TWI542320B - Human weight estimating method by using depth images and skeleton characteristic - Google Patents

Human weight estimating method by using depth images and skeleton characteristic Download PDF

Info

Publication number
TWI542320B
TWI542320B TW102148985A TW102148985A TWI542320B TW I542320 B TWI542320 B TW I542320B TW 102148985 A TW102148985 A TW 102148985A TW 102148985 A TW102148985 A TW 102148985A TW I542320 B TWI542320 B TW I542320B
Authority
TW
Taiwan
Prior art keywords
human body
image
pixel
tested
weight
Prior art date
Application number
TW102148985A
Other languages
Chinese (zh)
Other versions
TW201524455A (en
Inventor
葉昱慶
林哲亘
繆紹綱
Original Assignee
中原大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中原大學 filed Critical 中原大學
Priority to TW102148985A priority Critical patent/TWI542320B/en
Publication of TW201524455A publication Critical patent/TW201524455A/en
Application granted granted Critical
Publication of TWI542320B publication Critical patent/TWI542320B/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

以深度圖影像與骨架特徵點進行人體重量估測之方法 Method for estimating body weight with depth map image and skeleton feature points

本發明係關於一種人體重量估測方法,特別是關於一種以深度圖影像與骨架特徵點進行人體重量估測之方法。 The invention relates to a method for estimating the weight of a human body, in particular to a method for estimating the weight of a human body by using a depth map image and a skeleton feature point.

隨著社會經濟、醫學的進步與生活方式的改變,人們的生活水準提升,相對的也對自身的健康越來越重視。除了一些立即威脅人體健康或生命的重大疾病外,慢性和退化性的疾病也會影響人們的生活品質;因此,為了減緩慢性和退化性疾病的速度,日常自身健康的照護也就相對重要,而體重控制便是日常健康照護的一種。由此可知,一套個人化的體重監測系統可對人體狀況做妥善的記錄與分析,達成自我健康維護的目的。 With the changes in social economy, medicine and lifestyle, people's living standards have improved, and their relative health has become more and more important. In addition to some major diseases that immediately threaten human health or life, chronic and degenerative diseases can also affect people's quality of life; therefore, in order to slow the pace of chronic and degenerative diseases, daily health care is relatively important. Weight control is one of the daily health care. It can be seen that a personalized weight monitoring system can properly record and analyze the human condition and achieve self-health maintenance.

常見的體重監測系統有體重機、體脂機等,以體重機為例,使用者須站在體重機上才能夠獲得其體重數值,之後再透過公式計算出其身體質量指數(Body Mass Index,BMI)。在臺灣,行政院衛生署乃根據其相關研究公布了臺灣成人的肥胖標準,其中,正常的標準範圍為18.5≦BMI<24,體重過輕為BMI<18.5,過重為24≦BMI<27,輕 度肥胖為27≦BMI<30,中度肥胖為30≦BMI<35,重度肥胖為BMI≧35。不同於體重機,體脂機是基於人體水分導電且脂肪不導電的原理,以微弱電流(<800mA)通過人體,利用生化電阻分析(Bioelectrical Impedance Analysis,BIA)的方式搭配精確的迴歸分析式計算出人體的體脂率。 Common weight monitoring systems include weight machines, body fat machines, etc. In the case of weight machines, users must stand on the weight machine to obtain their body weight values, and then calculate the body mass index (Body Mass Index, by formula). BMI). In Taiwan, the Department of Health of the Executive Yuan published the adult obesity standard in Taiwan according to its related research. The normal standard range is 18.5≦BMI<24, the underweight is BMI<18.5, and the overweight is 24≦BMI<27, light. The degree of obesity was 27≦BMI<30, moderate obesity was 30≦BMI<35, and severe obesity was BMI≧35. Unlike the weight machine, the body fat machine is based on the principle that the human body is conductive and the fat is not conductive. It passes through the human body with a weak current (<800mA), and uses Bioelectrical Impedance Analysis (BIA) with accurate regression analysis. The body fat percentage of the human body.

就統計上來說,一個指標只要能夠有8成的準確度,就具有相當大的統計意義,因此,對於需要大量樣本的公共衛生研究來說,BMI值仍是相當好用的利器。反觀體脂率要量的準確需要有繁瑣的步驟,因此,一旦採集樣本過大,便不易執行;不過,若就個人健康照護而言,BMI值與體脂率的監控都是適合的。然而,不論是體重機或者體脂機,其使用上都必須與人體達到一定的接觸,才能夠準確地量測人體體重。 Statistically speaking, an indicator has a statistically significant degree as long as it can achieve 80% accuracy. Therefore, for public health research that requires a large number of samples, the BMI value is still a very useful tool. In contrast, the accuracy of the body fat rate requires cumbersome steps. Therefore, once the sample is too large, it is not easy to perform; however, if personal health care is concerned, the monitoring of BMI and body fat rate is suitable. However, whether it is a weight machine or a body fat machine, it must be in contact with the human body in order to accurately measure the body weight.

因此,在2010年10月英國Select Research中公開發表了一套利用Body Volume Index(BVI)的一種新的肥胖測算體系。在BVI這種新的測算體系中,使用3D掃瞄儀器來對人體進行掃描,其不僅可在短時間完成人體掃描(不到6秒),更同時注意到人體肌肉與脂肪間的區別;此外,更首次將人體的體型差別列入考慮,以準確的判定體重的分佈情況。惟,3D掃瞄儀器之設備價格偏高,一般消費者並沒有辦法自行購買且居家使用。 Therefore, in October 2010, Select Research in the UK published a new obesity measurement system using the Body Volume Index (BVI). In the new measurement system of BVI, the 3D scanning instrument is used to scan the human body, which not only can complete the human body scan in a short time (less than 6 seconds), but also notice the difference between human muscle and fat; For the first time, the human body's body shape difference is taken into consideration to accurately determine the distribution of body weight. However, the price of 3D scanning instruments is too high, and consumers generally have no way to buy them themselves and use them at home.

經由上述,可以得知目前市面上並沒有販售或提供有別於類似體重機、體脂機的非接觸式體重量測裝置;同時,也沒有販售或提供價格相對便宜的掃描式體重量測裝置。有鑑於此,本案之發明人係極力地加以研究,並終於研發出一種以深度圖影像與骨架特徵點進行人體重量估測之方法。 Through the above, it can be known that the non-contact body weight measuring device different from the similar weight machine and body fat machine is not currently sold or provided on the market; at the same time, the scanning body weight which is relatively inexpensive or sold is not available. Measuring device. In view of this, the inventors of this case tried to study it and finally developed a method for estimating the weight of the human body using depth map images and skeleton feature points.

本發明之主要目的,在於提供一種以深度圖影像與骨架特徵點進行人體重量估測之方法,其中,該方法係結合了Microsoft Kinect®之Exemplar骨架偵測技術以及3D深度圖像來進行體重估測,透過此估測系統,人們可以非接觸式方式完成體重、身高與BMI值的量測,並且可同時透過運算主機(即,電腦或手機)上傳至雲端資料庫以便進行自身健康的紀錄與控管。此外,當本發明的技術與雲端資料庫相互結合之後,本發明之技術便可擴大應用至遊樂場、舞蹈教室或者是健身中心等地;如此,使用者便能夠於完成某項運動型遊樂設施或舞蹈健身課程後,便即時性地估測體重與BMI值,如此更可增進人體健康檢測的效率。 The main object of the present invention is to provide a method for estimating body weight by using depth map images and skeleton feature points, wherein the method combines Microsoft Kinect® Exemplar skeleton detection technology and 3D depth image for weight estimation. Through this estimation system, people can measure the weight, height and BMI in a contactless manner, and simultaneously upload them to the cloud database through the computing host (ie, computer or mobile phone) to record their own health. Control. In addition, when the technology of the present invention and the cloud database are combined with each other, the technology of the present invention can be expanded to be applied to a playground, a dance classroom, or a fitness center; thus, the user can complete a sports amusement facility. After the dance fitness program, the body weight and BMI values are estimated instantaneously, which can improve the efficiency of human health detection.

因此,為了達成本發明上述之目的,本案之發明人提出一種以深度圖影像與骨架特徵點進行人體重量估測之方法,其係包括以下步驟:(1)藉由一體感攝影機之使用取得一待測人體的複數個骨架特徵點;(2)自該複數個特徵點之中取出複數個關鍵骨架特徵點;(3)以一座標轉換函式對該複數個關鍵骨架特徵點進行座標轉換,以得到對應的複數個螢幕像素座標;(4)令該待測人體自由轉動,以利用該體感攝影機取得該待測人體之一正面前景物影像與至少一側面前景物影像;(5)以一人體高度像素差函式並配合使用該正面前景物影像與該至少一側面前景物影像,以計算出該待測人體之一 人體高度像素;(6)以一人體體素值函式計算出該待測人體之一人體體素值;以及(7)經由迴歸分析的方式而藉由該人體體素值與該人體高度像素推算出該待測人體之一估測體重、一估測身高與一估測BMI值。 Therefore, in order to achieve the above object of the present invention, the inventors of the present invention have proposed a method for estimating the weight of a human body by using a depth map image and a skeleton feature point, which comprises the following steps: (1) obtaining one by using the integrated camera. (1) taking a plurality of key skeleton feature points from the plurality of feature points; (3) performing coordinate transformation on the plurality of key skeleton feature points by a standard conversion function, Obtaining a corresponding plurality of screen pixel coordinates; (4) causing the body to be tested to freely rotate, to obtain a front foreground image and at least one side foreground image of the human body to be tested by using the somatosensory camera; (5) a human body height pixel difference function and using the front foreground image and the at least one side foreground image to calculate one of the human body to be tested a human body height pixel; (6) calculating a human body voxel value of the human body to be tested by a human body value function; and (7) by using a regression analysis method by the human body voxel value and the human body height pixel Calculate one of the body to be tested to estimate the body weight, an estimated height and an estimated BMI value.

<本發明> <present invention>

10‧‧‧後端運算主機 10‧‧‧ Back-end computing host

11‧‧‧體感攝影機 11‧‧‧Sports camera

2‧‧‧待測人體 2‧‧‧The body to be tested

S01~S07‧‧‧方法步驟 S01~S07‧‧‧ method steps

S11~S13‧‧‧方法步驟 S11~S13‧‧‧ method steps

(,)‧‧‧頭心特徵點 ( , ) ‧ ‧ head features

(,)‧‧‧左肩特徵點 ( , )‧‧‧left shoulder feature points

(,)‧‧‧右肩特徵點 ( , )‧‧‧ right shoulder feature points

(,)‧‧‧左腳踝特徵點 ( , )‧‧‧ Left ankle feature points

(,)‧‧‧右腳踝特徵點 ( , ) ‧ ‧ right ankle feature points

S41~S43‧‧‧方法步驟 S41~S43‧‧‧ method steps

(x H ,y H )‧‧‧頭心像素座標 ( x H , y H ) ‧ ‧ head pixel coordinates

(,)‧‧‧左腳踝像素座標 ( , )‧‧‧left ankle pixel coordinates

(,)‧‧‧右腳踝像素座標 ( , )‧‧‧right ankle pixel coordinates

Y(y)‧‧‧人體高度像素 Y(y)‧‧‧ Human height pixels

G‧‧‧平均距離 G‧‧‧Average distance

第一圖係以深度圖影像與骨架特徵點進行人體重量估測之裝置架構圖;第二圖係係本發明之一種以深度圖影像與骨架特徵點進行人體重量估測之方法的流程圖;第三圖係步驟(S01)的細部步驟流程圖;第四圖係待測人體的深度圖像;第五圖係步驟(S04)的細部步驟流程圖;第六圖係待測人體的影像圖;第七圖係待測人體的影像圖;第八圖係待測人體的正面前景物影像;以及第九圖係重量與人體體素值的迴歸關係圖。 The first figure is a device architecture diagram for estimating the weight of a human body by using a depth map image and a skeleton feature point; the second figure is a flow chart of a method for estimating the weight of a human body by using a depth map image and a skeleton feature point; The third figure is a detailed step chart of the step (S01); the fourth picture is the depth image of the body to be tested; the fifth picture is the detailed step chart of the step (S04); the sixth picture is the image of the body to be tested The seventh picture is the image of the human body to be tested; the eighth picture is the image of the foreground image of the human body to be tested; and the regression diagram of the weight of the ninth figure and the voxel value of the human body.

為了能夠更清楚地描述本發明所提出之一種以深度圖影像與骨架特徵點進行人體重量估測之方法,以下將配合圖式,詳盡說明本發明之較佳實施例。 In order to more clearly describe a method for estimating the body weight of a depth map image and a skeleton feature point proposed by the present invention, a preferred embodiment of the present invention will be described in detail below with reference to the drawings.

請參閱第一圖,係以深度圖影像與骨架特徵點進行人體重量估測之裝置架構圖。如第一圖所示,本發明之方法所採用的裝置架構僅包括一後端運算主機10與一體感攝影機11;其中,裝置架構所使用的該體感攝影機11為Microsoft Kinect®,其係用以攝取一待測人體2的彩色影像圖與深度圖像,使得後端運算主機10藉由進行影像處理以及取得骨架特徵點等方式,計算出該待測人體2的人體體素值,之後,再由人體體素值推算出待測人體2之估測體重、估測身高與估測BMI值。 Please refer to the first figure, which is a device architecture diagram for estimating the body weight with depth map images and skeleton feature points. As shown in the first figure, the device architecture adopted by the method of the present invention includes only a back-end computing host 10 and an integrated camera 11; wherein the somatosensory camera 11 used in the device architecture is Microsoft Kinect®, which is used by Taking the color image map and the depth image of the human body 2 to be tested, the back end computing host 10 calculates the human body voxel value of the human body 2 to be tested by performing image processing and obtaining skeleton feature points, and then, Then, the estimated body weight of the human body 2 to be measured, the estimated height and the estimated BMI value are derived from the human body voxel value.

請繼續參閱第一圖,並請同時參閱第二圖,係本發明之一種以深度圖影像與骨架特徵點進行人體重量估測之方法的流程圖;如第二圖所示,本發明所提供的方法係包括7個主要步驟。 Please refer to the first figure, and please refer to the second figure at the same time, which is a flowchart of the method for estimating the body weight of the depth map image and the skeleton feature point of the present invention; as shown in the second figure, the present invention provides The methodology consists of seven main steps.

該方法係首先執行步驟(S01),藉由一體感攝影機之使用取得一待測人體的複數個骨架特徵點;其中,如第三圖所示的步驟(S01)的細部步驟流程圖,步驟(S01)又包含了3個細部步驟,如下:首先,係執行步驟(S011)與步驟(S012),以體感攝影機11攝取該待測人體2之一彩色影像圖,並對該彩色影像圖執行一影像模糊處理;接著,則執行步驟(S013),自該彩色影像圖中取得20個骨架特徵點。 The method first performs the step (S01), and obtains a plurality of skeleton feature points of the human body to be tested by using the integrated camera; wherein, the detailed steps of the step (S01) shown in the third figure are steps, steps ( S01) further includes three detailed steps, as follows: First, the steps (S011) and the step (S012) are performed, and the color camera image of the human body 2 to be tested is taken by the somatosensory camera 11 and executed on the color image map. An image blurring process; then, step (S013) is performed to obtain 20 skeleton feature points from the color image map.

完成步驟(S01)之後,該方法係接著執行步驟(S02),自該20個特徵點之中取出5個關鍵骨架特徵點;然後,係 執行步驟(S03),以一座標轉換函式對該5個關鍵骨架特徵點進行座標轉換,以得到對應的5個螢幕像素座標。於本發明中,如第四圖的待測人體的深度圖像所示,5個關鍵骨架特徵點分別為一頭心特徵點(,)、一左肩特徵點(,)、一右肩特徵點(,)、一左腳踝特徵點(,)、與一右腳踝特徵點(,)。並且,該座標轉換函式為:xH=λx* 、以及;其中,λx與λy分別為 螢幕像素x軸與y軸的轉換參數,其值分別為320與240。 如此,便可獲得5個螢幕像素座標包含一頭心像素座標(x H ,y H )、一左肩像素座標(,)、一右肩像素座標(,)、一左腳踝像素座標(,)、與一右腳踝像素座標(,)。 After the step (S01) is completed, the method is followed by step (S02), and five key skeleton feature points are taken out from the 20 feature points; then, the step (S03) is performed, and the target conversion function is used as a label conversion function. The five key skeleton feature points are coordinate converted to obtain corresponding five pixel pixel coordinates. In the present invention, as shown in the depth image of the human body to be tested in the fourth figure, the five key skeleton feature points are respectively a single heart feature point ( , ), a left shoulder feature point ( , ), a right shoulder feature point ( , ), a left ankle feature point ( , ), with a right ankle feature point ( , ). And, the coordinate conversion function is: xH=λx* , , ,as well as Where λx and λy are conversion parameters of the x-axis and the y-axis of the screen pixel, respectively, and the values are 320 and 240, respectively. In this way, the five pixel coordinates can be obtained to include a head pixel coordinate ( x H , y H ) and a left shoulder pixel coordinate ( , ), a right shoulder pixel coordinate ( , ), a left ankle pixel coordinates ( , ), with a right ankle pixel coordinates ( , ).

請接著參閱第五圖與第六圖,分別為步驟(S04)的細部步驟流程圖以及待測人體的影像圖。於本發明的方法中,其係於取得5個螢幕像素座標之後便接著執行步驟(S04),令該待測人體2自由轉動,以利用該體感攝影機11取得該待測人體2之一正面前景物影像與至少一側面前景物影像。其中,如第五圖所示,步驟(S04)又包含了3個細部步驟。首先,係先執行第1個細部步驟(即,步驟(S041)),令該待測人體2自由轉動,以利用該體感攝影機11取得該待測人體2之複數個深度圖像。接著執行步驟(S042),利用一自動偵測演算法,並配合使用該頭心像素座標(x H ,y H )、 該左肩像素座標(,)、該右肩像素座標(,)、該左腳踝像素座標(,)、與該右腳踝像素座標(,),進而從該複數個深度圖像之中取得一正面深度圖像與至少一側面深度圖像。 Please refer to the fifth and sixth figures, which are respectively the flow chart of the detailed steps of step (S04) and the image of the human body to be tested. In the method of the present invention, after obtaining the five screen pixel coordinates, the step (S04) is performed to rotate the body 2 to be tested to obtain the front side of the body 2 to be tested by the somatosensory camera 11. A foreground image and at least one side foreground image. Wherein, as shown in the fifth figure, the step (S04) further includes three detailed steps. First, the first detailed step (ie, step (S041)) is performed to make the body 2 to be tested free to rotate, so that the plurality of depth images of the human body 2 to be tested are acquired by the somatosensory camera 11. Then performing the step (S042), using an automatic detection algorithm, and using the head pixel coordinates ( x H , y H ), the left shoulder pixel coordinates ( , ), the right shoulder pixel coordinates ( , ), the left ankle pixel coordinates ( , ), with the right ankle pixel coordinates ( , And further obtaining a front depth image and at least one side depth image from the plurality of depth images.

承上述,步驟(42)所述的自動偵測演算法為 ,其中,Ds該表示為該待測人體的雙肩距離,且 分別取自於該右肩像素座標與該左肩像素座標。其中,若某一張深度圖像中計算出的雙肩距離Ds為最大值,則該張深度圖像便為正面深度圖像;反之,若某一張深度圖像中計算出的雙肩距離Ds為最小值,則該張深度圖像便為側面深度圖像。 According to the above, the automatic detection algorithm described in step (42) is Where Ds is expressed as the shoulder distance of the human body to be tested, and versus They are taken from the right shoulder pixel coordinate and the left shoulder pixel coordinate respectively. Wherein, if the calculated shoulder distance Ds in a depth image is the maximum value, the depth image is the front depth image; otherwise, if the shoulder distance calculated in a depth image is When Ds is the minimum value, the depth image is the side depth image.

完成該正面深度圖像與該至少一側面深度圖像的取得之後,該方法係繼續執行步驟(S043),對該正面深度圖像與該至少一側面深度圖像執行例如背景相減處理之平滑濾波處理,以取得對應的正面前景物影像與側面前景物影像。如第七圖所示的待測人體的影像圖,其中,圖(a)表示為所取得的待測人體2的彩色影像圖,圖(b)表示為所取得的待測人體2的正面深度圖像,且圖(c)表示為所取得的待測人體2的正面前景物影像。 After the front depth image and the at least one side depth image are obtained, the method continues with the step (S043), and performs smoothing, for example, background subtraction processing on the front depth image and the at least one side depth image. Filtering processing to obtain corresponding front foreground images and side foreground images. As shown in the seventh figure, the image of the human body to be tested is shown in (a) as the color image of the human body 2 to be tested, and (b) is the front depth of the human body 2 to be tested. The image, and the figure (c) is shown as the front foreground image of the obtained human body 2 to be tested.

完成步驟(S04)之後,繼續地,該方法係執行步驟(S05),以一人體高度像素差函式並配合使用該正面前景物影像與該至少一側面前景物影像,以計算出該待測人體2 之一人體高度像素。如第八圖的待測人體之正面前景物影像所示,人體高度像素係定義為,其中,G表示為該頭心像素座標與該待測人體的頭頂之間的一平均距離,且yH、係分別取自於該頭心像素座標、該左腳踝像素座標與該右腳踝像素座標。 After the step (S04) is completed, the method continues to perform the step (S05), and the human foreground height pixel difference function is used together with the front foreground image and the at least one side foreground image to calculate the to-be-tested One of the human body 2 height pixels. As shown in the image of the foreground image of the human body to be tested in the eighth figure, the height pixel system of the human body is defined as Where G is the average distance between the head pixel coordinate and the head of the body to be tested, and yH, versus The pixel coordinates are taken from the head pixel, the left ankle pixel coordinates, and the right ankle pixel coordinates.

完成人體高度像素Y(y)的取得後,該方法係執行步驟(S06),以一人體體素值函式計算出該待測人體2之一人體體素值。其中,所述的人體體素值函式為,其中,βvoxel表示為人體體素值,表示為該待測人體之該正面深度圖像的x軸總像素點,表示為該待測人體之該側面深度圖像的x軸總像素點,且△y表示為該深度圖像之x軸上的一高度像素點個數。最後,於步驟(S07)中,便可經由迴歸分析的方式而藉由該人體體素值與該人體高度像素推算出該待測人體之一估測體重、一估測身高與一估測BMI值。 After the completion of the human body height pixel Y(y), the method performs the step (S06), and calculates a human body voxel value of the human body 2 to be tested by a human body voxel value function. Wherein, the human body voxel value function is Where βvoxel is expressed as a human body voxel value, Expressed as the x-axis total pixel of the front depth image of the human body to be tested, It is expressed as the x-axis total pixel point of the side depth image of the human body to be tested, and Δy is represented as the number of height pixel points on the x-axis of the depth image. Finally, in step (S07), the human body voxel value and the human body height pixel can be used to calculate the estimated body weight, an estimated height and an estimated BMI by means of regression analysis. value.

於本發明中,迴歸分析所使用的軟體為Mcrosoft Excel® 2010。如下表(一)所示,本發明以15個受測者當訓練樣本,使用Excel軟體對所取得的15份人體體素值與人體高度像素資料進行迴歸分析。 In the present invention, the software used in the regression analysis is Mcrosoft Excel® 2010. As shown in the following table (1), the present invention uses 15 subjects as training samples, and uses Excel software to perform regression analysis on the obtained 15 human body voxel values and human body height pixel data.

由第九圖的重量與人體體素值的迴歸關係圖,吾人可發現資料點集中散佈在迴歸線附近,這表示重量與人體體素值(Voxel)有線性關係存在。並且,由Excel軟體計算出線性迴歸的判定係數(R2)為0.89,表示迴歸關係強,即迴歸模式之解釋能力高;換句話說,重量的總變異數中, 已有89%被Voxel值所解釋。其中,所得出的迴歸方程式如下:M=10.00395+3.19343Bvoxelx10-5。 From the regression diagram of the weight of the ninth figure and the voxel value of the human body, we can find that the data points are concentrated in the vicinity of the regression line, which means that the weight has a linear relationship with the human body voxel value (Voxel). Moreover, the decision coefficient (R2) of the linear regression calculated by Excel software is 0.89, indicating that the regression relationship is strong, that is, the interpretation ability of the regression mode is high; in other words, among the total variance of the weight, 89% have been explained by the Voxel value. Among them, the obtained regression equation is as follows: M=10.00395+3.19343Bvoxelx10-5.

如此,由上述迴歸方程式,吾人便可計算出受測者的估測體重,並整理於下表(二)。 Thus, from the above regression equation, we can calculate the estimated body weight of the subject and organize it in the following table (2).

其中,表(二)中的估測身高係由人體高度像素Y(y)乘上0.44所得,而0.44為由經驗法則所取得的參數;接著,再由身體質量指數(Body Mass Index,BMI)的計算公式便能夠輕易地計算出BMI值。 Among them, the estimated height in Table (2) is obtained by multiplying the human height pixel Y(y) by 0.44, and 0.44 is the parameter obtained by the rule of thumb; then, by Body Mass Index (BMI) The calculation formula can easily calculate the BMI value.

如此,藉由上述之詳細說明,使得本發明之以深度圖影像與骨架特徵點進行人體重量估測之方法係已被完整且清楚地揭露,並且,經由上述,可得知本發明係具有下列之優點: Thus, the method for estimating the body weight of the depth map image and the skeleton feature point of the present invention has been completely and clearly disclosed by the above detailed description, and it can be seen from the above that the present invention has the following Advantages:

1.本發明提出使用3D體感深度攝影機進行人體體重估測的方法,此方法係結合了Microsoft Kinect®之Exemplar骨架偵測技術以及3D深度圖像來進行體重估測,透過此估測系統,人們可以非接觸式方式完成體重、身高與BMI值的量測,並且可同時透過運算主機(即,電腦或手機)上傳至雲端資料庫以便進行自身健康的紀錄與控管。 1. The present invention proposes a method for estimating body weight using a 3D somatosensory depth camera, which combines Microsoft Kinect® Exemplar skeleton detection technology and 3D depth image for weight estimation, through which the estimation system is People can measure the weight, height and BMI in a contactless way, and upload them to the cloud database through the computing host (ie, computer or mobile phone) for their own health records and control.

2.承上述第1點,當本發明的技術與雲端資料庫相互結合之後,本發明之技術便可擴大應用至遊樂場、舞蹈教室或者是健身中心等地;如此,使用者便能夠於完成某項運動型遊樂設施或舞蹈健身課程後,便即時性地估測體重與BMI值,如此更可增進人體健康檢測的效率。 2. According to the above first point, when the technology of the present invention and the cloud database are combined with each other, the technology of the present invention can be expanded to be applied to a playground, a dance classroom or a fitness center; thus, the user can complete After a sporty ride or dance fitness program, the body weight and BMI values are estimated immediately, which improves the efficiency of human health testing.

必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 It is to be understood that the foregoing detailed description of the embodiments of the present invention is not intended to Both should be included in the scope of the patent in this case.

S01~S07‧‧‧方法步驟 S01~S07‧‧‧ method steps

Claims (6)

一種以深度圖影像與骨架特徵點進行人體重量估測之方法,係包括以下步驟:(11)藉由一體感攝影機之使用取得一待測人體之一彩色影像圖;(12)對該彩色影像圖執行一影像模糊處理;(13)自該彩色影像圖中取得20個骨架特徵點;(2)自該20個骨架特徵點之中取出5個關鍵骨架特徵點,分別為一頭心特徵點(,)、一左肩特徵點(,)、一右肩特徵點(,)、一左腳踝特徵點(,)、與一右腳踝特徵點(,),且該複數個螢幕像素座標包含一頭心像素座標(x H ,y H )、一左肩像素座標(,)、一右肩像素座標(,)、一左腳踝像素座標(,)、與一右腳踝像素座標(,);(3)以一座標轉換函式對該5個關鍵骨架特徵點進行座標轉換,以得到對應的複數個螢幕像素座標;(4)令該待測人體自由轉動,以利用該體感攝影機取得該待測人體之一正面前景物影像與至少一側面前景物影像;(5)以一人體高度像素差函式並配合使用該正面前景物影像與該至少一側面前景物影像,以計算出該待測人體之一人體高度像素;其中,所述人體高度像素 差函式為,其中,G表示為該頭心像素座標與該待測人體的頭頂之間的一平均距離,且yH係分別取自於該頭心像素座標、該左腳踝像素座標與該右腳踝像素座標;(6)以一人體體素值函式計算出該待測人體之一人體體素值;以及(7)經由迴歸分析的方式而藉由該人體體素值與該人體高度像素推算出該待測人體之一估測體重、一估測身高與一估測BMI值。 The method for estimating the weight of a human body by using a depth map image and a skeleton feature point includes the following steps: (11) obtaining a color image of a human body to be tested by using the integrated camera; (12) the color image The image performs an image blurring process; (13) obtains 20 skeleton feature points from the color image map; (2) extracts five key skeleton feature points from the 20 skeleton feature points, respectively, which are one core feature points ( , ), a left shoulder feature point ( , ), a right shoulder feature point ( , ), a left ankle feature point ( , ), with a right ankle feature point ( , And the plurality of screen pixel coordinates include a head pixel coordinate ( x H , y H ) and a left shoulder pixel coordinate ( , ), a right shoulder pixel coordinate ( , ), a left ankle pixel coordinates ( , ), with a right ankle pixel coordinates ( , (3) coordinate conversion of the five key skeleton feature points by a standard conversion function to obtain a corresponding plurality of screen pixel coordinates; (4) freely rotating the body to be tested to utilize the somatosensory camera Obtaining a front foreground image and at least one side foreground image of the human body to be tested; (5) calculating the front foreground image and the at least one side foreground image by using a human height pixel difference function a human body height pixel of the human body to be tested; wherein the human body height pixel difference function is Where G is the average distance between the head pixel coordinate and the head of the body to be tested, and y H , versus The system is taken from the head pixel coordinate, the left ankle pixel coordinate and the right ankle pixel coordinate; (6) calculating a human body voxel value of the human body to be tested by a human body value function; and (7) Calculating a body weight, an estimated height, and an estimated BMI value of the body to be tested by the human body voxel value and the body height pixel by means of regression analysis. 如申請專利範圍第1項所述之以深度圖影像與骨架特徵點進行人體重量估測之方法,其中,該步驟係包括以下細部步驟:(41)令該待測人體自由轉動,以利用該體感攝影機取得該待測人體之複數個深度圖像;(42)利用一自動偵測演算法,並配合使用該頭心像素座標(x H ,y H )、該左肩像素座標(,)、該右肩像素座標(,)、該左腳踝像素座標(,)、與該右腳踝像素座標(,),進而從該複數個深度圖像之中取得一正面深度圖像與至少一側面深度圖像;以及 (43)對該正面深度圖像與該至少一側面深度圖像執行一平滑濾波處理,以取得對應的該正面前景物影像與該至少一側面前景物影像。 The method for estimating the weight of a human body by using a depth map image and a skeleton feature point according to the first aspect of the patent application, wherein the step includes the following detailed steps: (41) allowing the body to be tested to freely rotate to utilize the The somatosensory camera obtains a plurality of depth images of the human body to be tested; (42) utilizing an automatic detection algorithm, and using the head pixel coordinates ( x H , y H ), the left shoulder pixel coordinates ( , ), the right shoulder pixel coordinates ( , ), the left ankle pixel coordinates ( , ), with the right ankle pixel coordinates ( , And obtaining a front depth image and at least one side depth image from the plurality of depth images; and (43) performing a smoothing filtering process on the front depth image and the at least one side depth image, And obtaining the corresponding front foreground image and the at least one side foreground image. 如申請專利範圍第2項所述之以深度圖影像與骨架特徵點進行人體重量估測之方法,其中,該步驟所述的自動偵測演算法為,其中,Ds該表示為該待測人體的雙肩距離,且分別取自於該右肩像素座標與該左肩像素座標。 The method for estimating the weight of a human body by using a depth map image and a skeleton feature point as described in claim 2, wherein the automatic detection algorithm described in the step is Where Ds is expressed as the shoulder distance of the human body to be tested, and versus They are taken from the right shoulder pixel coordinate and the left shoulder pixel coordinate respectively. 如申請專利範圍第2項所述之以深度圖影像與骨架特徵點進行人體重量估測之方法,其中,該步驟所述的平滑濾波處理為背景相減處理。 The method for estimating the weight of a human body by using a depth map image and a skeleton feature point according to the second aspect of the patent application, wherein the smoothing filtering process described in the step is background subtraction processing. 如申請專利範圍第1項所述之以深度圖影像與骨架特徵點進行人體重量估測之方法,其中,步驟所述的座標轉換函式包括: ;以及 其中,λx與λy分別為螢幕像素x軸與y軸的轉換參數,其值分別為320與240。 The method for estimating the weight of a human body by using a depth map image and a skeleton feature point according to the first aspect of the patent application, wherein the coordinate conversion function described in the step includes: ;as well as Where λ x and λ y are conversion parameters of the x-axis and the y-axis of the screen pixel, respectively, and the values are 320 and 240, respectively. 如申請專利範圍第2項所述之以深度圖影像與骨架特徵點進行人體重量估測之方法,其中,步驟所述的人體 體素值函式為,其中,表示為該待 測人體之該正面深度圖像的x軸總像素點,表示為該 待測人體之該側面深度圖像的x軸總像素點,且△y表示為該深度圖像之x軸上的一高度像素點個數。 The method for estimating the weight of a human body by using a depth map image and a skeleton feature point according to item 2 of the patent application scope, wherein the human body voxel value function described in the step is ,among them, Expressed as the x-axis total pixel of the front depth image of the human body to be tested, It is expressed as the x-axis total pixel point of the side depth image of the human body to be tested, and Δy is represented as the number of height pixel points on the x-axis of the depth image.
TW102148985A 2013-12-30 2013-12-30 Human weight estimating method by using depth images and skeleton characteristic TWI542320B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102148985A TWI542320B (en) 2013-12-30 2013-12-30 Human weight estimating method by using depth images and skeleton characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102148985A TWI542320B (en) 2013-12-30 2013-12-30 Human weight estimating method by using depth images and skeleton characteristic

Publications (2)

Publication Number Publication Date
TW201524455A TW201524455A (en) 2015-07-01
TWI542320B true TWI542320B (en) 2016-07-21

Family

ID=54197227

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148985A TWI542320B (en) 2013-12-30 2013-12-30 Human weight estimating method by using depth images and skeleton characteristic

Country Status (1)

Country Link
TW (1) TWI542320B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762152B (en) * 2021-01-12 2022-04-21 鴻海精密工業股份有限公司 Method and device for determining plant height, computer device and medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105054936B (en) * 2015-07-16 2017-07-14 河海大学常州校区 Quick height and body weight measurement based on Kinect depth images
CN105224809A (en) * 2015-10-16 2016-01-06 中山大学 A kind of self-service examination system based on Kinect and method
TWI595438B (en) 2016-09-29 2017-08-11 麗寶大數據股份有限公司 User interface display mehotd
CN107256565A (en) * 2017-05-19 2017-10-17 安徽信息工程学院 The measuring method and system of human body predominant body types parameter based on Kinect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762152B (en) * 2021-01-12 2022-04-21 鴻海精密工業股份有限公司 Method and device for determining plant height, computer device and medium

Also Published As

Publication number Publication date
TW201524455A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
TWI542320B (en) Human weight estimating method by using depth images and skeleton characteristic
TWI393579B (en) The state of the muscle movement state analysis system, methods and computer program products
Goldsmith et al. Validity of the open barbell and tendo weightlifting analyzer systems versus the optotrak certus 3D motion-capture system for barbell velocity
WO2020211255A1 (en) Human body shape and physique data acquisition method, device and storage medium
CN105608737B (en) A kind of human foot three-dimensional rebuilding method based on machine learning
CN104462744B (en) Suitable for the data quality control method of cardiovascular remote supervision system
JP4797194B2 (en) Biological tissue evaluation system using ultrasonic tomographic images
US8848994B2 (en) Fetus modeling method and image processing apparatus therefor
Bragança et al. A comparison of manual anthropometric measurements with Kinect-based scanned measurements in terms of precision and reliability
CN111588353A (en) Body temperature measuring method
KR102030131B1 (en) Continuous skin condition estimating method using infrared image
CN117503099A (en) Human body composition analyzer, measuring method, measuring device, apparatus and storage medium
CN111598966B (en) Magnetic resonance imaging method and device based on generation countermeasure network
CN117115922A (en) Seat body forward-bending evaluation method, system, electronic equipment and storage medium
Liu et al. Skin mechanical properties and hydration measured with mobile phone camera
CN106469243B (en) Human face skin moisture and elasticity index calculation method based on digital image processing technology
CN110507285A (en) A kind of care device of dermatosis patient
CN107684438B (en) Pain degree detection method and device based on ultrasonic image
CN103743819A (en) Detection method and device for content of fat in swine muscle
KR20190065060A (en) Apparatus and methdo for measuring body size using open source hardware
Chiu et al. The effect of pose variability and repeated reliability of segmental centres of mass acquisition when using 3D photonic scanning
Wheat et al. The use of consumer depth cameras for 3D surface imaging of people with obesity: a feasibility study
Wan et al. Anthropometric techniques based on kinect 3D scanning
JP6677470B2 (en) External force detection device, external force detection method, and program
Wang et al. Facial Landmark based BMI Analysis for Pervasive Health Informatics

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees