TWI539425B - Method for rendering images of display - Google Patents

Method for rendering images of display Download PDF

Info

Publication number
TWI539425B
TWI539425B TW103136713A TW103136713A TWI539425B TW I539425 B TWI539425 B TW I539425B TW 103136713 A TW103136713 A TW 103136713A TW 103136713 A TW103136713 A TW 103136713A TW I539425 B TWI539425 B TW I539425B
Authority
TW
Taiwan
Prior art keywords
matrix
rendering
display
sub
pixel
Prior art date
Application number
TW103136713A
Other languages
Chinese (zh)
Other versions
TW201616481A (en
Inventor
蘇尚裕
鄭勝文
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW103136713A priority Critical patent/TWI539425B/en
Priority to CN201410848061.3A priority patent/CN104464684B/en
Publication of TW201616481A publication Critical patent/TW201616481A/en
Application granted granted Critical
Publication of TWI539425B publication Critical patent/TWI539425B/en

Links

Description

對顯示器的畫面進行渲染的方法 Method of rendering a screen of a display

一種對顯示器的畫面進行渲染的方法,特別是相關於一種對SPR顯示器的畫面進行次畫素渲染(Subpixel Rendering;SPR)的方法。 A method of rendering a picture of a display, in particular, a method for subpixel rendering (SPR) of a picture of an SPR display.

由於現在消費電子產品的使用者對視覺效果的要求越來越高,為能輸出高品質的圖像及細緻的畫面,顯示器的解析度需不斷提高。請參考第1圖。第1圖為先前技術之顯示器100之部分畫素的示意圖。顯示器100採用了傳統的畫素排列方式,其中顯示器100包含了複數個畫素110,而每一個畫素110都包含了紅色次畫素120R、綠色次畫素120G及藍色次畫素120B。然而,在解析度提高的同時,紅色次畫素120R、綠色次畫素120G及藍色次畫素120B的開口率也將縮小,並使得在同樣背光源亮度的情況下,高解析度的面板比起非高解析度的面板有較低的亮度。 Since users of consumer electronics are increasingly demanding visual effects, the resolution of displays needs to be continuously improved in order to output high-quality images and detailed images. Please refer to Figure 1. 1 is a schematic diagram of a portion of a pixel of a prior art display 100. The display 100 employs a conventional pixel arrangement in which the display 100 includes a plurality of pixels 110, and each of the pixels 110 includes a red sub-pixel 120R, a green sub-pixel 120G, and a blue sub-pixel 120B. However, as the resolution is improved, the aperture ratios of the red sub-pixel 120R, the green sub-pixel 120G, and the blue sub-pixel 120B are also reduced, and the high-resolution panel is provided in the case of the same backlight brightness. It has lower brightness than a non-high resolution panel.

為解決此一亮度降低的問題,美國ClairVoyante公司提出了一種稱為PenTile的次畫素排列,並採用次畫素渲染法(Sub Pixel Rendering,SPR)進行驅動。SPR顯示器主要是將次畫素的面積增大以增加其開口率,進而提升顯示器的亮度。請參考第2圖,第2圖為先前技術之顯示器200的示意圖。顯示器200為一種SPR顯示器,而包含了複數個次畫素組210和複數個次畫素組220,其中次畫素組210和次畫素組220互相交錯排列。每一次畫素組210包含了紅色次畫素230R及綠色次畫素230G,而每一次畫素組220則包含了藍色次畫素230B及綠色次畫素230G。紅色次畫素230R的面積大於綠 色次畫素230G的面積,而藍色次畫素230B的面積也大於綠色次畫素230G的面積。次畫素組210及220扮演了類似第1圖中畫素110的角色,然而因次畫素組210缺少藍色次畫素230B,而次畫素組220缺少紅色次畫素230R,故顯示器200會對每一次畫素組210及220的次畫素進行渲染。 In order to solve this problem of brightness reduction, ClairVoyante of the United States proposed a sub-pixel arrangement called PenTile, which is driven by Sub Pixel Rendering (SPR). The SPR display mainly increases the area of the sub-pixel to increase its aperture ratio, thereby increasing the brightness of the display. Please refer to FIG. 2, which is a schematic diagram of a prior art display 200. The display 200 is an SPR display, and includes a plurality of sub-pixel groups 210 and a plurality of sub-pixel groups 220, wherein the sub-pixel groups 210 and the sub-pixel groups 220 are staggered with each other. Each pixel group 210 includes a red sub-pixel 230R and a green sub-pixel 230G, and each pixel group 220 includes a blue sub-pixel 230B and a green sub-pixel 230G. The area of red sub-pixel 230R is larger than green The area of the color sub-pixel 230G, and the area of the blue sub-pixel 230B is also larger than the area of the green sub-pixel 230G. The sub-pixel groups 210 and 220 play a role similar to the pixel 110 in FIG. 1, however, since the sub-pixel group 210 lacks the blue sub-pixel 230B, and the sub-pixel group 220 lacks the red sub-pixel 230R, the display 200 will render the secondary pixels of each of the pixel groups 210 and 220.

當顯示器200進行次畫素的渲染時,由於次畫素組210缺少藍色次畫素230B,而次畫素組220缺少紅色次畫素230R,故每一次畫素組210的藍色渲染值BD會被分配至其右側相鄰次畫素組220的藍色次畫素230B,而每一次畫素組220的紅色渲染值RD會被分配至其右側相鄰次畫素組210的紅色次畫素230B。詳言之,顯示器200會接收多筆的畫素資料,而每一筆畫素資料用以驅動所對應的一個次畫素組210或次畫素組220。每一筆畫素資料具有分別對應於紅色、綠色、藍色的紅色資料、綠色資料及藍色資料。當顯示器200進行上述次畫素的渲染時,會採用了的渲染矩陣進行渲染,而此渲染矩陣第二列第二行的元(element)的值代表了所要渲染的次畫素之對應顏色資料所需乘上的比例,而其他每一個元的值則代表所鄰近且在對應方向上的次畫素組210或次畫素組220中相同顏色之顏色資料所需乘上的比例。其中,渲染矩陣中除了第二列第二行的元以外的其他每一個元皆對應所要渲染的次畫素的一個鄰近的次畫素組210或次畫素組220,而渲染矩陣的第一列第一行、第一列第二行、第一列第三行、第二列第一行、第二列第三行、第三列第一行、第三列第二行及第三列第三行的元所對應的次畫素組分別與所要渲染的次畫素相鄰,且位於所要渲染的次畫素的左上方、正上方、右上方、左方、右方、左下方、正下方及右下方。 When the display 200 performs sub-pixel rendering, since the sub-pixel group 210 lacks the blue sub-pixel 230B, and the sub-pixel group 220 lacks the red sub-pixel 230R, the blue rendering value of each pixel group 210 is B D will be assigned to the blue sub-pixel 230B of the adjacent sub-pixel group 220 on the right side thereof, and the red rendering value R D of each pixel group 220 will be assigned to the adjacent sub-pixel group 210 of the right side thereof. Red sub-pixel 230B. In detail, the display 200 receives a plurality of pixel data, and each of the pixel data is used to drive a corresponding sub-pixel group 210 or sub-pixel group 220. Each piece of pixel data has red, green and blue data corresponding to red, green and blue, respectively. When the display 200 performs the rendering of the above sub-pixels, it will be adopted. The rendering matrix is rendered, and the value of the element in the second row of the second column of the rendering matrix represents the ratio of the multiplication of the corresponding color data of the sub-pixel to be rendered, and the value of each other element is Represents the ratio of the color data of the same color that is adjacent to and in the corresponding direction of the sub-pixel group 210 or the sub-pixel group 220. Wherein each element except the element of the second row of the second column in the rendering matrix corresponds to a neighboring sub-pixel group 210 or sub-pixel group 220 of the sub-pixel to be rendered, and the first of the rendering matrix Column first row, first column second row, first column third row, second column first row, second column third row, third column first row, third column second row, and third column The sub-pixel groups corresponding to the elements of the third row are respectively adjacent to the sub-pixels to be rendered, and are located at the upper left, the upper right, the upper right, the left, the right, and the lower left of the sub-pixel to be rendered. Just below and to the bottom right.

以下將就如何對第2圖中位於顯示器200的第三列第三行的次畫 素組210進行渲染進行說明。假設此一次畫素組210的紅色次畫素230R原始與經過渲染後的紅色資料分別為R33及R’33,而與其相鄰而分別位於其左上方、右上方、左下方及右下方的次畫素組210的紅色資料分為R22、R42、R24及R44,且與其相鄰而分別位於其正上方、左方、右方及正下方的次畫素組220的紅色資料分為R32、R23、R43及R34。則藉由渲染矩陣渲染後,R’33=0.5×R23+0.5×R33,而第三列第三行的次畫素組210自位於其左方相鄰次畫素組220所接收到紅色渲染值RD即等於0.5×R23How to render the sub-pixel group 210 located in the third row and third row of the display 200 in FIG. 2 will be described below. It is assumed that the red sub-pixel 230R of the primary pixel group 210 and the rendered red data are R 33 and R' 33 respectively, and adjacent thereto are located at the upper left, upper right, lower left and lower right respectively. The red data of the sub-pixel group 210 is divided into R 22 , R 42 , R 24 and R 44 , and the red data of the sub-pixel group 220 adjacent thereto and located directly above, to the left, to the right and directly below Divided into R 32 , R 23 , R 43 and R 34 . Rendering matrix After rendering, R' 33 = 0.5 × R 23 + 0.5 × R 33 , and the sub-pixel group 210 of the third row of the third column receives the red rendering value R D from the adjacent sub-pixel group 220 located in the left side thereof. 0.5 × R 23 .

然而,上述以單一渲染矩陣進行渲染的方式,在以多個驅動晶片對顯示器的次畫素進行驅動及渲染時,容易在不同驅動區的邊界上發生顏色錯誤的問題。請參考第3圖,第3圖為另一個先前技術之顯示器300的示意圖。顯示器300為一種SPR顯示器,而包含了複數個次畫素組210和複數個次畫素組220,其中次畫素組210和次畫素組220互相交錯排列。顯示器300包含相鄰的顯示區301及顯示區302,其中顯示區301和顯示區302以虛線303區隔。顯示區301及顯示區302由兩個不同的驅動晶片進行驅動及渲染,而在對個次畫素組210及220進行渲染時這兩個驅動晶片亦採用了上述的渲染矩陣進行渲染。然而,兩個驅動晶片之間並未設置任何的緩衝記憶體以分享彼此所接收到的畫素資料,且其前端晶片也未對畫素資料事先處理,以致在顯示區301及顯示區302的邊界上,顯示區301的次畫素組210的藍色渲染值BD及次畫素組220的紅色渲染值RD無法被分別渲染到顯示區302的次畫素組220的藍色次畫素230B及次畫素組210的紅色次畫素230R。因此,在顯示區301及顯示區302的邊界上容易因顯示區302的藍色次畫素230B及紅色次畫素230R的亮度不足,而有色偏及閃爍的情況。 However, in the above manner of rendering in a single rendering matrix, when a plurality of driving wafers are used to drive and render the secondary pixels of the display, it is easy to cause color error on the boundary of different driving regions. Please refer to FIG. 3, which is a schematic diagram of another prior art display 300. The display 300 is an SPR display, and includes a plurality of sub-pixel groups 210 and a plurality of sub-pixel groups 220, wherein the sub-pixel groups 210 and the sub-pixel groups 220 are staggered with each other. The display 300 includes an adjacent display area 301 and a display area 302, wherein the display area 301 and the display area 302 are separated by a broken line 303. The display area 301 and the display area 302 are driven and rendered by two different driving chips, and the two driving chips also adopt the above-mentioned rendering matrix when rendering the sub-pixel groups 210 and 220. Rendering. However, no buffer memory is disposed between the two driving chips to share the pixel data received by each other, and the front-end wafer does not process the pixel data in advance, so as to be in the display area 301 and the display area 302. On the boundary, the blue rendering value B D of the sub-pixel group 210 of the display area 301 and the red rendering value R D of the sub-pixel group 220 cannot be respectively rendered to the blue sub-picture of the sub-pixel group 220 of the display area 302. The red sub-pixel 230R of the element 230B and the sub-pixel group 210. Therefore, on the boundary between the display area 301 and the display area 302, it is easy to cause color shift and flicker due to insufficient brightness of the blue sub-pixel 230B and the red sub-pixel 230R of the display area 302.

本發明一實施例揭露了一種對顯示器的畫面進行渲染的方法。上述顯示器包含多個第一次畫素組及多個第二次畫素組,且上述的多個第一次畫素組與上述的多個第二次畫素組交錯地排列。每一次畫素組與每一第二次畫素組各包含至少兩種顏色的次畫素,而第一次畫素組的次畫素的顏色組合不同於第二次畫素組的次畫素的顏色組合。上述的方法包含:提供至少一矩陣循環,其中每一矩陣循環包含至少四個渲染矩陣,每一個渲染矩陣包含多個元,每一個其值大於零的元用以設定一取值方向,而上述至少一矩陣循環的任兩個時序上相鄰的渲染矩陣至少有一不同的取值方向;依據上述至少一矩陣循環依序地對顯示器於不同畫框週期的畫面進行渲染,其中兩個時序上相鄰的畫框週期的畫面以不完全相同的渲染矩陣進行渲染;以及顯示器在每一畫框週期顯示經上述渲染矩陣所渲染過的畫面。 An embodiment of the invention discloses a method for rendering a picture of a display. The display includes a plurality of first pixel groups and a plurality of second pixel groups, and the plurality of first pixel groups are alternately arranged with the plurality of second pixel groups. Each pixel group and each second pixel group each contain at least two colors of sub-pixels, and the color combination of the second pixel of the first pixel group is different from the second color of the second pixel group. The color combination of the prime. The method includes: providing at least one matrix loop, wherein each matrix loop includes at least four rendering matrices, each of the rendering matrices includes a plurality of elements, and each of the elements whose value is greater than zero is used to set a value direction, and the foregoing At least one of the temporally adjacent rendering matrices of the at least one matrix loop has at least one different direction of the value; the display is displayed in different frame periods according to the at least one matrix loop, wherein the two timing phases are The picture of the adjacent frame period is rendered with a rendering matrix that is not identical; and the display displays the picture rendered by the rendering matrix in each frame period.

100、200、300、700、1300‧‧‧顯示器 100, 200, 300, 700, 1300‧‧ display

110、210、220‧‧‧畫素 110, 210, 220‧‧ ‧ pixels

120R、230R、330R‧‧‧紅色子畫素 120R, 230R, 330R‧‧‧ Red sub-pixels

120G、230G、330G‧‧‧綠色子畫素 120G, 230G, 330G‧‧‧ Green sub-pixels

120B、230B、330B‧‧‧藍色子畫素 120B, 230B, 330B‧‧‧Blue sub-pixels

210、220、1310、1320‧‧‧次畫素組 210, 220, 1310, 1320‧‧

301、302、701、702、1301、1302‧‧‧顯示區 301, 302, 701, 702, 1301, 1302‧‧‧ display area

303、703、1301‧‧‧虛線 303, 703, 1301‧‧‧ dotted line

330W‧‧‧白色子畫素 330W‧‧‧White sub-pixel

400‧‧‧畫面資料 400‧‧‧ screen material

410‧‧‧第一資料集合 410‧‧‧First data collection

412‧‧‧畫素資料 412‧‧‧ pixel data

420‧‧‧第二資料集合 420‧‧‧Second data collection

500、800、1000、1100‧‧‧矩陣循環 500, 800, 1000, 1100‧‧‧ matrix cycle

510至540、810至840、1010至1040、1110至1180‧‧‧渲染矩陣 510 to 540, 810 to 840, 1010 to 1040, 1110 to 1180‧‧‧ rendering matrix

610至640、910至940‧‧‧畫面 610 to 640, 910 to 940 ‧ ‧ screen

DR‧‧‧紅色資料 D R ‧‧‧Red Information

DG‧‧‧綠色資料 D G ‧‧‧ green data

DB‧‧‧藍色資料 D B ‧‧‧Blue Information

BD、RD、GD、WD‧‧‧渲染值 B D , R D , G D , W D ‧‧‧ rendered values

S1410至S1430‧‧‧流程步驟 S1410 to S1430‧‧‧ Process steps

第1圖為先前技術之顯示器之部分畫素的示意圖。 Figure 1 is a schematic illustration of a portion of a pixel of a prior art display.

第2圖為先前技術之顯示器的示意圖。 Figure 2 is a schematic illustration of a prior art display.

第3圖為另一個先前技術之顯示器的示意圖。 Figure 3 is a schematic illustration of another prior art display.

第4圖為第3圖之顯示器所接收到的多個畫框週期的畫面資料之資料結構圖。 Fig. 4 is a data structure diagram of screen data of a plurality of frame periods received by the display of Fig. 3.

第5圖為本發明一實施例之驅動電路所使用的矩陣循環的示意圖。 Figure 5 is a schematic diagram of a matrix cycle used by a driving circuit in accordance with an embodiment of the present invention.

第6圖為第3圖之顯示器於不同畫框週期所顯示的畫面之示意圖。 Figure 6 is a schematic diagram of the screen displayed by the display of Figure 3 in different frame periods.

第7圖為本發明一實施例之顯示器的示意圖。 Figure 7 is a schematic diagram of a display according to an embodiment of the present invention.

第8圖為本發明一實施例之驅動電路所使用的矩陣循環的示意圖。 Figure 8 is a schematic diagram of a matrix cycle used by a driving circuit in accordance with an embodiment of the present invention.

第9圖為第7圖之顯示器於不同畫框週期所顯示的畫面之示意圖。 Figure 9 is a schematic diagram of the screen displayed by the display of Figure 7 in different frame periods.

第10圖為本發明另一實施例之驅動電路所使用的矩陣循環的示意圖。 Figure 10 is a schematic diagram of a matrix cycle used by a driving circuit in accordance with another embodiment of the present invention.

第11圖為本發明再一實施例之驅動電路所使用的矩陣循環的示意圖。 Figure 11 is a schematic diagram of a matrix cycle used by a driving circuit in accordance with still another embodiment of the present invention.

第12圖為本發明另一實施例之顯示器的示意圖。 Figure 12 is a schematic view of a display according to another embodiment of the present invention.

第13圖為本發明一實施例對顯示器的畫面進行渲染的方法之流程圖。 FIG. 13 is a flow chart of a method for rendering a screen of a display according to an embodiment of the present invention.

在本發明一實施例中,用以驅動顯示器300之顯示區301及302的驅動電路會藉由矩陣循環的多個渲染矩陣,對顯示器300進行次畫素渲染(Subpixel Rendering;SPR)。請參考第3圖至第6圖。其中,第4圖為第3圖之顯示器300所接收到的多個畫框週期的畫面資料400之資料結構圖。第5圖為本發明一實施例之驅動電路所使用的矩陣循環500的示意圖。第6圖為第3圖之顯示器300於不同畫框週期所顯示的畫面之示意圖。在第4圖中繪示了顯示器300所接收到的多個畫框週期的畫面資料400,每一畫面資料400皆對應於顯示器300的一個畫框週期(Frame period),用以驅動顯示器300於對應的畫框週期顯示對應的畫面。其中每一畫框週期的畫面資料400包括第一資料集合410的多筆畫素資料412及第二資料集合420的多筆畫素資料412。第一資料集合410的多筆畫素資料412用以驅動顯示器300的顯示區301的多個第一次畫素組210及多個第二次畫素組220,而第二資料集合220的多筆畫素資料412用以驅動顯示區302的多個第一次畫素組210及多個第二次畫素組220。每一筆畫素資料412具有分別對應於紅色、綠色、藍色的紅色資料DR、綠色資料DG及藍色資料DB,用以驅動一個對應的次畫素組210或次畫素組220。 In an embodiment of the invention, the driving circuit for driving the display areas 301 and 302 of the display 300 performs Subpixel Rendering (SPR) on the display 300 by a plurality of rendering matrices of the matrix loop. Please refer to Figures 3 to 6. 4 is a data structure diagram of the screen data 400 of the plurality of frame periods received by the display 300 of FIG. Figure 5 is a schematic diagram of a matrix cycle 500 used by a driver circuit in accordance with an embodiment of the present invention. Figure 6 is a schematic diagram of the screen displayed by the display 300 of Figure 3 in different frame periods. The picture data 400 of the plurality of frame periods received by the display 300 is shown in FIG. 4 , and each picture material 400 corresponds to a frame period of the display 300 for driving the display 300. The corresponding frame period displays the corresponding picture. The picture material 400 of each frame period includes a plurality of pieces of pixel data 412 of the first data set 410 and a plurality of pieces of pixel data 412 of the second data set 420. The multi-pixel data 412 of the first data set 410 is used to drive the plurality of first-order pixel groups 210 and the plurality of second-order pixel groups 220 of the display area 301 of the display 300, and the multi-strokes of the second data set 220 The prime data 412 is used to drive the plurality of first pixel groups 210 and the plurality of second pixel groups 220 of the display area 302. Each of the pixel data 412 has red data D R , green data D G and blue data D B respectively corresponding to red, green and blue, for driving a corresponding sub-pixel group 210 or sub-pixel group 220. .

在本發明一實施例中,紅色資料DR、綠色資料DG及藍色資料DB分別為代表不同顏色次畫素之亮度的伽瑪值,而可由代表灰階的RGB訊號轉換而得。詳言之,倘若所接收到的RGB訊號中分別對應於紅色、綠色、藍色的灰階值分別為AR、AG及AB,則紅色資料DR、綠色資料DG及藍色資料DB可藉由下列方程式(1)至(3)求得: DR=(AR/255)2.2 (1) In an embodiment of the invention, the red data D R , the green data D G and the blue data D B are respectively gamma values representing the brightness of different color sub-pixels, and can be converted by RGB signals representing gray scales. In detail, if the grayscale values corresponding to red, green, and blue in the received RGB signals are A R , A G , and A B , respectively , the red data D R , the green data D G , and the blue data D B can be obtained by the following equations (1) to (3): D R = (A R / 255) 2.2 (1)

DG=(AG/255)2.2 (2) D G =(A G /255) 2.2 (2)

DB=(AB/255)2.2 (3) D B =(A B /255) 2.2 (3)

在本實施例中,矩陣循環500的多個渲染矩陣510至540會依序地被用來當對顯示器300的多個畫面進行渲染。矩陣循環500的渲染矩陣510至540分別為3×3矩陣,且各包含多個元。其中,每一個其值大於零的元用以設定一取值方向,而上述至少一矩陣循環的任兩個時序上相鄰的渲染矩陣至少有一不同的取值方向。詳言之,渲染矩陣510至540會依據第5圖所繪示的循環順序依序地被使用,以對顯示器300的多個連續畫框週期的畫面進行渲染,而上述的循環順序依序為渲染矩陣510→渲染矩陣520→渲染矩陣530→渲染矩陣540。當渲染矩陣540被用以對顯示器300的某個畫框週期的畫面進行渲染後,顯示器300的下一個畫框週期的畫面則會再次地以渲染矩陣510進行渲染。換言之,就被使用的順序來說,渲染矩陣510分別與渲染矩陣540及520在時序上相隔一個畫框週期地被使用;渲染矩陣520分別與渲染矩陣510及530在時序上相隔一個畫框週期地被使用;渲染矩陣530分別與渲染矩陣520及540在時序上相隔一個畫框週期地被使用;而渲染矩陣540分別與渲染矩陣530及510在時序上相隔一個畫框週期地被使用。若藉由渲染矩陣510所渲染後的畫面為第6圖中的畫面610,而畫面610所對應的畫框週期為顯示器300的第N個畫框週期(N為大於零的整數),則藉由渲染矩陣520、530及540所渲染後的畫面會分別為第6圖中的畫面620、630及640,而畫面620、630及640所對應的畫框週期會分別為顯示器300的第(N+1)個畫框週期、第(N+2)個畫框週期及第(N+3)個畫框週期。需瞭解地,為使本發明說明書的閱讀者易於瞭解本發明之重點,第6圖中所繪示的畫面610至640僅繪示出顯示區301、302相鄰邊界上的部分的次畫素組210及220,而這樣的圖式表示方式並不影響本發明之實施。此外,與上述先前技術中所 敘述的渲染矩陣功用相同地,矩陣循環500的多個渲染矩陣510至540的第二列第二行的元(element)的值亦代表了所要渲染的次畫素之對應顏色資料所需乘上的比例,而其他每一個元的值則代表所鄰近且在對應方向上的次畫素組210或次畫素組220中相同顏色之顏色資料所需乘上的比例。亦即,在每一個渲染矩陣510至540中,除了第二列第二行的元以外的其他每一個元皆對應所要渲染的次畫素的一個鄰近的次畫素組210或次畫素組220,而渲染矩陣的第一列第一行、第一列第二行、第一列第三行、第二列第一行、第二列第三行、第三列第一行、第三列第二行及第三列第三行的元所對應的次畫素組分別與所要渲染的次畫素相鄰,且位於所要渲染的次畫素的左上方、正上方、右上方、左方、右方、左下方、正下方及右下方。其中,所述的左上方、正上方、右上方、左方、右方、左下方、正下方及右下方為附圖上位置的相對概念,並非用於限制本發明。此外,由於渲染矩陣510至540分別為,故渲染矩陣510定義了一個向左取值的取值方向,渲染矩陣520及540分別定義了兩個向右及向左取值的取值方向,而渲染矩陣530定義了一個向右取值的取值方向。由此可知,渲染矩陣510至540中任兩個時序上相鄰的渲染矩陣至少有一個不同的取值方向。 In the present embodiment, multiple rendering matrices 510 through 540 of matrix loop 500 are sequentially used to render multiple frames of display 300. The rendering matrices 510 through 540 of the matrix loop 500 are each a 3 x 3 matrix and each contains a plurality of elements. Each of the elements whose value is greater than zero is used to set a direction of the value, and at least two of the temporally adjacent rendering matrices of the at least one matrix cycle have at least one different direction of value. In detail, the rendering matrices 510 to 540 are sequentially used according to the cyclic sequence illustrated in FIG. 5 to render the frames of the plurality of consecutive frame periods of the display 300, and the above-described looping order is The rendering matrix 510 → rendering matrix 520 → rendering matrix 530 → rendering matrix 540. When the rendering matrix 540 is used to render a picture of a certain frame period of the display 300, the picture of the next frame period of the display 300 is again rendered in the rendering matrix 510. In other words, in terms of the order in which they are used, the rendering matrix 510 is periodically used in a frame interval with the rendering matrices 540 and 520, respectively; the rendering matrix 520 is temporally separated from the rendering matrices 510 and 530 by a frame period, respectively. The rendering matrix 530 is used periodically in a time frame with the rendering matrices 520 and 540, respectively; and the rendering matrices 540 are periodically used in sequence with the rendering matrices 530 and 510, respectively. If the picture rendered by the rendering matrix 510 is the picture 610 in FIG. 6 and the frame period corresponding to the picture 610 is the Nth frame period of the display 300 (N is an integer greater than zero), then The screens rendered by the rendering matrices 520, 530, and 540 will be the screens 620, 630, and 640 in FIG. 6, respectively, and the frame periods corresponding to the screens 620, 630, and 640 will be the (N) of the display 300, respectively. +1) frame cycle, (N+2) frame cycle, and (N+3) frame cycle. It is to be understood that in order to make the reader of the present specification easy to understand the focus of the present invention, the pictures 610 to 640 illustrated in FIG. 6 only show the sub-pixels of the portions on the adjacent boundaries of the display areas 301, 302. Groups 210 and 220, and such a schematic representation does not affect the implementation of the present invention. Moreover, the values of the elements of the second row of the second row of the plurality of rendering matrices 510 through 540 of the matrix loop 500 also represent the sub-pixels to be rendered, as with the rendering matrices described in the prior art above. The ratio of the color data required to be multiplied, and the value of each of the other elements represents the color data of the same color in the sub-pixel group 210 or the sub-pixel group 220 adjacent to and in the corresponding direction. proportion. That is, in each of the rendering matrices 510 to 540, each of the elements other than the elements of the second row of the second column corresponds to a neighboring sub-pixel group 210 or sub-pixel group of the sub-pixel to be rendered. 220, and the first row of the first column of the rendering matrix, the second row of the first column, the third row of the first column, the first row of the second column, the third row of the third column, the first row of the third column, the third The sub-pixel groups corresponding to the elements of the second row and the third row of the column are respectively adjacent to the sub-pixel to be rendered, and are located at the upper left, the upper right, the upper right, and the left of the sub-pixel to be rendered. Square, right, bottom left, right below, and bottom right. The above-mentioned upper left, upper right, upper right, left, right, lower left, right lower, and lower right are relative concepts of the position on the drawing, and are not intended to limit the present invention. In addition, since the rendering matrices 510 to 540 are respectively , , and Therefore, the rendering matrix 510 defines a direction of taking values to the left, the rendering matrices 520 and 540 respectively define the direction of the values of the two right and left values, and the rendering matrix 530 defines a value to the right. The direction of the value. It can be seen that any two of the temporally adjacent rendering matrices of the rendering matrices 510 to 540 have at least one different value direction.

此外,就渲染矩陣510及520這兩個渲染矩陣來說,在不同渲染矩陣但在同位置(即:同列同行)上的元的值之間的差異不會超過0.25。同樣地,就渲染矩陣520及530這兩個渲染矩陣來說,在不同渲染矩陣但在同位置上的元的值之間的差異也不會超過0.25;而就渲染矩陣530及540這兩個渲染矩陣來說,在不同渲染矩陣但在同位置上的元的值之間的差異亦不會超過0.25;且就渲染矩陣540及510這兩個渲染矩陣來說,在不同渲染矩陣 但在同位置上的元的值之間的差異同樣地不會超過0.25。因此,假設顯示區301與顯示區302的相鄰邊界上的任一次畫素230B或230R在時序上相鄰的兩畫框週期的亮度差的絕對值為|△B|,則0<|△B|≦0.25×Bmax。其中Bmax為每一個次畫素230B或230R所被允許最大亮度。而在本發明一實施例中,Bmax為伽瑪值,且Bmax等於1。由此可知,顯示區301與顯示區302的相鄰邊界上的任一次畫素230B或230R在時序上相鄰的兩畫框週期的亮度差的絕對值為|△B|不會超過0.25Bmax,故藉由渲染矩陣510至540對顯示器300的畫面進行渲染的結果,顯示器300在任兩個畫框週期所顯示的兩個畫面,其在顯示區301與顯示區302相鄰邊界上的次畫素230B或230R的亮度差異不會0.25Bmax。故藉由本實施例的渲染方法,可以降低顯示器300於顯示區301與顯示區302之相鄰邊界上的色偏及閃爍。 Moreover, with respect to the two rendering matrices of rendering matrices 510 and 520, the difference between the values of the elements in different rendering matrices but in the same position (ie, the same column of peers) does not exceed 0.25. Similarly, in the case of the rendering matrices 520 and 530, the difference between the values of the elements in different rendering matrices but in the same position does not exceed 0.25; and the two matrices 530 and 540 are rendered. In the case of rendering matrices, the difference between the values of the elements in different rendering matrices but in the same position does not exceed 0.25; and in the rendering matrices 540 and 510, the rendering matrices are in different rendering matrices. However, the difference between the values of the elements at the same position will likewise not exceed 0.25. Therefore, assuming that the absolute value of the luminance difference of the two frame periods in which the display area 301 and the adjacent pixel 230B or 230R on the adjacent boundary of the display area 302 are temporally adjacent is |ΔB|, then 0<|Δ B|≦0.25×Bmax. Where Bmax is the maximum brightness allowed for each sub-pixel 230B or 230R. In an embodiment of the invention, Bmax is a gamma value and Bmax is equal to one. It can be seen that the absolute value of the luminance difference of the two frame periods adjacent to each other in the temporally adjacent pixels 230B or 230R on the adjacent boundary of the display area 301 and the display area 302 does not exceed 0.25 Bmax. Therefore, the result of rendering the screen of the display 300 by the rendering matrices 510 to 540, the two images displayed by the display 300 in any two frame periods, the second painting on the adjacent boundary of the display area 301 and the display area 302 The difference in brightness of the prime 230B or 230R is not 0.25Bmax. Therefore, by the rendering method of the embodiment, the color shift and flicker of the display 300 on the adjacent boundary between the display area 301 and the display area 302 can be reduced.

雖然上述顯示器300採用了左右兩個顯示區的驅動方式,本發明亦適用於顯示器以上下兩個顯示區的方式進行驅動及渲染。請參考第7圖至第9圖,第7圖為本發明一實施例之顯示器700的示意圖。第8圖為本發明一實施例之驅動電路所使用的矩陣循環的示意圖。第9圖為第7圖之顯示器700於不同畫框週期所顯示的畫面之示意圖。在本實施例中,顯示器700包含相鄰的顯示區701及顯示區702,其中顯示區701和顯示區702以虛線703區隔。顯示區701及顯示區702由兩個不同的驅動晶片進行驅動,且以矩陣循環800對顯示器700的畫面進行渲染。矩陣循環800包含多個渲染矩陣810至840,且會依序地被用來當對顯示器700的多個畫面進行渲染。矩陣循環800的渲染矩陣810至840分別為3×3矩陣,且各包含多個元。其中,每一個其值大於零的元用以設定一取值方向,而上述至少一矩陣循環的任兩個時序上相鄰的渲染矩陣至少有一不同的取值方向。詳言之,渲染矩陣810至840會依據第8圖所繪示的循環順序依序地被使用,以對顯示器700的多個連續畫框週期的畫面進行渲染,而上述的循環順序依序為渲染矩陣810→渲染矩 陣820→渲染矩陣830→渲染矩陣840。當渲染矩陣840被用以對顯示器700的某個畫框週期的畫面進行渲染後,顯示器700的下一個畫框週期的畫面則會再次地以渲染矩陣810進行渲染。換言之,就被使用的順序來說,渲染矩陣810分別與渲染矩陣840及820在時序上相隔一個畫框週期地被使用;渲染矩陣820分別與渲染矩陣810及830在時序上相隔一個畫框週期地被使用;渲染矩陣830分別與渲染矩陣820及840在時序上相隔一個畫框週期地被使用;而渲染矩陣840分別與渲染矩陣830及810在時序上相隔一個畫框週期地被使用。若藉由渲染矩陣810所渲染後的畫面為第9圖中的畫面910,而畫面910所對應的畫框週期為顯示器700的第N個畫框週期(N為大於零的整數),則藉由渲染矩陣820、830及840所渲染後的畫面會分別為第9圖中的畫面920、930及940,而畫面920、930及940所對應的畫框週期會分別為顯示器700的第(N+1)個畫框週期、第(N+2)個畫框週期及第(N+3)個畫框週期。需瞭解地,為使本發明說明書的閱讀者易於瞭解本發明之重點,第9圖中所繪示的畫面910至940僅繪示出顯示區701、702相鄰邊界上的部分的次畫素組210及220,而這樣的圖式表示方式並不影響本發明之實施。 Although the above display 300 adopts the driving method of the left and right display areas, the present invention is also applicable to the driving and rendering of the display two upper display areas. Please refer to FIG. 7 to FIG. 9. FIG. 7 is a schematic diagram of a display 700 according to an embodiment of the present invention. Figure 8 is a schematic diagram of a matrix cycle used by a driving circuit in accordance with an embodiment of the present invention. Figure 9 is a schematic diagram of the screen displayed by the display 700 of Figure 7 in different frame periods. In the present embodiment, the display 700 includes an adjacent display area 701 and a display area 702, wherein the display area 701 and the display area 702 are separated by a broken line 703. Display area 701 and display area 702 are driven by two different drive wafers and the display 700 is rendered in a matrix loop 800. The matrix loop 800 includes a plurality of rendering matrices 810 through 840 and is used sequentially to render multiple frames of the display 700. The rendering matrices 810 through 840 of the matrix loop 800 are each a 3 x 3 matrix and each contain a plurality of elements. Each of the elements whose value is greater than zero is used to set a direction of the value, and at least two of the temporally adjacent rendering matrices of the at least one matrix cycle have at least one different direction of value. In detail, the rendering matrices 810 to 840 are sequentially used according to the cyclic sequence illustrated in FIG. 8 to render the frames of the plurality of consecutive frame periods of the display 700, and the above-described looping sequence is Rendering matrix 810 → rendering moment Array 820 → Rendering Matrix 830 → Rendering Matrix 840. When the rendering matrix 840 is used to render a picture of a certain frame period of the display 700, the picture of the next frame period of the display 700 is again rendered in the rendering matrix 810. In other words, in terms of the order in which they are used, the rendering matrix 810 is periodically used in a frame interval with the rendering matrices 840 and 820, respectively; the rendering matrix 820 is temporally separated from the rendering matrices 810 and 830 by a frame period. The rendering matrix 830 is used periodically in a time frame with the rendering matrices 820 and 840, respectively; and the rendering matrix 840 is used periodically in a time frame with the rendering matrices 830 and 810, respectively. If the picture rendered by the rendering matrix 810 is the picture 910 in FIG. 9 and the frame period corresponding to the picture 910 is the Nth frame period of the display 700 (N is an integer greater than zero), then The screens rendered by the rendering matrices 820, 830, and 840 are respectively the screens 920, 930, and 940 in FIG. 9, and the frame periods corresponding to the screens 920, 930, and 940 are respectively the (N) of the display 700. +1) frame cycle, (N+2) frame cycle, and (N+3) frame cycle. It is to be understood that in order to facilitate the reader of the present specification to easily understand the gist of the present invention, the pictures 910 to 940 illustrated in FIG. 9 only show the sub-pixels of the portions on the adjacent boundaries of the display areas 701, 702. Groups 210 and 220, and such a schematic representation does not affect the implementation of the present invention.

矩陣循環800的多個渲染矩陣810至840的第二列第二行的元(element)的值亦代表了所要渲染的次畫素之對應顏色資料所需乘上的比例,而其他每一個元的值則代表所鄰近且在對應方向上的次畫素組210或次畫素組220中相同顏色之顏色資料所需乘上的比例。亦即,在每一個渲染矩陣810至840中,除了第二列第二行的元以外的其他每一個元皆對應所要渲染的次畫素的一個鄰近的次畫素組210或次畫素組220,而渲染矩陣的第一列第一行、第一列第二行、第一列第三行、第二列第一行、第二列第三行、第三列第一行、第三列第二行及第三列第三行的元所對應的次畫素組分別與所要渲染的次畫素相鄰,且位於所要渲染的次畫素的左上方、正上方、右上方、左方、右方、左下方、正下方及右下方。由於渲染矩陣810至840分別為 ,故渲染矩陣810定義了一個向上取值的取值方向,渲染矩陣820及840分別定義了兩個向上及向下取值的取值方向,而渲染矩陣830定義了一個向下取值的取值方向。由此可知,渲染矩陣810至840中任兩個時序上相鄰的渲染矩陣至少有一個不同的取值方向。 The value of the element of the second row of the second row of the plurality of rendering matrices 810 to 840 of the matrix loop 800 also represents the ratio of the multiplication of the corresponding color data of the sub-pixel to be rendered, and each of the other elements The value of the representative represents the ratio of the color data of the same color in the sub-pixel group 210 or the sub-pixel group 220 adjacent to and in the corresponding direction. That is, in each of the rendering matrices 810 to 840, each of the elements other than the elements of the second row of the second column corresponds to a neighboring sub-pixel group 210 or sub-pixel group of the sub-pixel to be rendered. 220, and the first row of the first column of the rendering matrix, the second row of the first column, the third row of the first column, the first row of the second column, the third row of the third column, the first row of the third column, the third The sub-pixel groups corresponding to the elements of the second row and the third row of the column are respectively adjacent to the sub-pixel to be rendered, and are located at the upper left, the upper right, the upper right, and the left of the sub-pixel to be rendered. Square, right, bottom left, right below, and bottom right. Since the rendering matrices 810 to 840 are respectively , , and Therefore, the rendering matrix 810 defines an orientation direction of the upward value, the rendering matrices 820 and 840 respectively define the direction of the values of the upward and downward values, and the rendering matrix 830 defines a downward value. Value direction. It can be seen that any two of the rendering matrices adjacent to the rendering matrix 810 to 840 have at least one different value direction.

此外,就渲染矩陣810及820這兩個渲染矩陣來說,在不同渲染矩陣但在同位置(即:同列同行)上的元的值之間的差異不會超過0.25。同樣地,就渲染矩陣820及830這兩個渲染矩陣來說,在不同渲染矩陣但在同位置上的元的值之間的差異也不會超過0.25;而就渲染矩陣830及840這兩個渲染矩陣來說,在不同渲染矩陣但在同位置上的元的值之間的差異亦不會超過0.25;且就渲染矩陣840及810這兩個渲染矩陣來說,在不同渲染矩陣但在同位置上的元的值之間的差異同樣地不會超過0.25。因此,假設顯示區701與顯示區702的相鄰邊界上的任一次畫素230B或230R在時序上相鄰的兩畫框週期的亮度差的絕對值為|△B|,則0<|△B|≦0.25×Bmax。其中Bmax為每一個次畫素230B或230R所被允許最大亮度。由此可知,顯示區701與顯示區702的相鄰邊界上的任一次畫素230B或230R在時序上相鄰的兩畫框週期的亮度差的絕對值為|△B|不會超過0.25Bmax,故藉由渲染矩陣810至840對顯示器700的畫面進行渲染的結果,顯示器700在任兩個畫框週期所顯示的兩個畫面,其在顯示區701與顯示區702相鄰邊界上的次畫素230B或230R的亮度差異不會0.25Bmax。故藉由本實施例的渲染方法,可以降低顯示器700於顯示區701與顯示區702之相鄰邊界上的色偏及閃爍。 In addition, with respect to the two rendering matrices of rendering matrices 810 and 820, the difference between the values of the elements in different rendering matrices but in the same position (ie, the same column of peers) does not exceed 0.25. Similarly, in the case of rendering the matrix 820 and 830, the difference between the values of the elements in different rendering matrices but in the same position will not exceed 0.25; and the two matrices 830 and 840 are rendered. In the case of rendering matrices, the difference between the values of the elements in different rendering matrices but in the same position will not exceed 0.25; and in the two rendering matrices of rendering matrices 840 and 810, in different rendering matrices but in the same The difference between the values of the elements on the location will likewise not exceed 0.25. Therefore, assuming that the absolute value of the luminance difference of the two frame periods adjacent to each other in the temporally adjacent pixels 230B or 230R on the adjacent boundary of the display area 701 and the display area 702 is |ΔB|, then 0<|Δ B|≦0.25×Bmax. Where Bmax is the maximum brightness allowed for each sub-pixel 230B or 230R. It can be seen that the absolute value of the luminance difference of the two frame periods adjacent to each other in the temporally adjacent pixels 230B or 230R on the adjacent boundary of the display area 701 and the display area 702 does not exceed 0.25 Bmax. Therefore, the result of rendering the screen of the display 700 by the rendering matrices 810 to 840, the two screens displayed by the display 700 in any two frame periods, the second painting on the adjacent boundary of the display area 701 and the display area 702 The difference in brightness of the prime 230B or 230R is not 0.25Bmax. Therefore, by the rendering method of the embodiment, the color shift and flicker of the display 700 on the adjacent boundary between the display area 701 and the display area 702 can be reduced.

此外,在本發明的其他實施例中,亦可藉由如第10圖或第11圖 所示的矩陣循環1000或1100對顯示器300或700的畫面進行渲染。其中,矩陣循環1000包含渲染矩陣1010至1040,而渲染矩陣1010至1040會依據第10圖所繪示的循環順序依序地被使用,以對顯示器300或700的多個連續畫框週期的畫面進行渲染,而此一循環順序依序為渲染矩陣1010→渲染矩陣1020→渲染矩陣1030→渲染矩陣1040。當渲染矩陣1040被用以對顯示器300或700的某個畫框週期的畫面進行渲染後,顯示器300或700的下一個畫框週期的畫面則會再次地以渲染矩陣1010進行渲染。而藉由渲染矩陣1010至1040對顯示器300或700的畫面進行渲染的結果,顯示器300或700在任兩個畫框週期所顯示的兩個畫面,其在顯示區(301或701)與顯示區(302或702)相鄰邊界上的次畫素230B或230R的亮度差異為Bmax的六分之一,亦不會大於0.25Bmax。故藉由本實施例的渲染方法,可以降低顯示器300及700於兩個顯示區之相鄰邊界上的色偏及閃爍。 In addition, in other embodiments of the present invention, it may also be as shown in FIG. 10 or FIG. The illustrated matrix cycle 1000 or 1100 renders the picture of display 300 or 700. The matrix loop 1000 includes rendering matrices 1010 to 1040, and the rendering matrices 1010 to 1040 are sequentially used according to the cyclic sequence illustrated in FIG. 10 to display a plurality of consecutive frame periods of the display 300 or 700. The rendering is performed, and the sequence of the loop is sequentially the rendering matrix 1010→the rendering matrix 1020→the rendering matrix 1030→the rendering matrix 1040. When the rendering matrix 1040 is used to render a picture of a certain frame period of the display 300 or 700, the picture of the next frame period of the display 300 or 700 is again rendered in the rendering matrix 1010. And by rendering the pictures of the display 300 or 700 by the rendering matrix 1010 to 1040, the display 300 or 700 displays the two pictures in any two frame periods, in the display area (301 or 701) and the display area ( 302 or 702) The difference in brightness of the sub-pixel 230B or 230R on the adjacent boundary is one-sixth of Bmax, and is also not greater than 0.25Bmax. Therefore, by the rendering method of the embodiment, the color shift and flicker of the displays 300 and 700 on the adjacent boundaries of the two display areas can be reduced.

類似地,矩陣循環1100包含渲染矩陣1110至1180,而矩陣循環1100的渲染矩陣1110至1180會依據第11圖所繪示的循環順序依序地被使用,以對顯示器300或700的多個連續畫框週期的畫面進行渲染,而此一循環順序依序為渲染矩陣1110→渲染矩陣1120→渲染矩陣1130→渲染矩陣1140→1150→渲染矩陣1160→渲染矩陣1170→渲染矩陣1180。當渲染矩陣1180被用以對顯示器300或700的某個畫框週期的畫面進行渲染後,顯示器300或700的下一個畫框週期的畫面則會再次地以渲染矩陣1110進行渲染。而藉由渲染矩陣1110至1180對顯示器300或700的畫面進行渲染的結果,顯示器300或700在任兩個畫框週期所顯示的兩個畫面,其在顯示區(301或701)與顯示區(302或702)相鄰邊界上的次畫素230B或230R的亮度差異不會高於0.25Bmax。故藉由本實施例的渲染方法,可以降低顯示器300及700於兩個顯示區之相鄰邊界上的色偏及閃爍。 Similarly, matrix loop 1100 includes rendering matrices 1110 through 1180, and rendering matrices 1110 through 1180 of matrix loop 1100 are sequentially used in accordance with the cyclic sequence illustrated in FIG. 11 for multiple consecutive views of display 300 or 700 The picture of the frame period is rendered, and the sequence of the cycle is the rendering matrix 1110→the rendering matrix 1120→the rendering matrix 1130→the rendering matrix 1140→1150→the rendering matrix 1160→the rendering matrix 1170→the rendering matrix 1180. When the rendering matrix 1180 is used to render a picture of a certain frame period of the display 300 or 700, the picture of the next frame period of the display 300 or 700 is again rendered in the rendering matrix 1110. And by rendering the pictures of the display 300 or 700 by the rendering matrix 1110 to 1180, the display 300 or 700 displays the two pictures in any two frame periods, which are in the display area (301 or 701) and the display area ( 302 or 702) The difference in brightness of the sub-pixel 230B or 230R on the adjacent boundary is not higher than 0.25Bmax. Therefore, by the rendering method of the embodiment, the color shift and flicker of the displays 300 and 700 on the adjacent boundaries of the two display areas can be reduced.

在本發明一實施例中,顯示器300的顯示區301及顯示區302的起始矩陣可不同。詳言之,從顯示器300顯示其第一畫框週期的畫面開始,顯示區301的次畫素可以利用從矩陣循環500的四個渲染矩陣510至540中所選出的任一個渲染矩陣開始進行渲染,而顯示區302的次畫素可以利用從矩陣循環500的四個渲染矩陣510至540中所選出的另一個渲染矩陣開始進行渲染。類似地,顯示器700的顯示區701及顯示區702的起始矩陣也可以不同。詳言之,從顯示器700顯示其第一畫框週期的畫面開始,顯示區701的次畫素可以利用從矩陣循環800的四個渲染矩陣810至840中所選出的任一個渲染矩陣開始進行渲染,而顯示區702的次畫素可以利用從矩陣循環800的四個渲染矩陣810至840中所選出的另一個渲染矩陣開始進行渲染。 In an embodiment of the invention, the start matrix of the display area 301 and the display area 302 of the display 300 may be different. In detail, starting from the screen in which the display 300 displays its first frame period, the sub-pixels of the display area 301 can be rendered using any one of the four rendering matrices 510 to 540 selected from the matrix loop 500. The sub-pixels of the display area 302 can be rendered using another rendering matrix selected from the four rendering matrices 510 through 540 of the matrix loop 500. Similarly, the display matrix of display area 701 and display area 702 of display 700 may also be different. In detail, starting from the screen in which the display 700 displays its first frame period, the sub-pixels of the display area 701 can be rendered using any of the rendering matrices selected from the four rendering matrices 810 to 840 of the matrix loop 800. The sub-pixels of the display area 702 can be rendered using another rendering matrix selected from the four rendering matrices 810-840 of the matrix loop 800.

在本發明一實施例中,顯示器300的顯示區301及顯示區302的所使用的矩陣循環可以不同。舉例來說,顯示區301的次畫素可以藉由第5圖的矩陣循環500進行渲染,而顯示區302的次畫素可以藉由第10圖或第11圖的矩陣循環1000或1100進行渲染。類似地,顯示器700的顯示區701及顯示區702的所使用的矩陣循環可以不同。舉例來說,顯示區701的次畫素可以藉由第8圖的矩陣循環800進行渲染,而顯示區702的次畫素可以藉由第10圖或第11圖的矩陣循環1000或1100進行渲染。 In an embodiment of the invention, the matrix loops used by the display area 301 and the display area 302 of the display 300 may be different. For example, the sub-pixels of the display area 301 can be rendered by the matrix loop 500 of FIG. 5, and the sub-pixels of the display area 302 can be rendered by the matrix loop 1000 or 1100 of FIG. 10 or FIG. . Similarly, the matrix loops used by display area 701 and display area 702 of display 700 can be different. For example, the sub-pixels of the display area 701 can be rendered by the matrix loop 800 of FIG. 8, and the sub-pixels of the display area 702 can be rendered by the matrix loop 1000 or 1100 of FIG. 10 or FIG. .

在本發明一實施例中,不同顏色的次畫素的起始矩陣可不同。詳言之,從顯示器300顯示其第一畫框週期的畫面開始,顯示器300的紅色次畫素230R可以利用從矩陣循環500的四個渲染矩陣510至540中所選出的任一個渲染矩陣開始進行渲染,而顯示器300的藍色次畫素230B可以利用從矩陣循環500的四個渲染矩陣510至540中所選出的另一個渲染矩陣開始進行渲染。又例如,從顯示器700顯示其第一畫框週期的畫面開始,顯示器700的紅色次畫素230R可以利用從矩陣循環1000的四個渲染矩陣1010至1040 中所選出的任一個渲染矩陣開始進行渲染,而顯示器700的藍色次畫素230B可以利用從矩陣循環1000的四個渲染矩陣1010至1040中所選出的另一個渲染矩陣開始進行渲染。 In an embodiment of the invention, the starting matrices of sub-pixels of different colors may be different. In particular, starting from the display of the display of its first frame period, the red sub-pixel 230R of display 300 can begin with any one of the four rendering matrices 510 through 540 selected from matrix loop 500. Rendering, while the blue sub-pixel 230B of display 300 can begin rendering with another rendering matrix selected from four rendering matrices 510 through 540 of matrix loop 500. For another example, starting from the display of the display of its first frame period, the red sub-pixel 230R of display 700 can utilize four rendering matrices 1010 through 1040 from matrix loop 1000. Any one of the selected rendering matrices begins rendering, and the blue sub-pixel 230B of display 700 can begin rendering with another rendering matrix selected from the four rendering matrices 1010 through 1040 of the matrix loop 1000.

在上述實施例中,顯示器300和顯示器700的次畫素包含了三種顏色的次畫素,分別為紅色次畫素230R、綠色次畫素230G及藍色次畫素230B。然而,本發明並不以此為限。本發明亦適用於其他類型的SPR顯示器,例如第12圖的顯示器1300。其中,顯示器1300為一種SPR顯示器,而包含了複數個次畫素組1310和複數個次畫素組1320,其中次畫素組1310和次畫素組1320互相交錯排列。每一次畫素組1310包含了紅色次畫素330R及綠色次畫素330G,而每一次畫素組1320則包含了藍色次畫素330B及白色次畫素330W。紅色次畫素330R、綠色次畫素330G、藍色次畫素330B及白色次畫素330W的面積相等。次畫素組1310及1320扮演了類似第1圖中畫素110的角色,然而因次畫素組1310缺少藍色次畫素230B,而次畫素組1320缺少紅色次畫素330R及綠色次畫素330G,故顯示器1300會對每一次畫素組1310及1320的次畫素進行渲染。此外,白色次畫素330W可以用以補償其周圍的紅色次畫素330R、綠色次畫素330G、藍色次畫素330B的亮度。顯示器1300包含相鄰的顯示區1301及顯示區1302,其中顯示區1301和顯示區1302以虛線1303區隔。顯示區1301及顯示區1302由兩個不同的驅動晶片進行驅動及渲染。 In the above embodiment, the secondary pixels of the display 300 and the display 700 include sub-pixels of three colors, respectively, a red sub-pixel 230R, a green sub-pixel 230G, and a blue sub-pixel 230B. However, the invention is not limited thereto. The invention is also applicable to other types of SPR displays, such as display 1300 of Figure 12. The display 1300 is an SPR display, and includes a plurality of sub-pixel groups 1310 and a plurality of sub-pixel groups 1320, wherein the sub-pixel groups 1310 and the sub-pixel groups 1320 are staggered with each other. Each pixel group 1310 includes a red sub-pixel 330R and a green sub-pixel 330G, and each pixel group 1320 includes a blue sub-pixel 330B and a white sub-pixel 330W. The areas of the red sub-pixel 330R, the green sub-pixel 330G, the blue sub-pixel 330B, and the white sub-pixel 330W are equal. The sub-pixel groups 1310 and 1320 play a role similar to the pixel 110 in Fig. 1, however, because the sub-pixel group 1310 lacks the blue sub-pixel 230B, and the sub-pixel group 1320 lacks the red sub-pixel 330R and the green color. The pixel 330G, so the display 1300 will render the secondary pixels of each pixel group 1310 and 1320. In addition, the white sub-pixel 330W can be used to compensate the brightness of the red sub-pixel 330R, the green sub-pixel 330G, and the blue sub-pixel 330B around it. The display 1300 includes an adjacent display area 1301 and a display area 1302, wherein the display area 1301 and the display area 1302 are separated by a broken line 1303. The display area 1301 and the display area 1302 are driven and rendered by two different driving chips.

當對顯示器1300進行渲染時,顯示器1300會接收如第4圖所示的多個畫框週期的畫面資料400。其中,每一畫框週期的畫面資料400包括第一資料集合410的多筆畫素資料412及第二資料集合420的多筆畫素資料412。第一資料集合410的多筆畫素資料412用以驅動顯示器1300的顯示區1301的多個第一次畫素組1310及多個第二次畫素組1320,而第二資料集合 220的多筆畫素資料412用以驅動顯示區1302的多個第一次畫素組1310及多個第二次畫素組1320。每一筆畫素資料412具有分別對應於紅色、綠色、藍色的紅色資料DR、綠色資料DG及藍色資料DBWhen the display 1300 is rendered, the display 1300 receives the picture material 400 of the plurality of frame periods as shown in FIG. The picture material 400 of each frame period includes multiple pieces of pixel data 412 of the first data set 410 and multiple pieces of pixel data 412 of the second data set 420. The multi-pixel data 412 of the first data set 410 is used to drive the plurality of first pixel groups 1310 and the plurality of second pixel groups 1320 of the display area 1301 of the display 1300, and the plurality of strokes of the second data set 220 The prime data 412 is used to drive the plurality of first pixel groups 1310 and the plurality of second pixel groups 1320 of the display area 1302. Each of the pixel data 412 has red data D R , green data D G and blue data D B corresponding to red, green and blue, respectively.

每一畫面資料400皆對應於顯示器1300的一個畫框週期(Frame period),用以驅動顯示器1300於對應的畫框週期顯示對應的畫面。其中,第一資料集合410的多筆畫素資料412用以驅動顯示器1300的顯示區1301的多個第一次畫素組1310及多個第二次畫素組1320,而第二資料集合220的多筆畫素資料412用以驅動顯示區1302的多個第一次畫素組1310及多個第二次畫素組1320。每一筆畫素資料412具有分別對應於紅色、綠色、藍色的紅色資料DR、綠色資料DG及藍色資料DB,用以驅動一個對應的次畫素組1310或次畫素組1320。此外,由於白色次畫素330W的存在,顯示器1300會依據白色次畫素330W所在次畫素組1320的紅色資料DR、綠色資料DG及藍色資料DB,計算出白色次畫素330W的白色資料。至於白色資料的計算方式為本技術領域的習知技術,且會因顯示器的規格(如:各次畫素的面積比)而有不同,故在此即不再贅述。假設上述的白色資料為DW,由於次畫素組1310缺少藍色次畫素230B,而次畫素組1320缺少紅色次畫素330R及綠色次畫素330G,且白色次畫素330W可以用以補償其周圍的紅色次畫素330R、綠色次畫素330G、藍色次畫素330B的亮度,故當對顯示器1300進行渲染時,次畫素組1310的紅色次畫素330R及綠色次畫素330G會分別依據渲染矩陣自鄰近的次畫素組1310或1320獲得有關於紅色資料DR及綠色資料DG的渲染值RD及GD,而次畫素組1320的藍色次畫素330B及白色次畫素330W會依據渲染矩陣自鄰近的次畫素組1310或1320獲得有關於藍色資料DB的渲染值BD及白色資料DW的渲染值WD。以第12圖為例,其即繪示了顯示器1300 以渲染矩陣進行渲染時的情況,其中次畫素組1310的紅色次畫素330R及綠色次畫素330G會分別接收其左方相鄰次畫素組1320的渲染值RD及GD,而次畫素組1320的藍色次畫素330B及白色次畫素330W會分別接收其左方相鄰次畫素組1310的渲染值BD及WD。此外,經過實際測試結果,藉由本發明的矩陣循環之多個渲染矩陣所渲染過的顯示器1300的畫面,可以降低兩個顯示區1301及1302之相鄰邊界上的色偏及閃爍。 Each frame data 400 corresponds to a frame period of the display 1300 for driving the display 1300 to display a corresponding picture in a corresponding frame period. The multi-pixel data 412 of the first data set 410 is used to drive the plurality of first pixel groups 1310 and the plurality of second pixel groups 1320 of the display area 1301 of the display 1300, and the second data set 220 The multi-pixel data 412 is used to drive the plurality of first pixel groups 1310 and the plurality of second pixel groups 1320 of the display area 1302. Each of the pixel data 412 has a red data D R , a green data D G and a blue data D B respectively corresponding to red, green, and blue, for driving a corresponding sub-pixel group 1310 or sub-pixel group 1320. . In addition, due to the presence of the white sub-pixel 330W, the display 1300 calculates the white sub-pixel 330W according to the red data D R , the green data D G and the blue data D B of the sub-pixel group 1320 of the white sub-pixel 330W. White information. The calculation method of the white data is a conventional technique in the technical field, and will vary depending on the specifications of the display (for example, the area ratio of each pixel), and therefore will not be described herein. Assume that the above white data is D W , because the sub-pixel group 1310 lacks the blue sub-pixel 230B, and the sub-pixel group 1320 lacks the red sub-pixel 330R and the green sub-pixel 330G, and the white sub-pixel 330W can be used. In order to compensate the brightness of the red sub-pixel 330R, the green sub-pixel 330G, and the blue sub-pixel 330B, the red sub-pixel 330R and the green sub-picture of the sub-pixel group 1310 are rendered when the display 1300 is rendered. The prime 330G obtains the rendered values R D and G D of the red data D R and the green data D G from the adjacent sub-pixel groups 1310 or 1320 according to the rendering matrix, respectively, and the blue sub-pixels of the sub-pixel group 1320. 330B 330W and white sub-pixel matrix renders the adjacent sub-pixel group from 1310 or 1320 to get there is to render the value of B D D B of the information about the blue and white rendering data D W W D value basis. Taking Figure 12 as an example, it shows the display 1300 to render the matrix. In the case of rendering, the red sub-pixel 330R and the green sub-pixel 330G of the sub-pixel group 1310 respectively receive the rendering values R D and G D of the left adjacent sub-pixel group 1320, and the sub-pixel group 1320 The blue sub-pixel 330B and the white sub-pixel 330W respectively receive the rendered values B D and W D of the left adjacent sub-pixel group 1310. In addition, after actual test results, the color shift and flicker on the adjacent boundaries of the two display areas 1301 and 1302 can be reduced by the picture of the display 1300 rendered by the plurality of rendering matrices of the matrix loop of the present invention.

請參考第13圖。第13圖為本發明一實施例對顯示器的畫面進行渲染的方法之流程圖,此方法包含下列步驟:步驟S1410:提供至少一矩陣循環,其中每一矩陣循環包含至少四個渲染矩陣,每一個渲染矩陣包含多個元,而每一個其值大於零的元用以設定一取值方向,而所述至少一矩陣循環的任兩個時序上相鄰的渲染矩陣至少有一不同的取值方向;步驟S1420:依據上述至少一矩陣循環依序地對顯示器於不同畫框週期的畫面進行渲染,其中兩個時序上相鄰的畫框週期的畫面以不完全相同的渲染矩陣進行渲染;以及步驟S1430:顯示器在每一畫框週期顯示經渲染矩陣所渲染過的畫面。 Please refer to Figure 13. FIG. 13 is a flowchart of a method for rendering a screen of a display according to an embodiment of the present invention. The method includes the following steps: Step S1410: providing at least one matrix loop, wherein each matrix loop includes at least four rendering matrices, each The rendering matrix includes a plurality of elements, and each of the elements whose values are greater than zero is used to set a direction of the value, and any two adjacent temporally adjacent rendering matrices of the at least one matrix cycle have at least one different direction of value; Step S1420: sequentially, according to the at least one matrix loop, rendering the screens of the display in different frame periods, wherein the frames of the two temporally adjacent frame periods are rendered with different rendering matrices; and step S1430 : The display displays the rendered image of the rendered matrix in each frame cycle.

綜上所述,本發明實施例對顯示器的畫面進行渲染時,因採用了矩陣循環之多個渲染矩陣對顯示器的多個顯示區的次畫素進行渲染,故可降低顯示器的多個顯示區之相鄰邊界上的色偏及閃爍的情形,而可提升顯示器的畫質。 In summary, in the embodiment of the present invention, when the screen of the display is rendered, multiple sub-pixels of the display area of the display are rendered by using multiple rendering matrices of the matrix loop, so that multiple display areas of the display can be reduced. The color shift and flicker on the adjacent borders can improve the picture quality of the display.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所 做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above description is only a preferred embodiment of the present invention, and the scope of the patent application according to the present invention is Equal variations and modifications are intended to be within the scope of the present invention.

S1410至S1430‧‧‧流程步驟 S1410 to S1430‧‧‧ Process steps

Claims (5)

一種對一顯示器的畫面進行渲染的方法,該顯示器包含多個第一次畫素組及多個第二次畫素組,該些第一次畫素組與該些第二次畫素組交錯地排列,且每一該些第一次畫素組與每一該些第二次畫素組各包含至少兩種顏色的次畫素,而該些第一次畫素組的次畫素的顏色組合不同於該些第二次畫素組的次畫素的顏色組合,該方法包含:提供至少一矩陣循環,其中每一矩陣循環包含至少四個渲染矩陣,每一個渲染矩陣包含多個元,該些元中的每一個其值大於零的元用以設定一取值方向,而該至少一矩陣循環的任兩個時序上相鄰的渲染矩陣至少有一不同的取值方向;依據該至少一矩陣循環依序地對該顯示器於不同畫框週期的畫面進行渲染,其中兩個時序上相鄰的畫框週期的畫面以不完全相同的渲染矩陣進行渲染;以及該顯示器在每一畫框週期顯示經該些渲染矩陣所渲染過的畫面。 A method for rendering a picture of a display, the display comprising a plurality of first pixel groups and a plurality of second pixel groups, the first pixel groups being interlaced with the second pixel groups Arranging, and each of the first set of pixels and each of the second set of pixels each include at least two colors of sub-pixels, and the first pixels of the first set of pixels The color combination is different from the color combination of the second pixels of the second set of pixels, the method comprising: providing at least one matrix cycle, wherein each matrix cycle comprises at least four rendering matrices, each of the rendering matrices comprising a plurality of elements Each of the plurality of elements having a value greater than zero is used to set a direction of the value, and any two adjacent temporally adjacent rendering matrices of the at least one matrix cycle have at least one different direction of the value; A matrix loop sequentially renders the display of the display in different frame periods, wherein the frames of the two temporally adjacent frame periods are rendered with different rendering matrices; and the display is in each frame Cycle display Matrix rendered picture. 如請求項1所述的方法,其中該顯示器包含一第一顯示區及一第二顯示區,而該第一顯示區與該第二顯示區的相鄰邊界上的任一次畫素在時序上相鄰的兩畫框週期的亮度差的絕對值為|△B|,且0<|△B|≦0.25×Bmax,其中Bmax為每一個次畫素的允許最大亮度。 The method of claim 1, wherein the display comprises a first display area and a second display area, and any pixel on the adjacent boundary of the first display area and the second display area is in time series The absolute value of the luminance difference of the adjacent two frame periods is |ΔB|, and 0<|ΔB|≦0.25×Bmax, where Bmax is the maximum allowable luminance of each sub-pixel. 如請求項1所述的方法,其中該顯示器包含一第一顯示區及一第二顯示區,該第一顯示區與該第二顯示區相鄰,而依據該至少一矩陣循環依序地對該顯示器的不同畫框週期的畫面進行渲染包含:以一第一渲染矩陣為起始矩陣,並依據該至少一矩陣循環依序地對該第一顯示區於不同畫框週期的畫面進行渲染;以及 以一第二渲染矩陣為起始矩陣,並依據該至少一矩陣循環依序地對該第二顯示區於不同畫框週期的畫面進行渲染,其中該第一渲染矩陣與該第二渲染矩陣為該至少一矩陣循環中的兩個不同的渲染矩陣。 The method of claim 1, wherein the display comprises a first display area and a second display area, the first display area is adjacent to the second display area, and sequentially according to the at least one matrix The rendering of the picture of the different frame periods of the display comprises: starting a matrix with a first rendering matrix, and sequentially rendering the first display area in different frame periods according to the at least one matrix cycle; as well as Taking a second rendering matrix as a starting matrix, and sequentially rendering the second display area in a different frame period according to the at least one matrix loop, wherein the first rendering matrix and the second rendering matrix are Two different rendering matrices in the at least one matrix loop. 如請求項1所述的方法,其中該至少一矩陣循環包含多個矩陣循環,而依據該至少一矩陣循環依序地對該顯示器於不同畫框週期的畫面進行渲染包含:依據該些矩陣循環中的一第一矩陣循環,依序地在多個畫框週期對該顯示器中用以顯示第一顏色的次畫素進行渲染;以及依據該些矩陣循環中的一第二矩陣循環,依序地在多個畫框週期對該顯示器中用以顯示第二顏色的次畫素進行渲染,其中該第一矩陣循環的多個渲染矩陣與該第二矩陣循環的多個渲染矩陣不完全不同。 The method of claim 1, wherein the at least one matrix loop comprises a plurality of matrix loops, and sequentially displaying the images of the display in different frame periods according to the at least one matrix loop comprises: cycling according to the matrices a first matrix loop in which the sub-pixels for displaying the first color are sequentially rendered in a plurality of frame periods; and a second matrix loop in the matrix loops, sequentially The sub-pixels for displaying the second color in the display are rendered in a plurality of frame periods, wherein the plurality of rendering matrices of the first matrix loop are not completely different from the plurality of rendering matrices of the second matrix loop. 如請求項1所述的方法,其中依據該至少一矩陣循環依序地對該顯示器的不同畫框週期的畫面進行渲染包含:以一第一渲染矩陣為起始矩陣,並依據該至少一矩陣循環,依序地在多個畫框週期對該顯示器中用以顯示第一顏色的次畫素進行渲染;以及以一第二渲染矩陣為起始矩陣,並依據該至少一矩陣循環,依序地在多個畫框週期對該顯示器中用以顯示第二顏色的次畫素進行渲染,其中該第一渲染矩陣與該第二渲染矩陣為該至少一矩陣循環中的兩個不同的渲染矩陣。 The method of claim 1, wherein sequentially rendering the pictures of different frame periods of the display according to the at least one matrix cycle comprises: starting with a first rendering matrix, and according to the at least one matrix Looping, sequentially rendering the secondary pixels used to display the first color in the plurality of frame periods; and starting from a second rendering matrix, and according to the at least one matrix loop, sequentially Rendering a sub-pixel for displaying a second color in the display in a plurality of frame periods, wherein the first rendering matrix and the second rendering matrix are two different rendering matrices in the at least one matrix loop .
TW103136713A 2014-10-23 2014-10-23 Method for rendering images of display TWI539425B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103136713A TWI539425B (en) 2014-10-23 2014-10-23 Method for rendering images of display
CN201410848061.3A CN104464684B (en) 2014-10-23 2014-12-31 Method for rendering picture of display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103136713A TWI539425B (en) 2014-10-23 2014-10-23 Method for rendering images of display

Publications (2)

Publication Number Publication Date
TW201616481A TW201616481A (en) 2016-05-01
TWI539425B true TWI539425B (en) 2016-06-21

Family

ID=52910641

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103136713A TWI539425B (en) 2014-10-23 2014-10-23 Method for rendering images of display

Country Status (2)

Country Link
CN (1) CN104464684B (en)
TW (1) TWI539425B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935618B (en) * 2015-12-31 2019-08-27 昆山国显光电有限公司 OLED pixel aligning method
CN106200099A (en) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 Liquid crystal panel, driving method and the pixel optimization method shown for 3D
CN111312169A (en) * 2019-01-23 2020-06-19 深圳清华大学研究院 Sub-pixel rendering system and method capable of reducing power consumption of display panel
US11244608B2 (en) 2019-10-20 2022-02-08 Novatek Microelectronics Corp. Image processing method and image processing device
CN113316020B (en) * 2021-05-28 2023-09-15 上海曼恒数字技术股份有限公司 Rendering method, device, medium and equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210834A1 (en) * 2002-05-13 2003-11-13 Gregory Hitchcock Displaying static images using spatially displaced sampling with semantic data
JP4643485B2 (en) * 2006-03-30 2011-03-02 株式会社東芝 Drawing apparatus, method and program
CN101764941B (en) * 2008-11-04 2013-02-20 新奥特(北京)视频技术有限公司 Method for defining pixel type of pixel space mask matrix
KR101588336B1 (en) * 2009-12-17 2016-01-26 삼성디스플레이 주식회사 Method for processing data and display apparatus for performing the method
TWI515710B (en) * 2014-02-17 2016-01-01 友達光電股份有限公司 Method for driving display

Also Published As

Publication number Publication date
TW201616481A (en) 2016-05-01
CN104464684B (en) 2017-03-08
CN104464684A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
US9576519B2 (en) Display method and display device
US9620050B2 (en) Display method and display device
TWI539425B (en) Method for rendering images of display
CN103903549B (en) Display packing
TWI515710B (en) Method for driving display
US9728111B2 (en) Display drive method and apparatus, and method and apparatus for generating sampling region
CN104036710B (en) Pel array and driving method thereof, display floater and display unit
CN103903524B (en) Display packing
CN104751767B (en) Display panel, display method of display panel and display device
CN106328031B (en) Display panel and display device with the display panel
WO2016150076A1 (en) Pixel array, display drive method, display drive apparatus, and display apparatus
WO2017101191A1 (en) Pixel rendering method, pixel rendering device, and display device
WO2016141695A1 (en) Array substrate, display panel and drive method therefor, and display apparatus
CN103714751A (en) Pixel array, driving method of pixel array, display panel and display device
CN107068035A (en) A kind of display methods, display device
US9916817B2 (en) Display method of display panel, display panel and display device
CN109036248A (en) Display drive apparatus and sub-pixel driving method
CN106856084A (en) The display methods and display device of a kind of display panel
CN105551455B (en) graphics device and method
JP2020518022A (en) Driving method and driving device for display panel
US20190156772A1 (en) Display device and method for controlling display device
US20080174518A1 (en) Display state controller, display device, display state control method, program therefor, and recording medium recorded with the program
CN109285113B (en) Improved color image interpolation method based on gradient
JP6143873B2 (en) Image display device
CN105096805B (en) Display device and sub-pixel rendering intent

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees