TWI542896B - Radiation parameter setting method of positioning signal - Google Patents

Radiation parameter setting method of positioning signal Download PDF

Info

Publication number
TWI542896B
TWI542896B TW103124416A TW103124416A TWI542896B TW I542896 B TWI542896 B TW I542896B TW 103124416 A TW103124416 A TW 103124416A TW 103124416 A TW103124416 A TW 103124416A TW I542896 B TWI542896 B TW I542896B
Authority
TW
Taiwan
Prior art keywords
positioning signal
mobile terminal
positioning
radiation parameter
radiation
Prior art date
Application number
TW103124416A
Other languages
Chinese (zh)
Other versions
TW201512691A (en
Inventor
Hisanori Matsumoto
Makoto TANIKAWARA
Tomohisa Kohiyama
Original Assignee
Hitachi Industry Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industry Equipment Systems Co Ltd filed Critical Hitachi Industry Equipment Systems Co Ltd
Publication of TW201512691A publication Critical patent/TW201512691A/en
Application granted granted Critical
Publication of TWI542896B publication Critical patent/TWI542896B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/022Means for monitoring or calibrating
    • G01S1/024Means for monitoring or calibrating of beacon transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters

Description

定位信號之放射參數設定方法 Radiation parameter setting method of positioning signal

本發明係關於一種用以將使用無線通信之定位系統之定位信號之放射參數最佳化之設定方法、及應用該設定方法之定位系統者。 The present invention relates to a setting method for optimizing radiation parameters of a positioning signal using a positioning system using wireless communication, and a positioning system to which the setting method is applied.

近年來,使用室內GPS(IMES:Indoor Messaging System)、無線LAN、UWB-IR(Ultra Wideband-Impulse Radio:超寬頻脈衝無線電)、超音波等之室內定位系統受到關注(參照例如專利文獻1)。一般於室內定位系統中,藉由以使用者持有之移動終端等接收自設置於牆壁或天花板等之定位信號發送機(或發送接收機)傳送而來之定位信號而推斷當前位置。位置推斷係已知利用信號之強度、到達時間、到來方向等之方法、或將位置資訊直接載於信號之方法。 In recent years, indoor positioning systems using indoor GPS (IMES: Indoor Messaging System), wireless LAN, UWB-IR (Ultra Wide Band-Impulse Radio), and ultrasonic waves have been attracting attention (see, for example, Patent Document 1). Generally, in an indoor positioning system, a current position is estimated by receiving a positioning signal transmitted from a positioning signal transmitter (or a transmitter) provided on a wall or a ceiling, such as a mobile terminal held by a user. Position estimation is a method of using signal strength, arrival time, arrival direction, etc., or a method of directly carrying position information on a signal.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

專利文獻1:日本特開2009-85928號公報 Patent Document 1: Japanese Laid-Open Patent Publication No. 2009-85928

於如上所述之室內定位系統中,利用電磁波或音波等、於空間傳播之信號之情形時,根據天花板、牆壁、日常用具等之位置或材質等之傳播環境之條件不同,信號之發送接收之品質受到較大影響。因此,定位信號發送機發送定位信號時之放射參數必須配合傳播環境而最佳化。再者,根據利用定位系統提供之場所資訊服務之內容不同, 對各個定位信號之接收區域之寬度之要求不同,為了構築與服務之要求一致之定位系統亦必須調整放射參數。 In the indoor positioning system as described above, when a signal propagating in space such as an electromagnetic wave or an acoustic wave is used, the signal is transmitted and received depending on the conditions of the propagation environment such as the position or material of the ceiling, the wall, and the daily appliance. Quality is greatly affected. Therefore, the radiation parameters when the positioning signal transmitter transmits the positioning signal must be optimized in accordance with the propagation environment. Furthermore, depending on the content of the location information service provided by the location system, The requirements for the width of the receiving area of each positioning signal are different, and the positioning parameters must be adjusted in order to construct a positioning system consistent with the service requirements.

然而,於遍及廣範圍之建築物內(例如機場、車站、地下街等)構築定位系統之情形時,由於設置之定位信號發送機之數量較為巨大,故較理想為進行各個定位信號發送機之放射參數之最佳化之機構儘可能簡便。 However, in the case of constructing a positioning system in a wide-ranging building (for example, an airport, a station, an underground street, etc.), since the number of positioning signal transmitters provided is relatively large, it is preferable to perform radiation of each positioning signal transmitter. The mechanism for optimizing the parameters is as simple as possible.

因此,本發明係鑑於此種要求而完成者,其代表性之目的在於提供一種將定位信號發送機之放射參數最佳化之簡便方法。 Accordingly, the present invention has been made in view of such a need, and a representative object thereof is to provide a simple method of optimizing the radiation parameters of a positioning signal transmitter.

本發明之上述以及其他目的與新穎之特徵應可自本說明書之記述及附加圖式明瞭。 The above and other objects and novel features of the present invention will be apparent from the description and appended claims.

若簡單說明本案所揭示之發明中之代表性者之概要,則如以下所述。 A brief description of the representative of the invention disclosed in the present invention will be described below.

(1)代表性之定位信號之放射參數設定方法,係用於設定定位信號發送機之定位信號之放射參數之設定方法。上述定位信號之放射參數設定方法係利用具備定位部、資料通信部、控制部、及使用者介面部之移動終端作為設定工具,而將上述定位信號發送機之定位信號之放射參數最佳化。 (1) A method for setting a radiation parameter of a representative positioning signal is a method for setting a radiation parameter of a positioning signal of a positioning signal transmitter. The radiological parameter setting method of the positioning signal is to use a positioning unit, a data communication unit, a control unit, and a mobile terminal of the user's face as a setting tool to optimize the radiation parameters of the positioning signal of the positioning signal transmitter.

更佳為,上述定位信號之放射參數設定方法係於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下進行。尤其具有如下步驟:第1步驟,其係一面掃描上述定位信號發送機之上述定位信號之放射參數,一面計測上述移動終端中之上述定位信號之接收位準;及第2步驟,其係以使上述移動終端中之上述定位信號之接收位準成為規定值以上之值之方式選擇上述放射參數。 More preferably, the radio frequency parameter setting method of the positioning signal is performed by the operator holding the mobile terminal standing at at least one reference point of the receiving area, and connecting the state of the mobile terminal and the positioning signal transmitter by a data communication line. Go on. In particular, the first step is: measuring the receiving level of the positioning signal in the mobile terminal while scanning the radiation parameter of the positioning signal of the positioning signal transmitter; and the second step The radiation parameter is selected such that the reception level of the positioning signal in the mobile terminal becomes a value equal to or greater than a predetermined value.

或者,上述定位信號之放射參數設定方法係於持有上述移動終 端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下進行。尤其具有如下步驟:第1步驟,其係以上述移動終端接收上述定位信號發送機之上述定位信號,且將該接收位準記錄於上述移動終端內之記憶體;及第2步驟,其係於上述移動終端基於上述接收位準計算放射參數之最佳值,且將該放射參數之最佳值發送至上述定位信號發送機。 Alternatively, the method for setting the radiation parameter of the positioning signal is to hold the above mobile terminal The operator of the terminal stands at at least one reference point in the receiving area, and is connected in a state where the data communication line is connected to the mobile terminal and the positioning signal transmitter. In particular, the first step is: the first step of receiving, by the mobile terminal, the positioning signal of the positioning signal transmitter, and recording the receiving level in a memory in the mobile terminal; and the second step The mobile terminal calculates an optimal value of the radiation parameter based on the received level, and transmits the optimal value of the radiation parameter to the positioning signal transmitter.

(2)代表性之定位系統具有:定位信號發送機;及移動終端,其具備定位部、資料通信部、控制部、及使用者介面部,且作為將上述定位信號發送機之定位信號之放射參數最佳化之設定工具而被利用。 (2) A representative positioning system includes: a positioning signal transmitter; and a mobile terminal having a positioning unit, a data communication unit, a control unit, and a user interface, and as a radiation of a positioning signal of the positioning signal transmitter The parameter optimization tool is used.

更佳為,上述定位系統係於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下使用。尤其上述定位信號發送機掃描上述定位信號之放射參數,於該掃描之期間,上述移動終端計測上述定位信號之接收位準,上述移動終端以使上述定位信號之接收位準成為規定值以上之值之方式選擇上述放射參數。 More preferably, the positioning system is used when the operator holding the mobile terminal stands at at least one reference point in the receiving area and connects the mobile terminal and the positioning signal transmitter by a data communication line. In particular, the positioning signal transmitter scans the radiation parameter of the positioning signal, and during the scanning, the mobile terminal measures the receiving level of the positioning signal, and the mobile terminal sets the receiving level of the positioning signal to a value equal to or greater than a predetermined value. The above radiological parameters are selected in a manner.

或者,上述定位系統係於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下使用。尤其上述移動終端接收上述定位信號發送機之上述定位信號,並將該接收位準記錄於上述移動終端內之記憶體,且上述移動終端基於上述接收位準計算放射參數之最佳值,並將該放射參數之最佳值發送至上述定位信號發送機。 Alternatively, the positioning system is used when the operator holding the mobile terminal stands at at least one reference point in the receiving area and is connected to the mobile terminal and the positioning signal transmitter by a data communication line. In particular, the mobile terminal receives the positioning signal of the positioning signal transmitter, and records the receiving level in a memory in the mobile terminal, and the mobile terminal calculates an optimal value of the radiation parameter based on the receiving level, and The optimum value of the radiation parameter is sent to the above positioning signal transmitter.

若簡單說明藉由本案所揭示之發明中之代表性者所獲得之效果,則如以下所述。 The effects obtained by the representative of the invention disclosed in the present invention will be briefly described as follows.

即,代表性之效果係可使根據定位信號之傳播環境將放射參數最佳化之作業效率化。 That is, the representative effect is to make it possible to optimize the operation of optimizing the radiation parameters in accordance with the propagation environment of the positioning signal.

1‧‧‧定位信號發送機 1‧‧‧ Positioning signal transmitter

1A‧‧‧定位信號發送機 1A‧‧‧ Positioning signal transmitter

2‧‧‧移動終端 2‧‧‧Mobile terminal

2A‧‧‧移動終端 2A‧‧‧Mobile terminals

3‧‧‧定位信號 3‧‧‧ Positioning signal

4‧‧‧資料通信線路 4‧‧‧data communication lines

5‧‧‧定位部 5‧‧‧ Positioning Department

5A‧‧‧IMES發送機 5A‧‧‧IMES transmitter

5a‧‧‧定位信號用天線(放射器、發光部) 5a‧‧‧Anatomy signal antenna (radiator, light-emitting unit)

7‧‧‧資料通信部 7‧‧‧Information and Communication Department

7A‧‧‧藍牙 7A‧‧‧Bluetooth

7a‧‧‧資料通信用天線 7a‧‧‧Data communication antenna

8‧‧‧控制部 8‧‧‧Control Department

8A‧‧‧微控制單元 8A‧‧‧Micro Control Unit

8B‧‧‧記憶體 8B‧‧‧ memory

9‧‧‧定位部 9‧‧‧ Positioning Department

9A‧‧‧GPS接收機 9A‧‧‧GPS receiver

10‧‧‧定位信號用天線(接收機、受光部) 10‧‧‧ Positioning signal antenna (receiver, light receiving unit)

11‧‧‧資料通信部 11‧‧‧Information and Communication Department

11A‧‧‧藍牙 11A‧‧‧Bluetooth

12‧‧‧資料通信用天線 12‧‧‧Data communication antenna

13‧‧‧控制部 13‧‧‧Control Department

13A‧‧‧微處理單元 13A‧‧‧Microprocessing unit

14‧‧‧使用者介面部 14‧‧‧Users face

14A‧‧‧觸控屏 14A‧‧‧ touch screen

15‧‧‧陣列天線裝置 15‧‧‧Array antenna device

16‧‧‧控制電路 16‧‧‧Control circuit

21‧‧‧主天線元件 21‧‧‧Main antenna components

22-1~4‧‧‧副天線元件 22-1~4‧‧‧Auxiliary antenna elements

23‧‧‧電力分配器 23‧‧‧Power distributor

24‧‧‧電力分配器 24‧‧‧Power distributor

25‧‧‧振幅調整器 25‧‧‧Amplitude adjuster

26‧‧‧可變移相器 26‧‧‧Variable Phase Shifter

27‧‧‧振幅調整器 27‧‧‧Amplitude adjuster

28‧‧‧微控制單元 28‧‧‧Micro Control Unit

29‧‧‧印刷基板 29‧‧‧Printing substrate

31‧‧‧店鋪(花店) 31‧‧‧ shop (flower shop)

32‧‧‧位置資訊服務中之接收區域 32‧‧‧Receiving area in location information service

33‧‧‧定位信號發送機之設置位置及ID 33‧‧‧Setting position and ID of the positioning signal transmitter

34‧‧‧接收中之定位信號之ID與信號強度之列表 34‧‧‧List of ID and signal strength of the positioning signal in reception

35‧‧‧「定位信號計測命令」按鈕 35‧‧‧"Location Signal Measurement Command" button

36‧‧‧「放射參數最佳化命令」按鈕 36‧‧‧"Radio Parameter Optimization Command" button

50‧‧‧定位區域 50‧‧‧Location area

60‧‧‧作業者 60‧‧‧ Operators

d‧‧‧距離 D‧‧‧distance

S101~S109‧‧‧步驟 S101~S109‧‧‧Steps

S201~S210‧‧‧步驟 S201~S210‧‧‧Steps

圖1係顯示本發明之實施形態1之定位系統中,放射參數之設定方法之處理流程之一例之流程圖。 Fig. 1 is a flow chart showing an example of a processing flow of a method of setting a radiation parameter in the positioning system according to the first embodiment of the present invention.

圖2係顯示本發明之實施形態1之定位系統中,放射參數之設定作業之情況之一例之模式圖。 Fig. 2 is a schematic view showing an example of a setting operation of a radiation parameter in the positioning system according to the first embodiment of the present invention.

圖3係顯示本發明之實施形態1之定位系統中,定位信號發送機之一例之方塊圖。 Fig. 3 is a block diagram showing an example of a positioning signal transmitter in the positioning system according to the first embodiment of the present invention.

圖4係顯示本發明之實施形態1之定位系統中,移動終端之一例之方塊圖。 Fig. 4 is a block diagram showing an example of a mobile terminal in the positioning system according to the first embodiment of the present invention.

圖5係顯示本發明之實施形態2之定位系統中,定位信號發送機之一例之方塊圖。 Fig. 5 is a block diagram showing an example of a positioning signal transmitter in the positioning system according to the second embodiment of the present invention.

圖6係顯示本發明之實施形態2之定位系統中,移動終端之一例之方塊圖。 Fig. 6 is a block diagram showing an example of a mobile terminal in the positioning system according to the second embodiment of the present invention.

圖7係顯示本發明之實施形態2之定位系統中,陣列天線裝置之一例之方塊圖。 Fig. 7 is a block diagram showing an example of an array antenna device in the positioning system according to the second embodiment of the present invention.

圖8係顯示本發明之實施形態2之定位系統中,陣列天線之一例之佈局圖。 Fig. 8 is a layout view showing an example of an array antenna in the positioning system according to the second embodiment of the present invention.

圖9係顯示本發明之實施形態2之定位系統中,陣列天線之放射圖案計算結果之一例之特性圖。 Fig. 9 is a characteristic diagram showing an example of a calculation result of a radiation pattern of an array antenna in the positioning system according to the second embodiment of the present invention.

圖10係顯示本發明之實施形態3之定位系統中,移動終端之使用者介面畫面之一例之模式圖。 Fig. 10 is a schematic view showing an example of a user interface screen of the mobile terminal in the positioning system according to the third embodiment of the present invention.

圖11係顯示本發明之實施形態4之定位系統中,放射參數之設定方法之處理流程之一例之流程圖。 Fig. 11 is a flow chart showing an example of a processing flow of a method of setting a radiation parameter in the positioning system according to the fourth embodiment of the present invention.

於以下實施形態中,為了方便起見,於有必要時,分割成複數個部分或實施形態進行說明,但除了特別明示之情形以外,其等並非 彼此無關係者,存在一者係另一者之一部分或全部之變化例、細節、補充說明等之關係。又,於以下實施形態中,提及要素之數等(包含個數、數值、量、範圍等)之情形時,除了特別明示之情形及原理上明確限定於特定之數之情形等以外,並非限定於該特定之數者,亦可為特定之數以上或以下。 In the following embodiments, for the sake of convenience, a plurality of parts or embodiments will be described as necessary, but unless otherwise specified, they are not If there is no relationship with each other, there is a relationship between one or all of the changes, details, supplementary explanations, etc. of one of the other. In addition, in the following embodiments, when the number of elements (including the number, the numerical value, the quantity, the range, and the like) is mentioned, the case is not specifically limited to a specific number, and the like is not specifically described. The number limited to the specific number may be a specific number or more.

再者,於以下實施形態中,其構成要素(亦包含要素步驟等)係除了特別明示之情形及認為原理上明確為必須之情形等以外,當然並非必須。同樣地,於以下實施形態中,提及構成要素等之形狀、位置關係等時,除了特別明示之情形及認為原理上明確並非如此之情形等以外,包含實質上與該形狀等近似或類似者等。此點對上述數值及範圍亦為相同。 Further, in the following embodiments, the constituent elements (including the element steps and the like) are of course not necessary except for the case where it is specifically indicated and the case where it is considered to be essential in principle. Similarly, in the following embodiments, when the shape, the positional relationship, and the like of the constituent elements and the like are mentioned, except for the case where it is specifically indicated and the case where it is considered that the principle is not the case, it is substantially similar or similar to the shape or the like. Wait. This point is also the same for the above values and ranges.

[實施形態之概要] [Summary of Embodiments]

首先,對實施形態之概要進行說明。於本實施形態之概要中,作為一例,於括弧內標註實施形態之對應之構成要素、符號等進行說明。 First, the outline of the embodiment will be described. In the outline of the present embodiment, constituent elements, symbols, and the like corresponding to the embodiments will be described in the parentheses as an example.

(1)本實施形態之代表性之定位信號之放射參數設定方法,係用於設定定位信號發送機(定位信號發送機1、1A)之定位信號之放射參數之設定方法。上述定位信號之放射參數設定方法係利用具備定位部、資料通信部、控制部、及使用者介面部之移動終端(移動終端2、2A)作為設定工具,而將上述定位信號發送機之定位信號之放射參數最佳化。 (1) The radiation parameter setting method of the representative positioning signal of the present embodiment is a method for setting the radiation parameters of the positioning signals of the positioning signal transmitters (positioning signal transmitters 1, 1A). The radio frequency parameter setting method of the positioning signal uses a positioning unit, a data communication unit, a control unit, and a user-facing mobile terminal (mobile terminal 2, 2A) as a setting tool to set a positioning signal of the positioning signal transmitter. The radiation parameters are optimized.

更佳為,上述定位信號之放射參數設定方法係於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下進行。尤其具有如下步驟:第1步驟(S105),其係一面掃描上述定位信號發送機之上述定位信號之放射參數,一面計測上述移動終端中之上述定位信號之接 收位準;及第2步驟(S108),其係以使上述移動終端中之上述定位信號之接收位準成為規定值以上之值之方式,來選擇上述放射參數。 More preferably, the radio frequency parameter setting method of the positioning signal is performed by the operator holding the mobile terminal standing at at least one reference point of the receiving area, and connecting the state of the mobile terminal and the positioning signal transmitter by a data communication line. Go on. In particular, the first step (S105) is to measure the radiation parameter of the positioning signal of the positioning signal transmitter while measuring the positioning signal in the mobile terminal. And the second step (S108), wherein the radiation parameter is selected such that a receiving level of the positioning signal in the mobile terminal is a value equal to or greater than a predetermined value.

或者,上述定位信號之放射參數設定方法,係於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下進行。尤其具有如下步驟:第1步驟(S205),其係以上述移動終端接收上述定位信號發送機之上述定位信號,且將該接收位準記錄於上述移動終端內之記憶體;及第2步驟(S208、209),其係於上述移動終端基於上述接收位準計算放射參數之最佳值,且將該放射參數之最佳值發送至上述定位信號發送機。 Alternatively, the radio parameter setting method of the positioning signal is performed when the operator holding the mobile terminal stands at at least one reference point of the receiving area, and connects the mobile terminal and the positioning signal transmitter with a data communication line. get on. In particular, the method has the following steps: a first step (S205), wherein the mobile terminal receives the positioning signal of the positioning signal transmitter, and records the receiving level in a memory in the mobile terminal; and a second step ( S208, 209), wherein the mobile terminal calculates an optimal value of the radiation parameter based on the receiving level, and sends the optimal value of the radiation parameter to the positioning signal transmitter.

(2)本實施形態之代表性之定位系統具有:定位信號發送機(定位信號發送機1、1A);及移動終端(移動終端2、2A),其具備定位部、資料通信部、控制部、及使用者介面部,且作為將上述定位信號發送機之定位信號之放射參數最佳化之設定工具而被利用。 (2) A representative positioning system of the present embodiment includes: a positioning signal transmitter (positioning signal transmitter 1, 1A); and a mobile terminal (mobile terminal 2, 2A) including a positioning unit, a data communication unit, and a control unit. And the user interface, and is used as a setting tool for optimizing the radiation parameters of the positioning signal of the positioning signal transmitter.

更佳為,上述定位系統係於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下使用。尤其,上述定位信號發送機掃描上述定位信號之放射參數,於該掃描之期間,上述移動終端計測上述定位信號之接收位準,上述移動終端以使上述定位信號之接收位準成為規定值以上之值之方式,來選擇上述放射參數。 More preferably, the positioning system is used when the operator holding the mobile terminal stands at at least one reference point in the receiving area and connects the mobile terminal and the positioning signal transmitter by a data communication line. In particular, the positioning signal transmitter scans the radiation parameter of the positioning signal, and during the scanning, the mobile terminal measures the receiving level of the positioning signal, and the mobile terminal sets the receiving level of the positioning signal to a predetermined value or more. The value of the way to select the above radiation parameters.

或者,上述定位系統係於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下使用。尤其,上述移動終端接收上述定位信號發送機之上述定位信號,並將該接收位準記錄於上述移動終端內之記憶體,且上述移動終端基於上述接收位準計算放射參數之最佳值,並將該放射參數之最佳值發送至上述定位信號發送機。 Alternatively, the positioning system is used when the operator holding the mobile terminal stands at at least one reference point in the receiving area and is connected to the mobile terminal and the positioning signal transmitter by a data communication line. In particular, the mobile terminal receives the positioning signal of the positioning signal transmitter, and records the receiving level in a memory in the mobile terminal, and the mobile terminal calculates an optimal value of the radiation parameter based on the receiving level, and The optimum value of the radiation parameter is sent to the above positioning signal transmitter.

以下,基於圖式詳細說明基於上述實施形態之概要之各實施形態。另,於用以說明各實施形態之所有圖中,對具有相同功能之構件原則上標註相同符號或關連之符號,並省略其重複之說明。 Hereinafter, each embodiment based on the outline of the above embodiment will be described in detail based on the drawings. In the drawings, the same reference numerals are attached to the components having the same functions, and the description thereof will be omitted.

[實施形態1] [Embodiment 1]

使用圖1~圖4說明本實施形態1之定位系統、該定位系統之放射參數之設定方法。本實施形態之定位系統係應用於室內定位系統者。 The positioning system of the first embodiment and the method of setting the radiation parameters of the positioning system will be described with reference to Figs. 1 to 4 . The positioning system of this embodiment is applied to an indoor positioning system.

<定位系統之放射參數之設定方法> <How to set the radiation parameters of the positioning system>

使用圖1之流程圖及圖2之模式圖說明本實施形態之放射參數之設定方法之處理流程。 The processing flow of the setting method of the radiation parameter of the present embodiment will be described using the flowchart of Fig. 1 and the schematic diagram of Fig. 2.

圖2係顯示放射參數之設定作業之情況之一例之模式圖。本實施形態之定位系統具備:定位信號發送機1;及移動終端2,其係作為用於設定該定位信號發送機1之定位信號之放射參數之設定工具而被利用。 Fig. 2 is a schematic view showing an example of a case where a setting operation of a radiation parameter is performed. The positioning system of the present embodiment includes a positioning signal transmitter 1 and a mobile terminal 2, which are used as a setting tool for setting a radiation parameter of a positioning signal of the positioning signal transmitter 1.

定位信號發送機1係設置於室內之天花板或牆壁等。較佳為,於初始狀態,定位信號3停止,資料通信線路4形成之資料通信信號係等待連接之狀態。但,根據設置作業時、或自設置至放射參數設定作業之期間中之維護之情況等,定位信號3不必必須停止。 The positioning signal transmitter 1 is installed in a ceiling or a wall of an indoor room. Preferably, in the initial state, the positioning signal 3 is stopped, and the data communication signal formed by the data communication line 4 is in a state of waiting for connection. However, the positioning signal 3 does not have to be stopped depending on whether the maintenance is performed during the setting operation or during the period from the setting to the radiation parameter setting operation.

放射參數之設定作業係於持有移動終端2之作業者60站立於接收區域即定位區域50之至少1個基準點(較理想為複數個基準點),且以資料通信線路4連接有移動終端2與定位信號發送機1之狀態下執行。 The setting operation of the radiation parameter is performed by the operator 60 holding the mobile terminal 2 standing at at least one reference point (preferably a plurality of reference points) of the positioning area 50 in the receiving area, and the mobile terminal is connected by the data communication line 4. 2 is executed in the state of the positioning signal transmitter 1.

基於圖1說明放射參數之設定方法之作業之流程。圖1係顯示放射參數之設定方法之處理流程之一例之流程圖。 The flow of the operation of the setting method of the radiation parameters will be described based on Fig. 1 . Fig. 1 is a flow chart showing an example of a processing flow of a method of setting a radiation parameter.

首先,作業者60係於放射參數之設定工具即移動終端2、與定位信號發送機1之間連接資料通信線路4(S101)。藉由與移動終端2之資料通信線路4之連接,定位信號發送機1切換成「參數設定模式」,成為受理來自移動終端2之命令之狀態(S102)。 First, the operator 60 is connected to the data communication line 4 between the mobile terminal 2, which is a setting tool of the radiation parameter, and the positioning signal transmitter 1, (S101). By the connection with the data communication line 4 of the mobile terminal 2, the positioning signal transmitter 1 is switched to the "parameter setting mode", and the command from the mobile terminal 2 is accepted (S102).

接著,作業者60移動至由位置資訊服務要求之接收區域即定位區域50內之基準點(較佳為定位區域50之邊界附近)(S104),執行「定位信號計測命令」。當執行「定位信號計測命令」時,定位信號發送機1掃描定位信號3之放射參數,於掃描之期間,移動終端2進行定位信號3之接收位準之計測(S105)。 Next, the operator 60 moves to a reference point (preferably near the boundary of the positioning area 50) in the positioning area 50 which is the receiving area requested by the location information service (S104), and executes the "positioning signal measurement command". When the "positioning signal measurement command" is executed, the positioning signal transmitter 1 scans the radiation parameters of the positioning signal 3, and during the scanning, the mobile terminal 2 performs measurement of the reception level of the positioning signal 3 (S105).

藉由該處理,可獲得基準點之放射參數與接收位準之關係。所謂放射參數係較佳為定位信號3之發送電力、放射方向、主束半值寬、偏光角等。又,所謂接收位準係較佳為RSSI(Received Signal Strength Indication:接收信號強度指示)、SNR(Signal-Noise Ratio:信噪比)、CNR(Carrier-Noise Ratio:載噪比)等。基準點可僅為1個,但較理想為以覆蓋定位區域50整體之方式採用複數點。 By this processing, the relationship between the radiation parameter of the reference point and the reception level can be obtained. The radiation parameter is preferably the transmission power of the positioning signal 3, the radiation direction, the main beam half-value width, the polarization angle, and the like. Further, the reception level is preferably RSSI (Received Signal Strength Indication), SNR (Signal-Noise Ratio), CNR (Carrier-Noise Ratio), and the like. The reference point may be only one, but it is preferable to use a plurality of points in such a manner as to cover the entire positioning area 50.

於採用複數點基準點之情形時,於移動終端2,首先將基準點之計數值i設定為初始值之「1」(S103),使持有移動終端2之作業者60移動至定位區域50內之第i號基準點(S104)。其後,定位信號發送機1掃描定位信號3之放射參數,移動終端2計測定位信號3之接收位準(S105)。然後,於移動終端2,判斷是否於所有基準點完成了計測(S106)。該判斷之結果為未完成之情形(S106-no)時,將計數值i增量(i←i+1)(S107),返回至S104,使持有移動終端2之作業者60移動至定位區域50內之第(i+1)號基準點而重複相同之處理。對此重複進行直至完成所有基準點上之計測。 When the complex point reference point is used, the mobile terminal 2 first sets the count value i of the reference point to "1" of the initial value (S103), and causes the operator 60 holding the mobile terminal 2 to move to the positioning area 50. The i-th reference point (S104). Thereafter, the positioning signal transmitter 1 scans the radiation parameters of the positioning signal 3, and the mobile terminal 2 measures the receiving level of the bit signal 3 (S105). Then, at the mobile terminal 2, it is judged whether or not the measurement is completed at all the reference points (S106). When the result of the determination is that the result is not completed (S106-no), the count value i is incremented (i←i+1) (S107), and the process returns to S104 to move the operator 60 holding the mobile terminal 2 to the positioning. The same processing is repeated for the (i+1)th reference point in the area 50. This is repeated until the measurement at all reference points is completed.

於在所有基準點完成了「定位信號計測命令」之處理之時點(S106-yes),於移動終端2執行「放射參數最佳化命令」後,基於各基準點上之計測結果,執行放射參數之最佳化(S108)。最佳化係以於所有基準點使接收位準成為規定值以上之方式執行。此處所謂規定值係相對於例如移動終端2中之定位信號3之最低接收感度大6dB之值等。 When the processing of the "positioning signal measurement command" is completed at all the reference points (S106-yes), after the "radiation parameter optimization command" is executed by the mobile terminal 2, the radiation parameters are executed based on the measurement results at the respective reference points. Optimization (S108). The optimization is performed in such a manner that all the reference points have the reception level become a predetermined value or more. Here, the predetermined value is a value which is 6 dB larger than the lowest reception sensitivity of the positioning signal 3 in the mobile terminal 2, for example.

此處,可以移動終端2側之處理器進行最佳化之處理,且僅將經最佳化之放射參數以資料通信發送至定位信號發送機1,亦可使移動終端2將定位信號3之接收位準計測值發送至定位信號發送機1,且以定位信號發送機1側之處理器執行最佳化之處理。 Here, the processor on the mobile terminal 2 side can perform optimization processing, and only the optimized radiological parameters are sent to the positioning signal transmitter 1 by data communication, and the mobile terminal 2 can also make the positioning signal 3 The received level measurement value is sent to the positioning signal transmitter 1, and the processing of the optimization is performed by the processor on the positioning signal transmitter 1 side.

其後,定位信號發送機1係設定成經最佳化之放射參數,切換成「通常模式」,切斷資料通信線路4而開始定位信號3之發送(S109)。 Thereafter, the positioning signal transmitter 1 sets the optimized radiation parameter, switches to the "normal mode", and cuts off the data communication line 4 to start transmission of the positioning signal 3 (S109).

<定位信號發送機> <positioning signal transmitter>

圖3係顯示本實施形態之定位信號發送機1之一例之方塊圖。定位信號發送機1具備定位部5(LOC)、定位信號用天線5a、資料通信部7(TRANS)、資料通信用天線7a、及控制部8(CONT-U)。 Fig. 3 is a block diagram showing an example of the positioning signal transmitter 1 of the embodiment. The positioning signal transmitter 1 includes a positioning unit 5 (LOC), a positioning signal antenna 5a, a data communication unit 7 (TRANS), a data communication antenna 7a, and a control unit 8 (CONT-U).

定位部5係較佳為IMES、無線LAN、UWB-IR等之主要利用UHF帶~SHF帶之頻率之RF信號之通信機構、或利用超音波、紅外線、可視光等之通信機構。定位部5為利用超音波或紅外線、可視光之通信機構之情形時,定位信號用天線5a分別成為放射器及發光部。 The positioning unit 5 is preferably a communication mechanism that mainly uses an RF signal of a frequency of a UHF band to an SHF band, such as an IMES, a wireless LAN, or a UWB-IR, or a communication mechanism that uses ultrasonic waves, infrared rays, visible light, or the like. When the positioning unit 5 is a communication mechanism using ultrasonic waves, infrared rays, or visible light, the positioning signal antenna 5a serves as a radiator and a light-emitting portion, respectively.

資料通信部7係較佳為基於無線LAN、藍牙(註冊商標,以下省略表述)、特定小電力無線等之通信規格之無線機。 The data communication unit 7 is preferably a wireless device based on communication specifications such as wireless LAN, Bluetooth (registered trademark, hereinafter omitted), and specific small power wireless.

亦可藉由於定位與資料通信使用相同通信機構,使一個無線機擔負定位部5與資料通信部7之兩者之功能。於此處所使用之通信機構,例如可應用IMES、無線LAN、UWB-IR等。藉由以一個無線機構成定位部5與資料通信部7,可期待機器之小型化、低成本化。 It is also possible to have one wireless device function as both the positioning unit 5 and the data communication unit 7 by using the same communication mechanism for positioning and data communication. For the communication mechanism used here, for example, IMES, wireless LAN, UWB-IR, or the like can be applied. By constituting the positioning unit 5 and the data communication unit 7 by one wireless device, it is expected that the size and cost of the device can be reduced.

控制部8解釋經由資料通信部7自移動終端2傳送而來之命令,而控制定位部5之動作(放射參數等)。又,將定位部5之狀況等經由資料通信部7發送至移動終端2。 The control unit 8 interprets the command transmitted from the mobile terminal 2 via the data communication unit 7, and controls the operation (radiation parameter, etc.) of the positioning unit 5. Moreover, the status of the positioning unit 5 and the like are transmitted to the mobile terminal 2 via the data communication unit 7.

<移動終端> <mobile terminal>

圖4係顯示本實施形態之移動終端2之一例之方塊圖。移動終端2具備定位部9(LOC)、定位信號用天線10、資料通信部11(TRANS)、資 料通信用天線12、控制部13(CONT-U)、及使用者介面部14(UI)。 Fig. 4 is a block diagram showing an example of the mobile terminal 2 of the embodiment. The mobile terminal 2 includes a positioning unit 9 (LOC), a positioning signal antenna 10, and a data communication unit 11 (TRANS). The material communication antenna 12, the control unit 13 (CONT-U), and the user interface 14 (UI).

定位部9係較佳為IMES、無線LAN、UWB-IR等之主要利用UHF帶~SHF帶之頻率之RF信號之通信機構、或利用超音波、紅外線、可視光等之通信機構。定位部9為利用超音波或紅外線、可視光之通信機構之情形時,定位信號用天線10分別成為接收器及受光部。 The positioning unit 9 is preferably a communication mechanism that mainly uses an RF signal of a frequency of a UHF band to an SHF band, such as an IMES, a wireless LAN, or a UWB-IR, or a communication mechanism that uses ultrasonic waves, infrared rays, visible light, or the like. When the positioning unit 9 is a communication mechanism using ultrasonic waves, infrared rays, or visible light, the positioning signal antenna 10 serves as a receiver and a light receiving unit, respectively.

資料通信部11係較佳為基於無線LAN、藍牙、特定小電力無線等之通信規格之無線機。 The data communication unit 11 is preferably a wireless device based on communication specifications such as wireless LAN, Bluetooth, or specific small power wireless.

亦可藉由於定位與資料通信使用相同通信機構,使一個無線機擔負定位部9與資料通信部11之兩者之功能。於此處所使用之通信機構,例如可應用IMES、無線LAN、UWB-IR等。藉由以一個無線機構成定位部9與資料通信部11,可期待機器之小型化、低成本化。 It is also possible to have one wireless device function as both the positioning unit 9 and the data communication unit 11 by using the same communication mechanism for positioning and data communication. For the communication mechanism used here, for example, IMES, wireless LAN, UWB-IR, or the like can be applied. By constituting the positioning unit 9 and the data communication unit 11 by one wireless device, it is expected that the size and cost of the device can be reduced.

控制部13控制定位部9或資料通信部11之動作。 The control unit 13 controls the operation of the positioning unit 9 or the material communication unit 11.

使用者介面部14具有輸入使用者介面與輸出使用者介面之2個功能。例如,可使輸入使用者介面為鍵盤,輸出使用者介面為液晶顯示器,而成為不同器件,亦可藉由使用觸控面板顯示器等而以1個器件兼具輸入使用者介面與輸出使用者介面。 The user interface 14 has two functions of inputting a user interface and outputting a user interface. For example, the input user interface may be a keyboard, the output user interface may be a liquid crystal display, and the device may be a different device, and the input user interface and the output user interface may be combined by one device by using a touch panel display or the like. .

於移動終端2中,控制部13係根據作業者60自使用者介面部14輸入之命令,控制定位部9或資料通信部11之動作。 In the mobile terminal 2, the control unit 13 controls the operation of the positioning unit 9 or the material communication unit 11 based on an instruction input by the operator 60 from the user interface 14.

<實施形態1之效果> <Effect of Embodiment 1>

根據以上說明之本實施形態之定位系統、該定位系統之放射參數之設定方法,可藉由利用移動終端2作為設定工具,將定位信號發送機1之定位信號之放射參數最佳化。藉此,可提供將定位信號發送機1之放射參數最佳化之簡便方法。其結果,可使根據定位信號之傳播環境將放射參數最佳化之作業效率化。更詳細係如以下所述。 According to the positioning system of the present embodiment described above and the method of setting the radiation parameters of the positioning system, the radiation parameters of the positioning signal of the positioning signal transmitter 1 can be optimized by using the mobile terminal 2 as a setting tool. Thereby, a simple method of optimizing the radiation parameters of the positioning signal transmitter 1 can be provided. As a result, it is possible to streamline the operation of optimizing the radiation parameters in accordance with the propagation environment of the positioning signal. More details are as follows.

(11)於本實施形態中,於持有移動終端2之作業者60站立於定位區域50之基準點,且以資料通信線路連接有移動終端2與定位信號發 送機1之狀態下進行放射參數之設定。首先,一面掃描定位信號發送機1之定位信號之放射參數,一面計測移動終端2中之定位信號之接收位準。再者,以使移動終端2中之定位信號之接收位準成為規定值以上之值之方式,來選擇放射參數。然後,定位信號發送機1可設定成以使定位信號之接收位準於所有基準點成為規定值以上之方式所選擇之放射參數。 (11) In the present embodiment, the operator 60 holding the mobile terminal 2 stands at the reference point of the positioning area 50, and the mobile terminal 2 and the positioning signal are connected by the data communication line. The radiation parameter is set in the state of the delivery machine 1. First, the reception level of the positioning signal in the mobile terminal 2 is measured while scanning the radiation parameters of the positioning signal of the positioning signal transmitter 1. Furthermore, the radiation parameter is selected such that the reception level of the positioning signal in the mobile terminal 2 becomes a value equal to or greater than a predetermined value. Then, the positioning signal transmitter 1 can be set to a radiation parameter selected such that the reception level of the positioning signal is equal to or higher than the predetermined value of all the reference points.

(12)作為定位信號發送機1之定位信號,可將利用室內GPS、無線LAN、UWB-IR等之通信方式之定位信號作為對象。 (12) As the positioning signal of the positioning signal transmitter 1, a positioning signal using a communication method such as indoor GPS, wireless LAN, or UWB-IR can be used as a target.

(13)作為定位信號發送機1之定位信號之放射參數,可將定位信號之發送電力、放射方向、主束半值寬、偏光角等之放射參數作為對象。 (13) As the radiation parameter of the positioning signal of the positioning signal transmitter 1, the radiation parameters such as the transmission power, the radiation direction, the main beam half-value width, and the polarization angle of the positioning signal can be targeted.

(14)作為移動終端2中之接收位準,可將RSSI、SNR、CNR等之接收位準作為對象。 (14) As the reception level in the mobile terminal 2, the reception levels of RSSI, SNR, CNR, and the like can be targeted.

(15)作為移動終端2之使用者介面部14,可將觸控面板顯示器等之使用者介面作為對象。 (15) As the user interface 14 of the mobile terminal 2, a user interface such as a touch panel display can be targeted.

[實施形態2] [Embodiment 2]

使用圖5~圖9說明本實施形態2之定位系統、該定位系統之放射參數之設定方法。於本實施形態中,相對於上述實施形態1,對室內定位系統之更具體之例進行說明。以下,主要說明與上述實施形態1不同之點。 The positioning system of the second embodiment and the method of setting the radiation parameters of the positioning system will be described with reference to Figs. 5 to 9 . In the present embodiment, a more specific example of the indoor positioning system will be described with respect to the first embodiment. Hereinafter, differences from the above-described first embodiment will be mainly described.

<定位信號發送機> <positioning signal transmitter>

圖5係顯示本實施形態之定位信號發送機1A之一例之方塊圖。於圖5所示之定位信號發送機1A中,定位部5係IMES發送機5A(IMES-TRANS),資料通信部7係藍牙(7A)。又,作為控制部8,具備微控制單元8A(MCU)及記憶體8B(MEM)。定位信號用天線5a係陣列天線裝置15,以控制電路16(CONT-C)控制各天線元素之參數。 Fig. 5 is a block diagram showing an example of the positioning signal transmitter 1A of the present embodiment. In the positioning signal transmitter 1A shown in FIG. 5, the positioning unit 5 is an IMES transmitter 5A (IMES-TRANS), and the data communication unit 7 is Bluetooth (7A). Further, the control unit 8 includes a micro control unit 8A (MCU) and a memory 8B (MEM). The positioning signal antenna 5a is an array antenna device 15, and the parameters of the respective antenna elements are controlled by the control circuit 16 (CONT-C).

圖5所示之定位信號發送機1A之各區塊可分別模組化而以母基板等連接,亦可將所有區塊安裝於一片印刷基板上而實現。 Each block of the positioning signal transmitter 1A shown in FIG. 5 can be modularized and connected by a mother board or the like, or can be realized by mounting all the blocks on one printed circuit board.

<移動終端> <mobile terminal>

圖6係顯示本實施形態之移動終端2A之一例之方塊圖。於圖6所示之移動終端2A中,定位部9係可接收IMES信號之GPS接收機9A(GPS-REC),資料通信部11係藍牙(11A)。又,具備微處理單元13A(MPU)作為控制部13,具備觸控屏14A(TS)作為使用者介面部14。 Fig. 6 is a block diagram showing an example of the mobile terminal 2A of the embodiment. In the mobile terminal 2A shown in FIG. 6, the positioning unit 9 is a GPS receiver 9A (GPS-REC) that can receive an IMES signal, and the data communication unit 11 is a Bluetooth (11A). Further, a micro processing unit 13A (MPU) is provided as the control unit 13, and a touch panel 14A (TS) is provided as the user interface 14 .

作業者60可使用觸控屏14A進行操作。於移動終端2A,安裝有用以進行放射參數之設定作業之專用之應用程式軟體,設法可以對話形式輸入輸出作業流程而進行簡易之操作。移動終端2A可為用以進行本作業之專用終端,但較佳為利用搭載有GPS接收功能或藍牙通信功能等之市售之平板終端或智慧型手機等。該情形時,應用程式軟體係可使用Android(註冊商標)等之開放之開發環境製作。 The operator 60 can operate using the touch screen 14A. In the mobile terminal 2A, a dedicated application software for setting a radiation parameter is installed, and it is possible to perform an easy operation by inputting and outputting a workflow in a dialog format. The mobile terminal 2A may be a dedicated terminal for performing the present operation, but it is preferably a commercially available tablet terminal or smart phone equipped with a GPS receiving function or a Bluetooth communication function. In this case, the application software system can be created using an open development environment such as Android (registered trademark).

<陣列天線裝置> <array antenna device>

圖7係顯示本實施形態之陣列天線裝置15之一例之方塊圖。陣列天線裝置15具備主天線元件21、副天線元件22-1~4、及控制電路16。控制電路16具備電力分配器23、24(DIV)、振幅調整器25、27(A)、可變移相器26(Φ)、及控制用之微控制單元28(MCU)。 Fig. 7 is a block diagram showing an example of the array antenna device 15 of the embodiment. The array antenna device 15 includes a main antenna element 21, sub antenna elements 22-1 to 4, and a control circuit 16. The control circuit 16 includes power distributors 23 and 24 (DIV), amplitude adjusters 25 and 27 (A), a variable phase shifter 26 (Φ), and a micro control unit 28 (MCU) for control.

微控制單元28係根據來自定位信號發送機1A之微控制單元8A之命令,設定來自IMES發送機5A之定位信號之振幅、及副天線元件22-1~4之振幅與移相。來自IMES發送機5A之定位信號之振幅係藉由振幅調整器27之調整而設定。於副天線元件22-1~4中,振幅係藉由振幅調整器25之調整而設定,移相係藉由可變移相器26之可變而設定。藉由適當選擇該等值,可控制自陣列天線裝置15放射之電波之最大增益及主束半值寬。 The micro control unit 28 sets the amplitude of the positioning signal from the IMES transmitter 5A and the amplitude and phase shift of the sub antenna elements 22-1 to 4 in accordance with a command from the micro control unit 8A of the positioning signal transmitter 1A. The amplitude of the positioning signal from the IMES transmitter 5A is set by the adjustment of the amplitude adjuster 27. In the sub-antenna elements 22-1 to 4, the amplitude is set by the adjustment of the amplitude adjuster 25, and the phase shift is set by the variable phase shifter 26. By appropriately selecting the equivalent value, the maximum gain of the electric wave radiated from the array antenna device 15 and the main beam half value width can be controlled.

<陣列天線之佈局> <Layout of Array Antenna>

圖8係顯示圖7所示之陣列天線裝置15之陣列天線之一例之佈局圖。陣列天線具備主天線元件21、及副天線元件22-1~4。 Fig. 8 is a layout view showing an example of an array antenna of the array antenna device 15 shown in Fig. 7. The array antenna includes a main antenna element 21 and sub antenna elements 22-1 to 4.

以主天線元件21為中心,旋轉對稱地配置副天線元件22-1~4。主天線元件21與副天線元件22-1~4之距離d係IMES信號之載波之波長之1/4。即,為約47.6mm。於圖8中,陣列天線係配置於印刷基板29上,各天線元件可為晶片天線,亦可為圖案天線。 The sub antenna elements 22-1 to 4 are arranged in rotational symmetry about the main antenna element 21. The distance d between the main antenna element 21 and the sub-antenna elements 22-1 to 4 is 1/4 of the wavelength of the carrier of the IMES signal. That is, it is about 47.6 mm. In FIG. 8, the array antennas are disposed on the printed circuit board 29, and each of the antenna elements may be a chip antenna or a pattern antenna.

<陣列天線之放射圖案計算結果> <Architectural Radiation Pattern Calculation Results>

圖9係顯示圖7及圖8所示之陣列天線之放射圖案計算結果之一例之特性圖。於圖9中,橫軸表示天線之放射角(Elevation angle),縱軸表示增益(Directivity),各圖表係以最大放射方向之電力規格化。 Fig. 9 is a characteristic diagram showing an example of the calculation result of the radiation pattern of the array antenna shown in Figs. 7 and 8. In FIG. 9, the horizontal axis represents the Elevation angle of the antenna, and the vertical axis represents the gain. Each graph is normalized by the power of the maximum radiation direction.

若將主天線元件21之供電電壓設為E1,將副天線元件22-1~4之供電電壓設為E2,則藉由使E1/E2以0~3變化,可控制陣列天線裝置15放射之電波之主束半值寬。於圖9之例中,E1/E2=3時,主束半值寬變窄,指向性最尖銳(強),隨著E1/E2變小,主束半值寬變寬,指向性變弱。 When the power supply voltage of the main antenna element 21 is E 1 and the power supply voltage of the sub antenna elements 22-1 to 4 is E 2 , the array antenna can be controlled by changing E 1 /E 2 by 0 to 3. The main beam of the radio wave radiated by the device 15 has a half value width. In the example of Fig. 9, when E 1 /E 2 =3, the half-value width of the main beam is narrowed, and the directivity is sharpest (strong). As E 1 /E 2 becomes smaller, the half-value width of the main beam becomes wider. Directivity is weak.

於本實施形態之構成中,可將定位信號用天線(陣列天線裝置15)之最大增益與主束之半值寬作為放射參數,根據上述之實施形態1所說明之作業流程,實施定位信號發送機1A之放射參數之最佳化。另,作為放射參數,除了主束半值寬以外,定位信號3之發送電力、放射方向、偏光角等亦成為對象。 In the configuration of the present embodiment, the maximum gain of the positioning signal antenna (array antenna device 15) and the half value width of the main beam can be used as the radiation parameters, and the positioning signal transmission can be performed according to the operation flow described in the first embodiment. Optimization of the radiation parameters of machine 1A. Further, as the radiation parameter, in addition to the main beam half value width, the transmission power, the radiation direction, the polarization angle, and the like of the positioning signal 3 are also targeted.

<實施形態2之效果> <Effects of Embodiment 2>

根據以上說明之本實施形態之定位系統、該定位系統之放射參數之設定方法,於室內定位系統之更具體之例中,可獲得與上述之實施形態1相同之效果。再者,與上述之實施形態1不同之效果係如以下所述。 According to the positioning system of the present embodiment described above and the method of setting the radiation parameters of the positioning system, in a more specific example of the indoor positioning system, the same effects as those of the above-described first embodiment can be obtained. Further, the effects different from the above-described first embodiment are as follows.

(21)作為定位信號發送機1A,可分別對定位部5使用IMES發送機 5A,對資料通信部7使用藍牙(7A),對控制部8使用微控制單元8A及記憶體8B,對定位信號用天線5a使用陣列天線裝置15及控制電路16。 (21) As the positioning signal transmitter 1A, the IMES transmitter can be used for the positioning unit 5, respectively. 5A, the data communication unit 7 uses Bluetooth (7A), the control unit 8 uses the micro control unit 8A and the memory 8B, and the positioning signal antenna 5a uses the array antenna device 15 and the control circuit 16.

(22)作為移動終端2A,可分別對定位部9使用GPS接收機9A,對資料通信部11使用藍牙(11A),對控制部13使用微處理單元13A,對使用者介面部14使用觸控屏14A。 (22) As the mobile terminal 2A, the GPS receiver 9A can be used for the positioning unit 9, the Bluetooth (11A) can be used for the data communication unit 11, the microprocessor unit 13A can be used for the control unit 13, and the touch is applied to the user interface 14 Screen 14A.

[實施形態3] [Embodiment 3]

使用圖10說明本實施形態3之定位系統、該定位系統之放射參數之設定方法。於本實施形態中,相對於上述之實施形態1及2,對於移動終端2上動作之專用之應用程式軟體(使用者介面)進行說明。以下,主要說明與上述之實施形態1及2不同之點。 The positioning system of the third embodiment and the method of setting the radiation parameters of the positioning system will be described with reference to FIG. In the present embodiment, a dedicated application software (user interface) that operates on the mobile terminal 2 will be described with respect to the above-described first and second embodiments. Hereinafter, differences from the above-described first and second embodiments will be mainly described.

<移動終端之使用者介面畫面> <user interface screen of mobile terminal>

圖10係顯示本實施形態之移動終端2之使用者介面畫面之一例之模式圖。於圖10中,使用者介面(UI)畫面設定為觸控屏。 Fig. 10 is a schematic view showing an example of a user interface screen of the mobile terminal 2 of the embodiment. In FIG. 10, the user interface (UI) screen is set as a touch screen.

於應用程式軟體,已根據位置資訊服務之規格給予服務區域之地圖、定位信號發送機1之設置位置與ID、定位信號3之接收區域等。於UI畫面所顯示之地圖中,包含店鋪(花店)31、位置資訊服務中之接收區域32、定位信號發送機1之設置位置及ID(33)等資訊,當前亦同時顯示移動終端2接收之來自定位信號發送機1之無線信號之列表34。於列表34中,顯示有接收中之定位信號之ID(Received ID)與信號強度(Signal strength)。另,作為接收位準,除了接收信號強度(RSSI)以外,SNR、CNR等亦成為對象。 In the application software, the map of the service area, the setting position and ID of the positioning signal transmitter 1, the receiving area of the positioning signal 3, and the like are given according to the specifications of the location information service. The map displayed on the UI screen includes information such as a shop (flower shop) 31, a receiving area 32 in the location information service, a setting position of the positioning signal transmitter 1, and an ID (33), and currently displays the mobile terminal 2 simultaneously. A list 34 of wireless signals from the positioning signal transmitter 1. In the list 34, the ID (Received ID) and the signal strength (Signal strength) of the positioning signal being received are displayed. Further, as the reception level, in addition to the received signal strength (RSSI), SNR, CNR, and the like are also targeted.

當作業者60持有移動終端2於服務區域內移動時,接收定位信號發送機1之資料通信部(例如無線LAN)發送之ID資訊,顯示設置有具有該ID之定位信號發送機1之附近之地圖。又,亦顯示於該位置接收之ID與信號強度之列表34。 When the operator 60 holds the mobile terminal 2 moving within the service area, it receives the ID information transmitted by the data communication unit (for example, the wireless LAN) of the positioning signal transmitter 1, and displays the vicinity of the positioning signal transmitter 1 having the ID. Map of it. Also, a list 34 of IDs and signal strengths received at the location is also displayed.

例如,作業者60欲調整覆蓋花店之店鋪31附近之接收區域32之 定位信號發送機1(設定位置及ID33)之放射參數之情形時,只要觸控地圖上之定位信號發送機1之圖標(設定位置及ID33)即可。具有該操作,移動終端2連接ID:1234(信號強度:101)之定位信號發送機1(設定位置及ID33)與資料通信線路,定位信號發送機1係切換成參數設定模式。 For example, the operator 60 wants to adjust the receiving area 32 near the shop 31 covering the flower shop. In the case of locating the radiation parameters of the signal transmitter 1 (set position and ID 33), it is only necessary to touch the icon (set position and ID 33) of the positioning signal transmitter 1 on the map. With this operation, the mobile terminal 2 connects the positioning signal transmitter 1 (set position and ID 33) of ID: 1234 (signal strength: 101) with the data communication line, and the positioning signal transmitter 1 switches to the parameter setting mode.

其後,當於UI畫面上出現「定位信號計測命令」按鈕35(Measurement),作業者60移動至地圖上所示之接收區域32之適當之基準點(亦可將基準點預先顯示於UI畫面之地圖上)而觸控「定位信號計測命令」按鈕35時,定位信號發送機1與移動終端2連動而開始計測。 Thereafter, when the "positioning signal measurement command" button 35 (Measurement) appears on the UI screen, the operator 60 moves to the appropriate reference point of the receiving area 32 shown on the map (the reference point can also be displayed in advance on the UI screen). When the "positioning signal measurement command" button 35 is touched on the map, the positioning signal transmitter 1 and the mobile terminal 2 interlock to start measurement.

當第1個基準點上之計測結束時,於UI畫面上出現「定位信號計測命令」按鈕35及「放射參數最佳化命令」按鈕36(Optimization)。欲於不同之基準點進一步計測之情形時只要移動至該基準點而觸控「定位信號計測命令」按鈕35即可,欲結束計測進入至放射參數之最佳化之情形時只要觸控「放射參數最佳化命令」按鈕36即可。 When the measurement at the first reference point is completed, the "positioning signal measurement command" button 35 and the "radiation parameter optimization command" button 36 (Optimization) appear on the UI screen. If you want to further measure at different reference points, you can touch the "positioning signal measurement command" button 35 by moving to the reference point. If you want to end the measurement and enter the optimization of the radiation parameters, you only need to touch the radiation. The parameter optimization command button 36 is sufficient.

<實施形態3之效果> <Effects of Embodiment 3>

根據以上說明之本實施形態之定位系統、該定位系統之放射參數之設定方法,於移動終端2上動作之專用之應用程式軟體之例中,可獲得與上述之實施形態1相同之效果。再者,與上述之實施形態1不同之效果係如以下所述。 According to the positioning system of the present embodiment described above and the method of setting the radiation parameters of the positioning system, the same effects as those of the first embodiment described above can be obtained by the example of the application software dedicated to the operation of the mobile terminal 2. Further, the effects different from the above-described first embodiment are as follows.

(31)作為使用者介面畫面,可使用顯示服務區域之地圖、定位信號發送機1之設置位置與ID、定位信號3之接收區域、接收中之定位信號之ID與RSSI(SNR、CNR等)之觸控屏等。 (31) As the user interface screen, a map showing the service area, a setting position and ID of the positioning signal transmitter 1, a receiving area of the positioning signal 3, an ID of the positioning signal in reception, and RSSI (SNR, CNR, etc.) can be used. Touch screen, etc.

[實施形態4] [Embodiment 4]

使用圖11說明本實施形態4之定位系統、該定位系統之放射參數之設定方法。於本實施形態中,相對於上述之實施形態1~3,對放射 參數之設定方法之另一例進行說明。以下,主要說明與上述之實施形態1~3不同之點。 The positioning system of the fourth embodiment and the method of setting the radiation parameters of the positioning system will be described with reference to Fig. 11 . In the present embodiment, the radiation is applied to the above-described first to third embodiments. Another example of the parameter setting method will be described. Hereinafter, differences from the above-described first to third embodiments will be mainly described.

<放射參數之設定方法> <How to set the radiation parameters>

圖11係顯示本實施形態之放射參數之設定方法之處理流程之一例之流程圖。 Fig. 11 is a flow chart showing an example of the processing flow of the method of setting the radiation parameters of the embodiment.

首先,作業者60於放射參數之設定工具即移動終端2、與定位信號發送機1之間連接資料通信線路4(S201)。藉由與移動終端2之資料通信線路4之連接,定位信號發送機1係設定成「基準模式」(S202)。該「基準模式」係較佳為以使接收區域成為最寬之方式設定放射參數者。例如,發送信號強度最大,束寬最大等。 First, the operator 60 connects the data communication line 4 between the mobile terminal 2, which is a setting tool of the radiation parameter, and the positioning signal transmitter 1, (S201). The positioning signal transmitter 1 is set to the "reference mode" by the connection with the data communication line 4 of the mobile terminal 2 (S202). In the "reference mode", it is preferable to set the radiation parameter so that the receiving area is the widest. For example, the transmitted signal strength is the largest, the beam width is the largest, and the like.

以下,以由位置資訊服務要求之接收區域即定位區域50內之基準點係以覆蓋定位區域50整體之方式採用複數點之情形進行說明。 Hereinafter, a description will be given of a case where a reference point in the positioning area 50, which is a receiving area required by the location information service, is a plurality of points so as to cover the entire positioning area 50.

於採用複數點基準點之情形時,於移動終端2,首先將基準點之計數值i設定為「1」(S203),使持有移動終端2之作業者60移動至定位區域50內之第i號基準點(S204)。其後,移動終端2接收定位信號3,並將接收位準記錄於移動終端2內之記憶體(S205)。然後,於移動終端2,判斷是否於所有基準點完成了計測(S206)。該判斷之結果為未完成之情形(S206-no)時,將計數值i增量(i←i+1)(S207),返回至S204,使持有移動終端2之作業者60移動至定位區域50內之第(i+1)號基準點而重複相同之處理。對此重複進行直至完成所有基準點上之計測。 When the complex point reference point is used, the mobile terminal 2 first sets the count value i of the reference point to "1" (S203), and moves the operator 60 holding the mobile terminal 2 to the position in the positioning area 50. Reference point i (S204). Thereafter, the mobile terminal 2 receives the positioning signal 3 and records the reception level in the memory in the mobile terminal 2 (S205). Then, at the mobile terminal 2, it is judged whether or not the measurement is completed at all the reference points (S206). When the result of the determination is that the result is not completed (S206-no), the count value i is incremented (i←i+1) (S207), and the process returns to S204 to move the operator 60 holding the mobile terminal 2 to the positioning. The same processing is repeated for the (i+1)th reference point in the area 50. This is repeated until the measurement at all reference points is completed.

於在所有基準點完成了「定位信號計測命令」之處理之時點(S206-yes),於移動終端2,基於計測之接收位準,計算放射參數之最佳值(S208)。然後,自移動終端2向定位信號發送機1發送放射參數之最佳值(S209)。放射參數係較佳為定位信號3之發送電力、放射方向、主束半值寬、偏光角等。又,接收位準係較佳為RSSI、SNR、 CNR等。 At the time point when the processing of the "positioning signal measurement command" is completed at all the reference points (S206-yes), the mobile terminal 2 calculates the optimum value of the radiation parameter based on the measured reception level (S208). Then, the optimum value of the radiation parameter is transmitted from the mobile terminal 2 to the positioning signal transmitter 1 (S209). The radiation parameter is preferably the transmission power of the positioning signal 3, the radiation direction, the main beam half-value width, the polarization angle, and the like. Moreover, the receiving level is preferably RSSI, SNR, CNR et al.

最佳值之計算係以於所有基準點使接收位準成為規定值以上之方式執行。此處,所謂規定值係相對於例如移動終端2中之定位信號3之最低接收感度大6dB之值等。此處,可以移動終端2側之處理器進行最佳值之計算,且將放射參數之最佳值發送至定位信號發送機1,亦可使移動終端2將於各基準點測定之接收位準發送至定位信號發送機1,以定位信號發送機1側之處理器實施放射參數之最佳值之計算。 The calculation of the optimum value is performed in such a manner that all the reference points make the reception level become a predetermined value or more. Here, the predetermined value is a value which is 6 dB larger than the lowest reception sensitivity of the positioning signal 3 in the mobile terminal 2, for example. Here, the processor on the mobile terminal 2 side can perform the calculation of the optimal value, and send the optimal value of the radiation parameter to the positioning signal transmitter 1, and can also make the receiving level of the mobile terminal 2 measured at each reference point. It is sent to the positioning signal transmitter 1 to calculate the optimum value of the radiation parameter by the processor on the side of the signal transmitter 1 .

其後,定位信號發送機1係將放射參數設定成最佳值,切換成通常模式,切斷資料通信線路4而開始定位信號3之發送(S210)。 Thereafter, the positioning signal transmitter 1 sets the radiation parameter to an optimum value, switches to the normal mode, and cuts off the data communication line 4 to start transmission of the positioning signal 3 (S210).

<實施形態4之效果> <Effects of Embodiment 4>

根據以上說明之本實施形態之定位系統、該定位系統之放射參數之設定方法,於放射參數之設定方法之另一例中,可獲得與上述之實施形態1相同之效果。再者,與上述之實施形態1不同之效果係如以下所述。 According to the positioning system of the present embodiment described above and the method of setting the radiation parameters of the positioning system, in another example of the method of setting the radiation parameters, the same effects as those of the above-described first embodiment can be obtained. Further, the effects different from the above-described first embodiment are as follows.

(41)於本實施形態中,於持有移動終端2之作業者站立於定位區域50之基準點,且以資料通信線路連接有移動終端2與定位信號發送機1之狀態下進行放射參數之設定。首先,以移動終端2接收定位信號發送機1之定位信號,並將該接收位準記錄於移動終端2內之記憶體。再者,於移動終端2基於接收位準計算放射參數之最佳值,並將該放射參數之最佳值發送至定位信號發送機1。然後,定位信號發送機1可設定成自移動終端2發送之最佳值之放射參數。 (41) In the present embodiment, the operator holding the mobile terminal 2 stands at the reference point of the positioning area 50, and the radiation parameter is performed in a state where the mobile terminal 2 and the positioning signal transmitter 1 are connected by the data communication line. set up. First, the positioning signal of the positioning signal transmitter 1 is received by the mobile terminal 2, and the receiving level is recorded in the memory in the mobile terminal 2. Furthermore, the mobile terminal 2 calculates an optimum value of the radiation parameter based on the reception level, and transmits the optimum value of the radiation parameter to the positioning signal transmitter 1. Then, the positioning signal transmitter 1 can be set to the radiation parameter of the optimum value transmitted from the mobile terminal 2.

(42)於本實施形態中,於計測接收位準時,由於無須掃描放射參數,故可將測定時間縮短化。再者,於每次計測接收位準時,由於無須於移動終端2與定位信號發送機1之間進行通信,故亦可將處理簡略化。 (42) In the present embodiment, when the reception level is measured, since the radiation parameter is not required to be scanned, the measurement time can be shortened. Furthermore, the processing can be simplified by not requiring communication between the mobile terminal 2 and the positioning signal transmitter 1 each time the reception level is measured.

以上,已基於實施形態具體說明由本發明者所完成之發明,但 本發明並非限定於上述實施形態,當然可於不脫離其主旨之範圍內進行各種變更。例如,上述實施形態1~4係為了容易理解地說明本發明而詳細說明者,並非完全限定於具備已說明之所有構成者。又,可將某一實施形態之構成之一部分置換成其他實施形態之構成,又,亦可於某一實施形態之構成增加其他實施形態之構成。又,可對各實施形態之構成之一部分,進行其他構成之追加/削除/置換。再者,組合各實施形態之形態亦可變更為本發明之範圍。 The invention completed by the inventors has been specifically described above based on the embodiments, but The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit and scope of the invention. For example, the above-described first to fourth embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not limited to those having all of the constituents described. Further, a part of the configuration of one embodiment may be replaced with a configuration of another embodiment, and a configuration of another embodiment may be added to the configuration of a certain embodiment. Further, addition, removal, and replacement of other configurations may be performed for one of the configurations of the respective embodiments. Further, combinations of the embodiments may be changed to the scope of the invention.

S101~S109‧‧‧步驟 S101~S109‧‧‧Steps

Claims (9)

一種定位信號之放射參數設定方法,其係用於設定定位信號發送機之定位信號之放射參數者;利用包含定位部、資料通信部、控制部、及使用者介面部之移動終端作為設定工具,將上述定位信號發送機之定位信號之放射參數最佳化;且於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下,包含如下步驟:第1步驟,其係一面掃描上述定位信號發送機之上述定位信號之放射參數,一面計測上述移動終端中之上述定位信號之接收位準;及第2步驟,其係以使上述移動終端中之上述定位信號之接收位準成為規定值以上之值之方式,來選擇上述放射參數;其中於採用複數之上述基準點之情形時,上述第1步驟係於上述移動終端將上述基準點之計數值i設定為初始值,使持有上述移動終端之上述作業者移動至定位區域內之第i號基準點,上述定位信號發送機掃描上述定位信號之放射參數,上述移動終端計測上述定位信號之接收位準,然後,於上述移動終端判斷是否於所有基準點完成了計測,未完成之情形時,將上述計數值i增量,使持有上述移動終端之上述作業者移動至上述定位區域內之第i號基準點而重複相同之處理,重複直至完成所有基準點上之計測;且上述第2步驟係於完成了所有基準點上之處理之時點,基於各基準點上之計測結果,於上述移動終端,以使上述移動終端中 之上述定位信號之接收位準於所有基準點成為規定值以上之方式,來選擇上述放射參數。 A method for setting a radiation parameter of a positioning signal, which is used for setting a radiation parameter of a positioning signal of a positioning signal transmitter; using a mobile terminal including a positioning unit, a data communication unit, a control unit, and a user interface as a setting tool, Optimizing the radiation parameter of the positioning signal of the positioning signal transmitter; and the operator holding the mobile terminal stands at at least one reference point of the receiving area, and connects the mobile terminal and the positioning signal by a data communication line In the state of the transmitter, the method includes the following steps: the first step of measuring the receiving level of the positioning signal in the mobile terminal while scanning the radiation parameter of the positioning signal of the positioning signal transmitter; and the second step The radiation parameter is selected such that the reception level of the positioning signal in the mobile terminal is equal to or greater than a predetermined value; wherein, in the case of using the plurality of reference points, the first step is The mobile terminal sets the count value i of the reference point to an initial value to hold the movement The operator moves to the i-th reference point in the positioning area, the positioning signal transmitter scans the radiation parameter of the positioning signal, the mobile terminal measures the receiving level of the positioning signal, and then determines whether the mobile terminal determines whether When the measurement is completed at all the reference points, the count value i is incremented, and the operator holding the mobile terminal is moved to the i-th reference point in the positioning area, and the same processing is repeated. Repeating until the measurement at all the reference points is completed; and the second step is to complete the processing at all the reference points, based on the measurement results at the respective reference points, at the mobile terminal, so that the mobile terminal The radiation parameter is selected such that the reception level of the positioning signal is equal to or greater than a predetermined value of all the reference points. 如請求項1之定位信號之放射參數設定方法,其中包含第3步驟,該第3步驟係於上述第2步驟之後,於上述定位信號發送機,設定成以使上述定位信號之接收位準於所有基準點成為規定值以上之方式所選擇之上述放射參數,並切斷上述資料通信線路而開始上述定位信號之發送。 The method for setting a radiation parameter of the positioning signal of claim 1, comprising the third step, after the second step, the positioning signal transmitter is configured to set the receiving position of the positioning signal to The radiological parameters selected by the method in which all the reference points are equal to or greater than a predetermined value are cut off, and the transmission of the positioning signal is started. 一種定位信號之放射參數設定方法,其係用於設定定位信號發送機之定位信號之放射參數者;利用包含定位部、資料通信部、控制部、及使用者介面部之移動終端作為設定工具,將上述定位信號發送機之定位信號之放射參數最佳化;且於持有上述移動終端之作業者站立於接收區域之至少1個基準點,且以資料通信線路連接上述移動終端與上述定位信號發送機之狀態下,包含如下步驟:第1步驟,其係以上述移動終端接收上述定位信號發送機之上述定位信號,且將該接收位準記錄於上述移動終端內之記憶體;及第2步驟,其係於上述移動終端基於上述接收位準計算放射參數之最佳值,且將該放射參數之最佳值發送至上述定位信號發送機;其中於採用複數之上述基準點之情形時,上述第1步驟係於上述移動終端將上述基準點之計數值i設定為初始值,使持有上述移動終端之上述作業者移動至定位區域內之第i號基準點,上述移動終端接收上述定位信號,並將接收位準記錄於上述移動終端內之記憶體,然後,於上述移動終端判 斷是否於所有基準點完成了計測,未完成之情形時,將上述計數值i增量,使持有上述移動終端之上述作業者移動至上述定位區域內之第i號基準點而重複相同之處理,重複直至完成所有基準點上之計測;且上述第2步驟係於完成了所有基準點上之處理之時點,於上述移動終端基於各基準點所計測之接收位準而計算放射參數之最佳值,然後,自上述移動終端向上述定位信號發送機發送上述放射參數之最佳值。 A method for setting a radiation parameter of a positioning signal, which is used for setting a radiation parameter of a positioning signal of a positioning signal transmitter; using a mobile terminal including a positioning unit, a data communication unit, a control unit, and a user interface as a setting tool, Optimizing the radiation parameter of the positioning signal of the positioning signal transmitter; and the operator holding the mobile terminal stands at at least one reference point of the receiving area, and connects the mobile terminal and the positioning signal by a data communication line In the state of the transmitter, the method includes the following steps: the first step of receiving, by the mobile terminal, the positioning signal of the positioning signal transmitter, and recording the receiving level in a memory in the mobile terminal; and a step of calculating, by the mobile terminal, an optimal value of the radiation parameter based on the received level, and transmitting the optimal value of the radiation parameter to the positioning signal transmitter; wherein, when a plurality of the reference points are used, The first step is that the mobile terminal sets the count value i of the reference point to an initial value to hold Above the operator of said mobile terminal moves to i-th reference point within the location area, said mobile terminal receives the positioning signal, the received level recorded in memory within said mobile terminal, then the mobile terminal to the judgment Whether the measurement is completed at all the reference points, and if the situation is not completed, the count value i is incremented, and the operator holding the mobile terminal is moved to the i-th reference point in the positioning area, and the same is repeated. Processing, repeating until the measurement at all the reference points is completed; and the second step is to calculate the time of processing at all the reference points, and calculate the most the radiation parameters based on the received levels measured by the mobile terminals at the reference points. Preferably, the optimal value of the radiation parameter is transmitted from the mobile terminal to the positioning signal transmitter. 如請求項3之定位信號之放射參數設定方法,其中包含第3步驟,該第3步驟係於上述第2步驟之後,於上述定位信號發送機,設定成自上述移動終端發送之最佳值之放射參數,並切斷上述資料通信線路而開始上述定位信號之發送。 A method for setting a radiation parameter of a positioning signal according to claim 3, comprising a third step, wherein the third step is after the second step, and the positioning signal transmitter is set to an optimum value transmitted from the mobile terminal. The transmission of the above positioning signal is started by radiating the parameters and cutting off the above data communication line. 如請求項1至4之任一之定位信號之放射參數設定方法,其中上述定位信號係利用室內GPS、無線LAN、及UWB-IR中之至少1個通信方式而形成者。 The method for setting a radiation parameter of a positioning signal according to any one of claims 1 to 4, wherein the positioning signal is formed by at least one of indoor GPS, wireless LAN, and UWB-IR. 如請求項1至4之任一之定位信號之放射參數設定方法,其中上述放射參數係上述定位信號之發送電力、放射方向、主束半值寬、及偏光角之至少1個。 The radiation parameter setting method of the positioning signal according to any one of claims 1 to 4, wherein the radiation parameter is at least one of a transmission power, a radiation direction, a main beam half-value width, and a polarization angle of the positioning signal. 如請求項1至4之任一之定位信號之放射參數設定方法,其中上述接收位準係RSSI、SNR、及CNR之至少1個。 The method for setting a radiation parameter of a positioning signal according to any one of claims 1 to 4, wherein the receiving level is at least one of RSSI, SNR, and CNR. 如請求項1至4之任一之定位信號之放射參數設定方法,其中上述使用者介面部係觸控面板顯示器。 The method for setting a radiation parameter of a positioning signal according to any one of claims 1 to 4, wherein the user interface is a touch panel display. 如請求項8之定位信號之放射參數設定方法,其中上述使用者介面部之使用者介面畫面係顯示服務區域之地圖、上述定位信號發送機之設置位置與ID、上述定位信號之接收區域、接收中之上述定位信號之ID與接收位準、使上述定位 信號發送機與上述移動終端連動而開始計測之「定位信號計測命令」按鈕、及結束計測且使上述放射參數最佳化之「放射參數最佳化命令」按鈕之至少1個之觸控屏。 The radio parameter setting method of the positioning signal of claim 8, wherein the user interface image of the user interface displays a map of a service area, a setting position and an ID of the positioning signal transmitter, a receiving area of the positioning signal, and a receiving The ID and the receiving level of the above positioning signal are used to make the above positioning The "signal signal measurement command" button that the signal transmitter starts to measure in conjunction with the mobile terminal, and at least one of the "radiation parameter optimization command" buttons that end the measurement and optimize the radiation parameters.
TW103124416A 2013-09-18 2014-07-16 Radiation parameter setting method of positioning signal TWI542896B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075090 WO2015040687A1 (en) 2013-09-18 2013-09-18 Positioning signal radiation parameter setting method and positioning system

Publications (2)

Publication Number Publication Date
TW201512691A TW201512691A (en) 2015-04-01
TWI542896B true TWI542896B (en) 2016-07-21

Family

ID=52688374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103124416A TWI542896B (en) 2013-09-18 2014-07-16 Radiation parameter setting method of positioning signal

Country Status (3)

Country Link
JP (1) JP6255025B2 (en)
TW (1) TWI542896B (en)
WO (1) WO2015040687A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437375B2 (en) * 2015-04-21 2018-12-12 株式会社日立産機システム Antenna apparatus and positioning signal transmitter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377813B1 (en) * 1998-12-03 2002-04-23 Nokia Corporation Forward link closed loop power control for a third generation wideband CDMA system
US20040192222A1 (en) * 2003-03-26 2004-09-30 Nokia Corporation System and method for semi-simultaneously coupling an antenna to transceivers
JP2006033654A (en) * 2004-07-21 2006-02-02 Hitachi Ltd Radio communication control method and radio terminal device
JP2007081457A (en) * 2005-09-09 2007-03-29 Toshiba Corp Radio station device and terminal for adjustment thereof
WO2007119591A1 (en) * 2006-03-31 2007-10-25 Matsushita Electric Industrial Co., Ltd. Radio communication base station device and radio communication mobile station device
JP5440894B2 (en) * 2007-10-03 2014-03-12 測位衛星技術株式会社 Position information providing system and indoor transmitter
JP5173379B2 (en) * 2007-11-28 2013-04-03 株式会社横須賀テレコムリサーチパーク Goods management system
US8958316B2 (en) * 2010-04-26 2015-02-17 Collision Communications, Inc. Power aware scheduling and power control techniques for multiuser detection enabled wireless mobile ad-hoc networks
JP5568397B2 (en) * 2010-07-09 2014-08-06 株式会社日立製作所 Position information transmitter setting system, position information transmitter and position information transmitter setting method,
JP2012098071A (en) * 2010-10-29 2012-05-24 Yokosuka Telecom Research Park:Kk Positioning system and positioning method
KR20120080327A (en) * 2011-01-07 2012-07-17 삼성전자주식회사 Method and apparatus for controlling uplink transmission power in wireless communication system

Also Published As

Publication number Publication date
JPWO2015040687A1 (en) 2017-03-02
WO2015040687A1 (en) 2015-03-26
JP6255025B2 (en) 2017-12-27
TW201512691A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5503774B1 (en) Wireless tag search method and apparatus
KR101910936B1 (en) System and method for developing a wi-fi access point map using sensors in a wireless mobile device
CN112041700A (en) Electronic device with motion sensing and angle-of-arrival detection circuitry
US20210325202A1 (en) Tracking Systems for Electronic Devices
KR20160008378A (en) Method and apparatus for beamforming in wireless device
CN107005316B (en) Communication system, communication method, and non-transitory computer-readable storage medium
JP2009253494A (en) Radio communication terminal, radio positioning system, illumination system, air conditioning system, and parking lot managing system
CN110336118A (en) Wearable device and smartwatch
US10164469B1 (en) Adaptive wireless power transfer system
WO2018177412A1 (en) Antenna control system and method and mobile terminal
KR20130061868A (en) Apparatus and method for providing diversity service antenna in portable terminal
JP5798651B2 (en) Wireless tag search method and apparatus
WO2023035489A1 (en) Signal transmission method and signal transmission apparatus
TWI542896B (en) Radiation parameter setting method of positioning signal
US8929818B2 (en) User-controlled method and system for modifying the radiation of a wireless device in one or more user-selected volumes
WO2016134575A1 (en) Terminal signal transceiving apparatus and signal transceiving method
KR102456783B1 (en) Electronic apparatus and the control method thereof
JP2015106814A (en) Radio wave transmitting apparatus and position measuring system
JP2009038606A (en) Image former
JP6322905B2 (en) Mobile terminal location determination device
JP6283970B1 (en) Antenna, radio transmission device, and position measurement system
JP7081388B2 (en) How to change the installation position of wireless power transmission device and wireless power receiving device
US20230108615A1 (en) Method and electronic device for retrieving external device through positioning angle adjustment
JP7008255B2 (en) Radio wave environment display device and radio wave environment display method
US20180310128A1 (en) Location determination system with mobile wireless terminal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees