TWI542788B - Centrifugal blower with asymmetric blade spacing - Google Patents

Centrifugal blower with asymmetric blade spacing Download PDF

Info

Publication number
TWI542788B
TWI542788B TW101133175A TW101133175A TWI542788B TW I542788 B TWI542788 B TW I542788B TW 101133175 A TW101133175 A TW 101133175A TW 101133175 A TW101133175 A TW 101133175A TW I542788 B TWI542788 B TW I542788B
Authority
TW
Taiwan
Prior art keywords
blade angle
angle value
nominal blade
nominal
blades
Prior art date
Application number
TW101133175A
Other languages
Chinese (zh)
Other versions
TW201408884A (en
Inventor
康納R 杜克
傑西T 迪班柯
Original Assignee
蘋果公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/598,585 external-priority patent/US9039393B2/en
Application filed by 蘋果公司 filed Critical 蘋果公司
Publication of TW201408884A publication Critical patent/TW201408884A/en
Application granted granted Critical
Publication of TWI542788B publication Critical patent/TWI542788B/en

Links

Description

具有非對稱葉片間隔之離心式鼓風機 Centrifugal blower with asymmetric blade spacing

本發明係關於攜帶型電子產品,且更特定言之,係關於特別適合供攜帶型電子產品之空氣冷卻系統中使用之鼓風機或風扇。 This invention relates to portable electronic products and, more particularly, to blowers or fans that are particularly suitable for use in air cooling systems for portable electronic products.

軸流式及離心式風扇或鼓風機通常實施於電子裝置之冷卻系統中以在電子裝置變得太熱時輔助冷卻電子裝置。典型風扇設計包括葉輪,葉輪具有相對於彼此以相等角度而間隔之葉片。均勻間隔式風扇葉片允許使葉輪平衡。當風扇葉片未均勻地間隔時,葉輪可具有偽聲(acoustic artifact)、不平衡問題及熱懲罰(thermal penalty)。不平衡可導致振動應力之增大、對風扇之軸承及馬達結構之磨損,以及品質問題。 Axial flow and centrifugal fans or blowers are typically implemented in a cooling system of an electronic device to assist in cooling the electronic device when the electronic device becomes too hot. A typical fan design includes an impeller having blades that are spaced at equal angles relative to one another. Uniformly spaced fan blades allow the impeller to be balanced. When the fan blades are not evenly spaced, the impeller can have acoustic artifacts, imbalance problems, and thermal penalties. Unbalance can result in increased vibration stress, wear on the bearing and motor structure of the fan, and quality issues.

通常,風扇之噪音源為空氣流動且來自馬達。流動誘發性噪音源中之一者為葉片通過頻率(blade passage frequency;BPF)音調。BPF及有關諧波係與在每一風扇葉片通過一固定參考點時所產生之壓力擾動有關。葉片尖端產生週期性壓力波,週期性壓力波產生音調。 Typically, the noise source for the fan is air flow and from the motor. One of the flow-induced noise sources is the blade passage frequency (BPF) tone. The BPF and related harmonics are related to the pressure disturbances that occur when each fan blade passes a fixed reference point. The tip of the blade produces periodic pressure waves that generate tones.

主要馬達噪音源為磁極通過頻率(pole passage frequency;PPF)音調。PPF為藉由風扇之馬達中之磁極產生的振動及所得壓力波。BPF通常將被感知為音調且可在其與PPF重合時被放大。BPF音調及PPF音調係自鼓風機或風扇發出,且在聽得到時可打擾含有彼鼓風機或風扇之產 品之使用者。另一噪音源來自與風扇上之支柱或任何其他類型之障礙物的相互作用。因此,需要一種具有縮減噪音之足夠平衡風扇。 The main motor noise source is the pole passage frequency (PPF) tone. The PPF is the vibration generated by the magnetic poles in the motor of the fan and the resulting pressure wave. The BPF will typically be perceived as a tone and can be amplified when it coincides with the PPF. BPF tones and PPF tones are emitted from blowers or fans and can be disturbed when they are heard. User of the product. Another source of noise comes from the interaction with the struts on the fan or any other type of obstacle. Therefore, there is a need for a sufficiently balanced fan with reduced noise.

概括而言,本文所揭示之實施例描述離心式鼓風機中具有可接受平衡之非均一葉片間隔及離心式鼓風機至攜帶型電子產品中之實施。 In summary, the embodiments disclosed herein describe implementations of non-uniform blade spacing and centrifugal blowers to portable electronic products with acceptable balance in centrifugal blowers.

本發明描述一種離心式鼓風機。該離心式鼓風機至少包括:一馬達,其具有數個磁極通道(pole pass),其中磁極通道之數目為一偶數;及三十一個葉片,其中每一者係與具有一標稱葉片角度值之一標稱葉片角度相關聯,該標稱葉片角度值為鄰近葉輪葉片之間的一角位移。該三十一個葉輪葉片各自圍繞一中心輪轂非對稱地間隔,使得圍繞該中心輪轂而定位每一葉輪葉片,使得該等標稱葉片角度值之一總和等於360°且該離心式鼓風機之一操作特性值被認為在一預定操作特性值範圍內。在所描述實施例中,一第一標稱葉片角度值為10.1034°;一第二標稱葉片角度值為10.0229°;一第三標稱葉片角度值為13.1577°;一第四標稱葉片角度值為13.2029°;一第五標稱葉片角度值為13.6692°;一第六標稱葉片角度值為13.0442°;一第七標稱葉片角度值為13.5653°;一第八標稱葉片角度值為11.9834°;一第九標稱葉片角度值為11.6129°;一第十標稱葉片角度值為10.1071°;一第十一標稱葉片角度值為11.2424°;一第十二標稱葉片角度值為10.1532°;一第十 三標稱葉片角度值為10.1816°;一第十四標稱葉片角度值為9.7922°;一第十五標稱葉片角度值為13.4336°;一第十六標稱葉片角度值為13.6681°;一第十七標稱葉片角度值為12.6063°;一第十八標稱葉片角度值為9.5578°;一第十九標稱葉片角度值為10.0681°;一第二十標稱葉片角度值為10.7533°;一第二十一標稱葉片角度值為11.1850°;一第二十二標稱葉片角度值為13.5670°;一第二十三標稱葉片角度值為12.4725°;一第二十四標稱葉片角度值為13.1224°;一第二十五標稱葉片角度值為13.0726°;一第二十六標稱葉片角度值為13.1187°;一第二十七標稱葉片角度值為12.0408°;一第二十八標稱葉片角度值為10.6195°;一第二十九標稱葉片角度值為9.5566°;一第三十標稱葉片角度值為9.6588°;且一第三十一標稱葉片角度值為9.6605°。 The present invention describes a centrifugal blower. The centrifugal blower includes at least: a motor having a plurality of pole passes, wherein the number of magnetic pole passages is an even number; and thirty one blades each of which has a nominal blade angle value One of the nominal blade angles is associated with an angular displacement between adjacent impeller blades. The thirty-one impeller blades are each asymmetrically spaced about a central hub such that each impeller blade is positioned about the central hub such that one of the nominal blade angle values is equal to 360° and one of the centrifugal blowers The operational characteristic values are considered to be within a predetermined operational characteristic value range. In the depicted embodiment, a first nominal blade angle value is 10.1034°; a second nominal blade angle value is 10.0229°; a third nominal blade angle value is 13.1577°; a fourth nominal blade angle The value is 13.22929°; a fifth nominal blade angle value is 13.6692°; a sixth nominal blade angle value is 13.0442°; a seventh nominal blade angle value is 13.5653°; an eighth nominal blade angle value is 11.9834°; a ninth nominal blade angle value of 11.6129°; a tenth nominal blade angle value of 10.1071°; an eleventh nominal blade angle value of 11.2424°; a twelfth nominal blade angle value 10.1532°; a tenth The three nominal blade angle values are 10.1816°; the fourteenth nominal blade angle value is 9.7922°; the fifteenth nominal blade angle value is 13.4336°; and the sixteenth nominal blade angle value is 13.6681°; The seventeenth nominal blade angle value is 12.6663°; the eighteenth nominal blade angle value is 9.5578°; the nineteenth nominal blade angle value is 10.0681°; and the twentieth nominal blade angle value is 10.7533°. a twenty-first nominal blade angle value of 11.1850 °; a twenty-second nominal blade angle value of 13.5670 °; a twenty-third nominal blade angle value of 12.7242 °; a twenty-fourth nominal The blade angle value is 13.1224°; a twenty-fifth nominal blade angle value is 13.0726°; a twenty-sixth nominal blade angle value is 13.1187°; and a twenty-seventh nominal blade angle value is 12.0408°; The twenty-eighth nominal blade angle value is 10.6195°; a twenty-nineth nominal blade angle value is 9.5566°; a thirtieth nominal blade angle value is 9.6588°; and a thirty-first nominal blade angle The value is 9.6605°.

在所描述實施例之一態樣中,該等葉片角度各自具有+/- 5%之一容差。 In one aspect of the described embodiment, the blade angles each have a tolerance of +/- 5%.

其他態樣及優點將自結合以實例說明本發明之原理之隨附圖式所採取的以下詳細描述而變得顯而易見。 Other aspects and advantages will be apparent from the following detailed description taken in the claims.

所描述實施例將易於藉由結合隨附圖式之以下詳細描述加以理解,在該等圖式中,類似參考數字表示類似結構元件。 The described embodiments are to be understood in a

所描述實施例係關於一種可實施於攜帶型電子裝置(諸如,膝上型電腦)之冷卻系統中之離心式風扇或鼓風機。 應理解,所描述實施例亦可用於其他非攜帶型電子裝置,諸如,桌上型電腦。相比於習知風扇,所描述實施例中之離心式風扇或鼓風機提供針對攜帶型電子裝置之空氣冷卻,同時來自風扇之感知聲音減低。 The described embodiments are directed to a centrifugal fan or blower that can be implemented in a cooling system of a portable electronic device, such as a laptop. It should be understood that the described embodiments can also be used with other non-portable electronic devices, such as desktop computers. The centrifugal fan or blower in the described embodiment provides air cooling for the portable electronic device compared to conventional fans, while the perceived sound from the fan is reduced.

下文參看圖1至圖12來論述實施例。然而,熟習此項技術者應易於瞭解,本文關於此等圖所給出之詳細描述係出於解釋目的,此係因為本發明延伸超出此等有限實施例。 Embodiments are discussed below with reference to Figures 1-12. However, those skilled in the art should readily appreciate that the detailed description of the figures herein is for the purpose of explanation, as the invention extends beyond these limited embodiments.

如上文所論述,典型風扇設計包括具有均一葉片間隔之葉輪。亦即,如圖1所示,葉輪100之葉片110相對於彼此以相等角度A、B、C而間隔。如圖1所說明,葉片110之間的角度A、B、C彼此相等。葉片110之均一間隔因為葉輪100之質量均勻地分佈而提供平衡,且在風扇旋轉時亦提供隨著時間推移而恆定之音調頻率。通常,葉輪100具有質數個葉片以避免使該等葉片之諧波與馬達中之磁極之諧波聯合(lining up)或合併。因為磁極通道通常為偶數,所以對於葉片之數目通常選擇質數。應理解,若葉片之諧波與磁極之諧波聯合,則來自風扇之噪音將增大。因此,工業標準係在葉輪具有質數個葉片時提供均勻間隔式葉片。 As discussed above, a typical fan design includes an impeller having a uniform blade spacing. That is, as shown in FIG. 1, the blades 110 of the impeller 100 are spaced apart from each other by equal angles A, B, and C. As illustrated in Fig. 1, the angles A, B, and C between the blades 110 are equal to each other. The uniform spacing of the blades 110 provides a balance because the mass of the impeller 100 is evenly distributed, and also provides a constant pitch frequency over time as the fan rotates. Typically, the impeller 100 has a plurality of blades to avoid lining up or combining the harmonics of the blades with the harmonics of the poles in the motor. Since the magnetic pole channels are usually even, a prime number is usually chosen for the number of blades. It should be understood that if the harmonics of the blade are combined with the harmonics of the magnetic pole, the noise from the fan will increase. Therefore, the industry standard provides evenly spaced blades when the impeller has a number of blades.

一種最小化來自風扇之噪音之方法係控制藉由風扇產生之純音調之頻譜分佈。遍及數個離散頻率而分散音調之能量可藉由縮減對音調BPF之感知而使音調對於收聽者似乎較不嘈雜。在維持葉輪平衡的同時使風扇葉片不均勻地間隔為一種控制純音調效應之方法。圖2說明具有不均勻間隔式葉片210之離心式鼓風機之葉輪200。如圖所示,角度 D、E、F彼此不相等。為了判定非均一葉片間隔配置之間隔,可以正弦振幅型樣來修改均勻間隔式風扇葉片110之位置。可用於根據正弦調變之經修改角度間隔之方程式為:θ i '=θ i +△θ sin( i )其中θ i 為均勻間隔式配置中之第i葉片之原始間隔角度,θ i '為在修改之後第i標稱葉片角度之新間隔角度,△θ為間隔角度改變(調變振幅)之最大百分比,且m為待使用之正弦型樣之數目(調變循環在風扇之單一迴轉中被重複之次數)。應理解,上文所闡明之方程式可應用於較大風扇,諸如,軸流式風扇,其可藉由增加葉輪上之關鍵地方之重量而平衡。 One method of minimizing noise from the fan is to control the spectral distribution of the pure tones produced by the fan. The energy of the scattered tones across several discrete frequencies can make the tone appear less noisy to the listener by reducing the perception of the tone BPF. The uneven spacing of the fan blades while maintaining the balance of the impeller is a method of controlling the pure tone effect. 2 illustrates an impeller 200 of a centrifugal blower having unevenly spaced blades 210. As shown, the angles D, E, and F are not equal to each other. To determine the spacing of the non-uniform blade spacing configurations, the position of the evenly spaced fan blades 110 can be modified in a sinusoidal amplitude pattern. The equation that can be used for the modified angular interval according to sinusoidal modulation is: θ i '= θ i + Δ θ sin( i ) where θ i is the original spacing angle of the ith blade in a uniformly spaced configuration, θ i ' after the modification of the i-th new nominal angle of the blade spacing angles, △ θ change (amplitude modulation) the percentage of the maximum spacing angle, the number and pattern of use is to be sinusoidal m (modulation cycle in a single rotation of the fan The number of times that are repeated). It should be understood that the equations set forth above can be applied to larger fans, such as axial fans, which can be balanced by increasing the weight of critical locations on the impeller.

由此正弦調變引起之噪音係藉由以下方程式表示:f(t)=A 0 sin(2πF 0 t+△φ sin2πυt),其中A 0 為基本葉片通過音調之振幅,F 0 =I f s(I為葉片之數目且f s為軸件旋轉頻率),調變頻率υ=m f s,且相位調變振幅△φ=IθThe noise caused by this sinusoidal modulation is represented by the following equation: f(t) = A 0 sin(2π F 0 t + △φ sin2πυ t ), where A 0 is the amplitude of the basic blade passing tone, F 0 = I f s ( I is the number of blades and f s is the rotational frequency of the shaft), the modulation frequency υ = mf s , and the phase modulation amplitude Δφ = I Δ θ .

人耳中之耳底膜具有分散傳入聲波之頻率之功能。聲波之頻率之分散造成某一頻率之聲音使耳底膜之一些部位比其他部位更多地振動。圖3為比較具有均一葉片間隔之葉輪100與具有非均一葉片間隔之葉輪200沿著耳底膜之聲音頻率分佈的曲線圖。如圖3所示,來自兩個葉輪100、200之噪音造成相似量之神經元遍及相同時段受到刺激。然而,具有非均一葉片間隔之葉輪200造成聲波頻率之較大 散播強度,較大散播強度會減低BPF音調。應理解,BPF音調之量測縮減可能不會完全地反映感知BPF音調之縮減。 The eardrum in the human ear has the function of dispersing the frequency of incoming sound waves. The dispersion of the frequency of the sound waves causes the sound of a certain frequency to cause some parts of the eardrum to vibrate more than others. 3 is a graph comparing the sound frequency distribution of an impeller 100 having a uniform blade spacing with an impeller 200 having a non-uniform blade spacing along the eardrum. As shown in Figure 3, the noise from the two impellers 100, 200 causes a similar amount of neurons to be stimulated throughout the same period of time. However, the impeller 200 with non-uniform blade spacing causes a large acoustic wave frequency. The spread intensity, the greater the spread intensity will reduce the BPF tone. It should be understood that the measurement reduction of the BPF tone may not fully reflect the reduction of the perceived BPF tone.

在習知風扇中,葉輪葉片均一地間隔以達成平衡。當風扇旋轉時,均一間隔亦提供隨著時間推移而恆定之BPF音調頻率。當葉片未均一地間隔時,可能會發生不平衡,且當風扇旋轉時,BPF音調頻率隨著時間推移不恆定。對於大風扇,重量可附加於某些風扇葉片上之關鍵地方以用於平衡。然而,重量不能以有效率方式用於小風扇,諸如,用於攜帶型裝置中之小風扇。為了在具有非均一間隔式葉片之此等小風扇中達成可接受平衡,平衡必須為風扇自身之設計所固有。本文所描述之實施例經設計成使得即使葉片圍繞葉輪之中心輪轂或軸件未均一地間隔,風扇亦平衡,且BPF音調頻率隨著時間推移保持恆定,藉此縮減自風扇發出之噪音。在一些實施例中,鼓風機具有150 cm或更小之直徑。 In conventional fans, the impeller blades are evenly spaced to achieve equilibrium. The uniform spacing also provides a constant BPF tone frequency over time as the fan rotates. When the blades are not evenly spaced, an imbalance may occur, and as the fan rotates, the BPF tone frequency is not constant over time. For large fans, weight can be added to critical points on some fan blades for balancing. However, weight cannot be used in small fans in an efficient manner, such as for small fans in portable devices. In order to achieve an acceptable balance in such small fans with non-uniformly spaced blades, the balance must be inherent to the design of the fan itself. The embodiments described herein are designed such that even if the blades are not evenly spaced around the central hub or shaft of the impeller, the fans are balanced and the BPF tone frequency remains constant over time, thereby reducing the noise emitted from the fan. In some embodiments, the blower has a diameter of 150 cm or less.

根據一實施例,離心式鼓風機具有圍繞中心輪轂或葉輪軸件220非均一地間隔且自中心輪轂或葉輪軸件220伸出之至少15個葉輪葉片210。亦即,葉片210彼此未均勻地間隔。為了縮減風扇噪音,將葉輪葉片210之數目經選擇而不同於馬達230中之磁極通道之數目以避免使葉片210之諧波與磁極之諧波合併。若磁極之諧波與葉片210之諧波合併,則BPF音調及PPF音調增大,從而引起自風扇發出之噪音增大。因此,若磁極之諧波與葉片之諧波未聯合,則 來自風扇之感知噪音將縮減。應理解,若在風扇中存在多個噪音源,則該等噪音源不應聯合,以便最小化噪音。 According to an embodiment, the centrifugal blower has at least 15 impeller blades 210 that are non-uniformly spaced about the center hub or impeller shaft member 220 and that extend from the center hub or impeller shaft member 220. That is, the blades 210 are not evenly spaced from each other. To reduce fan noise, the number of impeller blades 210 is selected to be different than the number of magnetic pole channels in motor 230 to avoid combining the harmonics of blade 210 with the harmonics of the magnetic poles. If the harmonics of the magnetic pole merge with the harmonics of the blade 210, the BPF tone and the PPF tone increase, causing an increase in noise from the fan. Therefore, if the harmonics of the magnetic pole are not combined with the harmonics of the blade, then The perceived noise from the fan will be reduced. It should be understood that if there are multiple sources of noise in the fan, the sources of noise should not be combined to minimize noise.

儘管葉片210未均一地間隔,但葉輪200在旋轉時仍能夠維持可接受平衡。非均一間隔式葉輪葉片之間的空間中之每一者之角度D、E、F係藉由葉片210之位置判定。如圖2所示,葉片210之間的角度D、E、F彼此不相等。儘管葉輪葉片210之位置沿著至少兩個重複正弦型樣均勻地分佈,但葉輪葉片210圍繞中心輪轂220不均勻地或非均一地間隔。葉片210之間的空間中之每一者之角度D、E、F係藉由葉片位置判定。葉輪葉片210中之每一者之位置對應於重複正弦型樣上之獨特點且可藉由以下方程式表示:θ i '=θ i i αcos(mx)其中θ i 為均一間隔式葉片之原始間隔角度(葉片之數目/360°),θ i '為在非均一間隔配置中修改之後第i標稱葉片角度之新間隔角度,α係與間隔角度改變(調變振幅△θ)之最大百分比有關,m為待使用之正弦型樣之數目(調變循環在風扇之單一迴轉中被重複之次數),且0x2π。 Although the blades 210 are not uniformly spaced, the impeller 200 is capable of maintaining an acceptable balance while rotating. The angles D, E, and F of each of the spaces between the non-uniformly spaced impeller blades are determined by the position of the blades 210. As shown in FIG. 2, the angles D, E, and F between the blades 210 are not equal to each other. Although the position of the impeller blades 210 is evenly distributed along at least two repeated sinusoidal patterns, the impeller blades 210 are unevenly or non-uniformly spaced around the central hub 220. The angles D, E, and F of each of the spaces between the blades 210 are determined by the position of the blades. The position of each of the impeller blades 210 corresponds to a unique point on the repeated sinusoidal pattern and can be expressed by the following equation: θ i '= θ i + θ i * α * cos( m x) where θ i is uniform The original separation angle of the spacer blades (the number of blades / 360 °), θ i ' is the new interval angle of the i-th nominal blade angle after modification in the non-uniform spacing configuration, the α system and the interval angle change (modulation amplitude △ θ ) is the maximum percentage, m is the number of sinusoidal patterns to be used (the number of times the modulation cycle is repeated in a single revolution of the fan), and 0 x 2π.

圖4說明根據一實施例的藉由具有非均一間隔式葉輪葉片之風扇提供之噪音縮減。圖4為藉由具有均一間隔式葉輪葉片之風扇與具有非均一間隔式葉輪葉片之風扇產生之聲音的圖形比較。在此實施例中,如圖4所示,在非均一間隔式風扇中縮減主音調(在約2300 Hz下),且引入旁頻帶(在約1900 Hz及2700 Hz下)。旁頻帶表示聲波之頻率之分散,從而引起噪音之縮減。應理解,感知噪音縮減可大於 測定噪音縮減。 4 illustrates noise reduction provided by a fan having non-uniformly spaced impeller blades, in accordance with an embodiment. 4 is a graphical comparison of sound produced by a fan having uniformly spaced impeller blades and a fan having non-uniform spaced impeller blades. In this embodiment, as shown in Figure 4, the main tone (at about 2300 Hz) is reduced in a non-uniform spaced fan and the sidebands are introduced (at about 1900 Hz and 2700 Hz). The sideband represents the dispersion of the frequency of the sound waves, causing a reduction in noise. It should be understood that the perceived noise reduction can be greater than The noise reduction is measured.

如上文所論述,風扇具有至少15個葉輪葉片。根據一實施例,存在圍繞中心輪轂非均一地間隔之17個葉輪葉片。在另一實施例中,存在23個非均一間隔式葉輪葉片。在一些實施例中,葉輪具有29個葉片或更少。如圖5所示,若存在太少葉片,則可引入非想要調變偽聲(modulation artifact),藉此提高自風扇發出之噪音。如圖5所示,具有13個非均一間隔式葉輪葉片之風扇相比於具有均一間隔式葉輪葉片之風扇不僅產生較高主音調(在約1300 Hz下),而且產生高旁頻帶(在約1100 Hz及1500 Hz下)。 As discussed above, the fan has at least 15 impeller blades. According to an embodiment, there are 17 impeller blades that are non-uniformly spaced around the central hub. In another embodiment, there are 23 non-uniform spaced impeller blades. In some embodiments, the impeller has 29 blades or less. As shown in FIG. 5, if there are too few blades, non-desired modulation artifacts can be introduced, thereby increasing the noise emitted from the fan. As shown in Figure 5, a fan with 13 non-uniformly spaced impeller blades produces a higher main tone (at approximately 1300 Hz) than a fan with uniform spaced impeller blades, and produces a high sideband (at approximately 1100 Hz and 1500 Hz).

如上文所論述,圍繞中心輪轂220之葉輪葉片210中之每一者位置對應於至少兩個重複正弦型樣上之獨特點。至少兩個重複正弦型樣用以維持平衡。根據一實施例,使用偶數個重複正弦型樣。亦即,葉片210係根據偶數個正弦型樣而間隔。在具有單一風扇之實施例中,使用兩個重複正弦型樣。在某些實施例中,使用四個重複正弦型樣。熟習此項技術者應瞭解,在一些實施例中,將一個以上風扇實施於裝置中,且使用兩個或四個重複正弦型樣。較佳地,使用不超過四個重複正弦型樣。因此,其在2 m 4時特別有效。熟習此項技術者應瞭解,可用正弦來替換方程式中之餘弦,使用以下方程式:θ i'=θ i i αsin(mx)。 As discussed above, each of the impeller blades 210 surrounding the central hub 220 corresponds to a unique point on at least two repeated sinusoidal patterns. At least two repeated sinusoidal patterns are used to maintain balance. According to an embodiment, an even number of repeated sinusoidal patterns are used. That is, the blades 210 are spaced according to an even number of sinusoidal patterns. In an embodiment with a single fan, two repeated sinusoidal patterns are used. In some embodiments, four repeated sinusoidal patterns are used. Those skilled in the art will appreciate that in some embodiments, more than one fan is implemented in the device and two or four repeated sinusoidal patterns are used. Preferably, no more than four repeating sinusoidal patterns are used. So it’s at 2 m 4 hours is especially effective. Those skilled in the art should understand that the chord can be used to replace the cosine in the equation, using the following equation: θ i '= θ i + θ i * α * sin( m x).

在一實施例中,與間隔角度改變之最大百分比有關之變數α在保持於約0.01至約0.07之範圍內時特別有效。根據另 一實施例,α係在約0.01至約0.05之範圍內。若α太大,則可感知低頻率調變。若α太小,則可能不存在感知音調縮減。相似地,自均勻間隔式配置之間隔改變之百分比在約1%至約7%之範圍內特別有效。亦即,相比於具有相同數目個葉輪葉片之葉輪之均勻間隔式葉輪葉片,葉片位置中之每一者被修改達約1%至約7%。當在一系統中使用單一風扇時,待使用之正弦型樣之數目m應等於2。 In one embodiment, the variable a associated with the maximum percentage change in the angular separation is particularly effective when maintained in the range of from about 0.01 to about 0.07. According to another embodiment, the alpha system is in the range of from about 0.01 to about 0.05. If α is too large, low frequency modulation can be perceived. If α is too small, there may be no perceived pitch reduction. Similarly, the percentage change in spacing from a uniform spaced configuration is particularly effective in the range of from about 1% to about 7%. That is, each of the blade positions is modified from about 1% to about 7% compared to a uniformly spaced impeller blade having the same number of impeller blades. When a single fan is used in a system, the number m of sinusoidal patterns to be used should be equal to two.

根據另一實施例,離心式鼓風機具有圍繞中心輪轂以非均一方式間隔之質數個葉輪葉片。如上文所論述,質數個葉片防止該等葉片之諧波與磁極之諧波聯合或合併。由於磁極通道通常為偶數,故將葉輪葉片之數目選擇為等於質數會防止BPF音調與PPF音調合併。 According to another embodiment, the centrifugal blower has a plurality of impeller blades spaced apart in a non-uniform manner about the central hub. As discussed above, the prime number of blades prevent the harmonics of the blades from combining or combining with the harmonics of the magnetic poles. Since the magnetic pole channels are usually even, selecting the number of impeller blades equal to the prime number prevents the BPF tones from combining with the PPF tones.

所需葉片之數目及具有最大BPF音調之頻率範圍可判定該等葉片之間的間隔之可變性百分比。所關注頻率愈高,則在縮減感知音調而不引入其他偽聲方面之變化愈有效。葉片通過頻率(BPF)之頻率被調變且被感知為較不打擾使用者或對於使用者較不強。在小頻率步階之平均能量縮減,但調變必須足夠小以不允許感知低頻率偽聲。 The number of blades required and the frequency range with the largest BPF tone determine the percent variability of the spacing between the blades. The higher the frequency of interest, the more effective it is to reduce the perceived pitch without introducing other artifacts. The blade pass frequency (BPF) frequency is modulated and perceived as being less disturbing to the user or less powerful to the user. The average energy reduction at small frequency steps, but the modulation must be small enough not to perceive low frequency artifacts.

圖6為根據一所描述實施例之製造風扇之方法的流程圖。在步驟600中,在風扇中提供馬達230。馬達230具有偶數個磁極通道。在步驟610中提供至少15個葉輪葉片210。葉輪葉片210之數目不同於馬達230中之磁極通道之數目。在步驟620中,接著圍繞中心輪轂220非均一地定位葉輪葉片210,使得每一葉片210對應於至少兩個重複正弦 型樣上之獨特點。 6 is a flow chart of a method of making a fan in accordance with one described embodiment. In step 600, a motor 230 is provided in the fan. Motor 230 has an even number of pole passages. At least 15 impeller blades 210 are provided in step 610. The number of impeller blades 210 is different from the number of magnetic pole channels in motor 230. In step 620, the impeller blades 210 are then positioned non-uniformly around the central hub 220 such that each blade 210 corresponds to at least two repeated sinusoids A unique point on the pattern.

圖7為根據另一實施例之製造風扇之方法的流程圖。在步驟700中,針對葉輪選擇至少為17之質數個葉片210。在步驟710中,藉由定位葉輪葉片210中之每一者,使得其對應於偶數個重複正弦型樣上之獨特點而使該等葉輪葉片圍繞中心輪轂非均一地間隔。 7 is a flow chart of a method of making a fan in accordance with another embodiment. In step 700, a plurality of vanes 210 of at least 17 are selected for the impeller. In step 710, the impeller blades are non-uniformly spaced around the central hub by positioning each of the impeller blades 210 such that they correspond to unique points on an even number of repeated sinusoidal patterns.

應注意,薄剖面已被發現在美學上取悅大量使用者且因此為攜帶型電子裝置(諸如,膝上型電腦)之製造中之理想工業設計考慮。相比於習知風扇,所描述實施例中之離心式鼓風機可以較小尺寸予以製造。因此,實施於攜帶型裝置中之較小鼓風機允許攜帶型裝置具有薄剖面。熟習此項技術者應瞭解,本文所描述之實施例亦可應用於可具有較大尺寸之軸流式風扇。 It should be noted that thin profiles have been found to be aesthetically pleasing to a large number of users and are therefore an ideal industrial design consideration in the manufacture of portable electronic devices such as laptops. The centrifugal blower in the described embodiment can be manufactured in a smaller size than conventional fans. Therefore, the smaller blower implemented in the portable device allows the portable device to have a thin profile. Those skilled in the art will appreciate that the embodiments described herein are also applicable to axial flow fans that can have larger sizes.

非對稱葉片間隔實施例Asymmetric blade spacing embodiment

圖8至圖12說明非對稱葉片間隔實施例之特徵,其中離心式鼓風機可經形成為使得葉輪葉片各自係與一標稱葉片角度值相關聯,且(i)彼此非對稱地間隔及(ii)非對稱間隔式葉輪葉片之標稱葉片角度值之總和等於360°。在一實施例中,容差因數可歸因於葉片角度,此意謂葉片角度值可各自根據容差因數(加或減)而在一值範圍內變化,而不嚴重地影響離心式鼓風機之所要效能特性(應注意,甚至在葉片角度值之可能變化的情況下,葉輪葉片之葉片角度值之總和仍必須等於360°)。舉例而言,葉片角度值之容差因數可為+/- 5%。因此,對於非對稱間隔式葉片之每一組 態,可演算對應離心式鼓風機之一組操作特性。可分析該等操作特性以供攜帶型計算裝置中使用。在一實施例中,可將該等操作特性與離心式鼓風機之一組所要操作特性進行比較。在另一實施例中,可將該等操作特性同與非對稱間隔式葉片之另一組態相關聯之另一組操作特性進行比較。在此情況下,非對稱選定葉片之更加最佳的組態可經選擇用於最終設計或用於進一步改進。 8 through 12 illustrate features of an asymmetric blade spacing embodiment in which a centrifugal blower can be formed such that the impeller blades are each associated with a nominal blade angle value and (i) are asymmetrically spaced from each other and (ii) The sum of the nominal blade angle values of the asymmetrically spaced impeller blades is equal to 360°. In an embodiment, the tolerance factor can be attributed to the blade angle, which means that the blade angle values can each vary within a range of values depending on the tolerance factor (plus or minus) without seriously affecting the centrifugal blower. The required performance characteristics (it should be noted that even in the case of possible variations in blade angle values, the sum of the blade angle values of the impeller blades must still equal 360°). For example, the blade angle value may have a tolerance factor of +/- 5%. Therefore, for each group of asymmetrically spaced blades State, can calculate the operational characteristics of a group corresponding to the centrifugal blower. These operational characteristics can be analyzed for use in a portable computing device. In one embodiment, the operational characteristics can be compared to the desired operational characteristics of a group of centrifugal blowers. In another embodiment, the operational characteristics can be compared to another set of operational characteristics associated with another configuration of the asymmetrically spaced blades. In this case, a more optimal configuration of the asymmetrically selected blades can be selected for the final design or for further improvement.

在一實施例中,離心式鼓風機可包括三十一(31)個葉片,該等葉片具有根據圖8所描述之表1之葉片角度值且體現為圖9中之葉片總成900及圖10中之葉片總成1000。在另一實施例中,離心式鼓風機可包括六十一(61)個葉片,該等葉片具有圖11中之表2所描述之葉片角度值且體現為圖12所示之葉片總成1200。 In an embodiment, the centrifugal blower may include thirty-one (31) blades having the blade angle values of Table 1 according to FIG. 8 and embodied as the blade assembly 900 of FIG. 9 and FIG. The blade assembly is 1000. In another embodiment, the centrifugal blower may include sixty-one (61) vanes having vane angle values as described in Table 2 of FIG. 11 and embodied as the vane assembly 1200 shown in FIG.

本發明之優點眾多。不同態樣、實施例或實施可得到以下優點中之一或多者。本發明之一優點在於:裝置中之風扇安靜得多且較不打擾使用者。利用本文所描述之風扇之風扇的熱效能等效於在使用該技術之前的風扇。此等風扇之另一優點在於:風扇葉輪仍可平衡,此係因為質心仍位於葉輪之軸件上。又,本文所描述之實施例中之設計允許風扇較小,此情形又允許攜帶型裝置較小。 The advantages of the invention are numerous. Different aspects, embodiments, or implementations may yield one or more of the following advantages. One advantage of the present invention is that the fan in the device is much quieter and less disturbing to the user. The thermal performance of a fan utilizing the fan described herein is equivalent to a fan prior to use of the technology. Another advantage of these fans is that the fan wheel is still balanced because the center of mass is still on the shaft of the impeller. Again, the design in the embodiments described herein allows for a smaller fan, which in turn allows the portable device to be smaller.

本發明之許多特徵及優點自書面描述而顯而易見,且因此,意欲由所附申請專利範圍涵蓋本發明之所有此等特徵及優點。另外,由於熟習此項技術者將易於想到眾多修改及改變,故本發明不應限於所說明及所描述之確切構造及 操作。因此,可採取屬於本發明之範疇之所有合適修改及等效者。 The many features and advantages of the present invention are apparent from the written description, and therefore, In addition, many modifications and variations will be apparent to those skilled in the <RTIgt; operating. All suitable modifications and equivalents belonging to the scope of the invention may be employed.

100‧‧‧葉輪 100‧‧‧ impeller

110‧‧‧葉片 110‧‧‧ blades

200‧‧‧葉輪 200‧‧‧ impeller

210‧‧‧葉片 210‧‧‧ leaves

220‧‧‧中心輪轂/葉輪軸件 220‧‧‧Center hub/impeller shaft

230‧‧‧馬達 230‧‧‧ motor

900‧‧‧葉片總成 900‧‧‧ blade assembly

1000‧‧‧葉片總成 1000‧‧‧ blade assembly

1200‧‧‧葉片總成 1200‧‧‧ blade assembly

圖1為具有圍繞中心輪轂均一地間隔之葉片之葉輪的平面俯視圖。 1 is a top plan view of an impeller having blades that are evenly spaced about a central hub.

圖2為具有圍繞中心輪轂未均一地間隔之葉片之葉輪之實施例的平面俯視圖。 2 is a top plan view of an embodiment of an impeller having blades that are not uniformly spaced around a central hub.

圖3為比較具有均一葉片間隔之葉輪與具有非均一葉片間隔之葉輪沿著耳底膜之聲音頻率分佈的曲線圖。 Figure 3 is a graph comparing the sound frequency distribution of an impeller having a uniform blade spacing with an impeller having a non-uniform blade spacing along the eardrum.

圖4為藉由具有均一間隔式葉輪葉片之風扇與具有非均一間隔式葉輪葉片之風扇產生之聲音的圖形比較。 4 is a graphical comparison of sound produced by a fan having uniformly spaced impeller blades and a fan having non-uniform spaced impeller blades.

圖5為藉由具有均一間隔式葉輪葉片之風扇與具有13個非均一間隔式葉輪葉片之風扇產生之聲音的圖形比較。 Figure 5 is a graphical comparison of the sound produced by a fan having uniformly spaced impeller blades and a fan having 13 non-uniform spaced impeller blades.

圖6為根據一所描述實施例之製造風扇之方法的流程圖。 6 is a flow chart of a method of making a fan in accordance with one described embodiment.

圖7為根據另一實施例之製造風扇之方法的流程圖。 7 is a flow chart of a method of making a fan in accordance with another embodiment.

圖8至圖12展示根據所描述實施例的具有非對稱葉片分佈之風扇總成之額外實施例。 8 through 12 show additional embodiments of a fan assembly having an asymmetric blade profile in accordance with the described embodiments.

Claims (2)

一種離心式鼓風機,其包含:一馬達,其具有數個磁極通道,其中磁極通道之數目為一偶數;及三十一個葉輪葉片,其中該三十一個葉輪葉片中之每一者係與具有一標稱葉片角度值之一標稱葉片角度相關聯,該標稱葉片角度為鄰近葉輪葉片之間的一角位移,其中該三十一個葉輪葉片各自圍繞一中心輪轂非對稱地間隔,使得圍繞該中心輪轂定位每一葉輪葉片,使得該等標稱葉片角度值之一總和等於360°且該離心式鼓風機之一操作特性值係在一預定操作特性值範圍內,其中一第一標稱葉片角度值為10.1034°;一第二標稱葉片角度值為10.0229°;一第三標稱葉片角度值為13.1577°;一第四標稱葉片角度值為13.2029°;一第五標稱葉片角度值為13.6692°;一第六標稱葉片角度值為13.0442°;一第七標稱葉片角度值為13.5653°;一第八標稱葉片角度值為11.9834°;一第九標稱葉片角度值為11.6129°;一第十標稱葉片角度值為10.1071°;一第十一標稱葉片角度值為11.2424°;一第十二標稱葉片角度值為10.1532°;一第十三標稱葉片角度值為10.1816°;一第十四標稱葉片角度值為9.7922°;一第十五標稱葉片角度值為13.4336°;一第十六標稱葉片角度值為13.6681°;一第十七標稱葉片角度值為12.6063°;一第十八標稱葉片角度值為9.5578°;一第十九標稱葉片角度值為10.0681°; 一第二十標稱葉片角度值為10.7533°;一第二十一標稱葉片角度值為11.1850°;一第二十二標稱葉片角度值為13.5670°;一第二十三標稱葉片角度值為12.4725°;一第二十四標稱葉片角度值為13.1224°;一第二十五標稱葉片角度值為13.0726°;一第二十六標稱葉片角度值為13.1187°;一第二十七標稱葉片角度值為12.0408°;一第二十八標稱葉片角度值為10.6195°;一第二十九標稱葉片角度值為9.5566°;一第三十標稱葉片角度值為9.6588°;且一第三十一標稱葉片角度值為9.6605°。 A centrifugal blower comprising: a motor having a plurality of magnetic pole passages, wherein the number of magnetic pole passages is an even number; and thirty one impeller blades, wherein each of the thirty one impeller blades is Having a nominal blade angle associated with one of the nominal blade angle values, the nominal blade angle being an angular displacement between adjacent impeller blades, wherein the thirty-one impeller blades are each asymmetrically spaced about a central hub such that Positioning each impeller blade around the central hub such that one of the nominal blade angle values is equal to 360° and one of the centrifugal blower operating characteristic values is within a predetermined operational characteristic value range, wherein a first nominal The blade angle value is 10.1034°; a second nominal blade angle value is 10.0229°; a third nominal blade angle value is 13.1577°; a fourth nominal blade angle value is 13.22929°; a fifth nominal blade angle The value is 13.6692°; a sixth nominal blade angle value is 13.0442°; a seventh nominal blade angle value is 13.5653°; an eighth nominal blade angle value is 11.9834°; a ninth nominal The slice angle value is 11.6129°; a tenth nominal blade angle value is 10.1071°; an eleventh nominal blade angle value is 11.2424°; a twelfth nominal blade angle value is 10.1532°; a thirteenth standard The blade angle value is 10.11816°; the 14th nominal blade angle value is 9.7922°; the fifteenth nominal blade angle value is 13.4336°; the 16th nominal blade angle value is 13.6681°; The seven nominal blade angle value is 12.6663°; the eighteenth nominal blade angle value is 9.5578°; the nineteenth nominal blade angle value is 10.0681°; A twentieth nominal blade angle value is 10.7533°; a twenty-first nominal blade angle value is 11.1550°; a twenty-second nominal blade angle value is 13.5670°; a twenty-third nominal blade angle The value is 12.7242°; a twenty-fourth nominal blade angle value is 13.1224°; a twenty-fifth nominal blade angle value is 13.0726°; a twenty-sixth nominal blade angle value is 13.1187°; a second The seventeenth nominal blade angle value is 12.0408°; the twenty-eighth nominal blade angle value is 10.6195°; the twenty-nineth nominal blade angle value is 9.5566°; and the thirtieth nominal blade angle value is 9.6588 °; and a thirty-first nominal blade angle value of 9.6605 °. 如請求項1之離心式鼓風機,其中該等標稱葉片角度值中之每一者具有+/- 5%之一容差範圍。 The centrifugal blower of claim 1, wherein each of the nominal blade angle values has a tolerance range of +/- 5%.
TW101133175A 2012-08-29 2012-09-11 Centrifugal blower with asymmetric blade spacing TWI542788B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/598,585 US9039393B2 (en) 2009-09-02 2012-08-29 Centrifugal blower with asymmetric blade spacing

Publications (2)

Publication Number Publication Date
TW201408884A TW201408884A (en) 2014-03-01
TWI542788B true TWI542788B (en) 2016-07-21

Family

ID=49772505

Family Applications (2)

Application Number Title Priority Date Filing Date
TW101217518U TWM463380U (en) 2012-08-29 2012-09-11 Centrifugal blower with asymmetric blade spacing
TW101133175A TWI542788B (en) 2012-08-29 2012-09-11 Centrifugal blower with asymmetric blade spacing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW101217518U TWM463380U (en) 2012-08-29 2012-09-11 Centrifugal blower with asymmetric blade spacing

Country Status (1)

Country Link
TW (2) TWM463380U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWD194294S (en) 2018-03-29 2018-11-21 全風機電股份有限公司 Blower

Also Published As

Publication number Publication date
TW201408884A (en) 2014-03-01
TWM463380U (en) 2013-10-11

Similar Documents

Publication Publication Date Title
TWI490414B (en) Centrifugal blower with asymmetric blade spacing
US8398380B2 (en) Centrifugal blower with non-uniform blade spacing
US9046109B2 (en) Centrifugal blower with asymmetric blade spacing
US9046108B2 (en) Centrifugal blower with asymmetric blade spacing
US7300244B2 (en) Cooling fan noise reduction apparatus, systems, and methods
US9039393B2 (en) Centrifugal blower with asymmetric blade spacing
US10422350B2 (en) Fan having a blade assembly with different chord lengths
US8277166B2 (en) Use of non-uniform nozzle vane spacing to reduce acoustic signature
US9551352B2 (en) Techniques for improved volumetric resistance blower apparatus, system and method
JPH084690A (en) Centrifugal-blower inlet orifice and assembly for rotary vane
TWI490415B (en) Centrifugal blower with asymmetric blade spacing
US20180252237A1 (en) Impeller
CN104214139A (en) Fan
Wu et al. Blade force model for calculating the axial noise of fans with unevenly spaced blades
US20190277304A1 (en) Process for calculating an angular spacing between the blades of an axial fan
TWI542788B (en) Centrifugal blower with asymmetric blade spacing
JP4490266B2 (en) Radial fan wheel for pumping cooling air for electrical machines
Cattanei et al. Effect of the uneven blade spacing on the noise annoyance of axial-flow fans and side channel blowers
Peng et al. Tonal noise control of cooling fan module by using modulation principles on both rotor and stator
Wang et al. Noise source analysis and control of two axial-flow cooling fans in series
CN111434927B (en) Centrifugal fan and impeller thereof
Čudina et al. Noise generation by vacuum cleaner suction units. Part III. Contribution of structure-borne noise to total sound pressure level
US20090148294A1 (en) Houseless fan with rotating tip ring as silencer
Noda et al. Development of a totally enclosed fan cooled traction motor
JPH05223093A (en) Blower