TWI540940B - Power adjusting circuit - Google Patents

Power adjusting circuit Download PDF

Info

Publication number
TWI540940B
TWI540940B TW104118028A TW104118028A TWI540940B TW I540940 B TWI540940 B TW I540940B TW 104118028 A TW104118028 A TW 104118028A TW 104118028 A TW104118028 A TW 104118028A TW I540940 B TWI540940 B TW I540940B
Authority
TW
Taiwan
Prior art keywords
voltage
power
conversion module
power conversion
module
Prior art date
Application number
TW104118028A
Other languages
Chinese (zh)
Other versions
TW201644321A (en
Inventor
李清然
蔡文田
楊子弘
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW104118028A priority Critical patent/TWI540940B/en
Priority to JP2015179548A priority patent/JP5982050B1/en
Application granted granted Critical
Publication of TWI540940B publication Critical patent/TWI540940B/en
Publication of TW201644321A publication Critical patent/TW201644321A/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Description

電源調整電路 Power adjustment circuit

本發明係提供一種電源調整電路,特別是一種用以調節發光模組之發光強度的電源調整電路。 The invention provides a power supply adjusting circuit, in particular to a power adjusting circuit for adjusting the luminous intensity of the light emitting module.

固態照明光源例如發光二極體(Light-Emitting Diode,LED)、有機發光二極體(Organic Light-Emitting Diode,OLED)及高分子發光二極體(Polymer Light Emitting Diode,PLED),具有輸入電流及輸入電壓為非線性關係的特性。詳細地來說,當驅動電路提供給固態照明光源的輸入電壓低於固態照明光源的切入電壓(cut-in voltage)時,固態照明光源的輸入電流為零。當驅動電路提供給固態照明光源的輸入電壓開始高於固態照明光源的切入電壓後,固態照明光源的輸入電流將隨著輸入電壓的增加而快速增加。 Solid-state illumination sources such as Light-Emitting Diodes (LEDs), Organic Light-Emitting Diodes (OLEDs), and Polymer Light Emitting Diodes (PLEDs) with input current And the characteristics of the input voltage is nonlinear. In detail, when the input voltage supplied by the drive circuit to the solid state illumination source is lower than the cut-in voltage of the solid state illumination source, the input current of the solid state illumination source is zero. When the input voltage supplied by the drive circuit to the solid state illumination source begins to rise above the cut-in voltage of the solid state illumination source, the input current of the solid state illumination source will increase rapidly as the input voltage increases.

因此,在固態照明光源的輸入電壓低於固態照明光源的切入電壓之前,驅動電路所提供的電壓無法使固態照明光源發光,亦無法調整固態照明光源的發光強度,進而造成驅動電路可以調整固態照明光源發光強度的階數減少,調光解析度降低。 Therefore, before the input voltage of the solid-state illumination source is lower than the cut-in voltage of the solid-state illumination source, the voltage provided by the driving circuit cannot make the solid-state illumination source emit light, and the illumination intensity of the solid-state illumination source cannot be adjusted, thereby causing the driving circuit to adjust the solid-state illumination. The order of the light source illumination intensity is reduced, and the dimming resolution is lowered.

本發明在於提供一種電源調整電路,藉以解決驅動 電路可以調整固態照明光源發光強度的階數減少,且調光解析度降低的問題。 The invention provides a power supply adjusting circuit for solving the driving The circuit can adjust the order of the luminous intensity of the solid-state illumination source to be reduced, and the dimming resolution is reduced.

本發明所揭露的電源調整電路,用以產生第一驅動電壓以驅動第一發光模組。電源調整電路包含第一電能轉換模組及第二電能轉換模組。第一電能轉換模組用以依據第一轉換電能,產生電壓及第二轉換電能。第二電能轉換模組電性連接第一電能轉換模組。第二電能轉換模組用以將部分的第二轉換電能以第一調變電壓輸出,並依據第一控制訊號,調整第一調變電壓的電壓位準。第一驅動電壓係電壓及第一調變電壓的總和。電壓小於第一發光模組的切入電壓。 The power supply adjusting circuit disclosed in the present invention is configured to generate a first driving voltage to drive the first lighting module. The power adjustment circuit includes a first power conversion module and a second power conversion module. The first power conversion module is configured to generate a voltage and a second converted electrical energy according to the first converted electrical energy. The second power conversion module is electrically connected to the first power conversion module. The second power conversion module is configured to output a portion of the second converted electrical energy at the first modulated voltage, and adjust a voltage level of the first modulated voltage according to the first control signal. The sum of the first driving voltage and the first modulation voltage. The voltage is less than the cut-in voltage of the first lighting module.

根據上述本發明所揭露的電源調整電路,本發明利用電壓與第一調變電壓的總和作為第一驅動電壓來驅動第一發光模組。由於電壓可以讓第一發光模組的第一驅動電壓接近第一發光模組的切入電壓,因此調整第一調變電壓的階數中,只有少部分的階數係用以讓第一驅動電壓的電壓位準超過切入電壓的電壓位準,而大部分的階數則係用以調整第一驅動電壓的電壓位準,以改變第一發光模組的發光強度。據此,本發明增加可以調整第一發光模組發光強度的階數,進而提升了第一發光模組的調光解析度。 According to the power supply adjusting circuit disclosed in the present invention, the present invention uses the sum of the voltage and the first modulated voltage as the first driving voltage to drive the first lighting module. Since the voltage can make the first driving voltage of the first lighting module close to the cutting voltage of the first lighting module, only a small portion of the order of the first modulation voltage is used to make the first driving voltage The voltage level exceeds the voltage level of the cut-in voltage, and most of the order is used to adjust the voltage level of the first driving voltage to change the luminous intensity of the first light-emitting module. Accordingly, the present invention increases the order of adjusting the illumination intensity of the first illumination module, thereby improving the dimming resolution of the first illumination module.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。 The above description of the disclosure and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention, and to provide further explanation of the scope of the invention.

10、20、20a、20b‧‧‧電源調整電路 10, 20, 20a, 20b‧‧‧ power adjustment circuit

11、21、21a、21b‧‧‧第一電能轉換模組 11, 21, 21a, 21b‧‧‧ first power conversion module

111、211、211a、211b‧‧‧交流對直流轉換器 111, 211, 211a, 211b‧‧‧ AC to DC converter

1112、2112a、2112b‧‧‧整流單元 1112, 2112a, 2112b‧‧‧ rectification unit

1114、2114a、2114b‧‧‧第一控制單元 1114, 2114a, 2114b‧‧‧ first control unit

1116、2116a、2116b‧‧‧第一開關單元 1116, 2116a, 2116b‧‧‧ first switch unit

113、213、213a~213b‧‧‧電容 113, 213, 213a~213b‧‧‧ capacitor

115、215‧‧‧第一輸出端 115, 215‧‧‧ first output

117、217‧‧‧第二輸出端 117, 217‧‧‧ second output

13、23、23a、23b‧‧‧第二電能轉換模組 13, 23, 23a, 23b‧‧‧ second power conversion module

131、231a、231b、251a、251b‧‧‧電壓產生單元 131, 231a, 231b, 251a, 251b‧‧‧ voltage generating unit

133、233a、233b、253a、253b‧‧‧第二控制單元 133, 233a, 233b, 253a, 253b‧‧‧ second control unit

135、235a、235b、255a、255b‧‧‧第二開關單元 135, 235a, 235b, 255a, 255b‧‧‧ second switching unit

25、25a、25b‧‧‧第三電能轉換模組 25, 25a, 25b‧‧‧ third power conversion module

30‧‧‧發光模組 30‧‧‧Lighting module

40、40a、40b‧‧‧第一發光模組 40, 40a, 40b‧‧‧ first lighting module

50、80a、80b‧‧‧交流電源供應器 50, 80a, 80b‧‧‧ AC power supply

60、60a、60b‧‧‧第二發光模組 60, 60a, 60b‧‧‧ second lighting module

Vdc、Vdc’、Vdc_0、Vdc_a、Vdc_b‧‧‧電壓 Vdc, Vdc', Vdc_0, Vdc_a, Vdc_b‧‧‧ voltage

VLED‧‧‧驅動電壓 VLED‧‧‧ drive voltage

VLED1、VLED_1a、VLED_1b‧‧‧第一驅動電壓 VLED1, VLED_1a, VLED_1b‧‧‧ first drive voltage

VLED2、VLED_2a、VLED_2b‧‧‧第二驅動電壓 VLED2, VLED_2a, VLED_2b‧‧‧second driving voltage

Vac、Vac_a、Vac_b‧‧‧交流電壓 Vac, Vac_a, Vac_b‧‧‧ AC voltage

Vin、V1_a、V2_a‧‧‧輸入電壓 Vin, V1_a, V2_a‧‧‧ input voltage

Vo、Vo’‧‧‧調變電壓 Vo, Vo’‧‧‧ modulated voltage

Vo1、Vo_1a、Vo_1b‧‧‧第一調變電壓 Vo1, Vo_1a, Vo_1b‧‧‧ first modulation voltage

Vo2、Vo_2a、Vo_2b‧‧‧第二調變電壓 Vo2, Vo_2a, Vo_2b‧‧‧ second modulation voltage

Vf、Vf’、Vf1、Vf_1a、Vf_1b‧‧‧切入電壓 Vf, Vf', Vf1, Vf_1a, Vf_1b‧‧‧ cut-in voltage

Vf2、Vf_2a、Vf_2b‧‧‧切入電壓 Vf2, Vf_2a, Vf_2b‧‧‧ cut-in voltage

P1、P1_0‧‧‧第一轉換電能 P1, P1_0‧‧‧ first conversion energy

P2、P2_0‧‧‧第二轉換電能 P2, P2_0‧‧‧ second conversion energy

D1~D2、D5~D8、D3_a~D4_a、D3_b~D4_b‧‧‧二極體 D1~D2, D5~D8, D3_a~D4_a, D3_b~D4_b‧‧‧ diode

R1~R3、R4_a~R5_a、R4_b~R5_b、R6~R7‧‧‧電阻 R1~R3, R4_a~R5_a, R4_b~R5_b, R6~R7‧‧‧ resistor

C1、C2_a~C2_b、C3~C6‧‧‧電容 C1, C2_a~C2_b, C3~C6‧‧‧ capacitor

Iin、I1_a、I2_a、I1_b、I2_b‧‧‧輸入電流 Iin, I1_a, I2_a, I1_b, I2_b‧‧‧ input current

ILEDILED’‧‧‧工作電流 ILED , ILED'‧‧‧ working current

ILED1‧‧‧第一工作電流 ILED 1 ‧‧‧First operating current

ILED2‧‧‧第二工作電流 ILED 2 ‧‧‧second operating current

Lp、Lp_1a、Lp_2a、Lp_1b、Lp_2b‧‧‧一次側線圈 Lp, Lp_1a, Lp_2a, Lp_1b, Lp_2b‧‧‧ primary side coil

Ls、Ls_1a、Ls_2a、Ls_1b、Ls_2b‧‧‧二次側線圈 Ls, Ls_1a, Ls_2a, Ls_1b, Ls_2b‧‧‧ secondary coil

Np1、Np2‧‧‧一次側線圈 Np1, Np2‧‧‧ primary side coil

Ns1、Ns2‧‧‧二次側線圈 Ns1, Ns2‧‧‧ secondary side coil

L1~L3‧‧‧電感 L1~L3‧‧‧Inductance

SC‧‧‧控制訊號 SC‧‧‧Control signal

SC1、SC_1a、SC_1b‧‧‧第一控制訊號 SC1, SC_1a, SC_1b‧‧‧ first control signal

SC2、SC_2a、SC_2b‧‧‧第二控制訊號 SC2, SC_2a, SC_2b‧‧‧ second control signal

SR、SF、SF_a、SF_b‧‧‧回授訊號 SR, SF, SF_a, SF_b‧‧‧ feedback signals

SR_1a、SR_1b‧‧‧第一回授訊號 SR_1a, SR_1b‧‧‧ first feedback signal

SR_2a、SR_2b‧‧‧第二回授訊號 SR_2a, SR_2b‧‧‧ second feedback signal

第1圖係為根據本發明一實施例所繪示之電源調整電路的功能方塊圖。 FIG. 1 is a functional block diagram of a power supply adjusting circuit according to an embodiment of the invention.

第2圖係為根據本發明一實施例所繪示之驅動電壓及工作電流的關係曲線圖。 FIG. 2 is a graph showing relationship between driving voltage and operating current according to an embodiment of the invention.

第3圖係為根據本發明另一實施例所繪示之驅動電壓及工作電流的關係曲線圖。 FIG. 3 is a graph showing driving voltage and operating current according to another embodiment of the present invention.

第4圖係為根據本發明一實施例所繪示之電源調整電路的電路示意圖。 FIG. 4 is a circuit diagram of a power supply adjusting circuit according to an embodiment of the invention.

第5圖係為根據本發明再一實施例所繪示之電源調整電路的功能方塊圖。 Figure 5 is a functional block diagram of a power supply adjusting circuit according to still another embodiment of the present invention.

第6圖係為根據本發明再一實施例所繪示之電源調整電路的電路示意圖。 Figure 6 is a circuit diagram of a power supply adjusting circuit according to still another embodiment of the present invention.

第7圖係為根據本發明又一實施例所繪示之電源調整電路的電路示意圖。 Figure 7 is a circuit diagram of a power supply adjusting circuit according to another embodiment of the present invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何 觀點限制本發明之範疇。 The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to further illustrate the aspects of the invention, but not any The views limit the scope of the invention.

請參照第1圖至第3圖,第1圖係為根據本發明一實施例所繪示之電源調整電路的功能方塊圖,第2圖係為根據本發明一實施例所繪示之驅動電壓及工作電流的關係曲線圖,第3圖係為根據本發明另一實施例所繪示之驅動電壓及工作電流的關係曲線圖。如圖所示,電源調整電路10係用以產生以驅動發光模組30。電源調整電路10具有第一電能轉換模組11及第二電能轉換模組13。第一電能轉換模組11用以依據第一轉換電能P1,產生電壓Vdc(例如但不限於固定電壓)及第二轉換電能P2。第一轉換電能P1可以是由外部的電源供應器所提供,例如圖式所示的交流電源供應器50或其他合適的電源供應器。而第一轉換電能P1例如可以是交流電壓Vac。交流電源供應器50提供交流電壓Vac給第一電能轉換模組11,由第一電能轉換模組11將交流電壓Vac轉換為電壓Vdc及第二轉換電能P2。 Referring to FIG. 1 to FIG. 3 , FIG. 1 is a functional block diagram of a power supply adjusting circuit according to an embodiment of the invention, and FIG. 2 is a driving voltage according to an embodiment of the invention. FIG. 3 is a graph showing relationship between driving voltage and operating current according to another embodiment of the present invention. As shown, the power conditioning circuit 10 is configured to generate the lighting module 30. The power adjustment circuit 10 has a first power conversion module 11 and a second power conversion module 13 . The first power conversion module 11 is configured to generate a voltage Vdc (such as, but not limited to, a fixed voltage) and a second converted power P2 according to the first converted power P1. The first converted electrical energy P1 may be provided by an external power supply, such as the illustrated AC power supply 50 or other suitable power supply. The first converted electrical energy P1 can be, for example, an alternating voltage Vac. The AC power supply 50 supplies an AC voltage Vac to the first power conversion module 11, and the first power conversion module 11 converts the AC voltage Vac into a voltage Vdc and a second converted power P2.

以第1圖所示的實施例來說,第一電能轉換模組11具有交流對直流轉換器111及電容113。交流對直流轉換器111具有第一輸出端115及第二輸出端117。交流對直流轉換器111的第一輸出端115及第二輸出端117之間的電位差為電壓Vdc,電容113的兩端分別電性連接於交流對直流轉換器111的第一輸出端115及第二輸出端117,可用以穩定第一輸出端115及第二輸出端117之間的電位差,而令第一輸出端115及第二輸出端117之間電位差的不會有太大的變化幅度。 In the embodiment shown in FIG. 1, the first power conversion module 11 has an AC-to-DC converter 111 and a capacitor 113. The AC to DC converter 111 has a first output terminal 115 and a second output terminal 117. The potential difference between the first output terminal 115 and the second output terminal 117 of the AC-DC converter 111 is a voltage Vdc, and both ends of the capacitor 113 are electrically connected to the first output terminal 115 of the AC-DC converter 111 and the first The two output terminals 117 can be used to stabilize the potential difference between the first output terminal 115 and the second output terminal 117, so that the potential difference between the first output terminal 115 and the second output terminal 117 does not change much.

第二電能轉換模組13電性連接於交流對直流轉換器111的第一輸出端115,第二電能轉換模組13用以將交流對直流轉換器111產生的第二轉換電能P2以調變電壓Vo輸出,並依據控制訊號SC,調整調變電壓Vo的電壓位準。舉例來說,第二轉換電能P2可以是輸入電流Iin,而第二電能轉換模組13是直流對直流轉換器。第二電能轉換模組13轉換輸入電流Iin,並將轉換後的輸入電流Iin以調變電壓Vo輸出,並依據控制訊號SC,調整調變電壓Vo的電壓位準。第二電能轉換模組13依據控制訊號SC,調整調變電壓Vo的電壓位準的方式例如以脈衝寬度調變(Pulse Width Modulation,PWM)的方式來調整,容後詳述。 The second power conversion module 13 is electrically connected to the first output end 115 of the AC to DC converter 111, and the second power conversion module 13 is used to modulate the second converted power P2 generated by the AC to DC converter 111. The voltage Vo is output, and the voltage level of the modulation voltage Vo is adjusted according to the control signal SC. For example, the second converted electrical energy P2 can be the input current Iin, and the second electrical energy conversion module 13 is a DC-to-DC converter. The second power conversion module 13 converts the input current Iin, and outputs the converted input current Iin to the modulation voltage Vo, and adjusts the voltage level of the modulation voltage Vo according to the control signal SC. The second power conversion module 13 adjusts the voltage level of the modulation voltage Vo according to the control signal SC, for example, by means of Pulse Width Modulation (PWM), which will be described in detail later.

第一電能轉換模組11產生的電壓Vdc及第二電能轉換模組13產生的調變電壓Vo便會一起提供給發光模組30,以供發光模組30驅動及調整發光強度。換言之,電壓Vdc及調變電壓V0的總和即電源調整電路10輸出的驅動電壓VLED,用以驅動發光模組30。 The voltage Vdc generated by the first power conversion module 11 and the modulation voltage Vo generated by the second power conversion module 13 are provided together to the light emitting module 30 for the light emitting module 30 to drive and adjust the luminous intensity. In other words, the sum of the voltage Vdc and the modulation voltage V0, that is, the driving voltage VLED outputted by the power supply adjusting circuit 10, is used to drive the light emitting module 30.

於一個實施例中,交流對直流轉換器111是整流單元與直流對直流電源轉換器(DC/DC converter)所組成。而交流對直流轉換器111中的直流對直流轉換器是升壓式轉換器(boost converter)、降壓式轉換器(buck converter)、降/升壓式轉換器(Buck-Boost Converter)、返馳式轉換器(Flyback Converter)或其他合適型式的直流對直流轉換器,本實施例不予限制。第二電能轉換模組13亦是升壓式轉換器、降壓式轉換器、降/升壓式轉 換器、返馳式轉換器或其他合適型式的直流對直流轉換器。 In one embodiment, the AC to DC converter 111 is a rectifying unit and a DC/DC converter. The DC-DC converter in the AC-to-DC converter 111 is a boost converter, a buck converter, a Buck-Boost Converter, and a return converter. The flyback converter or other suitable type of DC-to-DC converter is not limited in this embodiment. The second power conversion module 13 is also a boost converter, a buck converter, and a down/boost converter. Converter, flyback converter or other suitable type of DC to DC converter.

於本實施例中,電壓Vdc的電壓位準係小於發光模組30的切入電壓Vf的電壓位準,如第2圖所示。於其他實施例中,電壓Vdc’的電壓位準係等於發光模組30的切入電壓Vf的電壓位準,如第3圖所示。以第2圖所示的驅動電壓及工作電流的關係曲線圖來說,當調變電壓Vo調整到與電壓Vdc的總和實質上等於發光模組30的切入電壓Vf時,發光模組30開始發光,且隨著調變電壓Vo的改變,發光模組30的工作電流ILED跟著增加。當發光模組30的工作電流ILED增加時,發光模組30的發光強度就會隨著工作電流ILED的增加而增強。因此,藉由調整調變電壓Vo的電壓位準可調整發光模組30的發光強度。 In this embodiment, the voltage level of the voltage Vdc is less than the voltage level of the cut-in voltage Vf of the light-emitting module 30, as shown in FIG. In other embodiments, the voltage level of the voltage Vdc' is equal to the voltage level of the cut-in voltage Vf of the light-emitting module 30, as shown in FIG. According to the relationship between the driving voltage and the operating current shown in FIG. 2, when the modulation voltage Vo is adjusted so that the sum of the voltage Vdc and the voltage Vdc is substantially equal to the cutting voltage Vf of the light-emitting module 30, the light-emitting module 30 starts to emit light. And as the modulation voltage Vo changes, the operating current ILED of the light-emitting module 30 increases. When the operating current ILED of the light-emitting module 30 increases, the luminous intensity of the light-emitting module 30 increases as the operating current ILED increases. Therefore, the luminous intensity of the light-emitting module 30 can be adjusted by adjusting the voltage level of the modulation voltage Vo.

然而,所屬技術領域具有通常知識者可以理解,發光模組30的切入電壓通常泛指發光模組30導通的電壓位準點,而發光模組30導通的電壓位準點不一定是如第3圖所示的切入電壓Vf或切入電壓Vf’。當電壓Vdc’實質上等於發光模組30的切入電壓Vf’時,發光模組30的就會隨著第二電能轉換模組13提供的調變電壓Vo’提升而增加,進而達到調整發光模組30的發光強度。因此,本實施例所指的電壓Vdc’小於發光模組30的切入電壓Vf,實際上亦涵蓋了電壓Vdc’等於發光模組30的切入電壓Vf或切入電壓Vf’的技術範圍。 However, those skilled in the art can understand that the cut-in voltage of the light-emitting module 30 generally refers to the voltage level point that the light-emitting module 30 is turned on, and the voltage level point that the light-emitting module 30 turns on is not necessarily as shown in FIG. The cut-in voltage Vf or the cut-in voltage Vf' is shown. When the voltage Vdc' is substantially equal to the cut-in voltage Vf' of the light-emitting module 30, the light-emitting module 30 increases as the modulation voltage Vo' provided by the second power conversion module 13 increases, thereby adjusting the light-emitting mode. The luminous intensity of group 30. Therefore, the voltage Vdc' referred to in this embodiment is smaller than the cut-in voltage Vf of the light-emitting module 30, and actually covers the technical range in which the voltage Vdc' is equal to the cut-in voltage Vf or the cut-in voltage Vf' of the light-emitting module 30.

於一個實施例中,調變電壓Vo的上限值關聯於發光模組30的額定電壓,亦即發光模組30可容忍的最大輸入電壓。 更詳細來說,調變電壓Vo的上限值與電壓Vdc的總和等於發光模組30的額定電壓。此外,由於此實施例中第一電能轉換模組11僅電性連接第二電能轉換模組13,因此第二電能轉換模組13將部分的第二轉換電能P2以調變電壓Vo輸出,亦可視為第二電能轉換模組13將全部的第二轉換電能P2以調變電壓Vo輸出,此處所指的全部的第二轉換電能P2係指理想的情況下,而在實際的操作中,第二電能轉換模組13會損耗一些第二轉換電能P2後,才輸出調變電壓Vo。 In one embodiment, the upper limit of the modulation voltage Vo is related to the rated voltage of the light-emitting module 30, that is, the maximum input voltage that the light-emitting module 30 can tolerate. In more detail, the sum of the upper limit value of the modulation voltage Vo and the voltage Vdc is equal to the rated voltage of the light-emitting module 30. In addition, since the first power conversion module 11 is electrically connected to the second power conversion module 13 in this embodiment, the second power conversion module 13 outputs a portion of the second converted power P2 as the modulation voltage Vo. It can be considered that the second power conversion module 13 outputs all the second converted electric energy P2 with the modulation voltage Vo. All the second converted electric energy P2 referred to herein refers to an ideal case, and in actual operation, the first operation The two power conversion modules 13 will output some of the second converted power P2 before outputting the modulated voltage Vo.

為了更清楚說明,請參照第4圖,第4圖係為根據本發明一實施例所繪示之電源調整電路的電路示意圖。如第4圖所示,電源調整電路10的輸入端電性連接交流電源供應器50。電源調整電路10的輸出端電性連接發光模組30。電源調整電路10的輸出端產生驅動電壓VLED以驅動發光模組30。 For a clearer description, please refer to FIG. 4, which is a circuit diagram of a power supply adjusting circuit according to an embodiment of the invention. As shown in FIG. 4, the input end of the power supply adjusting circuit 10 is electrically connected to the AC power supply 50. The output end of the power adjustment circuit 10 is electrically connected to the light emitting module 30. The output of the power conditioning circuit 10 generates a driving voltage VLED to drive the lighting module 30.

電源調整電路10具有第一電能轉換模組11及第二電能轉換模組13。第一電能轉換模組11具有交流對直流轉換器111及電容113。交流對直流轉換器111具有整流單元1112、第一控制單元1114、第一開關單元1116、一次側(Primary)線圈Lp、二極體D1、電阻R1及電阻R2。而第二電能轉換模組13具有電壓產生單元131、第二控制單元133、第二開關單元135、二極體D2、電容C1、電感L1及電阻R3。 The power adjustment circuit 10 has a first power conversion module 11 and a second power conversion module 13 . The first power conversion module 11 has an AC to DC converter 111 and a capacitor 113. The AC-to-DC converter 111 has a rectification unit 1112, a first control unit 1114, a first switching unit 1116, a primary side coil Lp, a diode D1, a resistor R1, and a resistor R2. The second power conversion module 13 has a voltage generating unit 131, a second control unit 133, a second switching unit 135, a diode D2, a capacitor C1, an inductor L1, and a resistor R3.

整流單元1112對來自於交流電源供應器50提供的交流電壓Vac進行整流,以產生直流供應電能。當第一開關單元 1116受控於第一控制單元1114而選擇性地導通時,整流單元1112產生的直流供應電能將提供給一次側線圈Lp及電容113,以令一次側線圈Lp及電容113進行儲能。當第一開關單元1116受控於第一控制單元1114而選擇性地不導通時,一次側線圈Lp釋放儲存的電能給電阻R1及電阻R2,並以電容113維持電阻R1及電阻R2兩端的電壓為電壓Vdc。 The rectifying unit 1112 rectifies the AC voltage Vac supplied from the AC power supply 50 to generate DC power. When the first switch unit When the 1116 is selectively turned on by the first control unit 1114, the DC supply power generated by the rectifying unit 1112 is supplied to the primary side coil Lp and the capacitor 113 to store the primary side coil Lp and the capacitor 113. When the first switching unit 1116 is selectively turned off by the first control unit 1114, the primary side coil Lp releases the stored electrical energy to the resistor R1 and the resistor R2, and maintains the voltage across the resistor R1 and the resistor R2 with the capacitor 113. Is the voltage Vdc.

當第一電能轉換模組11中的一次側線圈Lp有電流通過時,基於電磁互感的原理,第二電能轉換模組13中的二次側(Secondary)線圈Ls會產生輸入電流Iin。第二電能轉換模組13的電壓產生單元131會依據輸入電流Iin,產生輸入電壓Vin。當第二開關單元135受控於第二控制單元133而選擇性地導通時,輸入電壓Vin對電容C1及電感L1充電。當第二開關單元135受控於第二控制單元133而選擇性地不導通時,電感L1及電容C1釋放儲存的電能,以令第二電能轉換模組13的電容C1兩端的電位差為調變電壓Vo。 When the primary side coil Lp in the first power conversion module 11 has a current, the secondary coil Ls in the second power conversion module 13 generates an input current Iin based on the principle of electromagnetic mutual inductance. The voltage generating unit 131 of the second power conversion module 13 generates an input voltage Vin according to the input current Iin. When the second switching unit 135 is selectively turned on by the second control unit 133, the input voltage Vin charges the capacitor C1 and the inductor L1. When the second switching unit 135 is selectively non-conducted by the second control unit 133, the inductor L1 and the capacitor C1 release the stored electric energy to adjust the potential difference between the capacitor C1 of the second electric energy conversion module 13 Voltage Vo.

換句話說,於交流對直流轉換器111方面,當第一開關單元1116導通時,交流電源供應器50提供交流電壓Vac給整流單元1112。整流單元1112經由圖式中的電流路徑PI1輸出電能,當第一開關單元1116不導通時,一次側線圈Lp經由圖式中的電流路徑PI2釋放電能。交流對直流轉換器111藉由第一開關單元116導通與不導通的調節,而使節點N1及節點N2之間的平均電位差為電壓Vdc。 In other words, in the case of the AC to DC converter 111, when the first switching unit 1116 is turned on, the AC power supply 50 supplies the AC voltage Vac to the rectifying unit 1112. The rectifying unit 1112 outputs electric energy via the current path PI1 in the drawing, and when the first switching unit 1116 is not turned on, the primary side coil Lp discharges electric energy via the current path PI2 in the drawing. The AC-to-DC converter 111 adjusts the conduction and non-conduction of the first switching unit 116 such that the average potential difference between the node N1 and the node N2 is the voltage Vdc.

於第二電能轉換模組13方面,當第二開關單元135導通時,電壓產生單元131經由圖式中的電流路徑PI3輸出電能,當第二開關單元135不導通時,電感L1經由圖式中的電流路徑PI4釋放電能。第二電能轉換模組13藉由第二開關單元135導通與不導通的調節,而使節點N3及節點N4之間的平均電位差為調變電壓Vo。 In the second power conversion module 13, when the second switching unit 135 is turned on, the voltage generating unit 131 outputs power via the current path PI3 in the drawing, and when the second switching unit 135 is not turned on, the inductor L1 is in the figure. The current path PI4 releases electrical energy. The second power conversion module 13 adjusts the conduction and non-conduction of the second switching unit 135 so that the average potential difference between the node N3 and the node N4 is the modulation voltage Vo.

此時,發光模組30係電性連接於節點N2及節點N4之間,發光模組30藉由節點N2及節點N4之間的電位差而驅動。也就是說,節點N2及節點N4之間的電位差係交流對直流轉換器111產生的電壓Vdc和第二電能轉換模組13產生的調變電壓Vo的總和。電壓Vdc和調變電壓Vo的總和作為驅動電壓VLED以驅動發光模組30。 At this time, the light-emitting module 30 is electrically connected between the node N2 and the node N4, and the light-emitting module 30 is driven by the potential difference between the node N2 and the node N4. That is, the potential difference between the node N2 and the node N4 is the sum of the voltage Vdc generated by the alternating current to the direct current converter 111 and the modulated voltage Vo generated by the second power conversion module 13. The sum of the voltage Vdc and the modulation voltage Vo is used as the driving voltage VLED to drive the light emitting module 30.

另一方面,於一個實施例中,調變電壓Vo的調變方式是提供控制訊號SC至第二控制單元133,由第二控制單元133依據控制訊號SC的指示調整調變電壓Vo的電壓位準。控制訊號SC是二進位格式的8位元數(bits)訊號、十六進位格式的32位元數訊號,或其他合適格式的訊號,本實施例不予限制。以控制訊號SC是二進位格式的8位元數訊號來說,控制訊號SC具有256階數可以控制第二電能轉換模組13來調整調變電壓Vo的電壓位準。 On the other hand, in one embodiment, the modulation voltage Vo is modulated by providing the control signal SC to the second control unit 133, and the second control unit 133 adjusts the voltage level of the modulation voltage Vo according to the indication of the control signal SC. quasi. The control signal SC is an 8-bit number signal in a binary format, a 32-bit number signal in a hexadecimal format, or a signal in another suitable format, which is not limited in this embodiment. The control signal SC has a 256-order number to control the second power conversion module 13 to adjust the voltage level of the modulation voltage Vo.

於一實施例中,控制訊號SC的第0階到第35階指示第二控制單元133產生的調變電壓Vo的電壓位準,與電壓Vdc 的電壓位準總和未使發光模組30發光。而從控制訊號SC的第36階開始,調變電壓Vo與電壓Vdc的電壓位準總和,開始使發光模組30發光。因此,從控制訊號SC的第36階到第256階,調變電壓Vo與電壓Vdc的電壓位準總和可以驅動發光模組30發光,且發光模組30隨著控制訊號SC的階級不同而改變發光強度。 In an embodiment, the 0th to 35th steps of the control signal SC indicate the voltage level of the modulation voltage Vo generated by the second control unit 133, and the voltage Vdc. The sum of the voltage levels does not cause the illumination module 30 to emit light. Starting from the 36th stage of the control signal SC, the voltage level of the modulation voltage Vo and the voltage Vdc is summed to start to illuminate the illumination module 30. Therefore, from the 36th to the 256th steps of the control signal SC, the voltage level sum of the modulation voltage Vo and the voltage Vdc can drive the illumination module 30 to emit light, and the illumination module 30 changes according to the class of the control signal SC. light intensity.

更詳細地來說,當控制訊號SC於第0階時,第二電能轉換模組13產生的調變電壓Vo約0伏特(Voltage,V),發光模組30的工作電流ILED約0安培(Ampere,A)。當控制訊號SC於第36階時,發光模組30的工作電流ILED開始增加。當控制訊號SC於第256階時,第二電能轉換模組13產生的調變電壓Vo約10V,能使發光模組30的工作電流ILED到達最大的電流值,約0.3A。因此,本實施例中,控制訊號SC有效的調光階數約220階,而每階調變的電壓約0.045V,換句話說,也就是控制訊號SC的最低有效位(least significant bit,LSB)等於電壓可調範圍的0.45%。 In more detail, when the control signal SC is at the 0th order, the modulation voltage Vo generated by the second power conversion module 13 is about 0 volts (Voltage, V), and the operating current ILED of the illumination module 30 is about 0 amps ( Ampere, A). When the control signal SC is at the 36th stage, the operating current ILED of the light-emitting module 30 begins to increase. When the control signal SC is at the 256th stage, the modulation voltage Vo generated by the second power conversion module 13 is about 10V, so that the operating current ILED of the light-emitting module 30 reaches the maximum current value, about 0.3A. Therefore, in this embodiment, the effective dimming order of the control signal SC is about 220 steps, and the voltage of each order modulation is about 0.045V, in other words, the least significant bit of the control signal SC (LSB) ) is equal to 0.45% of the adjustable voltage range.

於其他實施例中,亦可以設計讓控制訊號SC於第0階時,發光模組30的工作電流ILED就開始增加。當控制訊號SC於第256階時,第二電能轉換模組13產生的調變電壓Vo約10V,發光模組30的工作電流ILED約0.3A。此時,控制訊號SC有效的調光階數約256階,而每階調變的電壓約0.039V,控制訊號SC的LSB等於電壓可調範圍的0.39%,據以達到更佳的解析度效果。 In other embodiments, when the control signal SC is designed to be at the 0th order, the operating current ILED of the light-emitting module 30 begins to increase. When the control signal SC is at the 256th stage, the modulation voltage Vo generated by the second power conversion module 13 is about 10V, and the operating current ILED of the illumination module 30 is about 0.3A. At this time, the effective dimming order of the control signal SC is about 256 steps, and the voltage of each step modulation is about 0.039V, and the LSB of the control signal SC is equal to 0.39% of the adjustable voltage range, so as to achieve better resolution effect. .

於另一實施例中,調整調變電壓Vo的方式,除了提供控制訊號SC至第二控制單元133以外,第二控制單元133還可以依據回授訊號SR來調整調變電壓Vo的電壓位準。回授訊號SR關連於調變電壓Vo的電壓位準。以第4圖所示的實施例來說,回授訊號SR係依據電阻R3的跨壓所產生。由於流經電容C1的電流同樣會流經電阻R3。因此,流經電容C1的電流會使得電容C1產生調變電壓Vo,而相同的電流流經電阻R3會使的電阻R3具有跨壓,故回授訊號SR關連於調變電壓Vo的電壓位準。藉由檢測電阻R3的跨壓,使得第二控制單元133更依據當前調變電壓Vo的電壓位準,調整調變電壓Vo的電壓位準,而讓調變電壓Vo的電壓位準能符合控制訊號SC的指示。 In another embodiment, in addition to providing the control signal SC to the second control unit 133, the second control unit 133 can also adjust the voltage level of the modulation voltage Vo according to the feedback signal SR. . The feedback signal SR is related to the voltage level of the modulation voltage Vo. In the embodiment shown in Fig. 4, the feedback signal SR is generated based on the voltage across the resistor R3. Since the current flowing through the capacitor C1 also flows through the resistor R3. Therefore, the current flowing through the capacitor C1 causes the capacitor C1 to generate the modulation voltage Vo, and the same current flows through the resistor R3, so that the resistor R3 has a voltage across the voltage, so the feedback signal SR is related to the voltage level of the modulation voltage Vo. . By detecting the voltage across the resistor R3, the second control unit 133 further adjusts the voltage level of the modulation voltage Vo according to the voltage level of the current modulation voltage Vo, and allows the voltage level of the modulation voltage Vo to conform to the control. Signal SC indication.

此外,於第一電能轉換模組11中,第一控制單元1114同樣可以依據回授訊號SF來調整電壓Vdc的電壓位準。如第4圖所示的實施例,回授訊號SF是電阻R1和電阻R2依據電容C1輸出的電壓所產生的分壓,換言之,回授訊號SF是電阻R1和電阻R2對電壓Vdc分壓的電壓位準產生,以令第一電能轉換模組11取得當前電壓Vdc的電壓位準,而調整電壓Vdc。本實施例不限制第一電能轉換模組11及第二電能轉換模組13產生回授訊號SF及回授訊號SR的方式,且亦不限制產生回授訊號SF及回授訊號SR的必要性,也就是說,於第4圖所示的實施例中,亦可以取消產生回授訊號SF及回授訊號SR給第一控制單元1114及第二控制單元133。 In addition, in the first power conversion module 11, the first control unit 1114 can also adjust the voltage level of the voltage Vdc according to the feedback signal SF. In the embodiment shown in FIG. 4, the feedback signal SF is a voltage division generated by the resistor R1 and the resistor R2 according to the voltage output by the capacitor C1. In other words, the feedback signal SF is the voltage divider V1 and the resistor R2 are divided by the voltage Vdc. The voltage level is generated to cause the first power conversion module 11 to obtain the voltage level of the current voltage Vdc and adjust the voltage Vdc. The embodiment does not limit the manner in which the first power conversion module 11 and the second power conversion module 13 generate the feedback signal SF and the feedback signal SR, and does not limit the necessity of generating the feedback signal SF and the feedback signal SR. That is to say, in the embodiment shown in FIG. 4, the feedback signal SF and the feedback signal SR may be canceled to be sent to the first control unit 1114 and the second control unit 133.

請參照第5圖,第5圖係為根據本發明再一實施例所繪示之電源調整電路的功能方塊圖。如第5圖所示,電源調整電路20係用以產生第一驅動電壓VLED1及第二驅動電壓VLED2以驅動第一發光模組40及第二發光模組60。電源調整電路20包含第一電能轉換模組21、第二電能轉換模組23及第三電能轉換模組25。第一電能轉換模組21用以依據外部的交流電源供應器80所提供的第一轉換電能P1_0,產生電壓Vdc_0及第二轉換電能P2_0。 Referring to FIG. 5, FIG. 5 is a functional block diagram of a power supply adjusting circuit according to still another embodiment of the present invention. As shown in FIG. 5, the power adjustment circuit 20 is configured to generate the first driving voltage VLED1 and the second driving voltage VLED2 to drive the first lighting module 40 and the second lighting module 60. The power adjustment circuit 20 includes a first power conversion module 21, a second power conversion module 23, and a third power conversion module 25. The first power conversion module 21 is configured to generate a voltage Vdc_0 and a second converted power P2_0 according to the first converted power P1_0 provided by the external AC power supply 80.

本實施例與第1圖所示的實施例大致上相同,例如第一電能轉換模組21具有交流對直流轉換器211及電容213。交流對直流轉換器211具有第一輸出端215及第二輸出端217。。交流對直流轉換器211的第一輸出端215及第二輸出端217之間的電位差為電壓Vdc_0,電容213電性連接於第一輸出端215及第二輸出端217之間,可用以穩定第一輸出端215及第二輸出端217之間的電位差,而令第一輸出端215及第二輸出端217之間的電位差不會有太大的變化幅度。 This embodiment is substantially the same as the embodiment shown in FIG. 1. For example, the first power conversion module 21 has an AC-to-DC converter 211 and a capacitor 213. The AC to DC converter 211 has a first output 215 and a second output 217. . The potential difference between the first output terminal 215 and the second output terminal 217 of the AC-to-DC converter 211 is a voltage Vdc_0, and the capacitor 213 is electrically connected between the first output terminal 215 and the second output terminal 217, and can be used to stabilize the first The potential difference between the output terminal 215 and the second output terminal 217 does not cause a large change in the potential difference between the first output terminal 215 and the second output terminal 217.

本實施例與第1圖所示的實施例不同的是,於本實施例中,交流對直流轉換器211的第一輸出端215除了電性連接第二電能轉換模組23外,更電性連接第三電能轉換模組25。而第一電能轉換模組21產生的第二轉換電能P2_0會有一部分提供給第二電能轉換模組23,另一部分提供給第三電能轉換模組25。 The first embodiment of the present embodiment is different from the embodiment shown in FIG. 1 . In this embodiment, the first output end 215 of the AC-to-DC converter 211 is electrically connected to the second power conversion module 23 . The third power conversion module 25 is connected. The second converted power P2_0 generated by the first power conversion module 21 is partially supplied to the second power conversion module 23, and the other portion is supplied to the third power conversion module 25.

第二電能轉換模組23用以將部分的第二轉換電能 P2_0以第一調變電壓Vo1輸出,並依據第一控制訊號SC1調整第一調變電壓Vo1的電壓位準。而第三電能轉換模組25用以將另一部分的第二轉換電能P2_0以第二調變電壓Vo2輸出,並依據第二控制訊號SC2調整第二調變電壓Vo2的電壓位準。第一電能轉換模組21產生的電壓Vdc_0及第二電能轉換模組23產生的第一調變電壓Vo1便會一起提供給第一發光模組40,以供第一發光模組40驅動,並以調整第一調變電壓Vo1來改變第一發光模組40的發光強度。第一電能轉換模組21產生的電壓Vdc_0及第三電能轉換模組25產生的第二調變電壓Vo2便會一起提供給第二發光模組60,以供第二發光模組60驅動,並以調整第二調變電壓Vo2來改變第二發光模組60的發光強度。換句話說,電壓Vdc_0及第一調變電壓Vo1的總和即電源調整電路20輸出的第一驅動電壓VLED1,用以驅動第一發光模組40。電壓Vdc_0及第二調變電壓Vo2的總和即電源調整電路20輸出的第二驅動電壓VLED2,用以驅動第二發光模組60。 The second power conversion module 23 is configured to convert a portion of the second converted electrical energy P2_0 is outputted by the first modulation voltage Vo1, and the voltage level of the first modulation voltage Vo1 is adjusted according to the first control signal SC1. The third power conversion module 25 is configured to output another portion of the second converted power P2_0 at the second modulation voltage Vo2, and adjust the voltage level of the second modulation voltage Vo2 according to the second control signal SC2. The voltage Vdc_0 generated by the first power conversion module 21 and the first modulation voltage Vo1 generated by the second power conversion module 23 are provided together to the first lighting module 40 for driving by the first lighting module 40, and The illumination intensity of the first illumination module 40 is changed by adjusting the first modulation voltage Vo1. The voltage Vdc_0 generated by the first power conversion module 21 and the second modulation voltage Vo2 generated by the third power conversion module 25 are provided together to the second lighting module 60 for driving by the second lighting module 60, and The illumination intensity of the second illumination module 60 is changed by adjusting the second modulation voltage Vo2. In other words, the sum of the voltage Vdc_0 and the first modulation voltage Vo1, that is, the first driving voltage VLED1 output by the power supply adjusting circuit 20, is used to drive the first lighting module 40. The sum of the voltage Vdc_0 and the second modulation voltage Vo2 is the second driving voltage VLED2 outputted by the power supply adjusting circuit 20 for driving the second lighting module 60.

於本實施例中,第一電能轉換模組21提供的電壓Vdc_0的電壓位準小於第一發光模組40的切入電壓Vf1的電壓位準及第二發光模組60的切入電壓Vt2的電壓位準。當第一調變電壓Vo1的電壓位準調整到與電壓Vdc_0的總和實質上等於第一發光模組40的切入電壓Vf1時,第一發光模組40開始發光,且隨著第一調變電壓Vo1的改變,第一發光模組40的第一工作電流ILED1跟著改變,據以調整第一發光模組40的發光強度。當第 二調變電壓Vo2的電壓位準調整到與電壓Vdc_0的總和實質上等於第二發光模組60的切入電壓Vf2時,第二發光模組60開始發光,且隨著第二調變電壓Vo2的改變,第二發光模組60的第二工作電流ILED2跟著改變,據以調整第二發光模組60的發光強度。 In this embodiment, the voltage level of the voltage Vdc_0 provided by the first power conversion module 21 is smaller than the voltage level of the cut-in voltage Vf1 of the first light-emitting module 40 and the voltage level of the cut-in voltage Vt2 of the second light-emitting module 60. quasi. When the voltage level of the first modulation voltage Vo1 is adjusted to be equal to the sum of the voltage Vdc_0 substantially equal to the cut-in voltage Vf1 of the first light-emitting module 40, the first light-emitting module 40 starts to emit light, and along with the first modulation voltage Vo1 is changed, a first light-emitting module of the first change with operating current ILED 1 40, to adjust the light emission intensity of the first light emitting module 40 according to. When the voltage level of the second modulation voltage Vo2 is adjusted to be equal to the sum of the voltage Vdc_0 substantially equal to the cut-in voltage Vf2 of the second lighting module 60, the second lighting module 60 starts to emit light, and with the second modulation voltage The change of Vo2 causes the second operating current ILED 2 of the second lighting module 60 to change accordingly, thereby adjusting the luminous intensity of the second lighting module 60.

於一個實施例中,第一調變電壓Vo1的上限值關聯於第一發光模組40的額定電壓,亦即第一發光模組40可容忍的最大輸入電壓。第二調變電壓Vo2的上限值關聯於第二發光模組60的額定電壓,亦即第二發光模組60可容忍的最大輸入電壓。更詳細來說,第一調變電壓Vo1的上限值與電壓Vdc_0的總和等於第一發光模組40的額定電壓。第二調變電壓Vo2的上限值與電壓Vdc_0的總和等於第二發光模組60的額定電壓。 In one embodiment, the upper limit of the first modulation voltage Vo1 is related to the rated voltage of the first lighting module 40, that is, the maximum input voltage that the first lighting module 40 can tolerate. The upper limit value of the second modulation voltage Vo2 is related to the rated voltage of the second lighting module 60, that is, the maximum input voltage that the second lighting module 60 can tolerate. In more detail, the sum of the upper limit value of the first modulation voltage Vo1 and the voltage Vdc_0 is equal to the rated voltage of the first light emitting module 40. The sum of the upper limit value of the second modulation voltage Vo2 and the voltage Vdc_0 is equal to the rated voltage of the second lighting module 60.

在理想的情況下,本實施例中第一電能轉換模組21產生的第二轉換電能P2_0的功率,實質上等於第二電能轉換模組23及第三電能轉換模組25的輸入功率總和。在實際的操作中,電能轉換中會有部分的功率損耗,因此,因為電能轉換的損耗而使得第二轉換電能P2_0的功率不完全等於第二電能轉換模組23及第三電能轉換模組25的輸入功率總和,仍應涵蓋於本發明的技術範圍中。 In an ideal case, the power of the second converted power P2_0 generated by the first power conversion module 21 in this embodiment is substantially equal to the sum of the input powers of the second power conversion module 23 and the third power conversion module 25. In the actual operation, there is a partial power loss in the power conversion. Therefore, the power of the second converted power P2_0 is not completely equal to the second power conversion module 23 and the third power conversion module 25 due to the loss of the power conversion. The sum of the input powers should still be covered by the technical scope of the present invention.

此外,於一個實施例中,第二電能轉換模組23的最大轉換功率值或第三電能轉換模組25的最大轉換功率值實質上各別等於第二轉換電能P2_0的功率值。舉例來說,第一電能轉 換模組21產生的第二轉換電能P2_0的功率可能為20瓦特(Watt,W),其中15W以電壓Vdc_0提供給第一發光模組40和第二發光模組60,另外的5W則一部分提供給第二電能轉換模組23,由第二電能轉換模組23進行電能轉換,5W中的另一部分則提供給第三電能轉換模組25,由第三電能轉換模組25進行電能轉換。於此例子中,第二電能轉換模組23和第三電能轉換模組25的輸入功率可能最大為5W,因此,於本實施例中,第二電能轉換模組23和第三電能轉換模組25採用最大轉換功率為5W的轉換器。換言之,本實施例中,第二電能轉換模組23和第三電能轉換模組25功率容量需求小,因此可以降低轉換的損失量,第二電能轉換模組23和第三電能轉換模組25所占據的體積也可以縮小。上述第二轉換電能P2_0的功率為20瓦特及第二電能轉換模組23和第三電能轉換模組25的輸入功率可能最大為5W的說明僅為方便說明之用,並未用以限定本發明可實施的方式。 In addition, in one embodiment, the maximum converted power value of the second power conversion module 23 or the maximum converted power value of the third power conversion module 25 is substantially equal to the power value of the second converted power P2_0. For example, the first electrical energy transfer The power of the second converted electrical energy P2_0 generated by the replacement module 21 may be 20 watts (Watt, W), wherein 15W is supplied to the first lighting module 40 and the second lighting module 60 with the voltage Vdc_0, and the other 5W is partially provided. The second power conversion module 23 performs power conversion by the second power conversion module 23, and another part of the 5W is supplied to the third power conversion module 25, and the third power conversion module 25 performs power conversion. In this example, the input power of the second power conversion module 23 and the third power conversion module 25 may be up to 5 W. Therefore, in this embodiment, the second power conversion module 23 and the third power conversion module 25 uses a converter with a maximum conversion power of 5W. In other words, in the embodiment, the power capacity requirements of the second power conversion module 23 and the third power conversion module 25 are small, so that the amount of conversion loss can be reduced, and the second power conversion module 23 and the third power conversion module 25 can be reduced. The volume occupied can also be reduced. The description that the power of the second converted electric energy P2_0 is 20 watts and the input power of the second electric energy conversion module 23 and the third electric energy conversion module 25 may be at most 5 W is for convenience of explanation and is not intended to limit the present invention. The way it can be implemented.

在實際的例子中,第一發光模組40和第二發光模組60可以不同數量、顏色的發光二極體組成。而控制第二電能轉換模組23和第三電能轉換模組25的第一控制訊號SC1和第二控制訊號SC2可以由同一個控制裝置或不同的控制裝置提供。控制裝置依據發光強度、顏色、色溫或其他需求,據以產生第一控制訊號SC1及第二控制訊號SC2,而令第二電能轉換模組23和第三電能轉換模組25接收到不同功率的第二轉換電能P2_0,且產生不同的第一調變電壓Vo1及第二調變電壓Vo2,因而使得第一發 光模組40和第二發光模組60接收到的第一驅動電壓VLED1及第二驅動電壓VLED2不同。藉此,第一發光模組40和第二發光模組60可以產生不同的發光強度。第一發光模組40和第二發光模組60可以分開提供光線,亦可混合成以形成各種不同色溫或顏色的光線。 In a practical example, the first light emitting module 40 and the second light emitting module 60 may be composed of different numbers and colors of light emitting diodes. The first control signal SC1 and the second control signal SC2 for controlling the second power conversion module 23 and the third power conversion module 25 may be provided by the same control device or different control devices. The control device generates the first control signal SC1 and the second control signal SC2 according to the illumination intensity, color, color temperature or other requirements, so that the second power conversion module 23 and the third power conversion module 25 receive different powers. The second conversion power P2_0, and generates different first modulation voltage Vo1 and second modulation voltage Vo2, thus making the first hair The first driving voltage VLED1 and the second driving voltage VLED2 received by the optical module 40 and the second lighting module 60 are different. Thereby, the first lighting module 40 and the second lighting module 60 can generate different luminous intensities. The first light emitting module 40 and the second light emitting module 60 may separately provide light, or may be mixed to form light of various color temperatures or colors.

在其他的例子中,第二電能轉換模組23和第三電能轉換模組25亦可以接收到相等的第二轉換電能P2_0,並分別依據第一控制訊號SC1及第二控制訊號SC2產生不同的第一調變電壓Vo1及第二調變電壓Vo2,在此不予限制。 In other examples, the second power conversion module 23 and the third power conversion module 25 can also receive the second converted power P2_0, and generate different according to the first control signal SC1 and the second control signal SC2, respectively. The first modulation voltage Vo1 and the second modulation voltage Vo2 are not limited herein.

請參照第6圖,第6圖係為根據本發明再一實施例所繪示之電源調整電路的電路示意圖。如第6圖所示,電源調整電路20a的輸入端電性連接交流電源供應器80a。電源調整電路20a的第一輸出端電性連接第一發光模組40a,第二輸出端電性連接第二發光模組60a。電源調整電路20a的第一輸出端產生第一驅動電壓VLED_1a以驅動第一發光模組40a,第二輸出端產生第二驅動電壓VLED_2a以驅動第二發光模組60a。 Please refer to FIG. 6. FIG. 6 is a schematic circuit diagram of a power supply adjusting circuit according to still another embodiment of the present invention. As shown in Fig. 6, the input end of the power supply adjusting circuit 20a is electrically connected to the AC power supply 80a. The first output end of the power supply adjusting circuit 20a is electrically connected to the first lighting module 40a, and the second output end is electrically connected to the second lighting module 60a. The first output terminal of the power adjustment circuit 20a generates a first driving voltage VLED_1a to drive the first lighting module 40a, and the second output generates a second driving voltage VLED_2a to drive the second lighting module 60a.

電源調整電路20a具有第一電能轉換模組21a、第二電能轉換模組23a及第三電能轉換模組25a。第一電能轉換模組21a具有交流對直流轉換器211a及電容213a。交流對直流轉換器211a具有整流單元2112a、第一控制單元2114a、第一開關單元2116a、一次側線圈Lp_1a、一次側線圈Lp_2a、二極體D3_a、二極體D4_a、電容C2_a、電阻R4_a及電阻R5_a。第二電能轉換 模組23a具有電壓產生單元231a、第二控制單元233a、第二開關單元235a、二極體D5、電容C3、電感L2及電阻R6。第三電能轉換模組25a具有電壓產生單元251a、第二控制單元253a、第二開關單元255a、二極體D6、電容C4、電感L3及電阻R7。 The power adjustment circuit 20a has a first power conversion module 21a, a second power conversion module 23a, and a third power conversion module 25a. The first power conversion module 21a has an AC-to-DC converter 211a and a capacitor 213a. The AC-to-DC converter 211a has a rectifying unit 2112a, a first control unit 2114a, a first switching unit 2116a, a primary side coil Lp_1a, a primary side coil Lp_2a, a diode D3_a, a diode D4_a, a capacitor C2_a, a resistor R4_a, and a resistor. R5_a. Second power conversion The module 23a has a voltage generating unit 231a, a second control unit 233a, a second switching unit 235a, a diode D5, a capacitor C3, an inductor L2, and a resistor R6. The third power conversion module 25a has a voltage generating unit 251a, a second control unit 253a, a second switching unit 255a, a diode D6, a capacitor C4, an inductor L3, and a resistor R7.

整流單元2112a對來自於交流電源供應器80a提供的交流電壓Vac_a進行整流,以產生直流供應電能。當第一開關單元2116a受控於第一控制單元2114a而選擇性地導通時,整流單元2112a產生的直流供應電能將提供給一次側線圈Lp_1a、一次側線圈Lp_2a、電容213a及電容C2_a,以令一次側線圈Lp_1a、一次側線圈Lp_2a、電容213a及電容C2_a進行儲能。當第一開關單元2116a受控於第一控制單元2114a而選擇性地不導通時,一次側線圈Lp_1a釋放儲存的電能給電阻R4_a及電阻R5_a,並以電容213a維持電阻R4_a及電阻R5_a的跨壓,而令電阻R4_a及電阻R5_a的跨壓不會有太大的變化幅度。交流對直流轉換器211a藉由第一開關單元2116a導通與不導通的調節,而使電容213a兩端的平均電位差為電壓Vdc_a。而另一方面,當第一開關單元2116a受控於第一控制單元2114a而選擇性地不導通時,一次側線圈Lp_2a、電容C2_a及二極體D4_a更形成另一迴路,一次側線圈Lp_2a及電容C2_a開始釋放儲存的電能,而使一次側線圈Lp_2a上具有電流。 The rectifying unit 2112a rectifies the AC voltage Vac_a supplied from the AC power supply 80a to generate DC power. When the first switching unit 2116a is selectively turned on by the first control unit 2114a, the DC supply power generated by the rectifying unit 2112a is supplied to the primary side coil Lp_1a, the primary side coil Lp_2a, the capacitor 213a, and the capacitor C2_a. The primary side coil Lp_1a, the primary side coil Lp_2a, the capacitor 213a, and the capacitor C2_a are stored. When the first switching unit 2116a is selectively turned off by the first control unit 2114a, the primary side coil Lp_1a releases the stored electrical energy to the resistor R4_a and the resistor R5_a, and maintains the voltage across the resistor R4_a and the resistor R5_a with the capacitor 213a. Therefore, the voltage across the resistor R4_a and the resistor R5_a does not change much. The AC-to-DC converter 211a is adjusted in conduction and non-conduction by the first switching unit 2116a, so that the average potential difference across the capacitor 213a is the voltage Vdc_a. On the other hand, when the first switching unit 2116a is selectively turned off by the first control unit 2114a, the primary side coil Lp_2a, the capacitor C2_a and the diode D4_a form another loop, the primary side coil Lp_2a and The capacitor C2_a starts to release the stored electric energy, and the primary side coil Lp_2a has a current.

當第一電能轉換模組21a中的一次側線圈Lp_1a及一次側線圈Lp_2a有電流通過時,基於電磁互感的原理,第二電 能轉換模組23a中的二次側線圈Ls_1a會產生輸入電流I1_a,第三電能轉換模組25a中的二次側線圈Ls_2a會產生輸入電流I2_a。於本實施例中,不限制一次側線圈Lp_1a與第二電能轉換模組23a中的二次側線圈Ls_1a為一組、一次側線圈Lp_2a與第三電能轉換模組25a中的二次側線圈Ls_2a為一組,或一次側線圈Lp_1a與第三電能轉換模組25a中的二次側線圈Ls_2a為一組、一次側線圈Lp_2a與第二電能轉換模組23a中的二次側線圈Ls_1a為一組。 When the primary side coil Lp_1a and the primary side coil Lp_2a in the first power conversion module 21a have a current passing through, based on the principle of electromagnetic mutual inductance, the second electric The secondary side coil Ls_1a in the energy conversion module 23a generates an input current I1_a, and the secondary side coil Ls_2a in the third power conversion module 25a generates an input current I2_a. In the present embodiment, the secondary side coil Lp_1a and the secondary side coil Ls_1a in the second power conversion module 23a are not limited to one set, and the primary side coil Lp_2a and the secondary side coil Ls_2a in the third power conversion module 25a are not limited. A set, or the primary side coil Lp_1a and the secondary side coil Ls_2a in the third power conversion module 25a are a group, and the primary side coil Lp_2a and the secondary side coil Ls_1a in the second power conversion module 23a are a group. .

第二電能轉換模組23a的電壓產生單元231a會依據輸入電流I1_a,產生輸入電壓V1_a。當第二開關單元235a受控於第二控制單元233a而選擇性地導通時,輸入電壓V1_a對電容C3及電感L2充電,而使第二電能轉換模組23a的電容C3兩端具有電位差。當第二開關單元235a受控於第二控制單元233a而選擇性地不導通時,電感L2及電容C3釋放儲存的電能,而使第二電能轉換模組23a的電容C3兩端具有電位差。第二電能轉換模組23a藉由第二開關單元235a導通與不導通的調節,而使電容C3兩端的平均電位差為第一調變電壓Vo_1a。 The voltage generating unit 231a of the second power conversion module 23a generates the input voltage V1_a according to the input current I1_a. When the second switching unit 235a is selectively turned on by the second control unit 233a, the input voltage V1_a charges the capacitor C3 and the inductor L2, and the potential of the capacitor C3 of the second power conversion module 23a has a potential difference. When the second switching unit 235a is selectively turned off by the second control unit 233a, the inductor L2 and the capacitor C3 release the stored electric energy, so that the capacitor C3 of the second electric energy conversion module 23a has a potential difference across the capacitor C3. The second power conversion module 23a is turned on and off by the second switching unit 235a, so that the average potential difference across the capacitor C3 is the first modulation voltage Vo_1a.

第三電能轉換模組25a的電壓產生單元251a會依據輸入電流I2_a,產生輸入電壓V2_a。當第二開關單元255a受控於第二控制單元253a而選擇性地導通時,輸入電壓V2_a對電容C4及電感L3充電,而使電容C4的兩端具有電位差。當第二開關單元255a受控於第二控制單元253a而選擇性地不導通時,電 感L3及電容C4釋放儲存的電能,而使電容C4的兩端具有電位差。第三電能轉換模組25a藉由第二開關單元255a導通與不導通的調節,而使電容C4兩端的平均電位差為第二調變電壓Vo_2a。 The voltage generating unit 251a of the third power conversion module 25a generates the input voltage V2_a according to the input current I2_a. When the second switching unit 255a is selectively turned on by the second control unit 253a, the input voltage V2_a charges the capacitor C4 and the inductor L3, so that both ends of the capacitor C4 have a potential difference. When the second switching unit 255a is selectively controlled to be non-conductive by the second control unit 253a, The sense L3 and the capacitor C4 release the stored electrical energy, so that both ends of the capacitor C4 have a potential difference. The third power conversion module 25a is turned on and off by the second switching unit 255a, so that the average potential difference across the capacitor C4 is the second modulation voltage Vo_2a.

第一電能轉換模組21a產生的電壓Vdc_a及第二電能轉換模組23a產生的第一調變電壓Vo_1a便會一起提供給第一發光模組40a,以供第一發光模組40a驅動,並以調整第一調變電壓Vo_1a來改變第一發光模組40a的發光強度。也就是說,第一發光模組40a電性連接於節點N5_a及節點N6_a之間,且節點N5_a及節點N6_a之間的電位差為電壓Vdc_a及第一調變電壓Vo_1a的電壓位準總和,作為第一驅動電壓VLED_1a來驅動第一發光模組40a。 The voltage Vdc_a generated by the first power conversion module 21a and the first modulation voltage Vo_1a generated by the second power conversion module 23a are supplied to the first light emitting module 40a for driving the first light emitting module 40a, and The illumination intensity of the first illumination module 40a is changed by adjusting the first modulation voltage Vo_1a. That is, the first light-emitting module 40a is electrically connected between the node N5_a and the node N6_a, and the potential difference between the node N5_a and the node N6_a is the voltage level sum of the voltage Vdc_a and the first modulation voltage Vo_1a, as the first A driving voltage VLED_1a drives the first lighting module 40a.

第一電能轉換模組21a產生的電壓Vdc_a及第三電能轉換模組25a產生的第二調變電壓Vo_2a便會一起提供給第二發光模組60a,以供第二發光模組60a驅動,並以調整第二調變電壓Vo_2a來改變第二發光模組60a的發光強度。也就是說,第二發光模組60a電性連接於節點N5_a及節點N7_a之間,且節點N5_a及節點N7_a之間的電位差為電壓Vdc_a及第二調變電壓Vo_2a的電壓位準總和,作為第二驅動電壓VLED_2a來驅動第二發光模組60a。此外,於本實施例中,第一電能轉換模組21a提供的電壓Vdc_a的電壓位準小於第一發光模組40a的切入電壓Vf_1a的電壓位準及第二發光模組60a的切入電壓Vf_2a的電壓位準。 The voltage Vdc_a generated by the first power conversion module 21a and the second modulation voltage Vo_2a generated by the third power conversion module 25a are provided together to the second lighting module 60a for driving the second lighting module 60a. The illumination intensity of the second illumination module 60a is changed by adjusting the second modulation voltage Vo_2a. That is, the second light-emitting module 60a is electrically connected between the node N5_a and the node N7_a, and the potential difference between the node N5_a and the node N7_a is the voltage level sum of the voltage Vdc_a and the second modulation voltage Vo_2a, as the first The second driving voltage VLED_2a drives the second lighting module 60a. In addition, in this embodiment, the voltage level of the voltage Vdc_a provided by the first power conversion module 21a is smaller than the voltage level of the cut-in voltage Vf_1a of the first light-emitting module 40a and the cut-in voltage Vf_2a of the second light-emitting module 60a. Voltage level.

另一方面,一個實施例中的第二控制單元233a可依據第一控制訊號SC_1a和第一回授訊號SR_1a來調整第一調變電壓Vo_1a的電壓位準。第一回授訊號SR_1a關連於第一調變電壓Vo_1a的電壓位準。如第6圖所示,第一回授訊號SR_1a係依據電阻R6的跨壓所產生。藉由檢測電阻R6的跨壓,使得第二控制單元233a取得當前第一調變電壓Vo_1a的電壓位準,並據以調整第一調變電壓Vo_1a的電壓位準,而讓第一調變電壓Vo_1a的電壓位準能符合第一控制訊號SC_1a的指示。 On the other hand, the second control unit 233a in one embodiment can adjust the voltage level of the first modulation voltage Vo_1a according to the first control signal SC_1a and the first feedback signal SR_1a. The first feedback signal SR_1a is related to the voltage level of the first modulation voltage Vo_1a. As shown in FIG. 6, the first feedback signal SR_1a is generated according to the voltage across the resistor R6. By detecting the voltage across the resistor R6, the second control unit 233a obtains the voltage level of the current first modulation voltage Vo_1a, and adjusts the voltage level of the first modulation voltage Vo_1a to make the first modulation voltage. The voltage level of Vo_1a can meet the indication of the first control signal SC_1a.

第二控制單元253a可依據第二控制訊號SC_2a和第二回授訊號SR_2a來調整第二調變電壓Vo_2a的電壓位準。第二回授訊號SR_2a關連於第二調變電壓Vo_2a的電壓位準。如第6圖所示,第二回授訊號SR_2a係依據電阻R7的跨壓所產生。藉由檢測電阻R7的跨壓,使得第二控制單元253a取得當前第二調變電壓Vo_2a的電壓位準,並據以調整第二調變電壓Vo_2a的電壓位準,而讓第二調變電壓Vo_2a的電壓位準能符合第二控制訊號SC_2a的指示。此外,於一個實施例中,第一電能轉換模組21a中的第一控制單元2114a與第4圖的實施例同樣依據回授訊號SF_a來調整電壓Vdc_a的電壓位準,於此不再贅述。 The second control unit 253a can adjust the voltage level of the second modulation voltage Vo_2a according to the second control signal SC_2a and the second feedback signal SR_2a. The second feedback signal SR_2a is related to the voltage level of the second modulation voltage Vo_2a. As shown in Fig. 6, the second feedback signal SR_2a is generated according to the voltage across the resistor R7. By detecting the voltage across the resistor R7, the second control unit 253a obtains the voltage level of the current second modulation voltage Vo_2a, and adjusts the voltage level of the second modulation voltage Vo_2a to make the second modulation voltage. The voltage level of Vo_2a can meet the indication of the second control signal SC_2a. In addition, in one embodiment, the first control unit 2114a in the first power conversion module 21a adjusts the voltage level of the voltage Vdc_a according to the feedback signal SF_a as in the embodiment of FIG. 4, and details are not described herein.

請參照第7圖,第7圖係為根據本發明又一實施例所繪示之電源調整電路的電路示意圖。如第7圖所示,電源調整電路20b具有第一電能轉換模組21b、第二電能轉換模組23b及第三電能轉換模組25b,其中第一電能轉換模組21b與第6圖所 示的第一電能轉換模組21a大致上相同。與第6圖所示的實施例不同的是第二電能轉換模組23b及第三電能轉換模組25b。第二電能轉換模組23b具有電壓產生單元231b、第二控制單元233b、第二開關單元235b、一次側線圈Np1、二次側線圈Ns1、二極體D7、電容C5。第三電能轉換模組25b具有電壓產生單元251b、第二控制單元253b、第二開關單元255b、一次側線圈Np2、二次側線圈Ns2、二極體D8、電容C6。 Please refer to FIG. 7. FIG. 7 is a schematic circuit diagram of a power supply adjusting circuit according to another embodiment of the present invention. As shown in FIG. 7, the power adjustment circuit 20b has a first power conversion module 21b, a second power conversion module 23b, and a third power conversion module 25b, wherein the first power conversion module 21b and the sixth figure The first power conversion modules 21a are shown to be substantially identical. Different from the embodiment shown in FIG. 6, the second power conversion module 23b and the third power conversion module 25b. The second power conversion module 23b includes a voltage generating unit 231b, a second control unit 233b, a second switching unit 235b, a primary side coil Np1, a secondary side coil Ns1, a diode D7, and a capacitor C5. The third power conversion module 25b includes a voltage generating unit 251b, a second control unit 253b, a second switching unit 255b, a primary side coil Np2, a secondary side coil Ns2, a diode D8, and a capacitor C6.

當第一電能轉換模組21b中的一次側線圈Lp_1b及一次側線圈Lp_2b有電流通過時,基於電磁互感的原理,第二電能轉換模組23b中的二次側線圈Ls_1b會產生輸入電流I1_b,第三電能轉換模組25b中的二次側線圈Ls_2b會產生輸入電流I2_b。 When the primary side coil Lp_1b and the primary side coil Lp_2b of the first power conversion module 21b have a current, the secondary side coil Ls_1b of the second power conversion module 23b generates an input current I1_b based on the principle of electromagnetic mutual inductance. The secondary side coil Ls_2b in the third power conversion module 25b generates an input current I2_b.

第二電能轉換模組23b中的電壓產生單元231b會依據輸入電流I1_b,產生輸入電壓V1_b。當第二開關單元235b受控於第二控制單元233b而選擇性地導通時,電壓產生單元231b、第二控制單元233b、一次側線圈Np1形成迴路,一次側線圈Np1上形成電流。此時,同樣係基於電磁互感的原理,二次側線圈Ns1上會產生感應電流,而使電容C5兩端的具有電位差。當第二開關單元235b受控於第二控制單元233b而選擇性地不導通時,二次側線圈Ns1釋放儲存的電能,使電容C5的兩端具有電位差。第二電能轉換模組23b藉由第二開關單元235b導通與不導通的調節,而使電容C5的兩端的平均電位差為第一調變電壓Vo_1b,且電容C5用以讓第一調變電壓Vo_1b的電壓位準不會有太大的變 化幅度。 The voltage generating unit 231b in the second power conversion module 23b generates the input voltage V1_b according to the input current I1_b. When the second switching unit 235b is selectively turned on by the second control unit 233b, the voltage generating unit 231b, the second control unit 233b, and the primary side coil Np1 form a loop, and a current is formed on the primary side coil Np1. At this time, based on the principle of electromagnetic mutual inductance, an induced current is generated on the secondary side coil Ns1, and a potential difference is formed across the capacitor C5. When the second switching unit 235b is selectively turned off by the second control unit 233b, the secondary side coil Ns1 releases the stored electric energy so that both ends of the capacitor C5 have a potential difference. The second power conversion module 23b is turned on and off by the second switching unit 235b, so that the average potential difference between the two ends of the capacitor C5 is the first modulation voltage Vo_1b, and the capacitor C5 is used to make the first modulation voltage Vo_1b The voltage level will not change much Amplitude.

第三電能轉換模組25b中的電壓產生單元251b會依據輸入電流I2_b,產生輸入電壓V2_b。當第二開關單元255b受控於第二控制單元253b而選擇性地導通時,電壓產生單元251b、第二控制單元253b、一次側線圈Np2形成迴路,一次側線圈Np2上形成電流。此時,同樣係基於電磁互感的原理,二次側線圈Ns2上會產生感應電流,而使電容C6的兩端具有電位差。當第二開關單元255b受控於第二控制單元253b而選擇性地不導通時,二次側線圈Ns2釋放儲存的電能,使電容C6的兩端具有電位差。第三電能轉換模組25b藉由第二開關單元255b導通與不導通的調節,而使電容C6的兩端的平均電位差為第二調變電壓Vo_2b,且電容C6用以讓第二調變電壓Vo_2b的電壓位準不會有太大的變化幅度。 The voltage generating unit 251b in the third power conversion module 25b generates an input voltage V2_b according to the input current I2_b. When the second switching unit 255b is selectively turned on by the second control unit 253b, the voltage generating unit 251b, the second control unit 253b, and the primary side coil Np2 form a loop, and a current is formed on the primary side coil Np2. At this time, based on the principle of electromagnetic mutual inductance, an induced current is generated on the secondary side coil Ns2, and both ends of the capacitor C6 have a potential difference. When the second switching unit 255b is selectively turned off by the second control unit 253b, the secondary side coil Ns2 discharges the stored electric energy so that both ends of the capacitor C6 have a potential difference. The third power conversion module 25b is turned on and off by the second switching unit 255b, so that the average potential difference between the two ends of the capacitor C6 is the second modulation voltage Vo_2b, and the capacitor C6 is used to make the second modulation voltage Vo_2b The voltage level does not change much.

本實施例藉由於第二電能轉換模組23b中,第二控制單元233b控制第二開關單元235b導通時間的長短以及一次側線圈Np1和二次側線圈Ns1的圈數,調整第一調變電壓Vo_1b的電壓位準。並且,於第三電能轉換模組25b中,第二控制單元253b控制第二開關單元255b導通時間的長短以及一次側線圈Np2和二次側線圈Ns2的圈數,以調整第二調變電壓Vo_2b的電壓位準。 In the second power conversion module 23b, the second control unit 233b controls the length of the second switching unit 235b and the number of turns of the primary side coil Np1 and the secondary side coil Ns1 to adjust the first modulation voltage. The voltage level of Vo_1b. Further, in the third power conversion module 25b, the second control unit 253b controls the length of the on-time of the second switching unit 255b and the number of turns of the primary side coil Np2 and the secondary side coil Ns2 to adjust the second modulation voltage Vo_2b. The voltage level.

第一電能轉換模組21b產生的電壓Vdc_b及第二電能轉換模組23b產生的第一調變電壓Vo_1b便會一起提供給第一發光模組40b,以供第一發光模組40b驅動,並以調整第一調變 電壓Vo_1b來改變第一發光模組40b的發光強度。也就是說,第一發光模組40b電性連接於節點N5_b及節點N6_b之間,且節點N5_b及節點N6_b之間的電位差為電壓Vdc_b及第一調變電壓Vo_1b的電壓位準總和,作為第一驅動電壓VLED_1b來驅動第一發光模組40b。第一電能轉換模組21b產生的電壓Vdc_b及第三電能轉換模組25b產生的第二調變電壓Vo_2b便會一起提供給第二發光模組60b,以供第二發光模組60b驅動,並以調整第二調變電壓Vo_2b來改變第二發光模組60b的發光強度。也就是說,第二發光模組60b電性連接於節點N5_b及節點N7_b之間,且節點N5_b及節點N7_b之間的電位差為電壓Vdc_b及第二調變電壓Vo_2b的電壓位準總和,作為第二驅動電壓VLED_2b來驅動第二發光模組60b。於本實施例中,第一電能轉換模組21b提供的電壓Vdc_b的電壓位準小於第一發光模組40b的切入電壓Vf_1b的電壓位準及第二發光模組60b的切入電壓Vf_2b的電壓位準。 The voltage Vdc_b generated by the first power conversion module 21b and the first modulation voltage Vo_1b generated by the second power conversion module 23b are supplied to the first light emitting module 40b for driving by the first light emitting module 40b, and To adjust the first modulation The voltage Vo_1b changes the luminous intensity of the first light emitting module 40b. That is, the first light-emitting module 40b is electrically connected between the node N5_b and the node N6_b, and the potential difference between the node N5_b and the node N6_b is the voltage level sum of the voltage Vdc_b and the first modulation voltage Vo_1b, as the first A driving voltage VLED_1b drives the first lighting module 40b. The voltage Vdc_b generated by the first power conversion module 21b and the second modulation voltage Vo_2b generated by the third power conversion module 25b are provided together to the second lighting module 60b for driving by the second lighting module 60b, and The illumination intensity of the second illumination module 60b is changed by adjusting the second modulation voltage Vo_2b. That is, the second light-emitting module 60b is electrically connected between the node N5_b and the node N7_b, and the potential difference between the node N5_b and the node N7_b is the voltage level sum of the voltage Vdc_b and the second modulation voltage Vo_2b, as the first The second driving voltage VLED_2b drives the second lighting module 60b. In this embodiment, the voltage level of the voltage Vdc_b provided by the first power conversion module 21b is smaller than the voltage level of the cut-in voltage Vf_1b of the first light-emitting module 40b and the voltage level of the cut-in voltage Vf_2b of the second light-emitting module 60b. quasi.

於一個實施例中,第一電能轉換模組21b中的第一控制單元2114b與第4圖的實施例同樣依據回授訊號SF_b來調整電壓Vdc_b的電壓位準,於此不再贅述。而一個實施例中的第二控制單元233b可依據第一控制訊號SC_1b和第一回授訊號SR_1b來調整第一調變電壓Vo_1b的電壓位準。第一回授訊號SR_1b係直接藉由檢測第一發光模組40b上的第一驅動電壓VLED_1b的電壓位準以調整第一調變電壓Vo_1b的電壓位準。 In one embodiment, the first control unit 2114b of the first power conversion module 21b adjusts the voltage level of the voltage Vdc_b according to the feedback signal SF_b as in the embodiment of FIG. 4, and details are not described herein. The second control unit 233b in one embodiment can adjust the voltage level of the first modulation voltage Vo_1b according to the first control signal SC_1b and the first feedback signal SR_1b. The first feedback signal SR_1b directly adjusts the voltage level of the first modulation voltage Vo_1b by detecting the voltage level of the first driving voltage VLED_1b on the first lighting module 40b.

第二控制單元253b可依據第二控制訊號SC_2b和第 二回授訊號SR_2b來調整第二調變電壓Vo_2b的電壓位準。第二回授訊號SR_2b係直接藉由檢測第二發光模組60b上的第二驅動電壓VLED_2b的電壓位準以調整第二調變電壓Vo_2b的電壓位準。 The second control unit 253b can be based on the second control signal SC_2b and the The second feedback signal SR_2b adjusts the voltage level of the second modulation voltage Vo_2b. The second feedback signal SR_2b directly adjusts the voltage level of the second modulation voltage Vo_2b by detecting the voltage level of the second driving voltage VLED_2b on the second lighting module 60b.

綜合以上所述,本發明利用電壓與第一調變電壓的總和作為第一驅動電壓來驅動第一發光模組。由於電壓可以讓第一發光模組的第一驅動電壓接近第一發光模組的切入電壓,因此調整第一調變電壓的階數中,只有少部分的階數係用以讓第一驅動電壓的電壓位準超過切入電壓的電壓位準,而大部分的階數則係用以調整第一驅動電壓的電壓位準,以改變第一發光模組的發光強度。據此,本發明不僅增加可以調整第一發光模組發光強度的階數,提升了第一發光模組的調光解析度,還讓需經第二電能轉換模組二次轉換的電能量下降,從而降低電能轉換時造成的損耗,提高了本發明電源調整電路整體的效益。 In summary, the present invention utilizes the sum of the voltage and the first modulation voltage as the first driving voltage to drive the first lighting module. Since the voltage can make the first driving voltage of the first lighting module close to the cutting voltage of the first lighting module, only a small portion of the order of the first modulation voltage is used to make the first driving voltage The voltage level exceeds the voltage level of the cut-in voltage, and most of the order is used to adjust the voltage level of the first driving voltage to change the luminous intensity of the first light-emitting module. Accordingly, the present invention not only increases the order of adjusting the illumination intensity of the first illumination module, but also improves the dimming resolution of the first illumination module, and also reduces the electrical energy required to be converted by the second electrical energy conversion module. Therefore, the loss caused by the power conversion is reduced, and the overall benefit of the power adjustment circuit of the present invention is improved.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

10‧‧‧電源調整電路 10‧‧‧Power adjustment circuit

11‧‧‧第一電能轉換模組 11‧‧‧First power conversion module

111‧‧‧交流對直流轉換器 111‧‧‧AC to DC converter

113‧‧‧電容 113‧‧‧ Capacitance

115‧‧‧第一輸出端 115‧‧‧ first output

117‧‧‧第二輸出端 117‧‧‧second output

13‧‧‧第二電能轉換模組 13‧‧‧Second power conversion module

30‧‧‧發光模組 30‧‧‧Lighting module

50‧‧‧交流電源供應器 50‧‧‧AC power supply

P1‧‧‧第一轉換電能 P1‧‧‧First conversion energy

P2‧‧‧第二轉換電能 P2‧‧‧Second conversion energy

Vdc‧‧‧電壓 Vdc‧‧‧ voltage

VLED‧‧‧驅動電壓 VLED‧‧‧ drive voltage

Vo‧‧‧調變電壓 Vo‧‧‧ modulation voltage

SC‧‧‧控制訊號 SC‧‧‧Control signal

Claims (11)

一種電源調整電路,用以產生至少一第一驅動電壓以驅動一第一發光模組,該電源調整電路包含:一第一電能轉換模組,用以依據一第一轉換電能,產生一電壓及一第二轉換電能;以及一第二電能轉換模組,電性連接該第一電能轉換模組,用以將部分的該第二轉換電能以一第一調變電壓輸出,並依據一第一控制訊號,調整該第一調變電壓的電壓位準;其中該第一驅動電壓係該電壓及該第一調變電壓的總和,且該電壓小於該第一發光模組的切入電壓。 A power adjustment circuit for generating at least one first driving voltage to drive a first lighting module, the power conditioning circuit comprising: a first power conversion module for generating a voltage according to a first converted electrical energy a second conversion power; and a second power conversion module electrically connected to the first power conversion module, configured to output a portion of the second converted power to a first modulated voltage, and according to a first Controlling a signal, adjusting a voltage level of the first modulation voltage; wherein the first driving voltage is a sum of the voltage and the first modulation voltage, and the voltage is less than a cut-in voltage of the first lighting module. 如請求項1所述之電源調整電路,其中該第一電能轉換模組包含一交流對直流轉換器及一電容,該交流對直流轉換器包含一第一輸出端及一第二輸出端,該電容電性連接於該第一輸出端及該第二輸出端之間,該第二電能轉換模組電性連接於該第一輸出端。 The power conditioning circuit of claim 1, wherein the first power conversion module comprises an AC to DC converter and a capacitor, the AC to DC converter comprising a first output end and a second output end, The capacitor is electrically connected between the first output end and the second output end, and the second power conversion module is electrically connected to the first output end. 如請求項2所述之電源調整電路,其中該交流對直流轉換器依據一第一回授訊號調整該電壓,該第一回授訊號關連於該電容輸出的電壓。 The power adjustment circuit of claim 2, wherein the AC to DC converter adjusts the voltage according to a first feedback signal, the first feedback signal being related to a voltage output by the capacitor. 如請求項2所述之電源調整電路,更包含一第三電能轉換模組電性連接該交流對直流轉換器的該第一輸出端,該交流對直流轉換器提供另一部分的該第二轉換電能至該第三電能轉換模組,該第三電能轉換模組用以將接收到的該第二轉換電能以一 第二調變電壓輸出。 The power adjustment circuit of claim 2, further comprising a third power conversion module electrically connected to the first output of the AC to DC converter, the AC to DC converter providing another portion of the second conversion Power to the third power conversion module, the third power conversion module is configured to receive the second converted power The second modulation voltage output. 如請求項4所述之電源調整電路,其中該第三電能轉換模組依據一第二控制訊號,調整該第二調變電壓的電壓位準,而該電壓及該第二調變電壓的總和係一第二驅動電壓,該第二驅動電壓用以驅動一第二發光模組。 The power adjustment circuit of claim 4, wherein the third power conversion module adjusts a voltage level of the second modulation voltage according to a second control signal, and a sum of the voltage and the second modulation voltage A second driving voltage is used to drive a second lighting module. 如請求項5所述之電源調整電路,其中該第一驅動電壓的上限值關聯於該第一發光模組的額定電壓,且該第二驅動電壓的上限值關聯於該第二發光模組的額定電壓。 The power supply adjusting circuit of claim 5, wherein an upper limit value of the first driving voltage is associated with a rated voltage of the first lighting module, and an upper limit value of the second driving voltage is associated with the second lighting mode The rated voltage of the group. 如請求項5所述之電源調整電路,其中該電壓小於該第一發光模組的切入電壓及該第二發光模組的切入電壓。 The power adjustment circuit of claim 5, wherein the voltage is less than a cut-in voltage of the first light-emitting module and a cut-in voltage of the second light-emitting module. 如請求項5所述之電源調整電路,其中該第二電能轉換模組的輸入功率及該第三電能轉換模組的輸入功率總和實質上等於該第二轉換電能的功率。 The power adjustment circuit of claim 5, wherein the input power of the second power conversion module and the input power of the third power conversion module are substantially equal to the power of the second converted power. 如請求項5所述之電源調整電路,其中該第二電能轉換模組的最大轉換功率或該第三電能轉換模組的最大轉換功率實質上各別等於該第二轉換電能的功率。 The power adjustment circuit of claim 5, wherein the maximum conversion power of the second power conversion module or the maximum conversion power of the third power conversion module is substantially equal to the power of the second converted power. 如請求項1所述之電源調整電路,其中該第二電能轉換模組更依據一第二回授訊號及該第一控制訊號調整該第一調變電壓,該第二回授訊號關連於該第一調變電壓。 The power adjustment circuit of claim 1, wherein the second power conversion module further adjusts the first modulation voltage according to a second feedback signal and the first control signal, wherein the second feedback signal is related to the The first modulation voltage. 如請求項1所述之電源調整電路,其中該電壓為一固定電壓。 The power conditioning circuit of claim 1, wherein the voltage is a fixed voltage.
TW104118028A 2015-06-03 2015-06-03 Power adjusting circuit TWI540940B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104118028A TWI540940B (en) 2015-06-03 2015-06-03 Power adjusting circuit
JP2015179548A JP5982050B1 (en) 2015-06-03 2015-09-11 Power adjustment circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104118028A TWI540940B (en) 2015-06-03 2015-06-03 Power adjusting circuit

Publications (2)

Publication Number Publication Date
TWI540940B true TWI540940B (en) 2016-07-01
TW201644321A TW201644321A (en) 2016-12-16

Family

ID=56820107

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104118028A TWI540940B (en) 2015-06-03 2015-06-03 Power adjusting circuit

Country Status (2)

Country Link
JP (1) JP5982050B1 (en)
TW (1) TWI540940B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121559A (en) * 1995-10-24 1997-05-06 Toshiba Fa Syst Eng Kk Inverter device
JP2000125547A (en) * 1998-10-12 2000-04-28 Sanken Electric Co Ltd Dc converter
JP4680306B2 (en) * 2009-02-05 2011-05-11 三菱電機株式会社 Power supply circuit and lighting device
WO2013056356A1 (en) * 2011-10-17 2013-04-25 Queen's University At Kingston Ripple cancellation converter with high power factor
JP2014187872A (en) * 2014-04-30 2014-10-02 Toshiba Lighting & Technology Corp Dc power supply unit and illumination apparatus

Also Published As

Publication number Publication date
TW201644321A (en) 2016-12-16
JP5982050B1 (en) 2016-08-31
JP2016225268A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
US8680783B2 (en) Bias voltage generation using a load in series with a switch
US8975825B2 (en) Light emitting diode driver with isolated control circuits
US8624513B2 (en) Multichannel lighting unit and driver for supplying current to light sources in multichannel lighting unit
US9215769B2 (en) LED backlight driver system and associated method of operation
US9265114B2 (en) Driver circuit for solid state light sources
CN102484918A (en) Method and apparatus for controlling dimming levels of leds
TWM503722U (en) Light emitting device power supply circuit with dimming function and control circuit thereof
US8896222B2 (en) Power supply device and luminaire
WO2012059778A1 (en) Driver for two or more parallel led light strings
US9585210B2 (en) Reduced flicker driver circuit for LED systems
Mohamed et al. Cuk converter as a LED lamp driver
KR20120031215A (en) Led driving device for lighting
Almeida et al. Off-line flyback LED driver with PWM dimming and power factor correction employing a single switch
KR20120017694A (en) Led lamp and driving circuit for led
KR101942494B1 (en) Hybrid control type ac direct driving led apparatus
TWI540940B (en) Power adjusting circuit
KR101448655B1 (en) Power factor correction circuit for lighting and driving method thereof
KR101061417B1 (en) LED driving circuit by pulse width modulation control method
TWM589406U (en) LED drive circuit and control chip
US9699843B2 (en) Power supply device for LED light
TWI672975B (en) Light-emitting element driving device and driving method thereof
KR101382708B1 (en) Power supply circuit
US20160029446A1 (en) Power Converter for Light Bulb Assembly Comprising Multiple LED Arrays
KR102248072B1 (en) Method and apparatus for driving light emitting diode using average current control
WO2022228964A1 (en) Led driver with two output channels