TWI542158B - Analog to digital converter and converting method thereof - Google Patents

Analog to digital converter and converting method thereof Download PDF

Info

Publication number
TWI542158B
TWI542158B TW103131703A TW103131703A TWI542158B TW I542158 B TWI542158 B TW I542158B TW 103131703 A TW103131703 A TW 103131703A TW 103131703 A TW103131703 A TW 103131703A TW I542158 B TWI542158 B TW I542158B
Authority
TW
Taiwan
Prior art keywords
analog
signal
digital
digital converter
capacitor
Prior art date
Application number
TW103131703A
Other languages
Chinese (zh)
Other versions
TW201611525A (en
Inventor
戴宏彥
陳信樹
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW103131703A priority Critical patent/TWI542158B/en
Publication of TW201611525A publication Critical patent/TW201611525A/en
Application granted granted Critical
Publication of TWI542158B publication Critical patent/TWI542158B/en

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Description

類比數位轉換電路及其轉換方法 Analog digital conversion circuit and conversion method thereof

本發明是一種類比數位轉換電路及其轉換方法,特別是應用在兩步式(Two-Step)類比數位轉換器。 The invention relates to an analog digital conversion circuit and a conversion method thereof, in particular to a two-step analog-to-digital converter.

由於類比數位轉換器的運用範圍相當廣泛,使得類比數位轉換器於規格及架構上有諸多種類,例如快閃式類比數位轉換器(Flash ADC)、管線式類比數位轉換器(Pipeline ADC)、連續近似式類比數位轉換器(Successive Approximation Register ADC,SAR ADC)、兩步式類比數位轉換器(Two-Step ADC)等,都各自有其適合的應用範圍。其中,連續近似式類比數位轉換器相較於其他架構具有低功耗、小面積與低成本之優點。 Due to the wide range of analog digital converters, analog digital converters are available in a variety of specifications and architectures, such as flash analog-to-digital converters (Flash ADCs), pipelined analog-to-digital converters (Pipeline ADCs), and continuous The Approximation Register (SAR ADC) and the two-step analog converter (Two-Step ADC) have their own suitable applications. Among them, the continuous approximate analog digital converter has the advantages of low power consumption, small area and low cost compared with other architectures.

傳統上,連續近似式類比數位轉換器是採用二位元搜尋演算法(Binary Search Algorithm)來得到與類比輸入訊號相匹配的數位輸出。然而,連續近似式類比數位轉換器之架構的每一次轉換都需要經過較多的位元週期才能輸出,且每一次轉換所需花費的時間與其位元數成比例。因此,若欲運用連續近似式類比數位轉換器於高速之操作中,勢必需將每一位元週期縮短,以達高速之運用,然此舉無可避免將提升整體功耗。此外,因連續近似式類比數位轉換器之位元數越高,其所需 之轉換週期越長,故需額外使用時脈產生器來產生工作週期非50%之時脈訊號以供連續近似式類比數位轉換器使用。 Traditionally, the continuous approximation analog-to-digital converter uses a Binary Search Algorithm to obtain a digital output that matches the analog input signal. However, each conversion of the architecture of a continuous approximation analog-to-digital converter requires more bit periods to be output, and the time required for each conversion is proportional to the number of bits. Therefore, if you want to use the continuous approximation analog-to-digital converter in high-speed operation, it is necessary to shorten each bit period to achieve high-speed operation, but this will inevitably increase the overall power consumption. In addition, the higher the number of bits in the continuous approximation analog-to-digital converter, the more it is needed The longer the conversion period, the additional clock generator is needed to generate a clock signal with a duty cycle other than 50% for continuous approximate analog digital converters.

而於習知的兩步式類比數位轉換器設計中,兩階段之類比數位轉換器間是使用閉迴路運算放大器(Closed-Loop Operating Amplifier)銜接,以放大來自第一階段之類比數位轉換器的剩餘(Residue)訊號來提供給第二階段之類比數位轉換器。然而,因閉迴路運算放大器需要較長的穩定時間,進而促使兩步式類比數位轉換器之速度受到限制。 In the conventional two-step analog-to-digital converter design, a two-stage analog-to-digital converter is connected using a Closed-Loop Operating Amplifier to amplify the analog converter from the first stage. The Residue signal is provided to the analog converter of the second stage. However, because closed-loop operational amplifiers require longer settling times, the speed of the two-step analog digital converter is limited.

因此,如何使類比數位轉換器具有高速且較低之整體功耗,以突破類比數位轉換器於操作速度上之限制,此為本領域之技術人員所欲琢磨的重點課題。 Therefore, how to make the analog digital converter have high speed and low overall power consumption to break the limitation of the operating speed of the analog digital converter, which is a key issue for those skilled in the art.

在一實施例中,一種類比數位轉換方法包含利用第一類比數位轉換器進行類比輸入訊號的類比數位轉換以產生第一數位訊號與類比剩餘訊號、利用開迴路放大器放大類比剩餘訊號為類比餘數訊號、利用第二類比數位轉換器進行類比餘數訊號的類比數位轉換以產生第二數位訊號,及結合第一數位訊號與第二數位訊號以產生數位輸出訊號。 In an embodiment, an analog-to-digital conversion method includes analog-to-digital conversion of an analog input signal by using a first analog-to-digital converter to generate a first digital signal and an analog residual signal, and an analog-to-residue residual signal is amplified by an open loop amplifier. The signal, the analog-to-digital conversion of the analog residual signal is performed by the second analog-to-digital converter to generate a second digital signal, and the first digital signal and the second digital signal are combined to generate a digital output signal.

在一實施例中,一種類比數位轉換電路包含第一類比數位轉換器、開迴路放大器、第二類比數位轉換器與輸出單元。第一類比數位轉換器用以取樣類比輸入訊號以產生第一數位訊號與類比剩餘訊號。開迴路放大器用以放大類比剩餘訊號為類比餘數訊號。第二類比數位轉換器用以取樣類比餘數訊號以產生第二數位訊號。輸出單元用以結 合第一數位訊號與第二數位訊號以產生數位輸出訊號。 In one embodiment, an analog to digital conversion circuit includes a first analog to digital converter, an open loop amplifier, a second analog to digital converter, and an output unit. The first analog-to-digital converter is configured to sample the analog input signal to generate the first digital signal and the analog residual signal. The open loop amplifier is used to amplify the analog residual signal as an analog residual signal. The second analog-to-digital converter is configured to sample the analog residual signal to generate a second digital signal. Output unit for junction The first digit signal and the second digit signal are combined to generate a digital output signal.

綜上,根據本發明一實施例之類比數位轉換電路及其轉換方法使用開迴路放大器來銜接兩階段之類比數位轉換器來加速兩階段間剩餘電壓(Residue Voltage)之放大速度,而提升類比數位轉換電路之整體操作速度,並搭配重新安排兩階段之類比數位轉換器於時脈訊號之週期中的運作時間,以直接使用工作週期為50%之時脈訊號而不需額外使用高功耗的時脈產生器來產生時脈訊號,進而降低類比數位轉換電路的整體功耗。此外,藉由運用任意權重式電容陣列(Arbitrary Weight Capacitor Array,AWCA)之架構來幫助除錯,以省除額外的校正電路。 In summary, an analog-to-digital conversion circuit and a conversion method thereof according to an embodiment of the present invention use an open-loop amplifier to connect a two-stage analog-to-digital converter to accelerate the amplification speed of a residual voltage between two stages, and to enhance analogous digits. The overall operating speed of the conversion circuit, combined with the operation time of the two-stage analog converter in the clock signal cycle, to directly use the 50% duty cycle signal without additional high power consumption. The clock generator generates a clock signal, thereby reducing the overall power consumption of the analog digital conversion circuit. In addition, debugging is aided by the use of an Arbitrary Weight Capacitor Array (AWCA) architecture to eliminate additional correction circuitry.

以下在實施方式中詳細敘述本發明之詳細特徵及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。 The detailed features and advantages of the present invention are described in detail in the embodiments of the present invention. The objects and advantages associated with the present invention can be readily understood by those skilled in the art.

100‧‧‧類比數位轉換電路 100‧‧‧ analog digital conversion circuit

110‧‧‧第一類比數位轉換器 110‧‧‧First analog-to-digital converter

111、111A、111B‧‧‧第一電容陣列 111, 111A, 111B‧‧‧ first capacitor array

112‧‧‧第一比較單元 112‧‧‧ first comparison unit

113‧‧‧第一邏輯單元 113‧‧‧First logical unit

114、114A、114B‧‧‧輸入開關 114, 114A, 114B‧‧‧ input switch

120‧‧‧開迴路放大器 120‧‧‧Open loop amplifier

130‧‧‧第二類比數位轉換器 130‧‧‧Second analog-to-digital converter

131、131A、131B‧‧‧第二電容陣列 131, 131A, 131B‧‧‧ second capacitor array

132‧‧‧第二比較單元 132‧‧‧Second comparison unit

133‧‧‧第二邏輯單元 133‧‧‧Second logic unit

134、134A、134B‧‧‧輸入開關 134, 134A, 134B‧‧‧ input switch

140‧‧‧輸出單元 140‧‧‧Output unit

150‧‧‧控制單元 150‧‧‧Control unit

Ain‧‧‧類比輸入訊號 A in ‧‧‧ analog input signal

Ain+‧‧‧正端輸入訊號 A in+ ‧‧‧ Positive input signal

Ain‧‧‧負端輸入訊號 A in ‧‧‧n negative input signal

CM6~CM1、CL6~CL1‧‧‧電容模組 CM6~CM1, CL6~CL1‧‧‧ Capacitor Module

D1‧‧‧第一數位訊號 D1‧‧‧ first digit signal

D2‧‧‧第二數位訊號 D2‧‧‧ second digit signal

Dout‧‧‧數位輸出訊號 D out ‧‧‧ digital output signal

M3A~M1A、M3B~M1B‧‧‧電晶體 M3A~M1A, M3B~M1B‧‧‧O crystal

Q1‧‧‧第一邏輯訊號 Q1‧‧‧First logic signal

Q16~Q11‧‧‧位元 Q1 6 ~Q1 1 ‧‧‧ bits

Q2‧‧‧第二邏輯訊號 Q2‧‧‧Second logic signal

Q26~Q21‧‧‧位元 Q2 6 ~Q2 1 ‧‧‧ bits

R1‧‧‧第一比較結果 R1‧‧‧ first comparison result

R2‧‧‧第二比較結果 R2‧‧‧ second comparison result

S1‧‧‧第一控制訊號 S1‧‧‧ first control signal

S2‧‧‧第二控制訊號 S2‧‧‧second control signal

V1‧‧‧共模電位 V1‧‧‧ Common mode potential

VB1‧‧‧第一偏壓 V B1 ‧‧‧First bias

VB2‧‧‧第二偏壓 V B2 ‧‧‧second bias

VR1‧‧‧類比剩餘訊號 VR1‧‧‧ analog ratio residual signal

VR1+‧‧‧正端剩餘訊號 VR1 + ‧‧‧ positive terminal residual signal

VR1‧‧‧負端剩餘訊號 VR1‧‧‧ Negative residual signal

VR2‧‧‧類比餘數訊號 VR2‧‧‧ analog ratio signal

VR2+‧‧‧正端餘數訊號 VR2 + ‧‧‧ positive terminal residual signal

VR2‧‧‧負端餘數訊號 VR2‧‧‧negative residual signal

VS1‧‧‧類比電壓訊號 VS1‧‧‧ analog voltage signal

VS1+‧‧‧正端電壓訊號 VS1 + ‧‧‧ positive terminal voltage signal

VS1‧‧‧負端電壓訊號 VS1‧‧‧ Negative voltage signal

WM6~WM1、WL6~WL1‧‧‧開關模組 WM6~WM1, WL6~WL1‧‧‧ switch module

[第1圖]為根據本發明一實施例之類比數位轉換電路的概要示意圖。 [Fig. 1] is a schematic diagram showing an analog-to-digital conversion circuit according to an embodiment of the present invention.

[第2圖]為第1圖中之第一類比數位轉換器、開迴路放大器與第二類比數位轉換器之一實施例的概要示意圖。 [Fig. 2] is a schematic diagram showing an embodiment of the first analog-to-digital converter, the open-loop amplifier, and the second analog-digital converter in Fig. 1.

[第3圖]為根據本發明一實施例之類比數位轉換電路實施時,第一類比數位轉換器與第二類比數位轉換器於一時脈週期中之動作時序示意圖。 [Fig. 3] is a timing chart showing the operation of the first analog-to-digital converter and the second analog-to-digital converter in a clock cycle when the analog-to-digital conversion circuit is implemented according to an embodiment of the present invention.

第1圖為根據本發明一實施例之類比數位轉換電路的概要 示意圖。請參閱第1圖,類比數位轉換電路100主要是用以將類比輸入訊號Ain轉換為數位輸出訊號Dout。類比數位轉換電路100包含第一類比數位轉換器110、開迴路放大器120、第二類比數位轉換器130與輸出單元140。第一類比數位轉換器110耦接在前級電路(圖未示)與輸出單元140之間。開迴路放大器120耦接在第一類比數位轉換器110與第二類比數位轉換器130之間。第二類比數位轉換器130耦接在開迴路放大器120與輸出單元140之間。 1 is a summary of an analog digital conversion circuit in accordance with an embodiment of the present invention. schematic diagram. Referring to FIG. 1 , the analog digital conversion circuit 100 is mainly used to convert the analog input signal Ain into a digital output signal Dout. The analog digital conversion circuit 100 includes a first analog digital converter 110, an open loop amplifier 120, a second analog digital converter 130, and an output unit 140. The first analog-to-digital converter 110 is coupled between the pre-stage circuit (not shown) and the output unit 140. The open loop amplifier 120 is coupled between the first analog digital converter 110 and the second analog digital converter 130. The second analog-to-digital converter 130 is coupled between the open loop amplifier 120 and the output unit 140.

第一類比數位轉換器100接收來自前級電路的類比輸入訊號Ain,並且進行此類比輸入訊號Ain的類比數位轉換以產生一第一數位訊號D1與一類比剩餘訊號VR1。開迴路放大器120將類比剩餘訊號VR1放大成類比餘數訊號VR2。第二類比數位轉換器130接收來自開迴路放大器120的類比餘數訊號VR2,並且進行此類比餘數訊號VR2的類比數位轉換以產生一第二數位訊號D2。在完成類比數位轉換後,輸出單元140將接收到的第一數位訊號D1與第二數位訊號D2結合成一數位輸出訊號Dout。 The first analog-to-digital converter 100 receives the analog input signal Ain from the pre-stage circuit and performs analog-like digital conversion of the input signal Ain to generate a first digital signal D1 and an analog residual signal VR1. The open loop amplifier 120 amplifies the analog residual signal VR1 into an analog residual signal VR2. The second analog-to-digital converter 130 receives the analog residual signal VR2 from the open loop amplifier 120 and performs analog-to-digital conversion of the residual signal VR2 to generate a second digital signal D2. After the analog digital conversion is completed, the output unit 140 combines the received first digital signal D1 and the second digital signal D2 into a digital output signal Dout.

於此,數位輸出訊號Dout是第一數位訊號D1與第二數位訊號D2串接而成的,其中,第一數位訊號D1為數位輸出訊號Dout的高位元部分,而第二數位訊號D2為數位輸出訊號Dout的低位元部分。 In this case, the digital output signal Dout is formed by concatenating the first digital signal D1 and the second digital signal D2, wherein the first digital signal D1 is the high-order portion of the digital output signal Dout, and the second digital signal D2 is digital. The lower bit portion of the output signal Dout.

在一些實施例中,第一類比數位轉換器110與第二類比數位轉換器130可為利用連續近似暫存器(Successive Approximation Register,SAR)技術進行類比數位轉換的連續近似式類比數位轉換器(SAR ADC)。於此,連續近似式類比數位轉換器之運作是為所屬技術領域中所習知的,故不贅述。此外,開迴路放大器120利用其開迴路特性加速放大類比剩餘訊號VR1為類比餘數訊號VR2並傳遞至下一階 段之類比數位轉換器(即,第二類比數位轉換器130),而縮短了傳統之二階段類比數位轉換電路使用閉迴路之放大器所需的穩態時間,進而提高了類比數位轉換電路100的整體操作速度。 In some embodiments, the first analog-to-digital converter 110 and the second analog-to-digital converter 130 may be a continuous approximate analog digital converter that performs analog-to-digital conversion using a Continuous Approximation Register (SAR) technique ( SAR ADC). Here, the operation of the continuous approximation analog-to-digital converter is well known in the art and will not be described again. In addition, the open loop amplifier 120 utilizes its open loop characteristic to accelerate the amplification of the analog residual signal VR1 to the analog residual signal VR2 and to the next stage. The analog-to-digital converter of the segment (ie, the second analog-to-digital converter 130) shortens the steady-state time required for the conventional two-stage analog-to-digital conversion circuit to use a closed-loop amplifier, thereby improving the analog-to-digital conversion circuit 100. Overall operating speed.

在一實施例中,第一類比數位轉換器110包含輸入開關114、第一電容陣列111、第一比較單元112與第一邏輯單元113,且輸入開關114、第一電容陣列111、第一比較單元112與第一邏輯單元113依序串接在前級電路(圖未示)與輸出單元140之間。第二類比數位轉換器130包含輸入開關134、第二電容陣列131、第二比較單元132與第二邏輯單元133,且輸入開關134、第二電容陣列131、第二比較單元132與第二邏輯單元133依序串接在開迴路放大器120與輸出單元140之間。 In an embodiment, the first analog-to-digital converter 110 includes an input switch 114, a first capacitor array 111, a first comparison unit 112, and a first logic unit 113, and the input switch 114, the first capacitor array 111, and the first comparison. The unit 112 and the first logic unit 113 are sequentially connected in series between the front stage circuit (not shown) and the output unit 140. The second analog-to-digital converter 130 includes an input switch 134, a second capacitor array 131, a second comparison unit 132, and a second logic unit 133, and the input switch 134, the second capacitor array 131, the second comparison unit 132, and the second logic The unit 133 is serially connected between the open loop amplifier 120 and the output unit 140.

輸入開關114的第一端電性連接至前級電路(圖未示),並接收來自前級電路的類比輸入訊號Ain。輸入開關114的第二端電性連接第一電容陣列111的輸入端。輸入開關114的控制端電性連接至控制電路(圖未示),並接收來自控制電路的第一控制訊號S1藉以決定類比輸入訊號Ain是否經由輸入開關114傳輸至第一電容陣列111。第一電容陣列111的輸出端電性連接至第一比較單元112的輸入端與開迴路放大器120的輸入端。第一電容陣列111的控制端電性連接至第一邏輯單元113的輸出端,並接收來自第一邏輯單元113的第一邏輯訊號Q1。第一電容陣列111依據第一邏輯訊號Q1將類比輸入訊號Ain調整成類比剩餘訊號VR1。第一比較單元112接收來自第一電容陣列111的類比剩餘訊號VR1,並且第一比較單元112透過比較接收到的類比剩餘訊號VR1來產生第一比較結果R1(即,第i次比較)。第一邏輯單元113的輸入端電性連接至第一比較單元112的輸出端,並接收來自第一比較單元112的第一比較結果R1。因此,第一邏輯單元113依據第一比較單元112的第一比 較結果R1產生第一數位訊號D1與第一邏輯訊號Q1。接著,第一電容陣列111根據第一邏輯訊號Q1進行切換,以將類比輸入訊號Ain轉換為類比剩餘訊號VR1(即,第i+1次取樣)並接續進行下一次比較(即,第i+1次比較)。其中,i為正整數並等同於第一數位訊號D1的位元數。換言之,第一邏輯單元113根據每次比較的第一比較結果R1決定第一數位訊號D1中的對應位元。第一類比數位轉換器110透過反覆取樣與比較直至確定第一數位訊號D1中的所有位元。 The first end of the input switch 114 is electrically connected to the front stage circuit (not shown) and receives the analog input signal Ain from the front stage circuit. The second end of the input switch 114 is electrically connected to the input end of the first capacitor array 111. The control terminal of the input switch 114 is electrically connected to a control circuit (not shown), and receives the first control signal S1 from the control circuit to determine whether the analog input signal Ain is transmitted to the first capacitor array 111 via the input switch 114. The output end of the first capacitor array 111 is electrically connected to the input end of the first comparison unit 112 and the input end of the open loop amplifier 120. The control terminal of the first capacitor array 111 is electrically connected to the output of the first logic unit 113 and receives the first logic signal Q1 from the first logic unit 113. The first capacitor array 111 adjusts the analog input signal Ain to the analog residual signal VR1 according to the first logic signal Q1. The first comparison unit 112 receives the analog residual signal VR1 from the first capacitor array 111, and the first comparison unit 112 generates a first comparison result R1 (ie, the ith comparison) by comparing the received analog residual signal VR1. The input end of the first logic unit 113 is electrically connected to the output end of the first comparison unit 112, and receives the first comparison result R1 from the first comparison unit 112. Therefore, the first logic unit 113 is based on the first ratio of the first comparison unit 112. The result R1 generates a first digital signal D1 and a first logical signal Q1. Then, the first capacitor array 111 switches according to the first logic signal Q1 to convert the analog input signal Ain into the analog residual signal VR1 (ie, the i+1th sampling) and successively perform the next comparison (ie, the i+th) 1 comparison). Where i is a positive integer and is equivalent to the number of bits of the first digit signal D1. In other words, the first logic unit 113 determines the corresponding bit in the first digital signal D1 according to the first comparison result R1 of each comparison. The first analog-to-digital converter 110 repeats sampling and comparison until all bits in the first digital signal D1 are determined.

開迴路放大器120的輸入端電性連接至第一類比數位轉換器110之第一電容陣列111的輸出端,並接收來自第一電容陣列111的類比剩餘訊號VR1。於此,開迴路放大器120將接收的類比剩餘訊號VR1放大為類比餘數訊號VR2。 The input of the open loop amplifier 120 is electrically coupled to the output of the first capacitor array 111 of the first analog converter 110 and receives the analog residual signal VR1 from the first capacitor array 111. Here, the open loop amplifier 120 amplifies the received analog residual signal VR1 into an analog residual signal VR2.

輸入開關134的第一端電性連接至開迴路放大器120的輸出端,並接收來自開迴路放大器120的類比餘數訊號VR2。輸入開關134的第二端電性連接第二電容陣列131。輸入開關134的控制端電性連接至控制電路(圖未示),並接收來自控制電路的第二控制訊號S2藉以決定類比餘數訊號VR2是否經由輸入開關134傳輸至第二電容陣列131。第二電容陣列131經由輸入開關134接收類比餘數訊號VR2。第二電容陣列131的控制端電性連接至第二邏輯單元133的輸出端,並接收來自第二邏輯單元133的第二邏輯訊號Q2。第二電容陣列131依據第二邏輯訊號Q2將類比餘數訊號VR2調整成類比電壓訊號VS1。第二比較單元132的輸入端電性連接至第二電容陣列131的輸出端,並接收來自第二電容陣列131的類比電壓訊號VS1。第二比較單元132透過比較接收到的類比電壓訊號VS1來產生第二比較結果R2(即,第j次比較)。第二邏輯單元133的輸入端電性連接至第二比較單元132的輸出端,並接收來自第二比較 單元132的第二比較結果R2。因此,第二邏輯單元133依據第二比較單元132的第二比較結果R2產生第二數位訊號D2與第二邏輯訊號Q2。接著,第二電容陣列131根據第二邏輯訊號Q2進行切換,以致將類比餘數訊號VR2轉換為類比電壓訊號VS1(即,第j+1次取樣)並接續進行下一次比較(即,第j+1次取樣)。其中,j為正整數並等同於第二數位訊號D2的位元數。換言之,第二邏輯單元133根據每次比較的第二比較結果R2決定第二數位訊號D2中的對應位元。第二類比數位轉換器130透過反覆取樣與比較直至確定第二數位訊號D2中的所有位元。 The first end of the input switch 134 is electrically coupled to the output of the open loop amplifier 120 and receives the analog residual signal VR2 from the open loop amplifier 120. The second end of the input switch 134 is electrically connected to the second capacitor array 131. The control terminal of the input switch 134 is electrically connected to the control circuit (not shown), and receives the second control signal S2 from the control circuit to determine whether the analog residual signal VR2 is transmitted to the second capacitor array 131 via the input switch 134. The second capacitor array 131 receives the analog residual signal VR2 via the input switch 134. The control terminal of the second capacitor array 131 is electrically connected to the output of the second logic unit 133 and receives the second logic signal Q2 from the second logic unit 133. The second capacitor array 131 adjusts the analog residual signal VR2 to the analog voltage signal VS1 according to the second logic signal Q2. The input end of the second comparison unit 132 is electrically connected to the output end of the second capacitor array 131 and receives the analog voltage signal VS1 from the second capacitor array 131. The second comparison unit 132 generates a second comparison result R2 (ie, the jth comparison) by comparing the received analog voltage signal VS1. The input end of the second logic unit 133 is electrically connected to the output end of the second comparison unit 132, and receives the second comparison The second comparison result R2 of unit 132. Therefore, the second logic unit 133 generates the second digital signal D2 and the second logic signal Q2 according to the second comparison result R2 of the second comparison unit 132. Then, the second capacitor array 131 is switched according to the second logic signal Q2, so that the analog residual signal VR2 is converted into the analog voltage signal VS1 (ie, the j+1th sampling) and the next comparison is performed (ie, the j+th) 1 sampling). Where j is a positive integer and is equivalent to the number of bits of the second digit signal D2. In other words, the second logic unit 133 determines the corresponding bit in the second digital signal D2 according to the second comparison result R2 of each comparison. The second analog-to-digital converter 130 repeats sampling and comparison until all bits in the second digital signal D2 are determined.

輸出單元140的二輸入端分別電性連接至第一邏輯單元113的輸出端與第二邏輯單元133的輸出端。輸出單元140接收來自第一邏輯單元113的第一數位訊號D1與第二邏輯單元133的第二數位訊號D2,並結合第一數位訊號D1與第二數位訊號D2以產生數位輸出訊號Dout。 The two input ends of the output unit 140 are electrically connected to the output end of the first logic unit 113 and the output end of the second logic unit 133, respectively. The output unit 140 receives the first digital signal D1 from the first logic unit 113 and the second digital signal D2 of the second logic unit 133, and combines the first digital signal D1 with the second digital signal D2 to generate the digital output signal Dout.

搭配參閱第2圖。以下以6位元之第一類比數位轉換器110與6位元之第二類比數位轉換器130為例進行說明,故類比數位轉換裝置100最後所輸出之數位輸出訊號Dout為12位元,然本發明並不以此為限。以差動來說,類比輸入訊號Ain具有正端輸入訊號Ain+以及負端輸入訊號Ain-、類比剩餘訊號VR1具有正端剩餘訊號VR1+以及負端剩餘訊號VR1-、類比餘數訊號VR2具有正端餘數訊號VR2+以及負端餘數訊號VR2-,而類比電壓訊號VS1具有正端電壓訊號VS1+以及負端電壓訊號VS1-。 See Figure 2 for matching. The following description is made by taking a 6-bit first analog-to-digital converter 110 and a 6-bit second analog-bit converter 130 as an example. Therefore, the digital output signal Dout finally output by the analog-to-digital conversion device 100 is 12 bits. The invention is not limited thereto. In terms of differential, the analog input signal Ain has a positive input signal Ain+ and a negative input signal Ain-, the analog residual signal VR1 has a positive residual signal VR1+ and a negative residual signal VR1-, and the analog residual signal VR2 has a positive residual The signal VR2+ and the negative residual signal VR2-, and the analog voltage signal VS1 have a positive terminal voltage signal VS1+ and a negative terminal voltage signal VS1-.

第一類比數位轉換器110包含二輸入開關114A、114B、二第一電容陣列111A、111B、一第一比較單元112以及一第一邏輯單元113。各第一電容陣列111A、111B包括六個電容模組CM6~CM1與六個 開關模組WM6~WM1,並且電容模組CM6~CM1一對一對應於開關模組WM6~WM1。以第一電容陣列111A來說,電容模組CM6~CM1的第一端耦接第一比較單元112的第一輸入端以及輸入開關114A的第二端。正端輸入訊號Ain+經由輸入開關114A傳輸至電容模組CM6~CM1,進而轉換為正端剩餘訊號VR1+,再輸入至第一比較單元112的第一輸入端。電容模組CM6~CM1的第二端則耦接至對應之開關模組WM6~WM1的第一端。開關模組WM6~WM1的第二端耦接複數準位中之一,例如:參考電位與共模電位中之一或者參考電位、共模電位與浮接中之一。開關模組WM6~WM1的控制端耦接第一邏輯單元113,並且分別接收第一邏輯訊號Q1中之位元Q16~Q11。同樣地,以第一電容陣列111B來說,電容模組CM6~CM1的第一端耦接第一比較單元112的第二輸入端以及輸入開關114B的第二端。負端輸入訊號Ain-經由輸入開關114B傳輸至電容模組CM6~CM1,進而轉換為負端剩餘訊號VR1-,再輸入至第一比較單元112的第二輸入端。電容模組CM6~CM1的第二端則耦接至對應之開關模組WM6~WM1的第一端,並且分別接收第一邏輯訊號Q1中之位元Q16~Q11。 The first analog-to-digital converter 110 includes two input switches 114A, 114B, two first capacitor arrays 111A, 111B, a first comparison unit 112, and a first logic unit 113. Each of the first capacitor arrays 111A, 111B includes six capacitor modules CM6~CM1 and six The switch modules WM6~WM1, and the capacitor modules CM6~CM1 correspond one-to-one to the switch modules WM6~WM1. In the first capacitor array 111A, the first end of the capacitor module CM6~CM1 is coupled to the first input end of the first comparing unit 112 and the second end of the input switch 114A. The positive input signal Ain+ is transmitted to the capacitor modules CM6~CM1 via the input switch 114A, and then converted into the positive end residual signal VR1+, and then input to the first input end of the first comparison unit 112. The second end of the capacitor module CM6~CM1 is coupled to the first end of the corresponding switch module WM6~WM1. The second end of the switch module WM6~WM1 is coupled to one of the complex levels, for example, one of a reference potential and a common mode potential or one of a reference potential, a common mode potential, and a floating connection. The control terminals of the switch modules WM6~WM1 are coupled to the first logic unit 113 and respectively receive the bits Q16~Q11 of the first logic signal Q1. Similarly, in the first capacitor array 111B, the first ends of the capacitor modules CM6-CM1 are coupled to the second input end of the first comparing unit 112 and the second end of the input switch 114B. The negative input signal Ain- is transmitted to the capacitor modules CM6~CM1 via the input switch 114B, and then converted to the negative residual signal VR1-, and then input to the second input end of the first comparison unit 112. The second ends of the capacitor modules CM6~CM1 are coupled to the first ends of the corresponding switch modules WM6~WM1, and respectively receive the bits Q16~Q11 of the first logic signal Q1.

第一比較單元112藉由比較第一輸入端所接收的正端剩餘訊號VR1+與第二輸入端所接收的負端剩餘訊號VR1-來產生第一比較結果R1。第一邏輯單元113根據第一比較結果R1產生第一數位訊號D1與第一邏輯訊號Q1(即,位元Q16~Q11),並利用第一邏輯訊號Q1的位元Q16~Q11依序控制開關模組WM6~WM1的切換,以決定類比輸入訊號Ain轉換成類比剩餘訊號VR1的比例。 The first comparison unit 112 generates a first comparison result R1 by comparing the positive terminal residual signal VR1+ received by the first input terminal with the negative terminal residual signal VR1- received by the second input terminal. The first logic unit 113 generates the first digital signal D1 and the first logic signal Q1 (ie, the bits Q16~Q11) according to the first comparison result R1, and sequentially controls the switch by using the bits Q16~Q11 of the first logic signal Q1. The switching of the modules WM6~WM1 determines the ratio of the analog input signal Ain to the analog residual signal VR1.

於此,第一邏輯單元113耦接至開關模組WM6~WM1的控制端,且第一邏輯單元113一對一輸出第一邏輯訊號Q1的各位元 Q16~Q11至對應之開關模組WM6~WM1的控制端,以控制開關模組WM6~WM1的第二端耦接至共模電位V1或參考電位(如,接地)。其中,第一邏輯單元113輸出第一邏輯訊號Q1中的最高位元Q16給開關模組WM6,以致使開關模組WM6依據第一邏輯訊號Q1中的最高位元Q16進行切換。第一邏輯單元113輸出第一邏輯訊號Q1中的次高位元Q15給開關模組WM5,以致使開關模組WM5依據第一邏輯訊號Q1中的次高位元Q15進行切換。依此類推,第一邏輯單元113輸出第一邏輯訊號Q1中的最低位元Q11給開關模組WM1,以致使開關模組WM1依據第一邏輯訊號Q1中的最低位元Q11進行切換。基本上,在初始狀態下,開關模組WM6~WM1的第二端是耦接至參考電位。 The first logic unit 113 is coupled to the control terminals of the switch modules WM6 to WM1, and the first logic unit 113 outputs the bits of the first logic signal Q1 one-to-one. The control terminals of the control modules WM6~WM1 are coupled to the common mode potential V1 or the reference potential (eg, ground). The first logic unit 113 outputs the highest bit Q16 of the first logic signal Q1 to the switch module WM6, so that the switch module WM6 switches according to the highest bit Q16 of the first logic signal Q1. The first logic unit 113 outputs the next highest bit Q15 of the first logic signal Q1 to the switch module WM5, so that the switch module WM5 switches according to the next highest bit Q15 of the first logic signal Q1. The first logic unit 113 outputs the lowest bit Q11 of the first logic signal Q1 to the switch module WM1, so that the switch module WM1 switches according to the lowest bit Q11 of the first logic signal Q1. Basically, in the initial state, the second ends of the switch modules WM6~WM1 are coupled to the reference potential.

於此,每次比較結果會依序決定第一邏輯訊號Q1中的一位元與第一數位訊號D1中的一位元。因此,對於各第一電容陣列111A、111B,電容模組CM6~CM1依序分別對應第一數位訊號D1的最高位元至最低位元,換言之,每一電容模組CM6~CM1對應第一數位訊號D1中的一位元。以6位元來說,第六電容模組CM6對應於第一數位訊號D1中的最高位元(第6位元),第五電容模組CM5對應於第一數位訊號D1中的次高位元(第5位元),第四電容模組CM4對應於第一數位訊號D1中的第4位元,第三電容模組CM3對應於第一數位訊號D1中的第3位元,第二電容模組CM2對應於第一數位訊號D2中的第1位元,而第一電容模組CM1對應於第一數位訊號D1中的最低位元(第1位元)。 Here, each comparison result sequentially determines a bit in the first logical signal Q1 and a bit in the first digital signal D1. Therefore, for each of the first capacitor arrays 111A and 111B, the capacitor modules CM6~CM1 sequentially correspond to the highest bit to the lowest bit of the first digital signal D1, in other words, each of the capacitor modules CM6~CM1 corresponds to the first digit. One bit in signal D1. In terms of 6 bits, the sixth capacitor module CM6 corresponds to the highest bit (6th bit) of the first digit signal D1, and the fifth capacitor module CM5 corresponds to the next highest bit of the first digit signal D1. (5th bit), the fourth capacitor module CM4 corresponds to the 4th bit in the first digit signal D1, and the third capacitor module CM3 corresponds to the 3rd bit in the first digit signal D1, the second capacitor The module CM2 corresponds to the first bit in the first digital signal D2, and the first capacitive module CM1 corresponds to the lowest bit (first bit) in the first digital signal D1.

因此,第一類比數位轉換器110是利用第一邏輯單元113採用連續近似式的類比數位轉換技術輸出第一邏輯訊號中的位元Q16~Q11來依序切換第一電容陣列111A、111B中的開關模組WM6~WM1以控制第一比較單元112經由對應的電容模組CM6~CM1 電性連接至共模電位V1,而產生第一數位訊號D1。因應於差動之架構,於此,類比數位轉換電路100使用二開迴路放大器120A、120B。其中,開迴路放大器120A的輸入端耦接至第一電容陣列111A之電容模組CM6~CM1的第一端與第一比較單元112的第一輸入端,以接收並放大正端剩餘訊號VR1+為正端餘數訊號VR2+。同樣地,開迴路放大器120B的輸入端耦接至第一電容陣列111B之電容模組CM6~CM1的第一端與第一比較單元112的第二輸入端,以接收並放大負端剩餘訊號VR1-為負端餘數訊號VR2-。 Therefore, the first analog-to-digital converter 110 sequentially outputs the bits Q16-Q11 in the first logic signal by using the analog-digital conversion technique of the first logic unit 113 to sequentially switch the first capacitor arrays 111A, 111B. The switch modules WM6~WM1 control the first comparison unit 112 via the corresponding capacitor modules CM6~CM1 Electrically connected to the common mode potential V1 to generate a first digital signal D1. In response to the differential architecture, the analog digital conversion circuit 100 uses two open loop amplifiers 120A, 120B. The input end of the open loop amplifier 120A is coupled to the first end of the capacitor module CM6~CM1 of the first capacitor array 111A and the first input end of the first comparison unit 112 to receive and amplify the positive end residual signal VR1+ The positive residual signal VR2+. Similarly, the input end of the open loop amplifier 120B is coupled to the first end of the capacitor module CM6~CM1 of the first capacitor array 111B and the second end of the first comparing unit 112 to receive and amplify the negative residual signal VR1 - is the negative residual signal VR2-.

在一些實施例中,開迴路放大器120A、120B可為源極隨耦器,以利用其開迴路與電壓增益(Gain)之大小為1之特性來加速放大類比剩餘訊號VR1(正端剩餘訊號VR1+與負端剩餘訊號VR1-)為輸出類比餘數訊號VR2(正端餘數訊號VR2+與負端餘數訊號VR2-)。於此,是以三電晶體所構成之源極隨耦器作為開迴路放大器120A、120B。以開迴路放大器120A來說,第一偏壓VB1連接至電晶體M3A的控制端。第二偏壓VB2連接至電晶體M2A的控制端。類比剩餘訊號VR1+連接至電晶體M1A的控制端。電晶體M3A的第一端連接至電源電壓,且電晶體M3A的第二端連接至電晶體M2A的第一端。電晶體M2A的第二端與電晶體M1A的第一端相互連接以輸出類比餘數訊號VR2+。電晶體M1A的第二端連接至地。同樣地,以開迴路放大器120B來說,第一偏壓VB1連接至電晶體M3B的控制端。第二偏壓VB2連接至電晶體M2B的控制端。類比剩餘訊號VR1-連接至電晶體M1B的控制端。電晶體M3B的第一端連接至電源電壓,且電晶體M3B的第二端連接至電晶體M2B的第一端。電晶體M2B的第二端與電晶體M1B的第一端相互連接以輸出類比餘數訊號VR2-。電晶體M1B的第二端連接至地。於此,開迴路放 大器120A、120B的電晶體M3A、M2A、M3B、M2B是分別作為開迴路放大器120A、120B的電流源使用。 In some embodiments, the open loop amplifiers 120A, 120B can be source followers to accelerate the amplification of the analog residual signal VR1 (the positive residual signal VR1+) by utilizing the characteristics of its open loop and voltage gain (Gain) being one. The negative residual signal VR1-) is an analog analog residual signal VR2 (positive terminal residual signal VR2+ and negative residual signal VR2-). Here, the source follower composed of three transistors is used as the open loop amplifiers 120A, 120B. In the case of the open loop amplifier 120A, the first bias voltage VB1 is coupled to the control terminal of the transistor M3A. The second bias voltage VB2 is coupled to the control terminal of the transistor M2A. The analog residual signal VR1+ is connected to the control terminal of the transistor M1A. The first end of the transistor M3A is connected to the supply voltage, and the second end of the transistor M3A is connected to the first end of the transistor M2A. The second end of the transistor M2A is connected to the first end of the transistor M1A to output an analog residual signal VR2+. The second end of the transistor M1A is connected to ground. Similarly, in the case of the open loop amplifier 120B, the first bias voltage VB1 is connected to the control terminal of the transistor M3B. The second bias voltage VB2 is coupled to the control terminal of the transistor M2B. The analog residual signal VR1 - is connected to the control terminal of the transistor M1B. The first end of the transistor M3B is connected to the power supply voltage, and the second end of the transistor M3B is connected to the first end of the transistor M2B. The second end of the transistor M2B is connected to the first end of the transistor M1B to output an analog residual signal VR2-. The second end of the transistor M1B is connected to ground. Here, open loop The transistors M3A, M2A, M3B, and M2B of the amplifiers 120A and 120B are used as current sources of the open loop amplifiers 120A and 120B, respectively.

第二類比數位轉換器130包含二輸入開關134A、134B、二第二電容陣列131A、131B、一第二比較單元132以及一第二邏輯單元133。各第二電容陣列131A、131B包括六個電容模組CL6~CL1與六個開關模組WL6~WL1,並且電容模組CL6~CL1一對一對應於開關模組WL6~WL1。以第二電容陣列131A來說,電容模組CL6~CL1的第一端耦接第二比較單元132的第一輸入端以及輸入開關134A的第二端。正端餘數訊號VR2+經由輸入開關134A傳輸至電容模組CL6~CL1,進而轉換為正端電壓訊號VS1+,再輸入至第二比較單元132的第一輸入端。電容模組CL6~CL1的第二端則耦接至對應之開關模組WL6~WL1的第一端。開關模組WL6~WL1的第二端耦接複數準位中之一,例如:參考電位與共模電位中之一或者參考電位、共模電位與浮接中之一。開關模組WL6~WL1的控制端耦接第二邏輯單元133,並且分別接收第二邏輯訊號Q2中之位元Q26~Q21。同樣地,以第二電容陣列131B來說,電容模組CL6~CL1的第一端耦接第二比較單元132的第二輸入端以及輸入開關134B的第二端。負端餘數訊號VR2-經由輸入開關134B傳輸至電容模組CL6~CL1,進而轉換為負端電壓訊號VS1-,再輸入至第二比較單元132的第二輸入端。電容模組CL6~CL1的第二端則耦接至對應之開關模組WL6~WL1的第一端,並且分別接收第二邏輯訊號Q2中之位元Q26~Q21。 The second analog-to-digital converter 130 includes two input switches 134A, 134B, two second capacitor arrays 131A, 131B, a second comparison unit 132, and a second logic unit 133. Each of the second capacitor arrays 131A and 131B includes six capacitor modules CL6 to CL1 and six switch modules WL6 to WL1, and the capacitor modules CL6 to CL1 correspond to the switch modules WL6 to WL1 in a one-to-one manner. In the second capacitor array 131A, the first ends of the capacitor modules CL6-CL1 are coupled to the first input end of the second comparing unit 132 and the second end of the input switch 134A. The positive-end residual signal VR2+ is transmitted to the capacitor modules CL6-CL1 via the input switch 134A, and then converted to the positive-end voltage signal VS1+, and then input to the first input terminal of the second comparison unit 132. The second ends of the capacitor modules CL6~CL1 are coupled to the first ends of the corresponding switch modules WL6~WL1. The second end of the switch module WL6~WL1 is coupled to one of the complex levels, for example, one of a reference potential and a common mode potential or one of a reference potential, a common mode potential, and a floating connection. The control terminals of the switch modules WL6 WL WL1 are coupled to the second logic unit 133 and respectively receive the bits Q26 ~ Q21 of the second logic signal Q2. Similarly, in the second capacitor array 131B, the first ends of the capacitor modules CL6-CL1 are coupled to the second input end of the second comparing unit 132 and the second end of the input switch 134B. The negative residual signal VR2 is transmitted to the capacitor modules CL6~CL1 via the input switch 134B, and then converted to the negative terminal voltage signal VS1-, and then input to the second input terminal of the second comparison unit 132. The second ends of the capacitor modules CL6~CL1 are coupled to the first ends of the corresponding switch modules WL6~WL1, and receive the bits Q26~Q21 of the second logic signal Q2, respectively.

第二比較器132藉由比較第一輸入端所接收的正端電壓訊號VS1+與第二輸入端所接收的負端電壓訊號VS1-來產生第二比較結果R2。第二邏輯單元133根據第二比較結果R2產生第二數位訊號D2與第 二邏輯訊號Q2(即,位元Q26~Q21),並利用第二邏輯訊號Q2的位元Q26~Q21依序控制開關模組WL6~WL1的切換,以決定類比餘數訊號VR2轉換成類比電壓訊號VS1的比例。 The second comparator 132 generates a second comparison result R2 by comparing the positive terminal voltage signal VS1+ received by the first input terminal with the negative terminal voltage signal VS1- received by the second input terminal. The second logic unit 133 generates the second digital signal D2 and the second according to the second comparison result R2. The two logic signals Q2 (ie, bits Q26~Q21), and sequentially control the switching of the switch modules WL6~WL1 by using the bits Q26~Q21 of the second logic signal Q2 to determine the conversion of the analog residual signal VR2 into an analog voltage signal. The ratio of VS1.

於此,第二邏輯單元133耦接至開關模組WL6~WL1的控制端,且第二邏輯單元133一對一輸出第二邏輯訊號Q2的各位元Q26~Q21至對應之開關模組WL6~WL1的控制端,以控制開關模組WL6~WL1的第二端耦接至共模電位V1或參考電位(如,接地)。其中,第二邏輯單元133輸出第二邏輯訊號Q2中的最高位元Q26給開關模組WL6,以致使開關模組WL6依據第二邏輯訊號Q2中的最高位元Q26進行切換。第二邏輯單元133輸出第二邏輯訊號Q2中的次高位元Q25給開關模組WL5,以致使開關模組WL5依據第二邏輯訊號Q2中的次高位元Q25進行切換。依此類推,第二邏輯單元133輸出第二邏輯訊號Q2中的最低位元Q21給開關模組WL1,以致使開關模組WL1依據第二邏輯訊號Q2中的最低位元Q21進行切換。基本上,在初始狀態下,開關模組WL6~WL1的第二端是耦接至參考電位。 Here, the second logic unit 133 is coupled to the control terminals of the switch modules WL6 WL WL1, and the second logic unit 133 outputs the bits Q26 ~ Q21 of the second logic signal Q2 to the corresponding switch module WL6~ The control terminal of the WL1 is coupled to the common mode potential V1 or the reference potential (eg, ground) by the second terminal of the control switch module WL6~WL1. The second logic unit 133 outputs the highest bit Q26 of the second logic signal Q2 to the switch module WL6, so that the switch module WL6 switches according to the highest bit Q26 of the second logic signal Q2. The second logic unit 133 outputs the second highest bit Q25 of the second logic signal Q2 to the switch module WL5, so that the switch module WL5 switches according to the next highest bit Q25 of the second logic signal Q2. The second logic unit 133 outputs the lowest bit Q21 of the second logic signal Q2 to the switch module WL1, so that the switch module WL1 switches according to the lowest bit Q21 of the second logic signal Q2. Basically, in the initial state, the second ends of the switch modules WL6 WL WL1 are coupled to the reference potential.

於此,每次比較結果會依序決定第二邏輯訊號Q2中的一位元與第二數位訊號D2中的一位元。因此,對於各第二電容陣列131A、131B,電容模組CL6~CL1依序分別對應第二數位訊號D2的最高位元至最低位元,換言之,每一電容模組CL6~CL1對應第二數位訊號D2中的一位元。以6位元來說,第六電容模組CL6對應於第二數位訊號D2中的最高位元(第6位元),第五電容模組CL5對應於第二數位訊號D2中的次高位元(第5位元),第四電容模組CL4對應於第二數位訊號D2中的第4位元,第三電容模組CL3對應於第二數位訊號D2中的第3位元,第二電容模組CL2對應於第二數位訊號D2中的第2位元,而第一電容模組 CL1對應於第二數位訊號D2中的最低位元(第1位元)。 Here, each comparison result sequentially determines one bit in the second logical signal Q2 and one bit in the second digital signal D2. Therefore, for each of the second capacitor arrays 131A and 131B, the capacitor modules CL6~CL1 sequentially correspond to the highest bit to the lowest bit of the second digital signal D2, in other words, each of the capacitor modules CL6~CL1 corresponds to the second digit. One bit in signal D2. In the case of 6 bits, the sixth capacitor module CL6 corresponds to the highest bit (6th bit) of the second digit signal D2, and the fifth capacitor module CL5 corresponds to the next highest bit of the second digit signal D2. (5th bit), the fourth capacitor module CL4 corresponds to the 4th bit in the second digit signal D2, and the third capacitor module CL3 corresponds to the 3rd bit in the second digit signal D2, the second capacitor The module CL2 corresponds to the second bit in the second digital signal D2, and the first capacitive module CL1 corresponds to the lowest bit (1st bit) of the second digit signal D2.

因此,第二類比數位轉換器130是利用第二邏輯單元133採用連續近似式的類比數位轉換技術輸出第二邏輯訊號中的位元Q26~Q21來依序切換第二電容陣列131A、131B中的開關模組WL6~WL1以控制第二比較單元132經由對應的電容CL6~CL1模組電性連接至共模電位V1,而產生第二數位訊號D2。 Therefore, the second analog-to-digital converter 130 sequentially outputs the bits Q26-Q21 in the second logic signal by using the analog digital conversion technique of the continuous logic approximation 133 to sequentially switch the second capacitor arrays 131A, 131B. The switch module WL6~WL1 generates a second digital signal D2 by controlling the second comparison unit 132 to be electrically connected to the common mode potential V1 via the corresponding capacitors CL6~CL1.

此外,類比數位轉換電路100更包含一控制單元150(即,前述之控制電路)。此控制單元150電性連接至第一類比數位轉換器110與第二類比數位轉換器130,以控制第一類比數位轉換器110與第二類比數位轉換器130的操作順序。於此,第一類比數位轉換器110的輸入開關114A、114B之控制端電性連接至控制單元150的第一輸出端,並且輸入開關114A、114B之控制端接收來自控制單元150的第一控制訊號S1。第二類比數位轉換器130的輸入開關134A、134B之控制端電性連接至控制單元150的第二輸出端,並且輸入開關134A、134B之控制端接收來自控制單元150的第二控制訊號S2。 In addition, the analog digital conversion circuit 100 further includes a control unit 150 (ie, the aforementioned control circuit). The control unit 150 is electrically connected to the first analog bit converter 110 and the second analog bit converter 130 to control the operation sequence of the first analog bit converter 110 and the second analog bit converter 130. Here, the control terminals of the input switches 114A, 114B of the first analog-to-digital converter 110 are electrically connected to the first output of the control unit 150, and the control terminals of the input switches 114A, 114B receive the first control from the control unit 150. Signal S1. The control terminals of the input switches 134A, 134B of the second analog-to-digital converter 130 are electrically coupled to the second output of the control unit 150, and the control terminals of the input switches 134A, 134B receive the second control signal S2 from the control unit 150.

請搭配參閱第3圖。於第一時槽T1中,控制單元150輸出的第一控制訊號S1之電壓為高準位(即,邏輯1),且第二控制訊號S2之電壓為低準位(即,邏輯0)。因此,第一類比數位轉換器110的輸入開關114A、114B受第一控制訊號S1控制而關閉,以使第一類比數位轉換器110的第一電容陣列111A、111B可經由輸入開關114A、114B分別接收正端輸入訊號Ain+與負端輸入訊號Ain-,並分別對正端輸入訊號Ain+與負端輸入訊號Ain-進行取樣。而第二類比數位轉換器130的輸入開關134A、134B因受第二控制訊號S2控制而開啟,使得第二類比數位轉換器130進入比較模式並利用連續近似式的類比數位轉換技術對正端 餘數訊號VR2+與負端餘數訊號VR2-進行轉換以產生第二數位訊號D2。因此,於第一時槽T1中,第一類比數位轉換器110進入取樣模式(以執行第N次取樣),且第二類比數位轉換器130同時進入比較模式(以執行第N-1次比較)。 Please refer to Figure 3 together. In the first time slot T1, the voltage of the first control signal S1 output by the control unit 150 is a high level (ie, logic 1), and the voltage of the second control signal S2 is a low level (ie, a logic 0). Therefore, the input switches 114A, 114B of the first analog-to-digital converter 110 are controlled to be turned off by the first control signal S1, so that the first capacitor arrays 111A, 111B of the first analog-to-digital converter 110 can be respectively connected via the input switches 114A, 114B. The positive input signal Ain+ and the negative input signal Ain- are received, and the positive input signal Ain+ and the negative input signal Ain- are respectively sampled. The input switches 134A, 134B of the second analog-to-digital converter 130 are turned on by the second control signal S2, so that the second analog-to-digital converter 130 enters the comparison mode and uses the analog approximation of the continuous approximation to the positive terminal. The remainder signal VR2+ and the negative residual signal VR2- are converted to generate a second digital signal D2. Therefore, in the first time slot T1, the first analog-to-digital converter 110 enters the sampling mode (to perform the Nth sampling), and the second analog-digital converter 130 simultaneously enters the comparison mode (to perform the N-1th comparison) ).

於第二時槽T2中,控制單元150輸出的第一控制訊號S1之電壓為低準位(即,邏輯0),且第二控制訊號S2之電壓為高準位(即,邏輯1)。因此,第一類比數位轉換器110的輸入開關114A、114B受第一控制訊號S1控制而開啟,使得第一類比數位轉換器110進入比較模式並利用連續近似式的類比數位轉換技術對所取樣的正端輸入訊號Ain+與負端輸入訊號Ain-進行轉換以產生第一數位訊號D1。而第二類比數位轉換器130的輸入開關134A、134B因受第二控制訊號S2控制而關閉,以使第二類比數位轉換器130的第二電容陣列131A、131B可經由輸入開關134A、134B接收來自開迴路放大器120的正端餘數訊號VR2+與負端餘數訊號VR2-並對正端餘數訊號VR2+與負端餘數訊號VR2-進行取樣。因此,於第二時槽T2中,第一類比數位轉換器110進入比較模式(以執行第N次比較),且第二類比數位轉換器130同時進入取樣模式(以執行第N次取樣)。 In the second time slot T2, the voltage of the first control signal S1 output by the control unit 150 is a low level (ie, logic 0), and the voltage of the second control signal S2 is a high level (ie, logic 1). Therefore, the input switches 114A, 114B of the first analog-to-digital converter 110 are turned on by the first control signal S1, so that the first analog-to-digital converter 110 enters the comparison mode and uses the analog approximation analog-to-digital conversion technique to sample the samples. The positive input signal Ain+ and the negative input signal Ain- are converted to generate the first digital signal D1. The input switches 134A, 134B of the second analog-to-digital converter 130 are turned off by the second control signal S2, so that the second capacitor arrays 131A, 131B of the second analog-to-digital converter 130 can be received via the input switches 134A, 134B. The positive-end residual signal VR2+ and the negative-end residual signal VR2- from the open loop amplifier 120 sample the positive-end residual signal VR2+ and the negative-end residual signal VR2-. Therefore, in the second time slot T2, the first analog-to-digital converter 110 enters the compare mode (to perform the Nth comparison), and the second analog-bit converter 130 simultaneously enters the sampling mode (to perform the Nth sampling).

換言之,當第二類比數位轉換器進行第N-1次的比較程序時,控制單元150所輸出的第一控制訊號S1便致能輸入開關114A、114B以促使第一數位轉換器110進行第N次取樣程序。同樣地,當第一數位轉換器110完成第N次取樣程序並接續進行第N次比較程序時,控制單元150所輸出的第二控制訊號S2便致能輸入開關134A、134B以促使第二類比數位轉換器130接續第N-1次的比較程序進行第N次的取樣程序。 In other words, when the second analog-to-digital converter performs the N-1th comparison procedure, the first control signal S1 output by the control unit 150 enables the input switches 114A, 114B to cause the first digit converter 110 to perform the Nth Subsampling procedure. Similarly, when the first digitizer 110 completes the Nth sampling procedure and continues the Nth comparison procedure, the second control signal S2 output by the control unit 150 enables the input switches 134A, 134B to promote the second analogy. The digital converter 130 continues the N-1th comparison procedure to perform the Nth sampling procedure.

於此,是以開迴路放大器120耦接於第一類比數位轉換器 110與第二類比數位轉換器130之間,故類比數位轉換電路100可藉由開迴路放大器120的開迴路特性來減縮以往閉迴路所需的穩定時間,使得第一類比數位轉換器110進行的比較程序可與開迴路放大器120進行放大程序一同進行。因此,類比數位轉換電路100可直接使用工作週期為50%之訊號來控制第一類比數位轉換器110與第二類比數位轉換器130之操作而不需額外使用高功耗的時脈產生器來產生,進而降低類比數位轉換電路100的整體功耗。 Here, the open loop amplifier 120 is coupled to the first analog digital converter. Between the first analog converter and the second analog converter 130, the analog digital converter circuit 100 can reduce the settling time required by the conventional closed loop by the open loop characteristic of the open loop amplifier 120, so that the first analog converter 110 performs The comparison procedure can be performed in conjunction with the open loop amplifier 120 for the amplification procedure. Therefore, the analog-to-digital conversion circuit 100 can directly control the operation of the first analog-to-digital converter 110 and the second analog-to-digital converter 130 by using a signal with a duty cycle of 50% without additionally using a high-power clock generator. This produces, and in turn reduces, the overall power consumption of the analog digital conversion circuit 100.

在一些實施例中,控制單元150可待第一類比數位轉換器110產生第一數位訊號D1中的最低位元時再利用第二控制訊號S2致能第二類比數位轉換器130的輸入開關134A、134B,使第二類比數位轉換器130開始取樣類比餘數訊號VR2。 In some embodiments, the control unit 150 can enable the input switch 134A of the second analog-to-digital converter 130 by using the second control signal S2 when the first analog-to-digital converter 110 generates the lowest bit of the first digital signal D1. 134B causes the second analog-to-digital converter 130 to begin sampling the analog residual signal VR2.

在一些實施例中,第一電容陣列111A、111B與第二電容陣列131A、131B是以任意權重式電容陣列(Arbitrary Weight Capacitor Array,AWCA)之架構來實現,以幫助提升類比數位轉換電路100的整體線性度(Linearity)。 In some embodiments, the first capacitor arrays 111A, 111B and the second capacitor arrays 131A, 131B are implemented by an Arbitrary Weight Capacitor Array (AWCA) architecture to help improve the analog digital converter circuit 100. Overall linearity.

參照第2圖,第a電容模組的電容值會小於第a-1電容模組至第一電容模組的所有電容值的總合。其中,a大於2之正整數且a小於或等於i或j(即,所有電容模組的組數;亦即,第一數位訊號D1的位元總數或第二數位訊號D2的位元總數)。以第一電容陣列111A或111B為例,i等於6,且a介於2至6之間(即,a大於2且a小於或等於6)。第六電容模組CM6的電容值會小於第五電容模組CM5至第一電容模組CM1的所有電容值的總合,第五電容模組CM5的電容值會小於第四電容模組CM4至第一電容模組CM1的所有電容值的總合,第四電容模組CM4的電容值會小於第三電容模組CM3至第一電容模組CM1的所有電容值的 總合,而第三電容模組CM3的電容值會小於第二電容模組CM2至第一電容模組CM1的所有電容值的總合。例如,第一電容陣列111A或111B中的所有電容模組CM6~CM1的電容值比例依序可為15:8:4:2:2:1,然本發明不以此為限。如此一來,能避免於高位元部分的比較誤差,例如:一但第一比較單元112於高位元部分有比錯時,即可藉由後續之演算法補救回來,而具有除錯之效果。 Referring to FIG. 2, the capacitance of the a-th capacitor module is smaller than the sum of all the capacitance values of the a-1th capacitor module to the first capacitor module. Where a is a positive integer greater than 2 and a is less than or equal to i or j (ie, the number of groups of all capacitor modules; that is, the total number of bits of the first digit signal D1 or the total number of bits of the second digit signal D2) . Taking the first capacitor array 111A or 111B as an example, i is equal to 6 and a is between 2 and 6 (ie, a is greater than 2 and a is less than or equal to 6). The capacitance value of the sixth capacitor module CM6 is smaller than the sum of all the capacitance values of the fifth capacitor module CM5 to the first capacitor module CM1, and the capacitance value of the fifth capacitor module CM5 is smaller than the fourth capacitor module CM4 to The total capacitance of the first capacitor module CM1, the capacitance value of the fourth capacitor module CM4 is smaller than the capacitance values of the third capacitor module CM3 to the first capacitor module CM1. The total capacitance of the third capacitor module CM3 is smaller than the sum of all the capacitance values of the second capacitor module CM2 to the first capacitor module CM1. For example, the ratio of the capacitance values of all the capacitor modules CM6~CM1 in the first capacitor array 111A or 111B may be 15:8:4:2:2:1, but the invention is not limited thereto. In this way, the comparison error of the high-order portion can be avoided. For example, when the first comparison unit 112 has a fault in the high-order portion, it can be remedied by the subsequent algorithm, and has the effect of debugging.

以第二電容陣列131A或131B為例,j=6,且a介於2至6之間(即,a大於2且a小於或等於6)。第六電容模組CL6的電容值會小於第五電容模組CL5至第一電容模組CL1的所有電容值的總合,第五電容模組CL5的電容值會小於第四電容模組CL4至第一電容模組CL1的所有電容值的總合,第四電容模組CL4的電容值會小於第三電容模組CL3至第一電容模組CL1的所有電容值的總合,而第三電容模組CL3的電容值會小於第二電容模組CL2至第一電容模組CL1的所有電容值的總合。例如,第二電容陣列131A或131B中的所有電容模組CL6~CL1的電容值比例依序可為15:8:4:2:2:1,然本發明不以此為限。如此一來,能避免於高位元部分的比較誤差,例如:一但第二比較單元132於高位元部分有比錯時,即可藉由後續之演算法補救回來,而具有除錯之效果。 Taking the second capacitor array 131A or 131B as an example, j=6, and a is between 2 and 6 (ie, a is greater than 2 and a is less than or equal to 6). The capacitance value of the sixth capacitor module CL6 is smaller than the sum of all the capacitance values of the fifth capacitor module CL5 to the first capacitor module CL1, and the capacitance value of the fifth capacitor module CL5 is smaller than the fourth capacitor module CL4 to The sum of all the capacitance values of the first capacitor module CL1, the capacitance value of the fourth capacitor module CL4 is smaller than the sum of all the capacitance values of the third capacitor module CL3 to the first capacitor module CL1, and the third capacitor The capacitance of the module CL3 is smaller than the sum of all the capacitance values of the second capacitor module CL2 to the first capacitor module CL1. For example, the ratio of the capacitance values of all the capacitor modules CL6~CL1 in the second capacitor array 131A or 131B may be 15:8:4:2:2:1, but the invention is not limited thereto. In this way, the comparison error of the high-order portion can be avoided. For example, when the second comparison unit 132 has a fault in the high-order portion, it can be remedied by the subsequent algorithm, and has the effect of debugging.

在一些實施例中,每一電容模組CM6~CM1、CL6~CL1能具有相互並聯之一個或多個電容。各開關模組則能以一個或多個開關實現。於使用多個開關時,同一開關模組中的所有開關具有相同運作。 In some embodiments, each of the capacitor modules CM6~CM1, CL6~CL1 can have one or more capacitors in parallel with each other. Each switch module can be implemented with one or more switches. When using multiple switches, all switches in the same switch module have the same function.

在一些實施例中,若第一比較器112的二輸入端是採用PMOS(P型金氧半電晶體)實現時,可於第一電容陣列111A或111B中並聯複數額外電容模組,以運用偏移電位(Level Shift)之技巧來加速第一比較器112之動作。於此,此些額外電容模組皆對應至受調整訊號 控制之額外開關模組。因此,當第一類比數位轉換器110進入比較模式時,調整訊號便可切換額外開關模組使得第一比較器112的輸入端可經由額外電容模組耦接至地,以向下偏移正端剩餘訊號VR1+之電位或負端剩餘訊號VR1-之電位,而加速第一比較器112之動作。 In some embodiments, if the two inputs of the first comparator 112 are implemented by PMOS (P-type MOS), a plurality of additional capacitor modules may be connected in parallel to the first capacitor array 111A or 111B for use. The technique of Level Shift accelerates the action of the first comparator 112. Here, the additional capacitor modules correspond to the adjusted signals. Additional switch modules for control. Therefore, when the first analog-to-digital converter 110 enters the comparison mode, the adjustment signal can switch the additional switch module so that the input end of the first comparator 112 can be coupled to the ground via the additional capacitor module to offset the positive offset The potential of the terminal residual signal VR1+ or the potential of the negative terminal residual signal VR1- is accelerated to accelerate the action of the first comparator 112.

同樣地,在一些實施例中,若第二比較器132的二輸入端是採用PMOS(P型金氧半電晶體)實現時,亦可於第二電容陣列131A或131B中並聯複數額外電容模組,以運用偏移電位(Level Shift)之技巧來加速第二比較器132之動作。於此,此些額外電容模組亦對應至受調整訊號控制之額外開關模組。因此,當第二類比數位轉換器130進入比較模式時,調整訊號便切換額外開關模組使得第二比較器132的輸入端可經由額外電容模組耦接至地,以向下偏移正端電壓訊號VS1+之電位或負端電壓訊號VS1-之電位,而加速第二比較器132之動作。 Similarly, in some embodiments, if the two inputs of the second comparator 132 are implemented by PMOS (P-type MOS), a plurality of additional capacitance modes may be connected in parallel to the second capacitor array 131A or 131B. In the group, the technique of the offset potential (Level Shift) is used to accelerate the action of the second comparator 132. Here, the additional capacitor modules also correspond to additional switch modules controlled by the adjusted signals. Therefore, when the second analog-to-digital converter 130 enters the comparison mode, the adjustment signal switches the additional switch module such that the input of the second comparator 132 can be coupled to the ground via the additional capacitor module to offset the positive end downward. The potential of the voltage signal VS1+ or the potential of the negative terminal voltage signal VS1- accelerates the action of the second comparator 132.

綜上,根據本發明一實施例之類比數位轉換電路及其轉換方法使用開迴路放大器來銜接兩階段之類比數位轉換器(前述的第一類比數位轉換器與第二類比數位轉換器)來加速兩階段間剩餘電壓(Residue Voltage)之放大速度,而提升類比數位轉換電路之整體操作速度,並搭配重新安排兩階段之類比數位轉換器於時脈訊號之週期中的運作時間,以直接使用工作週期為50%之時脈訊號而不需額外使用高功耗的時脈產生器來產生時脈訊號,進而降低類比數位轉換電路的整體功耗。此外,藉由運用任意權重式電容陣列(Arbitrary Weight Capacitor Array,AWCA)之架構來幫助除錯,以省除額外的校正電路。 In summary, an analog-to-digital conversion circuit and a conversion method thereof according to an embodiment of the present invention use an open loop amplifier to connect a two-stage analog-to-digital converter (the aforementioned first analog-to-digital converter and second analog-to-digital converter) to accelerate The amplification speed of the Residue Voltage between the two stages, and the overall operation speed of the analog digital conversion circuit is improved, and the operation time in the cycle of the clock signal is reconfigured with the analogy of the two-stage analog converter to directly use the work. The clock signal with a period of 50% does not require the use of a high-powered clock generator to generate a clock signal, thereby reducing the overall power consumption of the analog-to-digital conversion circuit. In addition, debugging is aided by the use of an Arbitrary Weight Capacitor Array (AWCA) architecture to eliminate additional correction circuitry.

本發明之技術內容已以較佳實施例揭示如上述,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神所做些許之更動與潤飾,皆應涵蓋於本發明之範疇內,因此本發明之保護範圍當 視後附之申請專利範圍所界定者為準。 The technical contents of the present invention have been disclosed in the preferred embodiments as described above, and are not intended to limit the present invention. Any modifications and refinements made by those skilled in the art without departing from the spirit of the present invention should be Within the scope of the invention, therefore the scope of protection of the present invention This is subject to the definition of the scope of the patent application.

100‧‧‧類比數位轉換電路 100‧‧‧ analog digital conversion circuit

110‧‧‧第一類比數位轉換器 110‧‧‧First analog-to-digital converter

111‧‧‧第一電容陣列 111‧‧‧First Capacitor Array

112‧‧‧第一比較單元 112‧‧‧ first comparison unit

113‧‧‧第一邏輯單元 113‧‧‧First logical unit

114‧‧‧輸入開關 114‧‧‧Input switch

120‧‧‧開迴路放大器 120‧‧‧Open loop amplifier

130‧‧‧第二類比數位轉換器 130‧‧‧Second analog-to-digital converter

131‧‧‧第二電容陣列 131‧‧‧Second capacitor array

132‧‧‧第二比較單元 132‧‧‧Second comparison unit

133‧‧‧第二邏輯單元 133‧‧‧Second logic unit

134‧‧‧輸入開關 134‧‧‧Input switch

140‧‧‧輸出單元 140‧‧‧Output unit

Ain‧‧‧類比輸入訊號 A in ‧‧‧ analog input signal

D1‧‧‧第一數位訊號 D1‧‧‧ first digit signal

D2‧‧‧第二數位訊號 D2‧‧‧ second digit signal

Dout‧‧‧數位輸出訊號 D out ‧‧‧ digital output signal

Q1‧‧‧第一邏輯訊號 Q1‧‧‧First logic signal

Q2‧‧‧第二邏輯訊號 Q2‧‧‧Second logic signal

R1‧‧‧第一比較結果 R1‧‧‧ first comparison result

R2‧‧‧第二比較結果 R2‧‧‧ second comparison result

S1‧‧‧第一控制訊號 S1‧‧‧ first control signal

S2‧‧‧第二控制訊號 S2‧‧‧second control signal

VR1‧‧‧類比剩餘訊號 VR1‧‧‧ analog ratio residual signal

VR2‧‧‧類比餘數訊號 VR2‧‧‧ analog ratio signal

VS1‧‧‧類比電壓訊號 VS1‧‧‧ analog voltage signal

Claims (12)

一種類比數位轉換方法,包含:利用一第一類比數位轉換器對一類比輸入訊號進行取樣且對所取樣的該類比輸入訊號進行比較以產生一第一數位訊號與一類比剩餘訊號;利用一開迴路放大器放大該類比剩餘訊號為一類比餘數訊號;利用一第二類比數位轉換器對該類比餘數訊號進行取樣且對所取樣的該類比餘數訊號進行比較以產生一第二數位訊號;及結合該第一數位訊號與該第二數位訊號以產生一數位輸出訊號;其中,對所取樣的該類比餘數訊號進行比較的該比較步驟與下一次之對該類比輸入訊號的該取樣步驟係同步執行。 An analog-to-digital conversion method includes: sampling a analog input signal by using a first analog-to-digital converter and comparing the sampled analog input signals to generate a first digital signal and an analog residual signal; The open loop amplifier amplifies the analog residual signal as an analog residual signal; the analog analog signal is sampled by a second analog digital converter and the sampled residual signal is compared to generate a second digital signal; The first digital signal and the second digital signal are used to generate a digital output signal; wherein the comparing step of comparing the sampled analog residual signal with the next sampling step of the analog input signal is performed simultaneously . 如請求項1所述的類比數位轉換方法,其中所取樣的該類比輸入訊號的該比較步驟與該類比餘數訊號的該取樣步驟係同步執行。 The analog digital conversion method of claim 1, wherein the comparing step of the sampled analog input signal is performed in synchronization with the sampling step of the analog residual signal. 如請求項1所述的類比數位轉換方法,其中該類比餘數訊號的取樣步驟係於所取樣的該類比輸入訊號的該比較步驟執行到產生該第一數位訊號中的最低位元值時執行。 The analog digital conversion method of claim 1, wherein the sampling step of the analog residual signal is performed when the comparing step of the sampled analog input signal is performed until a lowest bit value in the first digital signal is generated. 如請求項1所述的類比數位轉換方法,其中該第一數位訊號與該第二數位訊號的該產生步驟係以連續近似式類比數位轉換技術來執行。 The analog digital conversion method of claim 1, wherein the generating step of the first digital signal and the second digital signal is performed by a continuous approximation analog digital conversion technique. 一種類比數位轉換電路,包含:一第一類比數位轉換器,用以執行一類比輸入訊號的類比數位轉換以產生一第一數位訊號與一類比剩餘訊號;一開迴路放大器,用以放大該類比剩餘訊號為一類比餘數訊號; 一第二類比數位轉換器,用以執行該類比餘數訊號的類比數位轉換以產生一第二數位訊號;一輸出單元,用以結合該第一數位訊號與該第二數位訊號以產生一數位輸出訊號;及一控制單元,電性連接至該第一類比數位轉換器與該第二類比數位轉換器,其中當該第一類比數位轉換器根據該類比輸入訊號產生該第一數位訊號時,該控制單元致動該第二類比數位轉換器取樣該類比餘數訊號,當該第二類比數位轉換器根據該類比餘數訊號產生該第二數位訊號時,該控制單元致動該第一類比數位轉換器對該類比輸入訊號進行下一次的取樣動作。 An analog-to-digital conversion circuit includes: a first analog-to-digital converter for performing analog-to-digital conversion of an analog input signal to generate a first digital signal and an analog residual signal; an open loop amplifier for amplifying the The analog residual signal is an analogy residual signal; a second analog-to-digital converter for performing analog-to-digital conversion of the analog residual signal to generate a second digital signal; an output unit for combining the first digital signal and the second digital signal to generate a digital output And a control unit electrically connected to the first analog-to-digital converter and the second analog-to-digital converter, wherein when the first analog-to-digital converter generates the first digital signal according to the analog input signal, The control unit activates the second analog-to-digital converter to sample the analog residual signal, and when the second analog-to-digital converter generates the second digital signal according to the analog residual signal, the control unit activates the first analog digital converter The next sampling action is performed on the analog input signal. 如請求項5所述的類比數位轉換電路,其中當該第一類比數位轉換器產生該第一數位訊號中的最低位元值時,該控制單元致動該第二類比數位轉換器取樣該類比餘數訊號。 The analog-to-digital conversion circuit of claim 5, wherein the control unit activates the second analog-to-digital converter to sample the analogy when the first analog-to-digital converter generates the lowest bit value of the first digital signal The remainder signal. 如請求項5所述的類比數位轉換電路,其中該第一類比數位轉換器與該第二類比數位轉換器為連續近似式類比數位轉換器。 The analog-to-digital conversion circuit of claim 5, wherein the first analog-to-digital converter and the second analog-to-digital converter are continuous approximate analog digital converters. 如請求項5所述的類比數位轉換電路,其中該開迴路放大器為一源極隨耦器,該源極隨耦器的輸入端接收該類比剩餘訊號,該源極隨耦器放大該類比剩餘訊號以輸出該類比餘數訊號。 The analog-to-digital conversion circuit of claim 5, wherein the open loop amplifier is a source follower, the source follower input receives the analog residual signal, and the source follower amplifies the analog residual The signal outputs the analog residual signal. 如請求項5所述的類比數位轉換電路,其中該第一類比數位轉換器包含一第一電容陣列、一第一比較單元與一第一邏輯單元,該第一電容陣列接收該類比輸入訊號,該第一比較單元透過比較所接收到的該類比剩餘訊號來產生一第一比較結果,該第一邏輯單元依據該第一比較結果產生該第一數位訊號與一第一邏輯訊號,並利用該第一邏輯訊 號來控制該第一電容陣列之切換,以將該類比輸入訊號轉換為該類比剩餘訊號。 The analog-to-digital conversion circuit of claim 5, wherein the first analog-to-digital converter comprises a first capacitor array, a first comparison unit and a first logic unit, and the first capacitor array receives the analog input signal. The first comparison unit generates a first comparison result by comparing the received analog residual signals, and the first logic unit generates the first digital signal and a first logic signal according to the first comparison result, and uses the First logic The number is controlled to switch the first capacitor array to convert the analog input signal into the analog residual signal. 如請求項9所述的類比數位轉換電路,其中該第一電容陣列包含:複數電容模組,分別對應到該第一數位訊號的複數位元,該些位元中之第a位元所對應的該電容模組之電容值係小於該些位元中之第a-1位元所對應的該電容模組至該些位元中之最低位元所對應的該電容模組的電容值的總和,其中a大於2且a小於或等於該第一數位訊號的該些位元的總數。 The analog-digital conversion circuit of claim 9, wherein the first capacitor array comprises: a plurality of capacitance modules respectively corresponding to the plurality of bits of the first digital signal, wherein the a-th bit of the bits corresponds to The capacitance value of the capacitor module is smaller than the capacitance value of the capacitor module corresponding to the capacitor module corresponding to the a-1th bit of the bits to the lowest bit of the bits. The sum, where a is greater than 2 and a is less than or equal to the total number of the bits of the first digit signal. 如請求項5所述的類比數位轉換電路,其中該第二類比數位轉換器包含一第二電容陣列、一第二比較單元與一第二邏輯單元,該第二電容陣列接收該類比餘數訊號,該第二比較單元透過比較所接收到的一類比電壓訊號來產生一第二比較結果,該第二邏輯單元依據該第二比較結果產生該第二數位訊號與一第二邏輯訊號,並利用該第二邏輯訊號來控制該第二電容陣列之切換,以將該類比餘數訊號轉換為該類比電壓訊號。 The analog-to-digital conversion circuit of claim 5, wherein the second analog-to-digital converter comprises a second capacitor array, a second comparison unit and a second logic unit, the second capacitor array receiving the analog residual signal, The second comparison unit generates a second comparison result by comparing the received analog voltage signals, and the second logic unit generates the second digital signal and a second logic signal according to the second comparison result, and uses the The second logic signal controls switching of the second capacitor array to convert the analog residual signal into the analog voltage signal. 如請求項11所述的類比數位轉換電路,其中該第二電容陣列包含:複數電容模組,分別對應到該第二數位訊號的複數位元,該些位元中之第a位元所對應的該電容模組的電容值係小於該些位元中之第a-1位元所對應的該電容模組至該些位元中之最低位元所對應的該電容模組的電容值的總和,其中a大於2且a小於或等於該第二數位訊號的該些位元的總數。 The analog-digital conversion circuit of claim 11, wherein the second capacitor array comprises: a plurality of capacitance modules respectively corresponding to the plurality of bits of the second digital signal, wherein the a-th bit of the bits corresponds to The capacitance value of the capacitor module is smaller than the capacitance value of the capacitor module corresponding to the capacitor module corresponding to the a-1th bit of the bits to the lowest bit of the bits. The sum, where a is greater than 2 and a is less than or equal to the total number of the bits of the second digit signal.
TW103131703A 2014-09-12 2014-09-12 Analog to digital converter and converting method thereof TWI542158B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103131703A TWI542158B (en) 2014-09-12 2014-09-12 Analog to digital converter and converting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103131703A TWI542158B (en) 2014-09-12 2014-09-12 Analog to digital converter and converting method thereof

Publications (2)

Publication Number Publication Date
TW201611525A TW201611525A (en) 2016-03-16
TWI542158B true TWI542158B (en) 2016-07-11

Family

ID=56085316

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103131703A TWI542158B (en) 2014-09-12 2014-09-12 Analog to digital converter and converting method thereof

Country Status (1)

Country Link
TW (1) TWI542158B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828543B (en) * 2020-08-11 2024-01-01 美商美國亞德諾半導體公司 Method for providing digital output code to represent analog input value and analog-to-digital converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828543B (en) * 2020-08-11 2024-01-01 美商美國亞德諾半導體公司 Method for providing digital output code to represent analog input value and analog-to-digital converter

Also Published As

Publication number Publication date
TW201611525A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
US5710563A (en) Pipeline analog to digital converter architecture with reduced mismatch error
US9966967B2 (en) High speed successive approximation analog-to-digital converter of two bits per cycle
JP5558566B2 (en) A / D converter and method for converting an analog input signal to a digital output
US8217824B2 (en) Analog-to-digital converter timing circuits
US11438004B2 (en) Analog to digital converter with inverter based amplifier
US7847720B2 (en) Pipelined analog-to-digital converter
US20160013803A1 (en) Systems and methods for providing a pipelined analog-to-digital converter
CN106877868B (en) High-speed successive approximation type analog-to-digital converter
KR101680080B1 (en) Time interleaved pipeline SAR ADC for minimizing channel offset mismatch
CN104079299B (en) Sampling and interleaving stage and AD converter
US8248290B2 (en) Multiplexed amplifier with reduced glitching
Tang et al. A 10-b 750µW 200MS/s fully dynamic single-channel SAR ADC in 40nm CMOS
Gandara et al. A pipelined SAR ADC reusing the comparator as residue amplifier
CN111446964A (en) Novel fourteen-bit assembly line-successive approximation type analog-digital converter
KR101352767B1 (en) Pipeline ADC using a gate-bootstrapping circuit and sub-ranging
KR20110049522A (en) The sha-less pipelined analog-to-digital converter
TWI542158B (en) Analog to digital converter and converting method thereof
KR100635311B1 (en) A/d converter and a/d converting method
Kilic et al. A DAC assisted speed enhancement technique for high resolution SAR ADC
US10826511B1 (en) Pipeline analog-to-digital converter
CN113014264A (en) Analog-digital converter with multi-mode selection
Ha et al. A study of 10-bit 2-MS/s Successive Approximation Register ADC with low power in 180nm technology
Wu et al. A 7 bit 800MS/S SAR ADC with background offset calibration
JP4858962B2 (en) Semiconductor integrated circuit device
Minh et al. A design of 10-bit 25-MS/s SAR ADC using separated clock frequencies with high speed comparator in 180nm CMOS