,3.6V圓筒電池,其具有4.2V端充電電壓。微控制器能包含微功率微處理器,其能夠監控、通訊以及控制電池充電系統。例如,可使用Texas Instruments MSP430G2X53相關產品,其超低功率操作模式以及資源適合此應用。輸出 源連接可為標準USB輸出源,其能與USB-IF相容以作為專用充電埠(DCP)。例如,可藉由燃料電池透過標準USB‘A’連接頭對外部裝置之充電。當供給能量時,USB輸出源可供給5V DC@1A。可由燃料電池供應大於1A的負載,但是可降低電壓。充電源係相容USB-IF以作為一專用充電埠(DCP)。用於內部電池的充電連接可為mini USB輸入源。當連接至外部USB埠,輸入源能透過類比電池充電器對內部電池充電,例如,以正常的100mA充電速率。可增添電路,例如用於偵測外部DCP裝置的偵測電路,藉此能夠對內部電池以更高的速率充電,例如500mA。 For example, a fuel cell can include an internal fuel cell that can supply 1.6V@0.56A (down to 0.8V when fuel is exhausted) and drive boost conversion, as well as an internal battery charger. The internal battery can be a lithium ion battery, which is an industry standard 16850 type, 2200 mAh, 3.6 V cylindrical battery, which has a 4.2 V terminal charging voltage. The microcontroller can include a micropower microprocessor that can monitor, communicate, and control the battery charging system. For example, Texas Instruments MSP430G2X53-related products can be used with ultra-low power operating modes and resources for this application. Output The source connection can be a standard USB output source that is compatible with USB-IF as a dedicated charging port (DCP). For example, the external device can be charged by the fuel cell through a standard USB 'A' connector. When power is supplied, the USB output source can supply 5V DC@1A. A load greater than 1 A can be supplied by the fuel cell, but the voltage can be lowered. The charging source is compatible with USB-IF as a dedicated charging port (DCP). The charging connection for the internal battery can be a mini USB input source. When connected to an external USB port, the input source can charge the internal battery through an analog battery charger, for example, at a normal 100mA charging rate. Circuitry can be added, such as a detection circuit for detecting an external DCP device, whereby the internal battery can be charged at a higher rate, such as 500 mA.

一旦與內部電池電性連接,微控制器可永遠有電。在確認系統情況之後,微控制器進入深睡眠並可因內部或外部情況而被喚醒。電源開關能啟動或關閉標準USB連接的電源以及LED的通訊。閒置期間,綠色LEDs係顯示內部電池充電位準(例如,0至4格)。如果3分鐘(或特定期間)沒有外部連接,則系統關閉。如果燃料電池電壓少於2.2V(或其他特定電壓),則第一個LED將發黃光以表示必須更換燃料電池匣。同樣地,如果偵測到嚴重情況,第一個LED將發紅光以表示有嚴重錯誤情況。 Once electrically connected to the internal battery, the microcontroller can always have power. After confirming the system condition, the microcontroller enters deep sleep and can be woken up due to internal or external conditions. The power switch can activate or deactivate the power of the standard USB connection and the communication of the LEDs. During idle periods, the green LEDs display the internal battery charge level (for example, 0 to 4 cells). If there is no external connection for 3 minutes (or a specific period), the system shuts down. If the fuel cell voltage is less than 2.2V (or other specific voltage), the first LED will glow yellow to indicate that the fuel cell must be replaced. Similarly, if a serious condition is detected, the first LED will glow red to indicate a serious error condition.

啟動標準USB連接輸出源能讓連接裝置開始偵測流程以及啟動充電系統。在慢速連接情況下,連接裝置可能會不適當偵測充電系統。如果3秒內不開始充電,可重新連接裝置。 Initiating a standard USB connection output source allows the connected device to begin the detection process and activate the charging system. In the case of a slow connection, the connection device may not properly detect the charging system. If charging does not start within 3 seconds, reconnect the unit.

從標準USB有電流消耗,四個LED中的第一個LED將改變顏色成藍色,而LEDs將開始掃描流程以透過顯示正標準USB埠充電。只要電流消耗大於40mA(或其他特定電流),則持續LED掃描流程。一旦偵測到電流下降,則可熄滅LEDs並將電源從標準USB埠移除。連接裝置可能提供或可不提供充電完成的指示。 With standard USB current consumption, the first of the four LEDs will change color to blue, and the LEDs will begin the scanning process to charge through the display of a standard USB port. As long as the current consumption is greater than 40mA (or other specific current), the LED scanning process continues. Once the current drop is detected, the LEDs can be extinguished and the power removed from the standard USB port. The connection device may or may not provide an indication that charging is complete.

Mini USB埠能夠自動偵測電源連接,如果需要便對內部電 池充電。標準USB埠目前不供應輸出電力時,四個LED中的第一個LED將改變顏色成橙色的,而LEDs將開始掃描流程以之顯示內部電池正由mini USB埠充電。充電流程從100mA開始。如果實現,偵測到USB接腳D+/D-短路時,可將電池充電速率改變成500mA。切換成500mA充電速率後微控制器將監控USB排線,以確保連接裝置不會過度負載。如果排線正常的電壓5V下降低於4.3V,則微控制器結束500mA充電並改回100mA充電。LED掃描流程係持續直到充電控制器停止充電(例如通常小於50mA)。當完成充電,可關閉充電控制器並保持在關閉狀態直到mini USB電源移除。 Mini USB port automatically detects power connections and internals if needed The pool is charged. When the standard USB port does not currently supply output power, the first of the four LEDs will change color to orange, and the LEDs will begin the scanning process to show that the internal battery is being charged by the mini USB port. The charging process starts at 100mA. If implemented, the battery charge rate can be changed to 500mA when the USB pin D+/D- short circuit is detected. After switching to a 500mA charge rate, the microcontroller will monitor the USB cable to ensure that the connected device is not over-loaded. If the normal voltage of the cable drops 5V below 4.3V, the microcontroller ends the 500mA charging and changes back to 100mA charging. The LED scanning process continues until the charge controller stops charging (eg, typically less than 50 mA). When charging is complete, the charge controller can be turned off and left off until the mini USB power is removed.

充電控制器內可自動對過度放電的電池”預先充電(Pre-charging)”。根據實際的電池電壓,LEDs可適當地不操作(例如變暗或不發光)。 The over-discharged battery can be automatically "pre-charging" in the charge controller. Depending on the actual battery voltage, the LEDs may not operate properly (eg, dim or not).

當內部電池降到3.2V(或其他位準),則微控制器啟動燃料電池充電系統。標準USB或mini USB充電系統都不操作,且四個LED中的第一個LED將改變顏色成綠色,而LEDs將開始掃描流程以之顯示內部電池正由燃料電池充電。一旦電池到達端電壓(例如4.2V),可熄滅LEDs且從燃料電池充電系統移除電源。低燃料電池電壓將導致第一個LED發不同於綠色的黃光,以指示燃料電池匣必須更換。 When the internal battery drops to 3.2V (or other level), the microcontroller activates the fuel cell charging system. The standard USB or mini USB charging system is not operational, and the first of the four LEDs will change color to green, and the LEDs will begin the scanning process to show that the internal battery is being charged by the fuel cell. Once the battery reaches the terminal voltage (eg 4.2V), the LEDs can be extinguished and the power removed from the fuel cell charging system. A low fuel cell voltage will cause the first LED to emit a different yellow light than green to indicate that the fuel cell must be replaced.

當燃料電池電壓下降低於0.7V或電池電壓下降低於2.75V,電路係停止充電。如果此情況發生,以mini USB充電的能夠將電池預先充電至可以被充電的程度或是燃料可替換並操作返回至正常狀態。 When the fuel cell voltage drops below 0.7V or the battery voltage drops below 2.75V, the circuit stops charging. If this happens, charging with the mini USB can pre-charge the battery to the point where it can be charged or the fuel can be replaced and the operation returned to the normal state.

額外的電路可用作一低電壓DC/DC轉換器。如果MPPC失能但曾降低電流,在此情形下轉換器係維持並將操作降到0.25電壓。在兩個模式(MPPC以及非MPPC)之間切換,結合電壓偵測器以及切換能力可將副電池之充電速率最大化。 An additional circuit can be used as a low voltage DC/DC converter. If the MPPC is disabled but has reduced current, the converter is maintained and the operation is reduced to 0.25 voltage in this case. Switching between the two modes (MPPC and non-MPPC), combined with the voltage detector and switching capability, maximizes the charging rate of the secondary battery.

第7A圖至第7C圖為本案較佳實施例之操作具有電源管理系統之燃料電池的流程圖。在第7A圖中,判斷一負載電流之後,負載電流可為分配在燃料電池以及電池之間,以保持燃料電池之最佳功率效率。例如,燃料電池能有一最佳功率狀態,其讓燃料電池之輸出功率最大化。藉由維持燃料電池內的最佳功率狀態,燃料電池能夠操作在最高的效率。電池可供給或接收負載電流與燃料電池之最佳電流之間的差值。在操作700,決定燃料電池系統之一負載電流。在操作710,電源管理系統分配燃料電池以及電池(例如內部電池)之間的負載電流。選擇歸入燃料電池的電流係最佳化燃料電池之功率效率,例如,選擇燃料電池之最佳功率狀態內的電流。如果負載電流高,而內部電池不夠傳輸電流差值,則外部電池可供給剩餘的負載電流,或充電內部電池使其能夠操作。如果負載電流低,而內部電池已充滿電,例如,無法轉移電流差值,則外部電池可接收額外的電流,例如,對外部電池充電。 7A through 7C are flow diagrams showing the operation of a fuel cell having a power management system in accordance with a preferred embodiment of the present invention. In Figure 7A, after determining a load current, the load current can be distributed between the fuel cell and the battery to maintain optimal power efficiency of the fuel cell. For example, a fuel cell can have an optimal power state that maximizes the output power of the fuel cell. By maintaining optimal power conditions within the fuel cell, the fuel cell is capable of operating at peak efficiency. The battery can supply or receive the difference between the load current and the optimal current of the fuel cell. At operation 700, a load current of one of the fuel cell systems is determined. At operation 710, the power management system distributes the load current between the fuel cell and the battery (eg, the internal battery). Selecting the current that is included in the fuel cell optimizes the power efficiency of the fuel cell, for example, selecting the current within the optimal power state of the fuel cell. If the load current is high and the internal battery is insufficient to transmit the current difference, the external battery can supply the remaining load current or charge the internal battery to enable it to operate. If the load current is low and the internal battery is fully charged, for example, the current difference cannot be transferred, the external battery can receive additional current, for example, to charge the external battery.

在第7B圖,判斷負載電流超過燃料電池之最佳電流後,電池可啟動以提供電流差值,使得燃料電池輸出的電流維持在最佳電流,以維護燃料電池之最佳功率效率。在操作740,如果負載電流超過燃料電池之最佳電流,決定燃料電池系統之一負載電流。燃料電池之操作情況可儲存在電源管理系統,如此當偵測並測量負載電流後,可進行比較。在操作750,電源管理系統啟動電池,例如內部電池,以提供電流差值。選擇歸入燃料電池的電流以優化燃料電池之功率效率,例如,選擇燃料電池之最佳功率狀態內的電流。如果而內部電池不夠傳輸電流差值,則外部電池可供給剩餘的負載電流,或充電內部電池使其能夠操作。 In Figure 7B, after determining that the load current exceeds the optimum current of the fuel cell, the battery can be activated to provide a current difference such that the current output by the fuel cell is maintained at an optimum current to maintain optimal power efficiency of the fuel cell. At operation 740, a load current of one of the fuel cell systems is determined if the load current exceeds the optimum current of the fuel cell. The operation of the fuel cell can be stored in the power management system so that when the load current is detected and measured, it can be compared. At operation 750, the power management system activates a battery, such as an internal battery, to provide a current difference. The current that is classified in the fuel cell is selected to optimize the power efficiency of the fuel cell, for example, to select the current within the optimal power state of the fuel cell. If the internal battery is insufficient to transmit the current difference, the external battery can supply the remaining load current or charge the internal battery to enable it to operate.

在第7C圖中,判斷負載電流係低於燃料電池之最佳電流後,可啟動電池充電操作以轉移電流差值,使得燃料電池輸出的電流維持 在最佳電流,以維護燃料電池之最佳功率效率。在操作780,如果負載電流低於燃料電池之最佳電流,決定燃料電池系統之一負載電流。燃料電池之操作情況可儲存在電源管理系統,如此當偵測並測量負載電流後,可進行比較。在操作790,電源管理系統啟動電池充電操作,以接收電流差值。選擇歸入燃料電池的電流以優化燃料電池之功率效率,例如,選擇燃料電池之最佳功率狀態內的電流。如果而內部電池已充滿電,例如,無法轉移電流差值,則外部電池可接收額外的電流,例如,對外部電池充電。 In Figure 7C, after determining that the load current is lower than the optimal current of the fuel cell, the battery charging operation can be initiated to shift the current difference so that the current output of the fuel cell is maintained. The optimum current is used to maintain the optimum power efficiency of the fuel cell. At operation 780, a load current of one of the fuel cell systems is determined if the load current is lower than the optimal current of the fuel cell. The operation of the fuel cell can be stored in the power management system so that when the load current is detected and measured, it can be compared. At operation 790, the power management system initiates a battery charging operation to receive the current difference. The current that is classified in the fuel cell is selected to optimize the power efficiency of the fuel cell, for example, to select the current within the optimal power state of the fuel cell. If the internal battery is fully charged, for example, the current difference cannot be transferred, the external battery can receive additional current, for example, to charge the external battery.

第8A圖至第8B圖為本案較佳實施例之操作具有電源管理系統之燃料電池的流程圖。在第8A圖,判斷負載電流超過燃料電池之最佳電流後,內部電池可啟動以提供電流差值,使得燃料電池輸出的電流維持在最佳電流,以維護燃料電池之最佳功率效率。外部電源,例如外部電池,可啟動對內部電池充電。在操作800,如果負載電流超過燃料電池之最佳電流,決定燃料電池系統之一負載電流。燃料電池之操作情況可儲存在電源管理系統,如此當偵測並測量負載電流後,可進行比較。在操作810,電源管理系統啟動內部電池以提供電流差值。選擇歸入燃料電池的電流以優化燃料電池之功率效率,例如,選擇燃料電池之最佳功率狀態內的電流。在操作820,外部電池可對內部電池充電使內部電池能夠操作。 8A through 8B are flow diagrams of a fuel cell having a power management system in accordance with a preferred embodiment of the present invention. In Figure 8A, after determining that the load current exceeds the optimum current of the fuel cell, the internal battery can be activated to provide a current difference such that the current output by the fuel cell is maintained at an optimum current to maintain optimal power efficiency of the fuel cell. An external power source, such as an external battery, can initiate charging of the internal battery. At operation 800, if the load current exceeds the optimum current of the fuel cell, a load current of one of the fuel cell systems is determined. The operation of the fuel cell can be stored in the power management system so that when the load current is detected and measured, it can be compared. At operation 810, the power management system activates an internal battery to provide a current difference. The current that is classified in the fuel cell is selected to optimize the power efficiency of the fuel cell, for example, to select the current within the optimal power state of the fuel cell. At operation 820, the external battery can charge the internal battery to enable the internal battery to operate.

在第8B圖中,判斷負載電流係低於燃料電池之最佳電流後,可啟動電池充電操作以轉移電流差值,使得燃料電池輸出的電流維持在最佳電流,以維護燃料電池之最佳功率效率。在操作850,如果負載電流低於燃料電池之最佳電流,決定燃料電池系統之一負載電流。燃料電池之操作情況可儲存在電源管理系統,如此當偵測並測量負載電流後,可進行比較。在操作860,電源管理系統啟動電池充電操作,以接收電流差值。充電操作可用於對內部電池或外部電池充電。選擇歸入燃料電池的電流以優 化燃料電池之功率效率,例如,選擇燃料電池之最佳功率狀態內的電流。 In Figure 8B, after determining that the load current is lower than the optimal current of the fuel cell, the battery charging operation can be initiated to shift the current difference so that the current output by the fuel cell is maintained at an optimum current to maintain the best fuel cell. Power efficiency. At operation 850, a load current of one of the fuel cell systems is determined if the load current is lower than the optimal current of the fuel cell. The operation of the fuel cell can be stored in the power management system so that when the load current is detected and measured, it can be compared. At operation 860, the power management system initiates a battery charging operation to receive the current difference. The charging operation can be used to charge the internal or external battery. Select the current into the fuel cell to optimize The power efficiency of a fuel cell, for example, selects the current within the optimal power state of the fuel cell.

在一些實施例中,充電系統包含燃料電池以及電池,藉此改進能量密度以及可攜性與離網使用之效能。 In some embodiments, the charging system includes a fuel cell and a battery, thereby improving energy density and portability and off-grid performance.

在一些實施例中,係揭露用於燃料電池系統的複數個燃料匣,其提供用於燃料電池且容易操作的燃料容置匣。燃料匣為可移除的匣設計構造用以傳送燃料。燃料匣能包含燃料電池之燃料的容器,以及一“被動”機制(即最小的使用者互動或電子式控制機制)來注入燃料以及抽出用於清潔的外來液體或其他液體。燃料匣係提供流體交換,並包含一自行流體噴射機制。 In some embodiments, a plurality of fuel cartridges for a fuel cell system are disclosed that provide a fuel containment crucible for a fuel cell that is easy to operate. The fuel cartridge is designed to be removable to transport fuel. The fuel can contain a container of fuel for the fuel cell, and a "passive" mechanism (ie, minimal user interaction or electronic control mechanism) to inject fuel and extract foreign or other liquid for cleaning. The fuel tether provides fluid exchange and includes a self-fluid injection mechanism.

在一些實施例中,燃料匣包含複數個容器,例如圓筒或其他形狀的腔室,其以似活塞作動移除或填充。可藉由使用者手動、彈簧、壓縮氣體、磁性耦合或重力輔助來驅動活塞頭。 In some embodiments, the fuel cartridge comprises a plurality of containers, such as cylinders or other shaped chambers that are removed or filled in a piston-like action. The piston head can be driven by a user manually, spring, compressed gas, magnetic coupling or gravity assist.

第9A圖至第9E圖為本案較佳實施例之燃料電池匣。在第9A圖,燃料電池匣900包含耦接燃料電池系統940的容器920與925。容器920(硬質容器或可折疊燃料填充袋)可填充燃料電池的燃料,例如酒精。活塞910可提供從容器920注入燃料至燃料電池940。一可選擇的單向閥門,例如截止閥930,可用於容器920以及燃料電池之間的連接,例如,以防止燃料向後流。容器925可為空的,例如填充空氣(或一空的可折疊袋)。容器925可用於儲存從燃料電池流出的流體,例如,用過的燃料。一可選擇的單向閥門,例如截止閥935,可用於容器925以及燃料電池之間的連接,例如,以防止用過的燃料向後流。當活塞910將燃料從容器920推到燃料電池,相同的活塞作動能將用過的燃料從燃料電池推回至空的容器925。活塞910可由使用者手動作動,例如,當燃料耗盡或當功率下降。活塞作動可藉由彈簧、壓縮氣體或磁性耦合機制、或藉由重力來輔助,如此燃料注 入以及抽出能發生在一動作中。 9A to 9E are fuel cell cartridges of the preferred embodiment of the present invention. In FIG. 9A, fuel cell stack 900 includes containers 920 and 925 that are coupled to fuel cell system 940. The container 920 (hard container or collapsible fuel filled bag) can be filled with fuel for the fuel cell, such as alcohol. Piston 910 can provide fuel injection from vessel 920 to fuel cell 940. An optional one-way valve, such as shut-off valve 930, can be used for the connection between the vessel 920 and the fuel cell, for example, to prevent fuel from flowing backwards. The container 925 can be empty, such as filled with air (or an empty collapsible bag). Container 925 can be used to store fluids that flow from the fuel cell, such as used fuel. An optional one-way valve, such as shut-off valve 935, can be used for the connection between vessel 925 and the fuel cell, for example, to prevent used fuel from flowing backwards. When the piston 910 pushes fuel from the vessel 920 to the fuel cell, the same piston kinetic energy pushes the spent fuel from the fuel cell back to the empty vessel 925. The piston 910 can be actuated by a user's hand, for example, when fuel is exhausted or when power is reduced. Piston actuation can be assisted by springs, compressed gas or magnetic coupling mechanisms, or by gravity, so fuel injection In and out can occur in an action.

在第9B圖,匣內燃料傳輸可藉由重力致動,例如,使用重力將用過的燃料從燃料電池排出。燃料電池匣905包含耦接燃料電池系統940的容器950與955。容器950可填充燃料電池的燃料,例如酒精。容器955可為空的,例如填充空氣。容器955可用於儲存從燃料電池流出的流體,例如,用過的燃料。藉由將燃料電池系統940定位高於燃料匣905,用過的燃料能藉由重力從燃料電池流出,朝向空的容器955。燃料能從容器950向上流入燃料電池以填充因用過的燃料移出而變空的燃料電池。可選擇的單向閥門,例如截止閥960與965,可用於容器950/955以及燃料電池之間的連接,例如,以防止流體向後流。 In Figure 9B, the in-furnace fuel delivery can be actuated by gravity, for example, using gravity to expel used fuel from the fuel cell. Fuel cell stack 905 includes containers 950 and 955 that are coupled to fuel cell system 940. The container 950 can fill a fuel of a fuel cell, such as alcohol. The container 955 can be empty, such as filled with air. Container 955 can be used to store fluids that flow from the fuel cell, such as used fuel. By positioning the fuel cell system 940 above the fuel helium 905, the spent fuel can flow out of the fuel cell by gravity, toward the empty vessel 955. Fuel can flow upward from the vessel 950 into the fuel cell to fill the fuel cell that is emptied due to the removal of used fuel. Optional one-way valves, such as shut-off valves 960 and 965, can be used for connection between the vessel 950/955 and the fuel cell, for example, to prevent fluid from flowing backwards.

第9C圖至第9E圖為本案較佳實施例之具有單一填充動作的匣設計。第9C圖顯示注入新的燃料之前的匣構造,其具有用於新燃料的腔室以及用過燃料的腔室。有填充的燃料袋腔970能托住約40毫升燃料之燃料袋。空的燃料袋腔980能托住約40毫升的用過的燃料袋。第9D圖顯示注入新的燃料之後的匣構造,其用過的燃料係填充至空袋。匣殼975在匣內部本體上方滑動。第9E圖顯示一匣耦接一燃料電池。匣設計能包含二袋,一個是空的而另一個係預填充燃料。兩個匣的出口埠990係適用於燃料電池的入口埠。這些埠係經由穿透孔附著至複數個袋。在此有位於燃料電池與匣之間的匣界面。匣界面之功能係用以在加燃料期間閂住匣,並當加燃料動作完成後提供結構機制讓使用者解開匣。另外,匣界面必須確保適當地對準入口埠以及出口埠。 9C through 9E are diagrams of a crucible design having a single filling action in accordance with a preferred embodiment of the present invention. Figure 9C shows the crucible configuration prior to injecting new fuel with a chamber for new fuel and a chamber for spent fuel. A filled fuel bag cavity 970 can hold a fuel bag of about 40 milliliters of fuel. The empty fuel bag cavity 980 can hold about 40 milliliters of used fuel bag. Figure 9D shows the crucible structure after injecting new fuel, with the used fuel being filled into empty pockets. The clamshell 975 slides over the inner body of the crucible. Figure 9E shows a fuel cell coupled to a cell. The 匣 design can contain two bags, one empty and the other prefilled with fuel. The two 匣 outlets 埠 990 are suitable for the inlet 埠 of the fuel cell. These tethers are attached to a plurality of pockets via penetration holes. There is a meandering interface between the fuel cell and the crucible. The function of the 匣 interface is to latch the 匣 during refueling and to provide a structural mechanism for the user to untwist when the refueling action is completed. In addition, the helium interface must ensure proper alignment of the inlet and outlet ports.

第10A圖至第10B圖為本案較佳實施例之單向閥門。在第10A圖,單向閥門1000能包含球1010以及彈簧1015。彈力可用以讓特定的流體通過。例如,閥門能讓推力大於彈力的流體1050流向對抗球將球推 向彈簧。在反向的流體,彈簧推球擋住閥門以阻擋反向的流體。在第10B圖,單向閥門1005能包含導管1030以及在導管內可移動的通氣管1020。通氣管可藉由流體移動而啟動,例如燃料流體或交換的空氣。當通氣管收回時,導管係關閉以阻擋流體。當通氣管延伸時,導管係打開讓流體流通。 10A to 10B are the one-way valves of the preferred embodiment of the present invention. In FIG. 10A, the one-way valve 1000 can include a ball 1010 and a spring 1015. Elasticity can be used to allow a specific fluid to pass. For example, the valve can cause the fluid 1050 with a thrust greater than the elastic force to flow against the ball. To the spring. In the opposite flow, the spring pushes the ball to block the valve to block the reverse fluid. In FIG. 10B, the one-way valve 1005 can include a conduit 1030 and a vent tube 1020 that is movable within the conduit. The snorkel can be activated by fluid movement, such as fuel fluid or exchanged air. When the vent tube is retracted, the catheter is closed to block fluid. When the vent tube is extended, the catheter is opened to allow fluid to circulate.

第11A圖至第11B圖為本案較佳實施例之燃料電池匣。在第11A圖,燃料電池匣1100包含容器1120以及1125以透過埠1130以及1135耦接燃料電池系統。燃料電池匣1100能包含一雙同軸活塞匣,其控制甘油燃料電池(DGFC)或其他燃料電池。雙同心圓筒容器1120以及1125可串聯使用,用過的燃料1127可從燃料電池腔抽出到容器1125(透過埠1135),而新的燃料1117可使用相同匣以及相同直徑格式參數,從容器1120傳送到燃料電池(透過埠1130)。活塞1110可協助將容器1120內的燃料傳輸到燃料電池。此匣構造之優點在於匣的動作軌跡最小化。 11A to 11B are fuel cell cartridges of the preferred embodiment of the present invention. In FIG. 11A, the fuel cell stack 1100 includes containers 1120 and 1125 to couple the fuel cell system through the ports 1130 and 1135. The fuel cell stack 1100 can include a dual coaxial piston bore that controls a glycerin fuel cell (DGFC) or other fuel cell. The dual concentric cylinder vessels 1120 and 1125 can be used in series, the spent fuel 1127 can be withdrawn from the fuel cell chamber to the vessel 1125 (through the crucible 1135), and the new fuel 1117 can use the same crucible and the same diameter format parameters from the vessel 1120 Transfer to the fuel cell (through 埠 1130). The piston 1110 can assist in transferring fuel within the vessel 1120 to the fuel cell. The advantage of this 匣 construction is that the trajectory of the 匣 is minimized.

在第11B圖,所示之燃料匣1105包含燃料儲存室以及用過燃料室1160。活塞1170能夠開始燃料以及用過的燃料之移動,例如透過機械力如彈簧、壓縮氣體、磁性耦合機構或手動施力。燃料可注入1150至燃料電池,而用過的燃料可從燃料電池抽出1155至用過燃料室1160。 In FIG. 11B, the fuel cartridge 1105 is shown to include a fuel storage chamber and a spent fuel chamber 1160. Piston 1170 is capable of initiating movement of fuel and used fuel, such as by mechanical forces such as springs, compressed gases, magnetic coupling mechanisms, or manual force. The fuel can be injected 1150 to the fuel cell, and the spent fuel can be withdrawn 1155 from the fuel cell to the used fuel chamber 1160.

在一些實施例中,燃料電池系統係結合聚合物電極組件(PEA)。除了電源管理系統,燃料電池系統能夠優化燃料電池與燃料之能量密度。 In some embodiments, the fuel cell system incorporates a polymer electrode assembly (PEA). In addition to power management systems, fuel cell systems optimize the energy density of fuel cells and fuels.

在一些實施例中,係提供製造利用陰離子交換膜之鹼性燃料電池的組裝材料以及方法,其結合此陰離子交換膜、油墨催化劑以及電流集電器以取得高程度的催化活性表面區域。此燃料電池能包含:(a)薄膜電極組件(MEA)貼合以及油墨公式、(b)微流體通道、(c)共用燃料以及電解質室,藉此每個燃料室都有多個陰極,以及(d)用於集合電流的整合性 外部匯流排。 In some embodiments, an assembly material and method for making an alkaline fuel cell utilizing an anion exchange membrane are provided that incorporates an anion exchange membrane, an ink catalyst, and a current collector to achieve a high degree of catalytically active surface area. The fuel cell can comprise: (a) a membrane electrode assembly (MEA) fit and an ink formula, (b) a microfluidic channel, (c) a common fuel, and an electrolyte chamber, whereby each fuel chamber has a plurality of cathodes, and (d) for the integration of currents External bus.

在一些實施例中,燃料電池系統能包含一燃料電池以及用於充電系統的電池。燃料電池可為任何種類的燃料電池,例如含有聚合物電解質組件的直接氧化燃料電池,例如使用鹼性電解質以及陰離子交換膜(AEM)的燃料電池,其能提供高燃料濃度(>20%)的被動燃料電池。 In some embodiments, a fuel cell system can include a fuel cell and a battery for a charging system. The fuel cell can be any type of fuel cell, such as a direct oxidation fuel cell containing a polymer electrolyte component, such as a fuel cell using an alkaline electrolyte and an anion exchange membrane (AEM), which can provide a high fuel concentration (>20%). Passive fuel cells.

燃料電池混合系統之效用係依燃料電池系統傳輸比目前能源選項更高能量密度而定。增加能量密度之保證需要燃料電池使用高燃料濃度。大部分使用高燃料濃度的直接燃料電池技術需要複雜以及昂貴BOP元件以有效地使用燃料。這些額外的系統元件係增加成本以及複雜度,並降低了系統可靠性。然而,使用AEM作為燃料電池的電解質之優點在於能使用濃縮的燃料混合物。 The utility of a fuel cell hybrid system depends on the higher energy density of the fuel cell system transmission than current energy options. Increasing the density of energy requires the fuel cell to use a high fuel concentration. Most direct fuel cell technologies that use high fuel concentrations require complex and expensive BOP components to use fuel efficiently. These additional system components add cost and complexity and reduce system reliability. However, the advantage of using AEM as an electrolyte for a fuel cell is that a concentrated fuel mixture can be used.

在一些實施例中,係提供聚合物電極組件(PEA)的組裝方法,PEA能包含電流集電器、聚合物交換薄膜、氣體擴散層、以及主動催化粒子(通常是Pt、Pd、Co、PtRu、PdRu或其合金,結合碳支持或碳表面區域增加材料,如奈米碳管等等)組成的油墨。 In some embodiments, a method of assembling a polymer electrode assembly (PEA) is provided, the PEA can comprise a current collector, a polymer exchange membrane, a gas diffusion layer, and active catalytic particles (typically Pt, Pd, Co, PtRu, PdRu or its alloy, combined with carbon support or carbon surface area to increase the material, such as carbon nanotubes, etc.).

第12圖為本案較佳實施例之聚合物電極組件。在第12A圖,燃料電池包含聚合物薄膜1210、催化劑層1220與1225、氣體擴散層1230與1235、以及電流集電器1250與1255。PEA 1270/1275能包含催化劑層1220/1225、氣體擴散層1230/1235以及電流集電器1250/1255。燃料可供應至PEA之燃料側1240,例如電極1270,而空氣可提供至PEA之空氣側1245,例如電極1275。此組裝可產生複數個表面粗糙的接觸件1260,其被稱為“三相點(triple point)”,燃料反應、燃料減少以及電子傳輸皆出現於此。表面粗糙接觸件係限制燃料電池之操作,例如限制電流產生。 Figure 12 is a polymer electrode assembly of the preferred embodiment of the present invention. In FIG. 12A, the fuel cell includes a polymer film 1210, catalyst layers 1220 and 1225, gas diffusion layers 1230 and 1235, and current collectors 1250 and 1255. PEA 1270/1275 can comprise a catalyst layer 1220/1225, a gas diffusion layer 1230/1235, and a current collector 1250/1255. Fuel may be supplied to the fuel side 1240 of the PEA, such as electrode 1270, while air may be provided to the air side 1245 of the PEA, such as electrode 1275. This assembly can produce a plurality of surface roughened contacts 1260, referred to as "triple points," where fuel reaction, fuel reduction, and electron transport occur. Surface rough contacts limit the operation of the fuel cell, such as limiting current generation.

聚合物薄膜係一離子交換薄膜,用於燃料電池作為陽極及 陰極之間的實體隔離物,且讓離子通過。通常液體離子係以溶液取得,然後經熱處理或化學處理以形成薄膜。例如,可在異丙醇以及其他溶劑中混合5wt%磺化四氟乙烯含氟聚合物以製備Nafion溶液。然後在蒸氣鍋以100-250℃加熱,使得溶液鑄型成薄膜。聚合物薄膜以及其他層,例如電極、催化劑、氣體擴散層可為壓合(press-fitted)或機械相扣以形成聚合物薄膜交換組件。 The polymer film is an ion exchange film for use as a fuel cell as an anode and A physical barrier between the cathodes and letting ions pass. Typically the liquid ions are taken in solution and then heat treated or chemically treated to form a film. For example, a 5 wt% sulfonated tetrafluoroethylene fluoropolymer may be mixed in isopropanol and other solvents to prepare a Nafion solution. It is then heated in a steam pot at 100-250 ° C to allow the solution to be cast into a film. The polymeric film and other layers, such as electrodes, catalysts, gas diffusion layers, may be press-fitted or mechanically snapped to form a polymeric film exchange assembly.

在一些實施例中,係提供一種組裝聚合物交換組件的方法,其可改善上述層之壓合或機械相扣,例如,藉由提供較大面積的“三相點”,顯著增加三相點之粗糙接觸件之數量,其導致例如在電極、催化劑、擴散層以及薄膜之間的三相點之均勻層。 In some embodiments, a method of assembling a polymer exchange assembly is provided that can improve the lamination or mechanical interlocking of the layers described above, for example, by providing a "three-phase point" of a larger area, significantly increasing the triple point The number of rough contacts, which results in a uniform layer of triple points, for example between the electrode, the catalyst, the diffusion layer and the film.

在一些實施例中,組裝方法可包含使用液體單體前驅物或液態離子前驅物以貼合聚合物電極組件的複數層,使得固化之後在複數層之間可發生均勻接觸面積。 In some embodiments, the assembly method can include using a liquid monomer precursor or a liquid ion precursor to conform to a plurality of layers of the polymer electrode assembly such that a uniform contact area can occur between the plurality of layers after curing.

在一些實施例中,係提供組裝薄膜電極組件(例如陰離子交換膜組件)的材料以及方法。薄膜電極組件、電流集電器、外部電性連接器係與複數個微流體通道板相整合。包裝材料可為丙烯酸系、ABS、含氟聚合物或其他相容於KOH或其他用作電解質的鹼性化學物。可藉由氟橡膠貼合材料、丙烯酸貼合材料或其他相容KOH或其他作為電解質之鹼性化學物來達成貼合。 In some embodiments, materials and methods of assembling a thin film electrode assembly, such as an anion exchange membrane module, are provided. The membrane electrode assembly, the current collector, and the external electrical connector are integrated with a plurality of microfluidic channel plates. The packaging material can be acrylic, ABS, fluoropolymer or other alkaline chemistry compatible with KOH or other electrolytes. The bonding can be achieved by a fluororubber bonding material, an acrylic bonding material or other compatible KOH or other alkaline chemistry as an electrolyte.

在此係說明直接將陰離子薄膜貼合至電流集電器的材料以及方法,電流集電器例如導電性網(即不鏽鋼或鎳鉻合金等等)、多孔金屬材料(即鎢、鉭、鎳等等)、半導電材料(即碳、矽、溶膠凝膠或具有半導材料屬性的聚合物轉變陶瓷)或半導性織布以及紙。可使用液體陰離子導電高分子聚合物網狀結構前驅物,來將陰離子導電固體聚合物薄膜貼合至 電流集電器,並當電流集電器以及薄膜托在一起時固化此組件。可選擇陰離子聚合前驅物,使得燃料電池操作期間,陰離子電阻值最小化。陰離子聚合前驅物可包含離子前驅物,其可用以形成交換薄膜,如此讓電極以及交換薄膜之間有極好的黏接。 Herein is a description of materials and methods for directly bonding an anionic film to a current collector, such as a conductive mesh (ie, stainless steel or nichrome, etc.), a porous metal material (ie, tungsten, tantalum, nickel, etc.). , semi-conductive materials (ie carbon, tantalum, sol-gel or polymer-transformed ceramics with semi-conductive material properties) or semi-conductive woven fabrics and paper. A liquid anionic conductive high molecular polymer network precursor can be used to bond the anionically conductive solid polymer film to A current collector that cures the assembly when the current collector and the film are held together. The anionic polymerization precursor can be selected such that the anion resistance value is minimized during fuel cell operation. The anionic polymerization precursor may comprise an ion precursor which may be used to form an exchange film such that there is excellent adhesion between the electrode and the exchange film.

在一些實施例中,在高壓將複數層貼合進行固化之前,薄膜或電極可塗佈離子或單體前驅物。例如,用於Nafion薄膜,可製備液態Nafion前驅物(例如磺化四氟乙烯含氟聚合物)以塗佈薄膜或電極。為了基於有季銨基(-N+Me3)的線性碳氫鏈之離子聚合物的陰離子交換膜,在貼合之前可用離子溶液塗佈薄膜或其他層。離子溶液可包含溶劑(例如酒精)中的離子。離子溶液亦可用於黏結催化劑粒子。 In some embodiments, the film or electrode can be coated with an ionic or monomeric precursor prior to high pressure bonding the plurality of layers for curing. For example, for Nafion films, a liquid Nafion precursor (e.g., a sulfonated tetrafluoroethylene fluoropolymer) can be prepared to coat a film or electrode. For anion exchange membranes based on ionic polymers of linear hydrocarbon chains having a quaternary ammonium group (-N + Me 3 ), the film or other layer may be coated with an ionic solution prior to bonding. The ionic solution can contain ions in a solvent such as alcohol. Ionic solutions can also be used to bond catalyst particles.

第13A圖至第13B圖為本案較佳實施例之薄膜電極組件。在第13A圖,燃料電池包含聚合物薄膜1310、催化劑層1320與1325、氣體擴散層1330與1335、以及電流集電器1350與1355。電極1370/1375可包含催化劑層1320/1325、氣體擴散層1330/1335以及電流集電器1350/1355。燃料1340可供應至電極之一側,例如電極1370,而空氣1345可提供至電極之其他側,例如電極1375。貼合層1390與1395可用於貼合薄膜1310以及電極1370與1375,以產生均勻接觸區域以加強電荷傳輸。 13A to 13B are film electrode assemblies of the preferred embodiment of the present invention. In FIG. 13A, the fuel cell includes a polymer film 1310, catalyst layers 1320 and 1325, gas diffusion layers 1330 and 1335, and current collectors 1350 and 1355. The electrode 1370/1375 can include a catalyst layer 1320/1325, a gas diffusion layer 1330/1335, and a current collector 1350/1355. Fuel 1340 can be supplied to one side of the electrode, such as electrode 1370, while air 1345 can be provided to the other side of the electrode, such as electrode 1375. Flap layers 1390 and 1395 can be used to conform film 1310 and electrodes 1370 and 1375 to create a uniform contact area to enhance charge transport.

在第13B圖,催化劑、氣體擴散以及電流集電器可結合於電極層1354與1359。電極接觸件1352與1357可提供用於外部接觸電極。蓋體1380與1385可包含燃料1340與空氣1345。 In Figure 13B, the catalyst, gas diffusion, and current collectors can be bonded to electrode layers 1354 and 1359. Electrode contacts 1352 and 1357 can be provided for external contact electrodes. Covers 1380 and 1385 can include fuel 1340 and air 1345.

在一些實施例中,貼合層1390與1395可包含液體單體前驅物或液體貼合離子,例如形成交換薄膜的離子前驅物。例如,為陰離子交換膜,可使用陰離子液體單體前驅物。貼合層1390與1395可沉積在薄膜1310或電極上。沉積製程可包含網版印刷、或直接在薄膜、碳布或電流 集電器上塗畫。催化劑油墨合成物,例如,陽極油墨以及陰極油墨,可和液態離子前驅物混合。催化劑油墨溶液可直接網版印刷或塗畫在薄膜上。例如,針對陽極油墨,催化劑油墨溶液可包含5-20wt%鉑釕黑,40至45wt%離子(例如Tokuyama公司的AS-4離子)、以及40至45wt% H2O;針對陰極油墨,催化劑油墨溶液可包含5-20wt%鉑黑、40至45wt%離子(例如Tokuyama公司的AS-4離子)、以及40至45wt%水(H2O)。油墨合成物係性能最佳,其可用於高量生產。 In some embodiments, the conforming layers 1390 and 1395 can comprise a liquid monomer precursor or a liquid conforming ion, such as an ion precursor that forms an exchange film. For example, as an anion exchange membrane, an anionic liquid monomer precursor can be used. Bonding layers 1390 and 1395 can be deposited on film 1310 or electrodes. The deposition process can include screen printing or painting directly on a film, carbon cloth or current collector. Catalyst ink compositions, such as anode inks and cathode inks, can be mixed with a liquid ion precursor. The catalyst ink solution can be directly screen printed or painted onto the film. For example, for the anode ink catalyst ink solution may comprise 5-20wt% platinum ruthenium black, 40 to 45wt% ion (e.g., AS-4 ion Tokuyama Corporation), and 40 to 45wt% H 2 O; ink for cathode, catalyst ink solution may comprise 5-20wt% platinum black, 40 to 45wt% ion (e.g., AS-4 ion Tokuyama Corporation), and 40 to 45wt% water (H 2 O). The ink composition has the best performance and can be used for high volume production.

第14A圖至第14B圖為本案較佳實施例之薄膜交換交換組件的貼合製程。透過液體層貼合離子1490與1495,薄膜1410以及二個電極1450與1455係相貼合。支撐件1480與1485可用於托住此複數層。可施加壓力1460在支撐件上以貼合電極以及薄膜。 14A to 14B are a bonding process of the thin film exchange switching assembly of the preferred embodiment of the present invention. The ions 1490 and 1495 are bonded through the liquid layer, and the film 1410 and the two electrodes 1450 and 1455 are bonded together. Supports 1480 and 1485 can be used to hold the plurality of layers. A pressure 1460 can be applied to the support to conform to the electrodes as well as the film.

在一些實施例中係提供組裝流程,其包含用於不鏽鋼網貼合至陰離子MEA之相對側的溫度、壓力、停壓時間、以及液體貼合離子情況,藉此製造電性接觸的高表面區域。可透過施加壓力以0.1至0.5公噸之間的溫壓將電流集電器/薄膜組件按壓以達成貼合,例如在25mm乘50mm面積的AEM上施加0.25公噸至MEA組件以及離子貼合(例如Tokuyama公司的AS-4離子)。組裝可維持在攝氏80度至160度且在2至30分鐘之間,例如120℃維持5分鐘,然後不須施壓而快速冷卻至室溫,藉此以發生充分的貼合。此貼合之強度藉由拉力測試可證明大於15g。另外,這些固化條件讓貼合於相對側的電流集電器之間絕緣,其可透過數百k歐姆級別的網隊網(screen-to-screen)電阻值確認。 In some embodiments, an assembly process is provided that includes temperature, pressure, dwell time, and liquid conforming ion conditions for the stainless steel mesh to be bonded to the opposite side of the anionic MEA, thereby creating a high surface area for electrical contact . The current collector/membrane assembly can be pressed by applying pressure to a temperature between 0.1 and 0.5 metric tons to achieve a fit, such as applying 0.25 metric tons to the MEA assembly and ion bonding on an AEM of 25 mm by 50 mm area (eg, Tokuyama Corporation) AS-4 ion). The assembly can be maintained at 80 to 160 degrees Celsius and between 2 and 30 minutes, for example at 120 ° C for 5 minutes, and then rapidly cooled to room temperature without applying pressure, whereby a sufficient fit occurs. The strength of this fit can be demonstrated to be greater than 15 g by tensile testing. In addition, these curing conditions insulate the current collectors that are attached to the opposite side, which can be confirmed by a screen-to-screen resistance value of the order of several hundred k ohms.

第15圖繪示一些實施例之加壓以及固化周期。在關閉之前,可施加固定溫度(大約攝氏120度)以及壓力(大約0.26公噸)約5分鐘。 Figure 15 illustrates the pressurization and cure cycles for some embodiments. A fixed temperature (about 120 degrees Celsius) and a pressure (about 0.26 metric tons) can be applied for about 5 minutes before shutting down.

第16圖為本案較佳實施例之組裝薄膜電極組件的流程圖。在操作1600,薄膜或電極係塗有液體離子導電高分子聚合物網狀結構前驅物。離子導電可包含用於陰離子薄膜的陰離子導電,以及用於陰離子交換膜的陰離子導電。液體離子導電高分子聚合物網狀結構前驅物可包含離子,例如使用於薄膜的離子。在操作1610,含有薄膜以及電極的電池組係在高溫與高壓下壓在一起。溫度介於攝氏80度與160度之間。壓力介於0.1以及0.5公噸之間。 Figure 16 is a flow chart of the assembled membrane electrode assembly of the preferred embodiment of the present invention. At operation 1600, the film or electrode system is coated with a liquid ionically conductive high molecular polymer network precursor. Ion conduction can include anion conduction for an anion film, and anion conduction for an anion exchange membrane. The liquid ionically conductive high molecular polymer network precursor may comprise ions, such as ions used in the film. At operation 1610, the battery pack containing the film and the electrode is pressed together at a high temperature and a high pressure. The temperature is between 80 and 160 degrees Celsius. The pressure is between 0.1 and 0.5 metric tons.

在一些實施例中,微流體通道可用於傳輸流體至燃料電池。流體(例如燃料)可傳輸至多個燃料電池,藉此液體進入所有並聯的燃料電池室。燃料可藉由共用流體匯流排以及嵌入式微通道的方式傳輸。空氣可透過微穿孔層傳送,而微穿孔層亦嵌入燃料電池壁中。 In some embodiments, a microfluidic channel can be used to transport fluid to a fuel cell. Fluid (eg, fuel) can be delivered to multiple fuel cells whereby liquid enters all of the parallel fuel cell chambers. Fuel can be transported by means of a shared fluid bus and embedded microchannels. Air is transported through the microperforated layer and the microperforated layer is also embedded in the fuel cell wall.

第17A圖至第17B圖為本案較佳實施例之多個燃料電池共用流體匯流排。薄膜電極組件1730可和罩板1710一同位於燃料室1720以及空氣室1740之間。流體匯流排1790可透過微流體通道1795通過燃料電池,傳輸燃料至每一燃料儲存室1725。 17A to 17B are diagrams showing a plurality of fuel cell shared fluid bus bars of the preferred embodiment of the present invention. The membrane electrode assembly 1730 can be located between the fuel chamber 1720 and the air chamber 1740 along with the cover plate 1710. The fluid busbar 1790 can pass fuel through the microfluidic channel 1795 through the fuel cell to each fuel storage chamber 1725.

第18圖為本案較佳實施例之燃料電池的透視圖。流體匯流排1890可傳輸新的燃料至燃料室1825,以及從燃料室抽出用過的燃料。微流體通道1895可連接流體匯流排1890至複數個燃料室1825。 Figure 18 is a perspective view of a fuel cell of the preferred embodiment of the present invention. The fluid busbar 1890 can transfer new fuel to the fuel chamber 1825 and draw used fuel from the fuel chamber. The microfluidic channel 1895 can connect the fluid busbar 1890 to a plurality of fuel cells 1825.

第19A圖至第19C圖為本案較佳實施例之燃料電池的透視圖。薄膜電極組件1930可和罩板1910一同位於燃料儲存器1920以及空氣儲存器1940之間。流體匯流排1990可傳輸新的燃料至燃料室,以及從燃料室抽出用過的燃料。微流體通道1995可連接流體匯流排1990至複數個燃料室。 19A to 19C are perspective views of a fuel cell of the preferred embodiment of the present invention. The membrane electrode assembly 1930 can be located between the fuel reservoir 1920 and the air reservoir 1940 along with the cover plate 1910. The fluid busbar 1990 can deliver new fuel to the fuel chamber and draw used fuel from the fuel chamber. The microfluidic channel 1995 can connect the fluid busbar 1990 to a plurality of fuel chambers.

在一些實施例中,燃料室可提供燃料以及電解質至多個陽 極。直接甘油燃料電池好處在於最後電池組的格式參數上的彈性、燃料電池(並聯或串聯)之電性狀態之變化性、最後電池組容量最小化以及減少流體通道至電池的複雜度。 In some embodiments, the fuel chamber can provide fuel and electrolyte to multiple anodes pole. The benefits of direct glycerin fuel cells are the flexibility in the final battery pack's format parameters, the variability in the electrical state of the fuel cell (parallel or series), the final battery pack capacity minimization, and the reduced fluid path to battery complexity.

第20A圖至第20B圖為本案較佳實施例之提供燃料至多個陽極的燃料室。具有多個相連接的隔室2025的燃料室2020係提供燃料以及電解質至複數個薄膜電極組件2030。 20A to 20B are views showing a fuel chamber for supplying fuel to a plurality of anodes according to a preferred embodiment of the present invention. A fuel chamber 2020 having a plurality of interconnected compartments 2025 provides fuel and electrolyte to a plurality of membrane electrode assemblies 2030.

第21A圖至第21B圖為本案較佳實施例之提供燃料至多個陽極的燃料室。具有大隔間2125的燃料室2120係提供燃料以及電解質至複數個薄膜電極組件2130。 21A-21B illustrate a fuel chamber providing fuel to a plurality of anodes in accordance with a preferred embodiment of the present invention. A fuel chamber 2120 having a large compartment 2125 provides fuel and electrolyte to a plurality of membrane electrode assemblies 2130.

第22圖為本案較佳實施例之提供燃料至多個陽極的燃料室。燃料室2220係提供燃料及電解質至複數個薄膜電極組件2230。 Figure 22 is a fuel chamber providing fuel to a plurality of anodes in accordance with a preferred embodiment of the present invention. Fuel chamber 2220 provides fuel and electrolyte to a plurality of membrane electrode assemblies 2230.

在一些實施例中,整合性外部匯流排可進行電流收集以減少阻值損耗。如果從產生點集合的電流最小化,則從燃料電池之電產生流的電流集電器之電阻損耗可最小化。因此,有低電阻值與電流集電器在最遠的點應該在策略上圍繞燃料電池以最小化阻值損耗。所描述之設計係利用可從多個並聯或串聯堆疊的電池收集電流的電性匯流排。如果有策略地放置圍繞每一燃料電池,複數個匯流排可最小化阻值損耗。 In some embodiments, the integrated external bus bar can perform current collection to reduce resistance losses. If the current from the set of generated points is minimized, the resistance loss of the current collector from the electrical flow of the fuel cell can be minimized. Therefore, having a low resistance value and the current collector at the farthest point should strategically surround the fuel cell to minimize the resistance loss. The described design utilizes an electrical bus that can collect current from a plurality of batteries stacked in parallel or in series. If strategically placed around each fuel cell, multiple bus bars minimize the resistance loss.

第23A圖至第23B圖為本案較佳實施例之具有整合性匯流排的燃料電池。複數個燃料電池2330係共用一共同匯流排2380以連接燃料電池之電極。 23A to 23B are diagrams showing a fuel cell having an integrated bus bar according to a preferred embodiment of the present invention. A plurality of fuel cells 2330 share a common bus bar 2380 to connect the electrodes of the fuel cell.

在較佳實施例之詳細說明中所提出之具體實施例僅用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆 屬於本發明之範圍。 The specific embodiments of the present invention are intended to be illustrative only and not to limit the invention to the above embodiments, without departing from the spirit of the invention and the following claims. The scope of the situation, the implementation of all changes, It is within the scope of the invention.

400‧‧‧燃料電池系統 400‧‧‧ fuel cell system

410‧‧‧燃料電池 410‧‧‧ fuel cell

415‧‧‧傳輸電流 415‧‧‧Transmission current

420‧‧‧內部電池 420‧‧‧Internal battery

425‧‧‧電流 425‧‧‧ Current

430‧‧‧控制器 430‧‧‧ Controller

440‧‧‧電池 440‧‧‧Battery

445‧‧‧電流 445‧‧‧ Current

490‧‧‧負載 490‧‧‧load

495‧‧‧負載電流 495‧‧‧Load current

Claims (20)

一種燃料電池系統,包含:一燃料電池,係耦接一輸出端;一電池,其中該電池係用以耦接該燃料電池或該輸出端;一電源管理電路,其中該電源管理電路係耦接該燃料電池以及該電池,其中該電源管理電路係用以維持該燃料電池在一最佳功率狀態(optimal power regime),其中該電源管理電路係用以耦接該電池與該輸出端,當一負載超過該燃料電池之該最佳功率時,該電源管理電路係傳遞該電池電源至該輸出端,其中當該負載低於該燃料電池之最佳功率時,該電源管理電路係用以耦接電池與該燃料電池,以該燃料電池之電力充電該電池。 A fuel cell system includes: a fuel cell coupled to an output; a battery, wherein the battery is coupled to the fuel cell or the output; a power management circuit, wherein the power management circuit is coupled The fuel cell and the battery, wherein the power management circuit is configured to maintain the fuel cell in an optimal power regime, wherein the power management circuit is configured to couple the battery to the output, when When the load exceeds the optimal power of the fuel cell, the power management circuit transmits the battery power to the output terminal, wherein the power management circuit is coupled when the load is lower than the optimal power of the fuel cell The battery and the fuel cell charge the battery with the power of the fuel cell. 如申請專利範圍第1項所述之燃料電池系統,其中該電源管理電路包含將該燃料電池配置在該最佳功率的資訊。 The fuel cell system of claim 1, wherein the power management circuit includes information for configuring the fuel cell at the optimal power. 如申請專利範圍第1項所述之燃料電池系統,進一步包含一充電電路,該充電電路耦接該電池,其中該充電電路係用以耦接一外部電源以充電該電池。 The fuel cell system of claim 1, further comprising a charging circuit coupled to the battery, wherein the charging circuit is coupled to an external power source to charge the battery. 如申請專利範圍第3項所述之燃料電池系統,其中當該負載低於該燃料電池之該最佳功率時,該電源管理電路係用以耦接該外部電源與該燃料電池,以該燃料電池之電力充電該外部電源。 The fuel cell system of claim 3, wherein when the load is lower than the optimal power of the fuel cell, the power management circuit is configured to couple the external power source with the fuel cell to the fuel The battery's power is charged to the external power source. 如申請專利範圍第3項所述之燃料電池系統,其中當該負載超過該燃料電池之該最佳功率時,該管理電路係用以耦接外部電源與該電池,以充電該電池。 The fuel cell system of claim 3, wherein the management circuit is configured to couple an external power source and the battery to charge the battery when the load exceeds the optimal power of the fuel cell. 如申請專利範圍第1項所述之燃料電池系統,更包含一同心圓筒燃料匣,其中該同心圓筒燃料匣係透過一似活塞作動(piston-like action)將燃料傳送至該燃料電池,其中該同心圓筒燃料匣係從該燃料電池接收用過的燃料。 The fuel cell system of claim 1, further comprising a concentric cylinder fuel crucible, wherein the concentric cylinder fuel crucible transmits fuel to the fuel cell through a piston-like action. Wherein the concentric cylinder fuel train receives used fuel from the fuel cell. 如申請專利範圍第1項所述之燃料電池系統,其中該燃料電池包含透過一液態離子前驅物與一電極貼合的一薄膜。 The fuel cell system of claim 1, wherein the fuel cell comprises a film bonded to an electrode through a liquid ion precursor. 如申請專利範圍第1項所述之燃料電池系統,其中該燃料電池包含一陰離子交換膜(Anionic Exchange Membrane),用於陽極的鉑-釕(Pt-Ru)催化劑、以及用於陰極的鉑催化劑,其中該陰離子交換膜係透過一陰離子液態離子前驅物貼合該催化劑。 The fuel cell system according to claim 1, wherein the fuel cell comprises an anion exchange membrane (Aionic Exchange Membrane), a platinum-ruthenium (Pt-Ru) catalyst for the anode, and a platinum catalyst for the cathode. Wherein the anion exchange membrane is attached to the catalyst via an anionic liquid ion precursor. 如申請專利範圍第1項所述之燃料電池系統,其中該燃料電池係有複數個,其中該複數個燃料電池係透過一共用流體匯流排以及複數個嵌入式微通道,來接收液體燃料。 The fuel cell system of claim 1, wherein the fuel cell has a plurality of fuel cells, wherein the plurality of fuel cells receive liquid fuel through a common fluid bus bar and a plurality of embedded microchannels. 如申請專利範圍第9項所述之燃料電池系統,其中一燃料室係配置來提供燃料給該複數個燃料電池之複數個陽極。 A fuel cell system according to claim 9 wherein a fuel chamber is configured to provide fuel to a plurality of anodes of the plurality of fuel cells. 如申請專利範圍第9項所述之燃料電池系統,其中複數個整合式匯流排係用以從複數個燃料電池連接複數個電流集電器。 The fuel cell system of claim 9, wherein the plurality of integrated bus bars are used to connect a plurality of current collectors from the plurality of fuel cells. 如申請專利範圍第1項所述之燃料電池系統,更包含一直流對直流轉換器,該直流對直流轉換器係耦接該電池,以轉換該電池之電壓成一負載電壓。 The fuel cell system of claim 1, further comprising a DC-to-DC converter coupled to the battery to convert the voltage of the battery into a load voltage. 如申請專利範圍第1項所述之燃料電池系統,進一步包含一直流對直流轉換器,該直流對直流轉換器係耦接該燃料,以轉換該燃料電池電壓成一負載電壓。 The fuel cell system of claim 1, further comprising a DC-to-DC converter coupled to the fuel to convert the fuel cell voltage into a load voltage. 一種操作燃料電池系統之方法,其中該燃料電池系統包含一燃料電池以及一電池,該方法包含:判斷該燃料電池系統之一負載電流;以及在該燃料電池以及該電池之間分配該負載電流,其中該負載電流之一部分係分配給該燃料電池,以達到該燃料電池之一最佳功率。 A method of operating a fuel cell system, wherein the fuel cell system includes a fuel cell and a battery, the method comprising: determining a load current of the fuel cell system; and distributing the load current between the fuel cell and the battery, One of the load currents is distributed to the fuel cell to achieve an optimum power of the fuel cell. 如申請專利範圍第14項所述之方法,其中該負載電流中分配給該燃料電池之該部分係小於該負載電流,其中該剩餘負載電流係由該電池提供。 The method of claim 14, wherein the portion of the load current that is distributed to the fuel cell is less than the load current, wherein the remaining load current is provided by the battery. 如申請專利範圍第14項所述之方法,其中該負載電流中分配給該燃料電池的該部分係大於該負載電流,其中由該燃料電池傳送的電流以及該負載電流之間的差異,係用以充電該電池。 The method of claim 14, wherein the portion of the load current allocated to the fuel cell is greater than the load current, wherein the difference between the current delivered by the fuel cell and the load current is used To charge the battery. 如申請專利範圍第14項所述之方法,其中該燃料電池系統進一步包含一電源管理電路,其中該電源管理電路係用以分配該燃料電池以及該電池之間的該負載電流。 The method of claim 14, wherein the fuel cell system further comprises a power management circuit, wherein the power management circuit is configured to distribute the load current between the fuel cell and the battery. 如申請專利範圍第14項所述之方法,其中該電源管理電路係維持該燃料電池在該最佳功率。 The method of claim 14, wherein the power management circuit maintains the fuel cell at the optimum power. 一種操作燃料電池系統之方法,其中該燃料電池系統包含一燃料電池、一內部電池、以及一外部電源,該方法包含:判斷該燃料電池系統之一負載電流;在該燃料電池以及該內部電池之間分配該負載電流,其中該負載電流中分配給該燃料電池之一部分係用以達到該燃料電池之一最佳功率;以及以該外部電源充電該內部電池。 A method of operating a fuel cell system, wherein the fuel cell system includes a fuel cell, an internal battery, and an external power source, the method comprising: determining a load current of the fuel cell system; and the fuel cell and the internal battery The load current is distributed between the portion of the load current that is allocated to the fuel cell to achieve an optimum power of the fuel cell; and the internal battery is charged with the external power source. 如申請專利範圍第14項所述之方法,其中該燃料電池系統進一步包含一電源管理電路,其中該電源管理電路係用以分配該燃料電池以及該電池之間的該負載電流。 The method of claim 14, wherein the fuel cell system further comprises a power management circuit, wherein the power management circuit is configured to distribute the load current between the fuel cell and the battery.
TW103116767A 2013-05-11 2014-05-12 Charging system containing a fuel cell and battery with materials and methods of assembly for a fuel cell utilizing an anionic exchange membrane and fuel cell cartridge designs TWI543427B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201313892242A 2013-05-11 2013-05-11

Publications (2)

Publication Number Publication Date
TW201501396A TW201501396A (en) 2015-01-01
TWI543427B true TWI543427B (en) 2016-07-21

Family

ID=51898796

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103116767A TWI543427B (en) 2013-05-11 2014-05-12 Charging system containing a fuel cell and battery with materials and methods of assembly for a fuel cell utilizing an anionic exchange membrane and fuel cell cartridge designs

Country Status (2)

Country Link
TW (1) TWI543427B (en)
WO (1) WO2014186240A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836320B (en) * 2015-05-26 2017-12-01 武汉众宇动力系统科技有限公司 A kind of fuel cell system control method and fuel cell system
TWI560933B (en) * 2016-03-14 2016-12-01 Nat Univ Chin Yi Technology Power bank module utilizing light-weight proton exchange membrane fuel cell (pemfc)
US11667202B2 (en) 2017-03-08 2023-06-06 A3 Labs LLC Energy source supply systems, energy source supply devices, and related methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482091B2 (en) * 2003-07-09 2009-01-27 The Gillette Company Fuel cartridge interconnect for portable fuel cells
KR100709840B1 (en) * 2005-08-17 2007-04-23 삼성에스디아이 주식회사 Lithium rechargeable battery and Hybrid cell using the same
WO2008028049A2 (en) * 2006-08-30 2008-03-06 Wispi.Net Hybrid power system
KR100946472B1 (en) * 2007-12-13 2010-03-10 현대자동차주식회사 Fuel cell hybrid system
US8980491B2 (en) * 2010-06-16 2015-03-17 Apple Inc. Fuel cell system to power a portable computing device

Also Published As

Publication number Publication date
WO2014186240A1 (en) 2014-11-20
TW201501396A (en) 2015-01-01

Similar Documents

Publication Publication Date Title
JP3715610B2 (en) Fuel cell fuel supply source
EP2929582B1 (en) Flow battery with voltage-limiting device
US11302939B2 (en) Direct liquid fuel cell power generation device
TW200527745A (en) Method and apparatus for filling a fuel container
TW200537730A (en) Cartridge with fuel supply and membrane electrode assembly stack
US20160093925A1 (en) In-situ electrolyte preparation in flow battery
TWI543427B (en) Charging system containing a fuel cell and battery with materials and methods of assembly for a fuel cell utilizing an anionic exchange membrane and fuel cell cartridge designs
US9853454B2 (en) Vanadium redox battery energy storage system
JP2016204743A (en) Hydrogen production apparatus comprising third electrode and hydrogen production method
KR20090005076A (en) Hydrogen supply for micro fuel cells
WO2010084836A1 (en) Fuel cell system and electronic device
CN101853957B (en) Fuel cell system
KR101899626B1 (en) Gas generator with combined gas flow valve and pressure relief vent
EP1830428B1 (en) A recovery unit for a fuel cell and method of controlling same
KR101945529B1 (en) Flow Battery
US20110294027A1 (en) Fuel cell system and a method for controlling the fuel cell system
JP2010211942A (en) Portable feeder system
KR102091449B1 (en) Redox flow cell system with cross electrolyte tanks.
EP4181239A1 (en) Electrochemical cell
CN108390083A (en) A kind of composite regenerative fuel battery system discharge operating mode startup method
CN206134829U (en) Fuel cell belt
Zhou et al. The core system design for new kilowatt aluminum-air battery
US20130260284A1 (en) Fuel cell system
Novotny et al. Colourful Chemistry–from Hybrid Flow Batteries to a Powerful Redox Flow Battery with Impressive Colour Changes for a Phenomenological Approach
Mittelsteadt et al. Advanced Unitized Regenerative Fuel Cell Technology for Lunar Missions

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees