TWI538749B - High resolution modular heating for soil evaporative desorption - Google Patents

High resolution modular heating for soil evaporative desorption Download PDF

Info

Publication number
TWI538749B
TWI538749B TW103132194A TW103132194A TWI538749B TW I538749 B TWI538749 B TW I538749B TW 103132194 A TW103132194 A TW 103132194A TW 103132194 A TW103132194 A TW 103132194A TW I538749 B TWI538749 B TW I538749B
Authority
TW
Taiwan
Prior art keywords
soil
gas
soil tank
tank
injection port
Prior art date
Application number
TW103132194A
Other languages
Chinese (zh)
Other versions
TW201529188A (en
Inventor
派崔克 理查 布蘭迪
Original Assignee
瑞塔羅公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/264,019 external-priority patent/US9364877B2/en
Application filed by 瑞塔羅公司 filed Critical 瑞塔羅公司
Publication of TW201529188A publication Critical patent/TW201529188A/en
Application granted granted Critical
Publication of TWI538749B publication Critical patent/TWI538749B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/005Extraction of vapours or gases using vacuum or venting

Description

土壤蒸發去吸附之高解析模組化加熱方法及系統 High-resolution modular heating method and system for soil evaporation and adsorption 【主張優先權】[claim priority]

本專利申請案係下述的部分延續申請案,並主張下述的優先權: This patent application is a continuation-in-part of the following application and claims the following priority:

(1)美國臨時專利申請案第62/048794號,其申請於2014年9月10日,標題為「Feedback loop control for soil evaporative desorption」,其在此以引入之方式併入。 (1) U.S. Provisional Patent Application No. 62/048794, filed on Sep. 10, 2014, entitled "Feedback loop control for soil evaporative desorption", which is incorporated herein by reference.

(2)美國實用新型專利申請案第14/264019號,其申請於2014年4月28日,標題為「Soil box for evaporative desorption process」,其在此以引入之方式併入。 (2) U.S. Utility Model Patent Application No. 14/264,019, filed on Apr. 28, 2014, entitled "Soil box for evaporative desorption process" incorporated herein by reference.

(3)美國臨時專利申請案第61/878623號,其申請於2013年9月17日,標題為「Cyclic thermal desorption processes」,其在此以引入之方式併入。 (3) U.S. Provisional Patent Application No. 61/878,623, filed on Sep. 17, 2013, entitled "Cyclic thermal desorption processes," incorporated herein by reference.

(4)美國實用新型專利申請案第13/419195號,其申請於2012年3月3日,標題為「Evaporative desorption high concentration soil contaminate removal and contaminate reclamation apparatus and process」,其在此以引入之方式併入。 (4) U.S. Utility Model Patent Application No. 13/419195, filed on March 3, 2012, entitled "Evaporative desorption high concentration soil contaminate removal and contaminate reclamation apparatus and process", which is hereby incorporated by reference. Incorporate.

本案係關於受污染土壤的回收利用及/或整治,尤指關於土壤蒸發去吸附之高解析模組化加熱的方法與系統。 This case relates to the recycling and / or remediation of contaminated soil, especially the method and system for high-resolution modular heating of soil evaporation and adsorption.

使用石油碳氫化合物作為燃料源在社會中係普遍存在的。因此,大量處理與儲存石油碳氫化合物產物。處理與儲存石油碳氫化合物的一個相關風險係在處理期間可能溢出或在儲存期間可能洩漏。因為石油碳氫化合物的溢出與洩漏相關的負面環境影響,已經在地方、州與聯邦的層級建立了法規。這些法規主要著重在防止石油碳氫化合物釋放至環境的發生。這些法規也具有防備,要求責任當局整治至環境的石油碳氫化合物釋放。 The use of petroleum hydrocarbons as a fuel source is ubiquitous in society. Therefore, a large amount of petroleum hydrocarbon products are processed and stored. A related risk of handling and storing petroleum hydrocarbons may overflow during processing or may leak during storage. Regulations have been established at the local, state, and federal levels because of the negative environmental impacts associated with spillage and leakage of petroleum hydrocarbons. These regulations focus on preventing the release of petroleum hydrocarbons into the environment. These regulations are also prepared to require responsible authorities to rectify the release of petroleum hydrocarbons to the environment.

在從土壤整治石油碳氫化合物的領域中,有兩個基本方法:施加處理技術至在定位的土壤(原位),或者施加處理技術至挖掘的土壤(非原位)。每一方法各有優缺點,且根據每一石油碳氫化合物釋放的特定位置環境來選擇該方法。 In the field of remediation of petroleum hydrocarbons from soil, there are two basic methods: applying treatment techniques to the soil in situ (in situ), or applying treatment techniques to the excavated soil (ex situ). Each method has its own advantages and disadvantages, and the method is selected based on the specific location environment in which each petroleum hydrocarbon is released.

原位熱去吸附技術涉及同時施加熱與真空至地下的土壤,以蒸發土壤中的揮發性污染的技術。污染的蒸發處理包含蒸發成地下氣流、氣流蒸餾成水蒸汽、沸騰、氧化、及/或熱解。蒸發的水、污染、與有機化合物藉由逆流方向中的真空而拉至進入真空源的熱流。 In situ thermal desorption techniques involve techniques that simultaneously apply heat and vacuum to the subterranean soil to evaporate volatile contamination in the soil. The evaporative treatment of the pollution comprises evaporation into a subterranean gas stream, distillation of the gas stream into water vapor, boiling, oxidation, and/or pyrolysis. Evaporated water, contamination, and organic compounds are drawn to the heat flow into the vacuum source by a vacuum in the countercurrent direction.

非原位的熱去吸附技術包含在加熱處理期間涉及土壤的機械攪動之技術,其涉及連續機械攪動作業之處理,其中係連續引入土壤加 以處理,且機械移動通過該處理設備,直到處理完成,且之後連續地被排放至容器,用於丟棄或重新使用。 The ex situ thermal desorption technique includes a technique involving mechanical agitation of the soil during the heat treatment, which involves the treatment of continuous mechanical agitation operations in which the soil is continuously introduced. To process, and mechanically move through the processing device until the process is complete, and then continuously discharged to the container for disposal or reuse.

或者,土壤可用靜態的配置來處理,其中給定數量的土壤被引入處理腔室。土壤的配置包含堆狀配置與容器配置。 Alternatively, the soil can be treated with a static configuration in which a given amount of soil is introduced into the processing chamber. The configuration of the soil consists of a heap configuration and a container configuration.

幾乎所有先前技術的處理都使用礦物燃料的燃燒作為熱源。這會有不良的後果:形成不完全燃燒的產物、氮的氧化、以及成為副產物的其他溫室氣體。若未維持嚴格控管該燃燒處理,燃燒也有可能加入未燃的碳氫化合物至該處理排放氣體。 Almost all prior art processes use the combustion of fossil fuels as a heat source. This has undesirable consequences: the formation of incompletely combusted products, the oxidation of nitrogen, and other greenhouse gases that become by-products. If the combustion treatment is not strictly controlled, it is also possible to burn unburned hydrocarbons to the treated exhaust gas.

非原位的靜態處理之處理程序可提昇人力、時間與能量上的效率,且對環境友善。 The ex situ static processing program improves manpower, time and energy efficiency, and is environmentally friendly.

本案為土壤蒸發去吸附之高解析模組化加熱方法的方法與系統。 This case is a method and system for high-resolution modular heating method for soil evaporation and adsorption.

在一或更多個實施例中,本案揭露一種土壤蒸發去吸附處理。處理程序包含將受污染土壤批次放入土壤箱中,土壤箱然後安裝在處理腔室內。處理腔室及/或土壤箱可為隔熱的及/或密封以保持壓力。一或更多個注入埠口可從熱源導引預處理氣體進入土壤箱,熱源用於加熱預處理氣體。來自預處理氣體的熱前端可去吸附周圍的受污染土壤。後處理氣體可為去吸附處理的產生產物,其通過後處理氣體離開路徑而離開。 In one or more embodiments, the present invention discloses a soil evaporation desorption treatment. The process consists of placing the contaminated soil batch in a soil tank, which is then installed in the processing chamber. The processing chamber and/or soil tank may be insulated and/or sealed to maintain pressure. One or more injection ports can direct the pretreatment gas from the heat source into the soil tank, and the heat source is used to heat the pretreatment gas. The hot front from the pretreatment gas can desorb the surrounding contaminated soil. The post-treatment gas can be a product of the desorption process that exits through the process gas leaving the path.

土壤箱可配置來在不同部分且在不同的時間時從注入埠口接收預處理氣體。在頂部部分接收預處理氣體之前,底部部分可配置來接 收預處理氣體。在處理頂部部分之前處理底部部分可消除土壤箱內的冷凝,藉此在底部部分產生乾燥、加熱、及/或破裂的土壤的通道,其可允許來自頂部部分的蒸氣污染物流動通過。在一或更多個實施例中,通過後處理氣體離開路徑而離開的後處理氣體的參數可透過參數感測器來量測。從感測器輸出的資料可以指示受污染土壤的特定區域的狀況,例如高的一氧化碳濃度數據可表示該處理是不完整的或無效率的。可採取進一步行動,例如再重新做該處理。 The soil tank can be configured to receive pre-treatment gas from the injection port at different portions and at different times. The bottom portion can be configured to be connected before the top portion receives the pretreatment gas Receive pretreatment gas. Treating the bottom portion prior to treating the top portion eliminates condensation within the soil tank, thereby creating a passage for dry, heated, and/or fractured soil at the bottom portion that allows vapor contaminants from the top portion to flow therethrough. In one or more embodiments, the parameters of the aftertreatment gas exiting by the post-treatment gas exiting the path may be measured by a parametric sensor. The data output from the sensor can indicate the condition of a particular area of contaminated soil, for example, high carbon monoxide concentration data can indicate that the process is incomplete or inefficient. Further action can be taken, such as re-doing the process.

在一或更多個實施例中,本案之處理受污染土壤的系統與方法包含壓力及/或溫度循環處理。本案可使用可密封的處理腔室,其具有排氣閥,排氣閥係配置以允許土壤箱交替於加壓狀態與壓力釋放狀態之間的方式,來釋放後處理氣體。例如,熱氣體或空氣可提供至處理腔室,其中排氣閥關閉,係利用增加的壓力加熱受污染土壤。排氣閥可打開,其中熱空氣仍然開啟或關閉,以釋放壓力與來自處理腔室的熱氣體。熱氣體的快速釋放可析取蒸發的污染物,將揮發性污染物帶至排氣。該循環可重複進行,直到受污染土壤被清潔。 In one or more embodiments, the systems and methods of treating contaminated soil in this context include pressure and/or temperature cycling. The present invention may use a sealable processing chamber having an exhaust valve configured to allow the soil tank to alternate between a pressurized state and a pressure released state to release the aftertreatment gas. For example, hot gas or air may be supplied to the processing chamber where the exhaust valve is closed, utilizing the increased pressure to heat the contaminated soil. The vent valve can be opened with hot air still on or off to relieve pressure and hot gases from the processing chamber. The rapid release of hot gases extracts evaporated contaminants and brings volatile contaminants to the exhaust. This cycle can be repeated until the contaminated soil is cleaned.

排氣管線可耦接至大氣壓力的環境,若腔室被加壓至高於大氣壓力,排氣管線可驅動處理腔室至較低的壓力。替代地,排氣管線可耦接至真空,其可從處理腔室提取氣體。當排氣閥關閉時,熱氣體(其可提供至處理腔室)可使處理腔室壓力增高,例如至大氣壓力或高於大氣壓力。排氣閥的開孔可從處理腔室移除熱氣體,並且降低處理腔室的壓力至低於大氣壓力。該循環可重複進行,直到受污染土壤被清潔。 The vent line can be coupled to an atmospheric pressure environment, and if the chamber is pressurized above atmospheric pressure, the vent line can drive the processing chamber to a lower pressure. Alternatively, the exhaust line can be coupled to a vacuum that can extract gas from the processing chamber. When the exhaust valve is closed, hot gases (which may be provided to the processing chamber) may increase the pressure in the process chamber, such as to atmospheric pressure or above atmospheric pressure. The opening of the vent valve removes hot gases from the processing chamber and reduces the pressure of the processing chamber to below atmospheric pressure. This cycle can be repeated until the contaminated soil is cleaned.

在一或更多個實施例中,處理腔室的土壤可配置來提供高流 動傳導性,其可有助於降低腔室壓力,例如降低使腔室壓力變至低壓狀況的時間。例如,岩石可提供至土壤,其可提供氣孔於土壤內,以允許通過土壤的較快氣體流動。 In one or more embodiments, the soil of the processing chamber can be configured to provide high flow Dynamic conductivity, which can help reduce chamber pressure, such as reducing the time it takes to bring the chamber pressure to a low pressure condition. For example, rock can be provided to the soil that provides pores within the soil to allow for faster gas flow through the soil.

在一或更多個實施例中,處理腔室的溫度可為循環的,例如,藉由交替地流動熱氣體與停止流動熱氣體(例如,流動室溫氣體或停止熱氣體流動)。受污染土壤的循環式溫度處理可提供脈衝式土壤處理,同時降低了能量消耗。 In one or more embodiments, the temperature of the processing chamber can be cyclic, for example, by alternately flowing hot gases with stopping the flow of hot gases (eg, flowing room temperature gas or stopping hot gas flow). Circulating temperature treatment of contaminated soil provides pulsed soil treatment while reducing energy consumption.

110‧‧‧處理腔室 110‧‧‧Processing chamber

120‧‧‧土壤箱 120‧‧‧ soil tank

122‧‧‧蓋件 122‧‧‧Cover

125‧‧‧受污染土壤 125‧‧‧Contaminated soil

130‧‧‧注入埠口 130‧‧‧Injected into the mouth

140‧‧‧注入埠口閥 140‧‧‧Injection valve

150‧‧‧注入埠口套筒 150‧‧‧Injected into the mouth sleeve

160‧‧‧外壁 160‧‧‧ outer wall

170‧‧‧熱源 170‧‧‧heat source

172‧‧‧控制器 172‧‧‧ Controller

180‧‧‧預處理氣體 180‧‧‧Pretreatment gas

185‧‧‧後處理氣體 185‧‧‧ After treatment gas

190‧‧‧井屏蔽幕 190‧‧‧ well screen

198‧‧‧後處理氣體離開路徑 198‧‧‧ After treatment gas leaving the path

210‧‧‧中心 210‧‧‧ Center

220‧‧‧熱前端 220‧‧‧hot front end

230‧‧‧頂部部分 230‧‧‧Top part

240‧‧‧底部部分 240‧‧‧ bottom part

310‧‧‧排氣閥 310‧‧‧Exhaust valve

320‧‧‧參數感測器 320‧‧‧Parameter Sensor

410‧‧‧熱前端A 410‧‧‧hot front end A

420‧‧‧熱前端B 420‧‧‧hot front end B

430‧‧‧熱前端C 430‧‧‧hot front end C

440‧‧‧終端距離 440‧‧‧terminal distance

510‧‧‧冷凝 510‧‧‧Condensation

610‧‧‧注入埠口套筒延伸位置 610‧‧‧Injection into the mouthpiece extension

620‧‧‧注入埠口套筒縮回位置 620‧‧‧Injection of the mouthpiece retracted position

710‧‧‧散佈球體 710‧‧‧scatter sphere

720‧‧‧導管 720‧‧‧ catheter

820‧‧‧注入埠口接合器 820‧‧‧Injection port adapter

910‧‧‧井屏蔽幕開孔 910‧‧‧ well screen opening

920‧‧‧彈簧 920‧‧ ‧ spring

930‧‧‧基座支座 930‧‧‧Pedestal support

1010‧‧‧井屏蔽套筒 1010‧‧‧ Well shielding sleeve

1020‧‧‧網格 1020‧‧‧Grid

1110‧‧‧距離A 1110‧‧‧Distance A

1120‧‧‧距離B 1120‧‧‧D distance B

1130‧‧‧參考線 1130‧‧‧ reference line

1210‧‧‧壓力感測器 1210‧‧‧ Pressure Sensor

1310‧‧‧岩石 1310‧‧‧ Rock

1410、1420、1430、1440、1450‧‧‧作業 1410, 1420, 1430, 1440, 1450‧‧‧ homework

1510、1520、1530、1540‧‧‧作業 1510, 1520, 1530, 1540‧‧ ‧ homework

1610、1620、1630、1640‧‧‧作業 1610, 1620, 1630, 1640‧‧‧ homework

1710、1720、1730、1740、1750‧‧‧作業 1710, 1720, 1730, 1740, 1750‧‧ ‧ homework

1810、1820、1830、1840、1850‧‧‧作業 1810, 1820, 1830, 1840, 1850 ‧ ‧ homework

本發明得由下列之具體實施例加以說明,但本案揭露之精神並不限縮於所附之圖式,其中類似符號可表示類似元件:第1圖為本案較佳實施例之配置來從熱源接收預處理氣體的土壤箱;第2圖為第1圖的土壤箱的模組化加熱配置;第3圖為第2圖的模組化加熱配置,其用於偵測及/或量測後處理氣體的參數;第4圖為改變第2圖的模組化加熱配置的中心的熱前端之示意圖;第5圖為本案較佳實施例之接下來要解決之土壤箱內的冷凝的問題;第6圖為本案較佳實施例之可縮回的套筒的操作,其連接注入埠口至第1圖的土壤箱;第7圖為本案較佳實施例之土壤箱的替代的模組化加熱配置,其包含球形結構來散佈熱;第8圖為本案較佳實施例之土壤箱的另一替代模組化加熱配置,該模組 化加熱配置包含連接至土壤箱的底部之注入埠口;第9A與9B圖為本案較佳實施例之土壤箱的安裝,具有土壤箱的又另一替代模組化加熱配置;第10A與10B圖為本案較佳實施例之土壤箱的替代配置;第11圖為本案較佳實施例之僅包含單一模組化加熱器的土壤箱的又另一替代性模組化加熱配置;第12A與12B圖為本案較佳實施例之用於循環熱去吸附的系統與處理;第13圖為本案較佳實施例之循環熱去吸附的土壤配置;第14圖為本案較佳實施例之分配預處理氣體進入土壤箱的部分之方法的流程圖;第15圖為本案較佳實施例之注入預處理氣體進入土壤箱的方法的流程圖;第16圖為本案較佳實施例之偵測及/或量測後處理氣體的參數的方法的流程圖;第17圖為本案較佳實施例之在使用排氣閥排出後處理氣體之前,提高土壤箱內的壓力的方法的流程圖;第18圖為本案較佳實施例之在使用排氣閥排出後處理氣體之前,維持土壤箱內的壓力的方法的流程圖。 The invention is illustrated by the following specific examples, but the spirit of the present disclosure is not limited to the accompanying drawings, wherein like reference numerals indicate like elements: FIG. 1 is a configuration of a preferred embodiment of the present invention. a soil tank for receiving pretreatment gas; Figure 2 is a modular heating arrangement of the soil tank of Figure 1; and Figure 3 is a modular heating arrangement of Figure 2 for detection and/or measurement The parameters of the processing gas; Fig. 4 is a schematic diagram of changing the thermal front end of the center of the modular heating arrangement of Fig. 2; Fig. 5 is the problem of condensation in the soil tank to be solved next in the preferred embodiment of the present invention; Figure 6 is a view showing the operation of the retractable sleeve of the preferred embodiment of the present invention, which is connected to the soil tank of the first embodiment; Figure 7 is an alternative modularization of the soil tank of the preferred embodiment of the present invention. a heating arrangement comprising a spherical structure to dissipate heat; FIG. 8 is another alternative modular heating arrangement of the soil tank of the preferred embodiment of the present invention, the module The heating arrangement comprises an injection port connected to the bottom of the soil tank; Figures 9A and 9B show the installation of the soil tank of the preferred embodiment of the present invention, and another alternative modular heating arrangement with the soil tank; 10A and 10B Figure 4 is an alternative configuration of the soil tank of the preferred embodiment of the present invention; Figure 11 is yet another alternative modular heating arrangement of the soil tank containing only a single modular heater of the preferred embodiment; 12B is a system and process for circulating thermal desorption in the preferred embodiment of the present invention; FIG. 13 is a schematic diagram of a circulating thermal desorption soil configuration according to a preferred embodiment of the present invention; and FIG. 14 is a distribution pre-preparation of the preferred embodiment of the present invention. A flow chart of a method for treating a portion of a gas entering a soil tank; FIG. 15 is a flow chart of a method for injecting a pretreatment gas into a soil tank according to a preferred embodiment of the present invention; and FIG. 16 is a view of a preferred embodiment of the present invention and/or Or a flow chart of a method for measuring a parameter of a post-treatment gas; FIG. 17 is a flow chart showing a method for increasing the pressure in the soil tank before exhausting the post-treatment gas using the exhaust valve according to a preferred embodiment of the present invention; Better implementation of this case A flow chart of a method of maintaining pressure in a soil tank prior to exhausting the post-treatment gas using an exhaust valve.

本案揭露一種土壤蒸發去吸附之高解析模組化加熱方法的 方法、系統、及/或設備。雖然本案已經參照特定範例實施例來敘述,但明顯可對這些實施例做出各種修改與改變,而不會偏離各個實施例的更寬廣精神與範圍。另外,圖式中所示的組件、它們的連接、耦接與關係、以及其功能僅範例性表示,非局限於所述的實施例。 The present invention discloses a high-resolution modular heating method for soil evaporation to adsorption. Method, system, and/or device. Although the present invention has been described with reference to the specific embodiments thereof, it is obvious that various modifications and changes may be made to the embodiments without departing from the broader spirit and scope of the various embodiments. In addition, the components shown in the drawings, their connections, couplings and relationships, and their functions are merely exemplary representations, and are not limited to the embodiments described.

第1圖為本案較佳實施例之配置來從熱源接收預處理氣體的土壤箱。 Figure 1 is a soil tank of a preferred embodiment of the present invention configured to receive a pretreatment gas from a heat source.

基本上,第1圖包含處理腔室110、土壤箱120、可密封的蓋件122、受污染土壤125、注入埠口130、注入埠口閥140、注入埠口套筒150、外壁160、熱源170、控制器172、預處理氣體180、後處理氣體185、井屏蔽幕190、以及後處理氣體離開路徑198。 Basically, FIG. 1 includes a processing chamber 110, a soil tank 120, a sealable cover member 122, a contaminated soil 125, an injection port 130, an injection port valve 140, an injection port sleeve 150, an outer wall 160, and a heat source. 170. Controller 172, pretreatment gas 180, aftertreatment gas 185, well screen 190, and aftertreatment gas exit path 198.

土壤箱120可配置來保持受污染土壤125,且可安裝在處理腔室110內。處理腔室110可為設計成允許預處理氣體180進入來加熱受污染土壤125。土壤箱120可為隔室,設計來保持蒸發去吸附處理中進行處理的受污染土壤125。處理腔室110可為隔熱的,以保持熱,及/或密封來保持處理腔室110內的壓力。土壤箱120也可為隔熱的,以保持熱,及/或包含可密封的蓋件122,其可操作來保持土壤箱120內的壓力。土壤箱120包含第3圖的排氣閥310,其允許土壤箱120交替於加壓狀態與壓力釋放狀態之間的方式,來釋放來自土壤箱120的後處理氣體。處理腔室110及/或土壤箱120功能類似於高壓腔室。受污染土壤125可充滿有低濃度及/或高濃度的碳氫化合物污染,碳氫化合物污染係來自挖掘地點。 The soil tank 120 can be configured to hold contaminated soil 125 and can be installed within the processing chamber 110. The processing chamber 110 can be designed to allow the pretreatment gas 180 to enter to heat the contaminated soil 125. The soil tank 120 can be a compartment designed to maintain the contaminated soil 125 that is treated in the evaporation desorption process. The processing chamber 110 can be thermally insulated to maintain heat and/or seal to maintain pressure within the processing chamber 110. The soil tank 120 can also be insulated to maintain heat and/or include a sealable cover 122 that is operable to maintain pressure within the soil tank 120. The soil tank 120 includes an exhaust valve 310 of FIG. 3 that allows the soil tank 120 to alternate between a pressurized state and a pressure released state to release the aftertreatment gas from the soil tank 120. Processing chamber 110 and/or soil tank 120 functions similarly to a high pressure chamber. Contaminated soil 125 can be contaminated with low concentrations and/or high concentrations of hydrocarbons from hydrocarbon sites.

預處理氣體180可通過注入埠口130而直接提供至土壤箱120的井屏蔽幕190。井屏蔽幕190可為網狀屏蔽幕及/或孔的圓柱形系統,設計 來允許預處理氣體180從注入埠口130進入並且流動通過受污染土壤125。注入端埠口130可為管狀部分或中空圓柱體,用於輸送來自熱源170的預處理氣體180。熱源170可為電加熱器及/或天然氣加熱器,用於在注入進入處理腔室110之前加熱預處理氣體180。熱源170包含控制器172,例如可編程邏輯控制器(PLC,programmable logic controller),其可用來獨立地控制每一注入埠口130(如果使用多於一個的注入埠口130),且調整通過注入埠口130的預處理氣體180的溫度及/或流動。注入埠口130包含注入埠口閥140,用於控制預處理氣體180注入進入土壤箱120的井屏蔽幕190。例如,注入埠口閥140可打開,以允許預處理氣體180從熱源170流入土壤箱120,或者注入埠口閥140可關閉,以拒絕來自熱源170的預處理氣體180流入土壤箱120。注入埠口閥140的操作可機械式控制,但是注入埠口閥140可手動調整及/或電子式控制(例如,透過控制器172)。 The pretreatment gas 180 can be provided directly to the well screen 190 of the soil tank 120 by injection into the cornice 130. The well screen 190 can be a cylindrical system of mesh screens and/or holes, designed The pretreatment gas 180 is allowed to enter from the injection port 130 and flow through the contaminated soil 125. The injection port port 130 can be a tubular portion or a hollow cylinder for conveying the pretreatment gas 180 from the heat source 170. Heat source 170 can be an electric heater and/or a natural gas heater for heating pretreatment gas 180 prior to injection into processing chamber 110. The heat source 170 includes a controller 172, such as a programmable logic controller (PLC), which can be used to independently control each injection port 130 (if more than one injection port 130 is used), and adjust through the injection The temperature and/or flow of the pretreatment gas 180 of the mouth 130. The injection port 130 includes an injection port valve 140 for controlling the injection of the pretreatment gas 180 into the well screen 190 of the soil tank 120. For example, the injection port valve 140 can be opened to allow the pretreatment gas 180 to flow from the heat source 170 into the soil tank 120, or the injection port valve 140 can be closed to reject the pretreatment gas 180 from the heat source 170 from flowing into the soil tank 120. The operation of injecting the mouth valve 140 can be mechanically controlled, but the injection port valve 140 can be manually adjusted and/or electronically controlled (e.g., through the controller 172).

此外,注入埠口130包含注入埠口套筒150,其連接注入埠口130至土壤箱120的外壁150。注入埠口套筒150可縮回,或者可固定至注入埠口130。 In addition, the injection port 130 includes an injection jaw sleeve 150 that connects the injection port 130 to the outer wall 150 of the soil tank 120. The infusion mouthpiece 150 can be retracted or can be secured to the infusion port 130.

土壤批次的處理完成之後,後處理氣體185可通過後處理氣體離開路徑198而離開土壤箱120與處理腔室110。後處理氣體185可在回收利用系統中進一步處理,其包含冷凝受污染土壤125析取的可冷凝碳氫化合物污染。回收利用處理進一步包含使用非冷凝的可冷凝碳氫化合物污染及/或不可冷凝的碳氫化合物污染來重新加熱後處理氣體185,後處理氣體185將回收作為預處理氣體180及/或加熱作為預處理氣體180的新鮮空氣。 After the processing of the soil batch is complete, the after-treatment gas 185 can exit the soil tank 120 and the processing chamber 110 through the post-treatment gas exit path 198. The aftertreatment gas 185 can be further processed in a recycling system that includes condensation of condensable hydrocarbons that are condensed by the contaminated soil 125. The recycling process further includes reheating the aftertreatment gas 185 using non-condensing condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination, and the aftertreatment gas 185 will be recovered as a pretreatment gas 180 and/or heated as a pre-treatment The fresh air of the gas 180 is processed.

第2圖為本案較佳實施例之第1圖的土壤箱120的模組化加熱 配置。 2 is a modular heating of the soil tank 120 of the first embodiment of the preferred embodiment of the present invention. Configuration.

基本上,第2圖主要說明中心210、熱前端220、頂部部分230、與底部部分240。 Basically, FIG. 2 mainly illustrates the center 210, the hot front end 220, the top portion 230, and the bottom portion 240.

中心210(Epicenter)可置入受污染土壤125的熱中心點。注入埠口130可導引預處理氣體180進入井屏蔽幕190,之後可設置預處理氣體180進入受污染土壤125。中心210可定義為中心點,其中預處理氣體180離開井屏蔽幕190且散佈至受污染土壤125中。從中心210發出的熱前端220可隨著距離逐漸降低溫度,藉此降低其對於去吸附受污染土壤125的效用。熱前端220可限制於大約18至24英寸的距離,取決於土壤類型、溫度、污染類型等。熱前端220的距離的限制可透過注入埠口閥140、井屏蔽幕190的閥、及/或透過熱源170的輸出的機械式調整來機械式控制。熱前端220的距離的限制也可電子式控制,例如透過控制器172。 The center 210 (Epicenter) can be placed in the thermal center point of the contaminated soil 125. The injection port 130 can direct the pre-treatment gas 180 into the well screen 190, after which the pre-treatment gas 180 can be placed into the contaminated soil 125. The center 210 can be defined as a center point where the pretreatment gas 180 exits the well screen 190 and is dispersed into the contaminated soil 125. The hot front end 220 emanating from the center 210 can gradually decrease in temperature with distance, thereby reducing its utility for desorbing contaminated soil 125. The hot front end 220 can be limited to a distance of about 18 to 24 inches, depending on soil type, temperature, type of contamination, and the like. The limit of the distance of the hot front end 220 can be mechanically controlled by mechanical adjustment of the injection into the mouth valve 140, the valve of the well screen 190, and/or the output of the heat source 170. The limit of the distance of the thermal front end 220 can also be electronically controlled, such as through the controller 172.

土壤箱的模組化加熱配置可分成頂部部分230與底部部分240。在一或更多個實施例中,頂部部分230與底部部分240各包含至少一中心210(總共二或更多個中心210)。在一或更多個替代實施例中,頂部部分230與底部部分240合用單一中心210,該單一中心210分成兩半-代表頂部部分230的上半部以及代表底部部分240的下半部。 The modular heating arrangement of the soil tank can be divided into a top portion 230 and a bottom portion 240. In one or more embodiments, the top portion 230 and the bottom portion 240 each include at least one center 210 (two or more centers 210 in total). In one or more alternative embodiments, the top portion 230 and the bottom portion 240 utilize a single center 210 that is split into two halves - representing the upper half of the top portion 230 and the lower half representing the bottom portion 240.

底部部分240可配置成在頂部部分230接收預處理氣體180之前接收預處理氣體180,且反之亦然。頂部部分230可配置成僅在底部部分240處的土壤批次上的處理完成之後,開始接收預處理氣體180,且反之亦然。然而,頂部部分230處的開始接收預處理氣體180也可同步於底部部分240處的開始接收預處理氣體180。此外,頂部部分230處的開始接收預處理 氣體180可延遲於底部部分240處的開始接收預處理氣體180之後,且反之亦然。例如,頂部部分230處的開始接收預處理氣體180可配置成在底部部分240處的開始接收預處理氣體180之後延遲任意的時間間隔,例如5分鐘、10分鐘、20分鐘等。也可以相反的方式做相同的事,藉此,底部部分240開始接收預處理氣體180可配置成在頂部部分230開始接收預處理氣體180之後延遲任意的時間間隔。頂部部分230開始接收預處理氣體180以及底部部分240開始接收預處理氣體180可機械式及/或電子式控制,類似於上述的熱前端220的距離限制。 The bottom portion 240 can be configured to receive the pre-treatment gas 180 before the top portion 230 receives the pre-treatment gas 180, and vice versa. The top portion 230 can be configured to begin receiving the pretreatment gas 180 only after the processing on the soil batch at the bottom portion 240 is complete, and vice versa. However, the beginning of receiving the pretreatment gas 180 at the top portion 230 may also be synchronized to the beginning of receiving the pretreatment gas 180 at the bottom portion 240. In addition, the start receiving pre-processing at the top portion 230 Gas 180 may be delayed after the beginning of receiving pretreatment gas 180 at bottom portion 240, and vice versa. For example, the beginning receiving pretreatment gas 180 at the top portion 230 can be configured to delay any time interval, such as 5 minutes, 10 minutes, 20 minutes, etc., after the beginning of receiving the pretreatment gas 180 at the bottom portion 240. The same can be done in the opposite manner whereby the bottom portion 240 begins to receive the pre-treatment gas 180 can be configured to delay any time interval after the top portion 230 begins to receive the pre-treatment gas 180. The top portion 230 begins to receive the pre-treatment gas 180 and the bottom portion 240 begins to receive the pre-treatment gas 180 in a mechanical and/or electronic manner, similar to the distance limit of the thermal front end 220 described above.

在一或更多個實施例中,頂部部分230與底部部分240兩者包含二或更多個中心210。來自每一中心210的預處理氣體180的散布之熱前端220的設置可為連續或同時,或相對於特定組的中心210而改變。例如,使用具有總共六個中心210之第2圖的配置(在頂部部分230的三個中心210與在底部部分240的三個中心210),底部右邊的中心210可先設置熱前端220,之後經過任意的時間間隔,例如5分鐘或10分鐘,才是底部中央的中心210設置熱前端220。在另一任意的時間間隔之後(例如3分鐘或6分鐘),底部右邊的中心210可設置熱前端220。 In one or more embodiments, both the top portion 230 and the bottom portion 240 include two or more centers 210. The arrangement of the scattered thermal front ends 220 of the pretreatment gas 180 from each of the centers 210 may be continuous or simultaneous, or may be varied relative to a particular set of centers 210. For example, using a configuration having a second map of a total of six centers 210 (three centers 210 at the top portion 230 and three centers 210 at the bottom portion 240), the center 210 on the bottom right side may first set the hot front end 220, after which The thermal front end 220 is disposed at the center 210 of the bottom center at any time interval, such as 5 minutes or 10 minutes. After another arbitrary time interval (eg, 3 minutes or 6 minutes), the center 210 on the bottom right side may be provided with a hot front end 220.

頂部部分230處的三個中心210可用類似的方式進行配置。設置熱前端220的序列可交雜著來自頂部部分230的中心210與來自底部部分240的中心210。另一範例係在底部左邊的中心210設置熱前端220之前,配置頂部中央中心210與頂部右邊中心210同時設置熱前端220。頂部左邊中心210與底部右邊中心210可同時設置熱前端220或依序設置熱前端220。換句話說,在所有頂部部分230與底部部分240的中心210之中設置熱前端220的 任何組合與型態都可使用。在所有中心210之中設置熱前端220的特定組合或型態可取決於土壤批次的處理階段及/或該處理程序係操作於什麼狀況,例如土壤類型、溫度、汙染類型等。 The three centers 210 at the top portion 230 can be configured in a similar manner. The sequence of thermal front ends 220 can be interspersed with the center 210 from the top portion 230 and the center 210 from the bottom portion 240. In another example, before the hot front end 220 is disposed at the center 210 on the left side of the bottom, the top central center 210 and the top right center 210 are disposed simultaneously with the hot front end 220. The top left center 210 and the bottom right center 210 may simultaneously set the hot front end 220 or sequentially set the hot front end 220. In other words, the thermal front end 220 is disposed in the center 210 of all the top portion 230 and the bottom portion 240. Any combination and type can be used. The particular combination or type of thermal front ends 220 disposed among all of the centers 210 may depend on the processing stage of the soil lot and/or what conditions the process is operating on, such as soil type, temperature, type of contamination, and the like.

在一或更多個實施例中,可使用土壤箱120的頂部部分230與底部部分240在不同時間不同部分去吸附土壤箱120內的受污染土壤125。土壤箱120的底部部分240的一或更多個中心210可在頂部部分230的一或更多個中心210設置熱前端220之前設置熱前端220,以產生乾燥、加熱、及/或破裂的土壤的通道於受污染土壤125的底部部分240,使得頂部部分230的蒸發的污染可在頂部部分230的中心210設置熱前端220進入周圍的受污染土壤125時行經該通道。 In one or more embodiments, the top portion 230 of the soil tank 120 and the bottom portion 240 can be used to adsorb contaminated soil 125 within the soil tank 120 at different times and at different times. One or more centers 210 of the bottom portion 240 of the soil tank 120 may provide a hot front end 220 prior to providing the hot front end 220 at one or more centers 210 of the top portion 230 to produce dry, heated, and/or fractured soil The passage is in the bottom portion 240 of the contaminated soil 125 such that the vaporized contamination of the top portion 230 can pass through the passage when the center 210 of the top portion 230 is disposed with the hot front end 220 entering the surrounding contaminated soil 125.

透過從井屏蔽幕190釋放預處理氣體180來設置熱前端220可為脈衝式的,以避免例如空氣流動、壓力等狀況接近或保持在穩定狀態。穩態系統可為具有至少一特性或狀況是不變的系統。預處理氣體180的脈衝式注入可提高土壤箱內的熵,且可有助於去除來自受污染土壤125的污染及/或粒子,藉此打開通道給污染流動通過,最終導致效率較高的去吸附處理。 The thermal front end 220 can be pulsed by releasing the pre-treatment gas 180 from the well screen 190 to prevent conditions such as air flow, pressure, etc. from approaching or remaining in a steady state. The steady state system can be a system that has at least one characteristic or condition that is constant. The pulsed injection of the pretreatment gas 180 can increase the entropy in the soil tank and can help to remove contamination and/or particles from the contaminated soil 125, thereby opening the passage for the flow of pollution, ultimately resulting in higher efficiency. Adsorption treatment.

除了以脈衝方式釋放預處理氣體180至受污染土壤125的能力之外,預處理氣體180的溫度可透過熱源170的調整、透過隨後的預處理氣體180的注入而逐漸升高或逐漸降低。預處理氣體180進入土壤箱120的流動可透過抽風扇的調整而逐漸升高或逐漸降低。每個中心210可獨立地控制,使得受污染土壤125的不同部分可接收相關於溫度及/或流動的不同處理。第3圖的排氣閥310可關閉,以保留累積的壓力(來自預處理氣體180的注入)於土壤箱120及/或處理腔室110內。 In addition to the ability to pulsing the pretreatment gas 180 to the contaminated soil 125 in a pulsed manner, the temperature of the pretreatment gas 180 can be gradually increased or decreased by adjustment of the heat source 170, through subsequent injection of the pretreatment gas 180. The flow of the pretreatment gas 180 into the soil tank 120 can be gradually increased or gradually decreased by the adjustment of the fan. Each center 210 can be independently controlled such that different portions of the contaminated soil 125 can receive different treatments related to temperature and/or flow. The exhaust valve 310 of FIG. 3 can be closed to retain accumulated pressure (injection from the pretreatment gas 180) within the soil tank 120 and/or the processing chamber 110.

第3圖為第2圖的模組化加熱配置,用於偵測及/或量測後處理氣體185的參數。 Figure 3 is a modularized heating configuration of Figure 2 for detecting and/or measuring the parameters of the post-treatment gas 185.

基本上,第3圖說明介紹排氣閥310與參數感測器320之作用。 Basically, FIG. 3 illustrates the function of the exhaust valve 310 and the parametric sensor 320.

排氣閥310位在後處理氣體離開路徑198處。後處理氣體185可為預處理氣體180通過受污染土壤125所產生的產物,藉此蒸發揮發性碳氫化合物污染。後處理氣體185包含可冷凝的碳氫化合物污染及/或不可凝結的碳氫化合物污染。當後處理氣體185從處理腔室110流動時,參數感測器320可配置來偵測及/或監測後處理氣體185的一或更多個參數。後處理氣體185的參數包含一氧化碳濃度、氧濃度、碳氫化合物濃度、溫度、流量、及/或濕度。反饋機制可根據來自參數感測器320的輸入而調節預處理氣體180的參數。 The exhaust valve 310 is located at the aftertreatment gas exit path 198. The aftertreatment gas 185 can be the product produced by the pretreatment gas 180 through the contaminated soil 125, thereby evaporating volatile hydrocarbon contamination. The aftertreatment gas 185 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination. As the after-treatment gas 185 flows from the processing chamber 110, the parameter sensor 320 can be configured to detect and/or monitor one or more parameters of the after-treatment gas 185. The parameters of the aftertreatment gas 185 include carbon monoxide concentration, oxygen concentration, hydrocarbon concentration, temperature, flow rate, and/or humidity. The feedback mechanism can adjust the parameters of the pre-treatment gas 180 based on input from the parametric sensor 320.

在一或更多個實施例中,揭露一種土壤箱120受污染土壤125部分之加熱方法。注入埠口130可導引熱源170的預處理氣體180至井屏蔽幕190中。中心210可設置熱前端220進入周圍的受污染土壤125中,藉此蒸發揮發性碳氫化合物污染,蒸發的揮發性碳氫化合物污染然後可通過後處理氣體離開路徑198而流出土壤箱120與處理腔室110,如同後處理氣體185。 In one or more embodiments, a method of heating a portion of contaminated soil 125 of soil tank 120 is disclosed. The injection port 130 can direct the pretreatment gas 180 of the heat source 170 into the well screen 190. The center 210 can be configured to enter the hot front end 220 into the surrounding contaminated soil 125, thereby evaporating volatile hydrocarbon contamination, and the vaporized volatile hydrocarbon contamination can then exit the soil tank 120 and be treated by the post-treatment gas leaving the path 198. The chamber 110 is like the aftertreatment gas 185.

受污染土壤125個別區域的加熱可配置成一次單一區域釋放預處理氣體180至周圍的受污染土壤125中。一旦從中心210發出的熱前端220去吸附來自受污染土壤125的目標區域的污染,參數感測器320可偵測及/或量測流過的產生的後處理氣體185的一或更多個參數。來自參數感測器320的資料輸入可識別與分析受污染土壤125正被加熱單一區域的內容物。例如,如果參數感測器320指出單一區域的後處理氣體185有高位準的一氧 化碳濃度(這可指出單一區域的不完整處理),則額外的預處理氣體185可注入進入受污染土壤125的該單一區域,直到參數感測器320達到較低一氧化碳數據。 Heating of individual regions of the contaminated soil 125 can be configured to release the pretreatment gas 180 to the surrounding contaminated soil 125 in a single zone at a time. Once the hot front 220 from the center 210 desorbs contamination from the target area of the contaminated soil 125, the parameter sensor 320 can detect and/or measure one or more of the generated post-process gases 185 flowing. parameter. The data input from the parametric sensor 320 identifies and analyzes the contents of the single area where the contaminated soil 125 is being heated. For example, if parameter sensor 320 indicates that a single region of aftertreatment gas 185 has a high level of oxygen The carbon concentration (which may indicate an incomplete treatment of a single zone) may be injected into the single zone of contaminated soil 125 until the parameter sensor 320 reaches lower carbon monoxide data.

上述任何參數可進行相同的處理。參數感測器320的低流量數據可表示受污染土壤125的該單一區域可能堵塞,或者負責該單一區域的熱前端之注入埠口130及/或井屏幕190可能堵塞。參數感測器320的高濕度數據可表示受污染土壤125的該單一區域可能具有高的水分含量,且反之亦然。 Any of the above parameters can be processed the same. The low flow data of the parametric sensor 320 may indicate that the single region of the contaminated soil 125 may be clogged, or that the injection port 130 and/or the well screen 190 responsible for the hot front end of the single region may be clogged. The high humidity data of the parametric sensor 320 may indicate that the single region of the contaminated soil 125 may have a high moisture content, and vice versa.

第4圖為第2圖的模組化加熱配置的中心210的熱前端的變化示意圖。 Fig. 4 is a schematic diagram showing the change of the thermal front end of the center 210 of the modular heating arrangement of Fig. 2.

基本上,第4圖說明熱前端A 410、熱前端B 420、熱前端C 430、與終端距離440。 Basically, FIG. 4 illustrates the hot front end A 410, the hot front end B 420, the hot front end C 430, and the terminal distance 440.

第2圖的中心210可設置熱前端220進入受污染土壤125。 The center 210 of FIG. 2 can provide the hot front end 220 into the contaminated soil 125.

熱前端A 410距離中心210任意設定的距離。熱前端A 410溫度高於熱前端B 420,前兩者溫度高於熱前端C 430,所有熱前端溫度高於終端距離440。終端距離440可定義為中心210量測的熱前端220的有效距離。中心210的終端距離440之外的受污染土壤125不會受到該處理程序的影響。 The hot front end A 410 is arbitrarily set a distance from the center 210. The hot front end A 410 temperature is higher than the hot front end B 420, the first two temperatures are higher than the hot front end C 430, and all hot front end temperatures are higher than the end distance 440. The terminal distance 440 can be defined as the effective distance of the thermal front end 220 measured by the center 210. The contaminated soil 125 outside the terminal distance 440 of the center 210 is not affected by the processing procedure.

在一或更多個實施例中,揭露包含模組化加熱配置的土壤箱120。模組化加熱配置包含一或更多個中心210,以設置熱前端220進入土壤箱120內的受污染土壤125中。熱前端220可具有限的終端距離440,例如,18英寸、20英寸或25英寸。終端距離440可手動限制至所欲的距離。熱前端220距離的限制可透過注入埠口閥140、井屏蔽幕190的閥、及/或透過熱源170 的輸出的機械式調整來機械式控制。熱前端220的距離的限制也可電子式控制,例如透過控制器172。 In one or more embodiments, a soil tank 120 comprising a modular heating arrangement is disclosed. The modular heating arrangement includes one or more centers 210 to set the hot front end 220 into the contaminated soil 125 within the soil tank 120. Thermal front end 220 can have a limited terminal distance 440, such as 18 inches, 20 inches, or 25 inches. The terminal distance 440 can be manually limited to the desired distance. The distance of the hot front end 220 can be limited by the injection of the mouth valve 140, the valve of the well screen 190, and/or the heat source 170. The mechanical adjustment of the output is mechanically controlled. The limit of the distance of the thermal front end 220 can also be electronically controlled, such as through the controller 172.

多個中心210可策略性地間隔開,以最佳化的去吸附處理加熱狀況。例如,兩個中心210之間隔允許受污染土壤125的最大熱覆蓋。此間距可為中心210的終端距離440的兩倍距離,例如36英寸、40英寸或50英寸,以符合終端距離440的上述範例距離。然而,其他配置亦可。舉例來說,如果土壤類型、水分含量、污染、及/或處理程序的環境狀況使熱前端C 430無效,則多個中心210之間的最佳距離可以以重疊土壤箱120中的多個中心210的多個熱前端220之中的熱前端C 430的所有區域的方式來配置。 The plurality of centers 210 can be strategically spaced to optimize the desorption treatment of the heating conditions. For example, the spacing of the two centers 210 allows for maximum thermal coverage of the contaminated soil 125. This spacing may be twice the distance of the center 210 from the terminal distance 440, such as 36 inches, 40 inches, or 50 inches, to meet the above exemplary distance of the terminal distance 440. However, other configurations are also possible. For example, if the soil type, moisture content, contamination, and/or environmental conditions of the treatment process render the hot front end C 430 ineffective, the optimal distance between the plurality of centers 210 may overlap multiple centers in the soil tank 120 A plurality of hot front ends 220 of 210 are disposed in a manner of all areas of the hot front end C 430.

第5圖達成接下來要解決之土壤箱內的冷凝的問題。 Figure 5 concludes the problem of condensation in the soil tank to be solved next.

基本上,第5圖介紹受污染土壤125內的冷凝510。 Basically, Figure 5 illustrates condensation 510 in contaminated soil 125.

本案之土壤蒸發去吸附處理的系統係在一或更多個實施例中揭露。本發明的優點為第2圖的模組化加熱的配置,藉此可去吸附受污染土壤125的預處理氣體180可在頂部部分230的多個中心210處與底部部分240的多個中心210處直接注入土壤箱120中。在一或更多個實施例中,可在加熱頂部部分230的一或更多個中心210之前,加熱底部部分240的一或更多個中心210,以最少化或消除冷凝510,冷凝510會從先前技術的熱去吸附系統累積,其中預處理氣體180注入土壤箱120的頂部中,且在後處理氣體離開路徑198處的土壤箱120的底部處被吸出。 The soil evaporation desorption treatment system of the present invention is disclosed in one or more embodiments. An advantage of the present invention is the modularized heating configuration of Figure 2, whereby the pretreatment gas 180 that can desorb contaminated soil 125 can be at a plurality of centers 210 of the top portion 230 and a plurality of centers 210 of the bottom portion 240. It is directly injected into the soil tank 120. In one or more embodiments, one or more centers 210 of the bottom portion 240 may be heated prior to heating one or more centers 210 of the top portion 230 to minimize or eliminate condensation 510, which may Accumulation from the prior art thermal desorption system wherein pretreatment gas 180 is injected into the top of the soil tank 120 and is withdrawn at the bottom of the soil tank 120 where the aftertreatment gas exits the path 198.

在過去的系統中,預處理氣體180可通過土壤箱120的頂部,且可去吸附最暴露於預處理氣體的頂表面附近的受污染土壤125。然而,由於含有水之蒸發的揮發性污染與其他蒸發化合物開始向下流向後氣體離開 路徑198,冷凝510之形成,係由於位於土壤箱120中下部的密集冷却(Dense Cold)受污染土壤125而形成。此冷凝510對於預處理氣體180的輸入與變乾燥且最終蒸發的時間來說,需要巨大的能量。除了在受污染土壤125的底部部分240處提供乾燥、加熱、及/或破裂的土壤的通道來給頂部部分230處的蒸發污染流過之外,本發明可最少化或可能消除處理系統的冷凝510。 In past systems, pretreatment gas 180 may pass through the top of soil tank 120 and may desorb contaminated soil 125 that is most exposed to the top surface of the pretreatment gas. However, due to the volatile contamination of the evaporation containing water and other evaporating compounds begin to flow backwards to the gas leaving Path 198, the formation of condensation 510, is due to densely cooled (Dense Cold) contaminated soil 125 located in the lower portion of soil tank 120. This condensation 510 requires a significant amount of energy for the input of the pretreatment gas 180 and the time it takes to dry and eventually evaporate. In addition to providing a path for dry, heated, and/or ruptured soil at the bottom portion 240 of the contaminated soil 125 to flow evaporative contamination at the top portion 230, the present invention minimizes or may eliminate condensation of the processing system. 510.

第6圖為本案較佳實施例之注入埠口套筒150的操作,注入埠口套筒150連接注入埠口130至第1圖的土壤箱120。 Figure 6 is an illustration of the operation of injecting the mouthpiece sleeve 150 of the preferred embodiment of the present invention. The injection port sleeve 150 is coupled to the injection port 130 to the soil tank 120 of Figure 1.

基本上,第6圖詳細說明了注入埠口套筒延伸位置610與注入埠口套筒縮回位置620,這兩者都可為注入埠口套筒150的不同配置。 Basically, FIG. 6 details the injection jaw sleeve extension position 610 and the injection jaw sleeve retraction position 620, both of which may be different configurations of the injection jaw sleeve 150.

當土壤箱120安裝在處理腔室110內時,注入埠口套筒延伸位置610可用於將注入埠口130連接至土壤箱120。注入埠口套筒延伸位置610可接合通過氣動活塞設備,氣動活塞設備定位在注入埠口130處且推動注入埠口套筒150進入注入埠口套筒延伸位置610配置。注入埠口套筒延伸位置610包含在其接觸邊緣處的可再密封的密封化合物。當注入埠口套筒150鎖固在定位時,密封化合物可最小化或防止預處理氣體180從注入埠口130與土壤箱120之間的接觸點洩漏。注入埠口套筒延伸位置610與注入埠口套筒縮回位置620兩者可以以允許預處理氣體180的洩漏被容納在處理腔室110內的方式來配置,使得它的負面影響可忽略不計。注入埠口套筒150可被配置成當它處於注入埠口套筒縮回位置620配置時,絕不設置超出處理腔室110。 When the soil tank 120 is installed within the processing chamber 110, the injection port sleeve extension location 610 can be used to connect the injection port 130 to the soil tank 120. The injection mouthpiece extension position 610 can be engaged through a pneumatic piston device positioned at the injection port 130 and urge the injection port sleeve 150 into the injection port sleeve extension position 610 configuration. The injection mouthpiece extension location 610 includes a resealable sealing compound at its contact edge. The sealing compound can minimize or prevent leakage of the pretreatment gas 180 from the point of contact between the injection port 130 and the soil tank 120 when the injection jaw sleeve 150 is locked in position. Both the injection mouthpiece extension position 610 and the injection mouthpiece retracted position 620 can be configured in a manner that allows leakage of the pretreatment gas 180 to be contained within the processing chamber 110 such that its negative impact is negligible . The injection mouthpiece sleeve 150 can be configured to never be disposed beyond the processing chamber 110 when it is configured in the injection mouthpiece retracted position 620.

在一或更多個替代實施例中,注入埠口套筒150可為無法縮回的,但是可在結構上固定至注入埠口130。擴張接頭(例如,波紋管)可 使用作為注入埠口套筒150。擴張接頭可能需要手動鎖固機構,當土壤箱120安裝在處理腔室110時,手動鎖固機構將擴張接頭鎖固至土壤箱120上。鎖固機構可為將擴張接頭鎖固至土壤箱120上的任何機構,例如螺絲、螺母與螺栓、扭鎖接頭,門鉤等。當土壤箱120準備要從處理腔室110移除時,也可能需要互補的手動去鎖固機構。 In one or more alternative embodiments, the infusion mouthpiece 150 can be non-retractable, but can be structurally secured to the infusion port 130. Expansion joint (for example, bellows) It is used as an injection porter sleeve 150. The expansion joint may require a manual locking mechanism that locks the expansion joint to the soil tank 120 when the soil tank 120 is installed in the processing chamber 110. The locking mechanism can be any mechanism that locks the expansion joint to the soil tank 120, such as screws, nuts and bolts, twist-lock fittings, door hooks, and the like. A complementary manual de-locking mechanism may also be required when the soil tank 120 is ready to be removed from the processing chamber 110.

手動鎖固或手動去鎖固該擴張接頭可自動鎖固與自動去鎖固,例如透過位於擴張接頭的接觸邊緣處的接合器,該接合器可允許擴張接頭透過土壤箱120降低與升高出處理腔室110的垂直滑動運動而接合與去接合於土壤箱120。擴張接頭的自動鎖固與自動去鎖固也可配置成使得擴張接頭在土壤箱120安裝於處理腔室110內之後穿過土壤箱120的外壁160,且最終在土壤箱120內擴張。圍繞擴張接頭開孔的套筒可防止當擴張接頭由於來自預處理氣體180的注入之熱與壓力而擴張時擴張接頭縮出土壤箱120外。 Manually locking or manually de-locking the expansion joint for automatic locking and automatic de-locking, for example through an adapter at the contact edge of the expansion joint, the adapter allowing the expansion joint to be lowered and raised through the soil tank 120 The vertical sliding motion of the processing chamber 110 engages and disengages the soil tank 120. The automatic locking and automatic de-locking of the expansion joint can also be configured such that the expansion joint passes through the outer wall 160 of the soil tank 120 after the soil tank 120 is installed in the processing chamber 110 and eventually expands within the soil tank 120. The sleeve surrounding the expansion joint opening prevents the expansion joint from retracting out of the soil tank 120 when the expansion joint expands due to heat and pressure from the injection of the pretreatment gas 180.

在一或更多個實施例中,注入埠口130可定位在傾斜或對角位置中。傾斜或對角線位置可配置成注入埠口130向上指的方式,例如正45度角。傾斜或對角位置也可配置成注入埠口130向下指的方式,例如負20度角。當土壤箱120安裝在處理腔室110內時,注入埠口130的任何其他配置可用於連接至土壤箱120。 In one or more embodiments, the injection port 130 can be positioned in an inclined or diagonal position. The tilted or diagonal position can be configured to inject the mouth 130 upwardly, such as a positive 45 degree angle. The tilted or diagonal position may also be configured to inject the mouth 130 downwardly, such as a negative 20 degree angle. When the soil tank 120 is installed within the processing chamber 110, any other configuration of the infusion port 130 can be used to connect to the soil tank 120.

第7圖為本案較佳實施例之土壤箱120的替代的模組化加熱配置,其包含球形結構來散佈熱。 Figure 7 is an alternative modular heating arrangement of the soil tank 120 of the preferred embodiment of the present invention, which includes a spherical structure to dissipate heat.

基本上,第7圖介紹散佈球體710與導管720。 Basically, Figure 7 illustrates the scattering sphere 710 and the conduit 720.

在一或更多個實施例中,預處理氣體180通過注入埠口130 導引至土壤箱120中,土壤箱120包含受污染土壤125。預處理氣體180可由熱源170及/或惰性氣體(例如,透過加入氮氣)來加熱。預處理氣體180可透過導管720而設置進入受污染土壤125中,導管720包含散佈球體710係用於散佈熱前端220進入周圍的受污染土壤120。從散佈球體710發出的熱前端220可看起來不同於第1圖的井屏蔽幕190發出的熱前端220;然而,技術思想是相同的,因為這兩個熱前端220都包含中心210。隨著熱前端220移動遠離中心210,熱前端220的溫度會下降,直到熱前端220到達終端距離440,其中在那裡之後,熱前端220對於去吸附受污染土壤125不再有效果。 In one or more embodiments, the pretreatment gas 180 passes through the injection port 130 Guided into the soil tank 120, the soil tank 120 contains contaminated soil 125. The pretreatment gas 180 can be heated by a heat source 170 and/or an inert gas (e.g., by the addition of nitrogen). The pre-treatment gas 180 can be disposed through the conduit 720 into the contaminated soil 125, and the conduit 720 includes a dispersing sphere 710 for distributing the hot front end 220 into the surrounding contaminated soil 120. The hot front end 220 emanating from the spreading sphere 710 may look different from the hot front end 220 of the well screen 190 of Figure 1; however, the technical idea is the same since both hot front ends 220 contain the center 210. As the hot front 220 moves away from the center 210, the temperature of the hot front 220 will drop until the hot front 220 reaches the terminal distance 440, where after that the hot front 220 is no longer effective for desorbing the contaminated soil 125.

散佈球體710可為任何球形或橢圓形的結構,其可用金屬、纖維、或其他韌性材料的股線構成,且可類似於網絡或網狀,因為它可能具有許多附接或編織的股線。散佈球體710可使用於任何尺寸的量測與計數。如果系統中使用多於一個的散佈球體710,多個散佈球體710可被定向在多種方向中,例如單一個散佈球體710定位在頂部部分230處且三個散佈球體710定位在底部部分240處,或反之亦然。連接至散佈球體710的導管720也可定向在多種配置中,例如相對於土壤箱120為垂直及/或對角線的。 The diffusing sphere 710 can be any spherical or elliptical structure that can be constructed of strands of metal, fiber, or other ductile material, and can be similar to a network or mesh because it can have many strands of attached or braided strands. The scattering sphere 710 can be used for measurement and counting of any size. If more than one scatter sphere 710 is used in the system, the plurality of scatter spheres 710 can be oriented in a variety of directions, such as a single scatter sphere 710 positioned at the top portion 230 and three scatter spheres 710 positioned at the bottom portion 240, Or vice versa. The conduit 720 coupled to the spreading sphere 710 can also be oriented in a variety of configurations, such as being vertical and/or diagonal with respect to the soil tank 120.

第8圖為本案較佳實施例之土壤箱120的另一替代模組化加熱配置,該模組化加熱配置包含連接至土壤箱120的底部之注入埠口130。 8 is another alternative modular heating arrangement of the soil tank 120 of the preferred embodiment of the present invention, the modular heating arrangement including an injection port 130 coupled to the bottom of the soil tank 120.

基本上,第8圖介紹注入埠口接合器820。 Basically, Figure 8 illustrates an injection port adapter 820.

本案之土壤蒸發去吸附系統揭露在一或更多個實施例中。預處理氣體180可在熱源170中加熱,並且可通過注入埠口130導引至土壤箱120中,土壤箱120包含受污染土壤125。注入埠口130可通過土壤箱120的底部而耦接於井屏蔽幕190及/或導管720。當注入埠口接合器820安裝在處理腔 室110內時,注入埠口接合器820可用於緩衝土壤箱120的撞擊。土壤箱120的安裝可自動連接注入埠口130的注入埠口接合器820至土壤箱120,藉此自動地耦接注入埠口130至土壤箱120的導管720及/或井屏蔽幕190。土壤箱120的重量可足以形成與注入埠口接合器820的密封。該密封可防止預處理氣體180從熱源170洩漏至處理腔室110中。 The soil evaporation desorption system of the present invention is disclosed in one or more embodiments. The pretreatment gas 180 can be heated in the heat source 170 and can be directed into the soil tank 120 through the injection port 130, which contains the contaminated soil 125. The injection port 130 can be coupled to the well screen 190 and/or the conduit 720 through the bottom of the soil tank 120. When the injection port adapter 820 is installed in the processing chamber Injecting the mouthpiece adapter 820 can be used to cushion the impact of the soil tank 120. The installation of the soil tank 120 can automatically connect the injection port adapter 820 of the injection port 130 to the soil tank 120, thereby automatically coupling the conduit 720 and/or the well screen 190 of the injection port 130 to the soil tank 120. The weight of the soil tank 120 may be sufficient to form a seal with the infusion port adapter 820. This seal prevents pre-treatment gas 180 from leaking from heat source 170 into processing chamber 110.

井屏蔽幕190及/或導管720可配置成從土壤箱120的底部垂直地直線至土壤箱120的頂部。在一或更多個替代實施例中,井屏蔽幕190及/或導管720可配置成Z字形的圖案,或者具有水平與垂直圖案的組合的配置。 The well screen 190 and/or conduit 720 can be configured to line straight from the bottom of the soil tank 120 to the top of the soil tank 120. In one or more alternative embodiments, the well screen 190 and/or the conduit 720 can be configured in a zigzag pattern, or a configuration having a combination of horizontal and vertical patterns.

第9A與9B圖為本案較佳實施例之土壤箱120的安裝,具有土壤箱120的又另一替代模組化加熱配置。 9A and 9B illustrate the installation of the soil tank 120 of the preferred embodiment of the present invention, with yet another alternative modular heating arrangement for the soil tank 120.

基本上,第9A與9B圖介紹井屏蔽幕開孔910、彈簧920、以及基座支座930。 Basically, the 9A and 9B drawings illustrate the well screen opening 910, the spring 920, and the base support 930.

在一或更多個實施例中,土壤箱120包含受污染土壤125,且可安裝在處理腔室110內。預處理氣體180可從熱源170通過注入埠口130至土壤箱120的導管720及/或井屏蔽幕190中。中心210可設置熱前端220進入受污染土壤125。井屏蔽幕190及/或導管720包含井屏蔽幕開孔910,井屏蔽幕開孔910可配置來耦接於注入埠口130。當土壤箱120安裝在處理腔室110內時,包含井屏蔽幕開孔910之土壤箱120的邊緣可接觸位於注入埠口130的接觸邊緣處的凸緣。包含彈簧920的凸緣可推向注入埠口130的側壁,因為土壤箱120的重量。注入埠口130的凸緣包含密封,以防止預處理氣體洩漏至處理腔室110中。 In one or more embodiments, the soil tank 120 contains contaminated soil 125 and may be mounted within the processing chamber 110. Pretreatment gas 180 may pass from heat source 170 through injection port 130 to conduit 720 and/or well screen 190 of soil tank 120. The center 210 can set the thermal front end 220 into the contaminated soil 125. The well screen 190 and/or conduit 720 includes a well screen opening 910 that can be configured to be coupled to the injection port 130. When the soil tank 120 is installed within the processing chamber 110, the edge of the soil tank 120 containing the well screen opening 910 can contact the flange at the contact edge of the injection port 130. The flange containing the spring 920 can be pushed toward the side wall of the infusion port 130 because of the weight of the soil tank 120. The flange of the injection port 130 includes a seal to prevent pre-treatment gas from leaking into the processing chamber 110.

凸緣可配置作為注入埠口130的開孔,其可較寬於井屏蔽幕開孔910。土壤箱120的重力與彈簧920的位能之間的反作用力可形成注入埠口130與井屏蔽幕開孔910之間的密封。基座支座930可支撐土壤箱120的重量,且可防止土壤箱120的向下力對於注入埠口130與其凸緣的損傷。當土壤箱120從處理腔室110移除時,彈簧920可施加其位能來移動凸緣回到其原來的靜止位置中。 The flange can be configured as an opening for the injection port 130 that can be wider than the well screen opening 910. The reaction between the gravity of the soil tank 120 and the potential energy of the spring 920 can form a seal between the injection port 130 and the well screen opening 910. The base support 930 can support the weight of the soil tank 120 and can prevent damage to the injection port 130 and its flange by the downward force of the soil tank 120. When the soil tank 120 is removed from the processing chamber 110, the spring 920 can apply its potential energy to move the flange back into its original rest position.

在一或更多個替代實施例中,凸緣可無法移動地固定至注入埠口130。土壤箱120的井屏蔽幕開孔910可配置來耦接於注入埠口130,而無需彈簧920。凸緣可配置作為注入埠口130的開孔,其可較寬於井屏蔽幕開孔910。注入埠口130的凸緣包含密封,以防止預處理氣體洩漏至處理腔室110中。基座支座930可支撐土壤箱120的重量,且可防止土壤箱120的向下力對於注入埠口130與其凸緣的損傷。 In one or more alternative embodiments, the flange may be immovably secured to the injection port 130. The well screen opening 910 of the soil tank 120 can be configured to be coupled to the injection port 130 without the need for a spring 920. The flange can be configured as an opening for the injection port 130 that can be wider than the well screen opening 910. The flange of the injection port 130 includes a seal to prevent pre-treatment gas from leaking into the processing chamber 110. The base support 930 can support the weight of the soil tank 120 and can prevent damage to the injection port 130 and its flange by the downward force of the soil tank 120.

在其他實施例中,注入端埠口130可不包含凸緣。當土壤箱120安裝在處理腔室110內時,土壤箱120的井屏蔽幕開孔910可直接耦接至注入埠口130。基座支座930可支撐土壤箱120的重量,且可防止土壤箱120的向下力對於注入埠口130的損傷。注入埠口130的開孔可大於井屏蔽幕開孔910的開孔。 In other embodiments, the injection port mouth 130 may not include a flange. When the soil tank 120 is installed in the processing chamber 110, the well screen opening 910 of the soil tank 120 can be directly coupled to the injection port 130. The base support 930 can support the weight of the soil tank 120 and can prevent damage to the injection port 130 by the downward force of the soil tank 120. The opening of the injection port 130 may be larger than the opening of the well screen opening 910.

第10A與10B圖為本案較佳實施例之土壤箱120的替代配置。 10A and 10B are diagrams showing an alternative configuration of the soil tank 120 of the preferred embodiment of the present invention.

基本上,第10A與10B圖介紹井屏蔽套筒1010與網格1020。 Basically, the 10A and 10B drawings illustrate the well shield sleeve 1010 and the grid 1020.

井屏蔽幕套筒1010可配置來垂直保持井屏蔽幕190在定位。井屏蔽幕190可為可移除的,而井屏蔽幕套筒1010可允許容易安裝井屏蔽幕190。井屏蔽幕190可延伸超出土壤箱120,以用於容易處理,特別是當井屏 蔽幕190由於使用所以是熱的時。技術人員可能需要更換或翻新可能堵塞或損壞的井屏蔽幕190。井屏蔽幕190延伸超過土壤箱120的部分的直徑可小於注入埠口130、注入埠口套筒150及/或注入埠口130凸緣的直徑。井屏蔽幕190延伸超過土壤箱120的部分的長度可配置成不直接接觸於注入埠口130、注入埠口套筒150及/或注入埠口130凸緣。 The well screen curtain sleeve 1010 can be configured to vertically maintain the well screen 190 in position. The well screen 190 can be removable, while the well screen sleeve 1010 can allow for easy installation of the well screen 190. The well screen 190 can extend beyond the soil tank 120 for easy handling, particularly when the well screen The curtain 190 is hot when used. The technician may need to replace or refurbish the well screen 190 that may be clogged or damaged. The diameter of the portion of the well screen 190 that extends beyond the soil tank 120 can be less than the diameter of the injection port 130, the injection port sleeve 150, and/or the flange of the injection port 130. The length of the portion of the well screen 190 that extends beyond the soil tank 120 can be configured to not directly contact the injection port 130, the injection port sleeve 150, and/or the injection port 130 flange.

在一或更多個實施例中,井屏蔽幕190可不具有延伸超過土壤箱120的部分。可能不被井屏蔽幕套筒1010支撐之井屏蔽幕190的邊緣可齊平於土壤箱120的對應邊緣。不被井屏蔽幕套筒1010支撐之井屏蔽幕190的邊緣可由不同組的套筒或支架支撐。根據一或更多個實施例,除了被井屏蔽幕套筒1010支撐之外,屏幕190可被鎖固至定位,例如螺栓連接或螺紋連接至土壤箱120的邊緣處的土壤箱120(土壤箱120的邊緣包含井屏蔽幕套筒1010),使得井屏蔽幕190可不因操作的振動而水平滑動鬆動。 In one or more embodiments, the well screen 190 may not have a portion that extends beyond the soil tank 120. The edges of the well screen 190 that may not be supported by the well screen sleeve 1010 may be flush with the corresponding edges of the soil tank 120. The edges of the well screen 190 that are not supported by the well screen sleeve 1010 can be supported by different sets of sleeves or brackets. In accordance with one or more embodiments, in addition to being supported by the well screen curtain sleeve 1010, the screen 190 can be locked to a position, such as a soil box 120 that is bolted or threaded to the edge of the soil tank 120 (soil tank) The edge of the 120 includes a well screen curtain sleeve 1010) such that the well screen 190 can be horizontally loosened due to vibration of the operation.

網格1020可為由金屬、纖維、或者可類似於網絡或網狀的其他韌性材料的連接股線所製成的阻障,因為它可具有許多附接或編織的股線。網格1020可操作來允許後處理氣體185流經受污染土壤125進入後處理氣體離開路徑198,並且可篩選出灰塵、土壤、淤泥、粘土、沙子、岩石、與受污染土壤125內的其他固體材料。網格1020可允許預處理氣體180流過之較高的空氣傳導性與速度,因為其大的表面積可與受污染土壤125接觸。除了上述大的表面積可與受污染土壤125接觸之外,網格1020的頂部、圓頂形表面可提供抗壓強度給網格1020。此外,網格1020的頂部、圓頂形表面可配置成離後處理氣體離開路徑198的開孔有一段距離,該距離足以防止灰塵、土壤、淤泥、粘土、沙子、岩石、與其他固體材料堵塞後處理氣體離 開路徑198的開孔。從網格1020的頂部、圓頂形表面至後處理氣體離開路徑198的開孔之距離可為5英寸至12英寸,例如7英寸或9英寸。 Grid 1020 can be a barrier made of metal, fiber, or a connecting strand of other malleable material that can be similar to a network or mesh, as it can have many attached or braided strands. The grid 1020 is operable to allow the flow of aftertreatment gas 185 to be subjected to contaminated soil 125 into the aftertreatment gas exit path 198 and to screen out dust, soil, sludge, clay, sand, rock, and other solid materials within the contaminated soil 125. . Grid 1020 may allow for higher air conductivity and velocity through which pretreatment gas 180 flows because its large surface area may be in contact with contaminated soil 125. In addition to the large surface area described above being contactable with contaminated soil 125, the top, dome-shaped surface of mesh 1020 can provide compressive strength to grid 1020. Additionally, the top, dome-shaped surface of the grid 1020 can be configured to be at a distance from the opening of the post-treatment gas exit path 198 that is sufficient to prevent clogging of dust, soil, sludge, clay, sand, rock, and other solid materials. After treatment gas Open the opening of path 198. The distance from the top of the grid 1020, the dome shaped surface to the opening of the aftertreatment gas exit path 198 may be from 5 inches to 12 inches, such as 7 inches or 9 inches.

第11圖為本案較佳實施例之僅包含單一中心210與單一熱前端220的土壤箱120的又另一替代性模組化加熱配置。 11 is yet another alternative modular heating arrangement for the soil tank 120 comprising only a single center 210 and a single hot front end 220 in accordance with a preferred embodiment of the present invention.

基本上,第11圖介紹距離A 1110、距離B 1120、與參考線1130。 Basically, Fig. 11 shows distance A 1110, distance B 1120, and reference line 1130.

在一或更多個實施例中,熱去吸附系統的土壤箱120包含如同第2圖所述的模組化加熱配置。模組化加熱配置也可僅包含單一中心210與單一熱前端220,其中單一中心210與單一熱前端220可位於土壤箱120的中點之上,例如較靠近土壤箱120的頂部,相較於土壤箱120的底部來說。距離A 1110可代表單一中心210與土壤箱120的頂部(例如,可密封的蓋件122)之間的距離。距離B 1120可代表單一中心210與土壤箱120的底部表面之間的距離。參考線1130可為代表土壤箱120的垂直位置之線。參考線1130可允許容易比較距離A 1110與距離B 1120之間。 In one or more embodiments, the soil tank 120 of the thermal desorption system includes a modular heating configuration as described in FIG. The modular heating arrangement may also include only a single center 210 and a single thermal front end 220, wherein a single center 210 and a single hot front end 220 may be located above the midpoint of the soil tank 120, such as closer to the top of the soil tank 120, as compared to The bottom of the soil tank 120 is. The distance A 1110 may represent the distance between the single center 210 and the top of the soil tank 120 (eg, the sealable cover 122). The distance B 1120 may represent the distance between the single center 210 and the bottom surface of the soil tank 120. Reference line 1130 can be a line representing the vertical position of soil tank 120. Reference line 1130 may allow for easy comparison between distance A 1110 and distance B 1120.

在一或更多個實施例中,單一中心210可位於較靠近土壤箱120的頂部,使得距離A 1110小於距離B 1130。中心210的這種配置可允許受污染土壤125內的揮發性污染蒸發,且之後向下流向後處理氣體離開路徑198。氣體抽風扇可提供來自土壤箱120內的負壓,因此當負壓施加於土壤箱120時,拉動熱前端220與任何蒸發的污染向下。下拉的熱前端220可進一步去吸附位於中心210下方的受污染土壤125。距離A 1110與距離B 1130之間的所欲比率可為小於1/1(1.0)的任何比例,例如1/2(0.5)或1/3(0.33)。 In one or more embodiments, a single center 210 can be located closer to the top of the soil tank 120 such that the distance A 1110 is less than the distance B 1130. This configuration of the center 210 may allow volatile contamination within the contaminated soil 125 to evaporate and then flow downward to the post-treatment gas exit path 198. The gas extraction fan can provide a negative pressure from within the soil tank 120, so when a negative pressure is applied to the soil tank 120, the hot front end 220 is pulled down with any evaporation contamination. The pull-down thermal front end 220 can further adsorb contaminated soil 125 located below the center 210. The desired ratio between the distance A 1110 and the distance B 1130 may be any ratio less than 1/1 (1.0), such as 1/2 (0.5) or 1/3 (0.33).

第12A與12B圖為本案較佳實施例之用於循環熱去吸附的系 統與處理。 12A and 12B are diagrams showing a system for cyclic thermal desorption of the preferred embodiment of the present invention. System and processing.

基本上,第12A與12B圖介紹壓力感測器1210。 Basically, the pressure sensors 1210 are illustrated in Figures 12A and 12B.

在一或更多個實施例中,揭露用於循環熱去吸附的系統與處理。土壤箱120可配置來保持受污染土壤125,且可放置在處理腔室110中。預處理氣體180可提供至處理腔室110,例如,以加熱受污染土壤125來蒸發揮發性污染物。排氣閥310可關閉,例如,以增加土壤箱120及/或處理腔室110中的壓力。在土壤箱120及/或處理腔室110達到某個壓力之後,例如大氣壓力或高於大氣壓力的壓力(例如,大於1巴的壓力,例如2-10巴),排氣閥310可打開,這可降低土壤箱120及/或處理腔室110中的壓力。該處理可重複,直到受污染土壤125清潔完成。在排氣閥310打開的時間期間,預處理氣體180可繼續流動,或者可被關閉。 In one or more embodiments, systems and processes for circulating thermal desorption are disclosed. The soil tank 120 can be configured to hold the contaminated soil 125 and can be placed in the processing chamber 110. Pretreatment gas 180 may be provided to processing chamber 110, for example, to heat contaminated soil 125 to evaporate volatile contaminants. The exhaust valve 310 can be closed, for example, to increase the pressure in the soil tank 120 and/or the processing chamber 110. After the soil tank 120 and/or the processing chamber 110 reaches a certain pressure, such as atmospheric pressure or a pressure above atmospheric pressure (eg, a pressure greater than 1 bar, such as 2-10 bar), the exhaust valve 310 can be opened, This can reduce the pressure in the soil tank 120 and/or the processing chamber 110. This treatment can be repeated until the contaminated soil 125 is cleaned. During the time that the exhaust valve 310 is open, the pre-treatment gas 180 may continue to flow or may be shut down.

在一或更多個實施例中,耦接至排氣閥310的後處理氣體離開路徑198可打開至大氣壓力,或可耦接至真空組件,例如氣體抽風扇。為使後處理氣體離開路徑198打開至大氣壓力,土壤箱120及/或處理腔室110內的壓力可高於大氣壓力。為使後處理氣體離開路徑198耦接至真空組件,土壤箱120及/或處理腔室110內的壓力可處於或高於大氣壓力。 In one or more embodiments, the aftertreatment gas exit path 198 coupled to the exhaust valve 310 can be opened to atmospheric pressure or can be coupled to a vacuum assembly, such as a gas extraction fan. To allow the aftertreatment gas to exit path 198 to atmospheric pressure, the pressure within soil tank 120 and/or processing chamber 110 may be higher than atmospheric pressure. To couple the aftertreatment gas exit path 198 to the vacuum assembly, the pressure within the soil tank 120 and/or the processing chamber 110 can be at or above atmospheric pressure.

第13圖為本案較佳實施例之循環熱去吸附的土壤配置。 Figure 13 is a view showing the configuration of a circulating heat desorption soil in the preferred embodiment of the present invention.

第13圖具體介紹岩石1310。 Figure 13 details the rock 1310.

在一或更多個實施例中,揭露用於循環熱去吸附處理的土壤配置。土壤箱120可配置來保持受污染土壤125,且可放置在處理腔室110中。岩石1310可設置於土壤箱120中,以改良通過土壤箱120的流動傳導性。岩石1310提供的高流動傳導性可有助於釋放處理腔室110的壓力,其可改良 循環熱去吸附處理的產量。 In one or more embodiments, a soil configuration for a cyclic thermal desorption process is disclosed. The soil tank 120 can be configured to hold the contaminated soil 125 and can be placed in the processing chamber 110. Rocks 1310 can be disposed in the soil tank 120 to improve flow conductivity through the soil tank 120. The high flow conductivity provided by the rock 1310 can help release the pressure of the processing chamber 110, which can be improved The heat of the cycle heat removal treatment.

在放置混合物至土壤箱120中之前,岩石1310可預先混合於受污染土壤125。岩石1310可為任何尺寸與形狀,其足以增加流動傳導性,例如1厘米與2英寸之間,例如1英寸。岩石1310可為具有不同尺寸與形狀的各種岩石1310的混合物。在放置受污染土壤125至土壤箱120中之前,岩石1310也可加入至土壤箱120中,使得岩石1310可存在於土壤箱120的底部處。存在於土壤箱120的底部處的岩石1310可改良後處理氣體離開路徑198的開孔附近的流動傳導性。 Rock 1310 may be premixed with contaminated soil 125 prior to placing the mixture into soil tank 120. Rock 1310 can be of any size and shape sufficient to increase flow conductivity, such as between 1 cm and 2 inches, such as 1 inch. Rock 1310 can be a mixture of various rocks 1310 having different sizes and shapes. Rock 1310 may also be added to soil tank 120 prior to placement of contaminated soil 125 into soil tank 120 such that rock 1310 may be present at the bottom of soil tank 120. The rock 1310 present at the bottom of the soil tank 120 may improve the flow conductivity of the aftertreatment gas exiting the opening of the path 198.

第14圖為本案較佳實施例之分配預處理氣體180進入土壤箱120的部分之方法的流程圖。 Figure 14 is a flow diagram of a method of dispensing a portion of pretreatment gas 180 into soil tank 120 in accordance with a preferred embodiment of the present invention.

基本上,在第14圖中,作業1410可安裝土壤箱120於處理腔室110內,土壤箱120包含受污染土壤125。處理腔室110及/或土壤箱120可為隔熱的及/或密封的,以保持壓力。受污染土壤125包含可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。作業1420可注入預處理氣體180進入土壤箱120的底部部分240。底部部分240包含一或更多個中心210,以設置一或更多個熱前端220至周圍的受污染土壤125中。作業1430可接著注入預處理氣體180進入土壤箱120的頂部部分230。頂部部分230包含一或更多個中心210,以設置一或更多個熱前端220至周圍的受污染土壤125中。此後,作業1440可同時注入預處理氣體進入頂部部分230與底部部分240。作業1440可作用為最後沖洗,以完全去吸附來自受污染土壤125的所有殘留的污染。大氣空氣的新鮮空氣沖洗也可在作業1440之後加入至該處理。作業1450可將後處理氣體185排出土壤箱120。後處理氣體185包含可冷凝的碳氫化合 物污染及/或不可冷凝的碳氫化合物污染。 Basically, in FIG. 14, operation 1410 can mount soil tank 120 within processing chamber 110, which contains contaminated soil 125. Processing chamber 110 and/or soil tank 120 may be insulated and/or sealed to maintain pressure. Contaminated soil 125 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination. The operation 1420 can inject the pretreatment gas 180 into the bottom portion 240 of the soil tank 120. The bottom portion 240 includes one or more centers 210 to provide one or more thermal front ends 220 into the surrounding contaminated soil 125. Work 1430 can then inject pre-treatment gas 180 into top portion 230 of soil tank 120. The top portion 230 includes one or more centers 210 to provide one or more thermal front ends 220 into the surrounding contaminated soil 125. Thereafter, the job 1440 can simultaneously inject the pretreatment gas into the top portion 230 and the bottom portion 240. Work 1440 can act as a final rinse to completely absorb all residual contamination from contaminated soil 125. Fresh air flushing of atmospheric air can also be added to the process after operation 1440. Work 1450 can exhaust aftertreatment gas 185 out of soil tank 120. Aftertreatment gas 185 comprises condensable hydrocarbon Contamination and/or non-condensable hydrocarbon contamination.

第15圖為本案較佳實施例之注入預處理氣體180進入土壤箱120的方法的流程圖。 Figure 15 is a flow diagram of a method of injecting pre-treatment gas 180 into soil tank 120 in accordance with a preferred embodiment of the present invention.

在第15圖中,作業1510可安裝土壤箱120於處理腔室110內,土壤箱120包含受污染土壤125。處理腔室110及/或土壤箱120可為隔熱的及/或密封的,以保持壓力。受污染土壤125包含可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。作業1520可通過一或更多個注入埠口130而連續地注入預處理氣體180進入土壤箱120。可使用設置來自一或更多個中心210的一或更多個熱前端220於土壤箱120的底部部分240處與頂部部分230處之任何組合與順序。作業1530可逐漸增加或逐漸減少預處理氣體180的溫度。預處理氣體180的溫度的逐漸增加或逐漸減小可透過熱源170而機械式及/或電子式控制。作業1540可將後處理氣體185排出土壤箱120。後處理氣體185包含可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。 In FIG. 15, operation 1510 can mount soil tank 120 within processing chamber 110, which contains contaminated soil 125. Processing chamber 110 and/or soil tank 120 may be insulated and/or sealed to maintain pressure. Contaminated soil 125 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination. The job 1520 can continuously inject the pretreatment gas 180 into the soil tank 120 through one or more injection ports 130. Any combination and sequence of one or more thermal front ends 220 from one or more centers 210 at the bottom portion 240 of the soil tank 120 and the top portion 230 can be used. The job 1530 can gradually increase or gradually decrease the temperature of the pretreatment gas 180. The gradual increase or decrease in the temperature of the pretreatment gas 180 can be mechanically and/or electronically controlled by the heat source 170. Work 1540 can exhaust aftertreatment gas 185 out of soil tank 120. The aftertreatment gas 185 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination.

第16圖為本案較佳實施例之偵測及/或量測後處理氣體185的參數的方法的流程圖。 Figure 16 is a flow diagram of a method of detecting and/or measuring parameters of a gas 185 after a preferred embodiment of the present invention.

基本上,在第16圖中,作業1610可安裝土壤箱120於處理腔室110內,土壤箱120包含受污染土壤125。處理腔室110及/或土壤箱120可為隔熱的及/或密封的,以保持壓力。受污染土壤125包含可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。作業1620可通過單一注入埠口130而注入預處理氣體180進入土壤箱120。對應於單一注入埠口130的單一中心210可設置單一熱前端220至周圍的受污染土壤125中,藉此去吸附受污染土壤125。作業1630可將後處理氣體185排出土壤箱120。後處理氣體185包含 可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。作業1640可使用參數感測器320,來偵測及/或量測後處理氣體185的一或更多個參數。來自參數感測器320的資料可詳細說明單一區域處的受污染土壤125的特性,其中該中心210設有熱前端220。基於從參數感測器320輸出的資料,可採取進一步的動作,例如如果從參數感測器320輸出的為高的一氧化碳數據,可在土壤批次上重新運行處理循環。高的一氧化碳輸出數據可指出該去吸附處理是不完整的或低效率的。 Basically, in FIG. 16, operation 1610 can mount soil tank 120 within processing chamber 110, which contains contaminated soil 125. Processing chamber 110 and/or soil tank 120 may be insulated and/or sealed to maintain pressure. Contaminated soil 125 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination. The operation 1620 can inject the pretreatment gas 180 into the soil tank 120 through a single injection port 130. A single center 210 corresponding to a single injection port 130 can be provided with a single hot front end 220 into the surrounding contaminated soil 125, thereby adsorbing contaminated soil 125. Work 1630 can exhaust aftertreatment gas 185 out of soil tank 120. Aftertreatment gas 185 contains Condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination. The job 1640 can use the parameter sensor 320 to detect and/or measure one or more parameters of the post-process gas 185. The data from the parametric sensor 320 may detail the characteristics of the contaminated soil 125 at a single zone, wherein the center 210 is provided with a hot front end 220. Based on the data output from the parametric sensor 320, further actions can be taken, such as if the carbon monoxide data output from the parametric sensor 320 is high, the processing cycle can be re-run on the soil lot. High carbon monoxide output data may indicate that the desorption process is incomplete or inefficient.

第17圖為本案較佳實施例之使用排氣閥310排出後處理氣體185之前,提高土壤箱120內的壓力的方法的流程圖。 Figure 17 is a flow chart showing a method of increasing the pressure in the soil tank 120 prior to the use of the exhaust valve 310 to discharge the after-treatment gas 185 in accordance with a preferred embodiment of the present invention.

基本上,在第17圖中,作業1710可安裝土壤箱120於處理腔室110內,土壤箱120包含受污染土壤125。處理腔室110及/或土壤箱120可為隔熱的及/或密封的,以保持壓力。受污染土壤125包含可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。作業1720可關閉在後處理氣體離開路徑198處的排氣閥310。然後,作業1730可注入預處理氣體180進入土壤箱120,這會提高土壤箱120的壓力,因為排氣閥310關閉。預處理氣體180的溫度也可升高,藉由熱源170處機械式升高及/或透過控制器172電子式升高。作業1740可打開在後處理氣體離開路徑198處的排氣閥310。當排氣閥310打開時,預處理氣體180可繼續通過注入埠口130注入,或者排氣閥310可被關閉。作業1750可將後處理氣體185排出土壤箱120。後處理氣體185包含可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。 Basically, in FIG. 17, operation 1710 can mount soil tank 120 within processing chamber 110, which contains contaminated soil 125. Processing chamber 110 and/or soil tank 120 may be insulated and/or sealed to maintain pressure. Contaminated soil 125 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination. The operation 1720 can close the exhaust valve 310 at the aftertreatment gas exit path 198. Then, the operation 1730 can inject the pretreatment gas 180 into the soil tank 120, which increases the pressure of the soil tank 120 because the exhaust valve 310 is closed. The temperature of the pretreatment gas 180 may also be increased by mechanical rise of the heat source 170 and/or electronically by the controller 172. The operation 1740 can open the exhaust valve 310 at the aftertreatment gas exit path 198. When the exhaust valve 310 is open, the pre-treatment gas 180 may continue to be injected through the injection port 130, or the exhaust valve 310 may be closed. Work 1750 can exhaust aftertreatment gas 185 out of soil tank 120. The aftertreatment gas 185 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination.

第18圖為本案較佳實施例之在使用排氣閥310排出後處理氣體185之前,維持土壤箱120內的壓力的方法的流程圖。 Figure 18 is a flow diagram of a method of maintaining the pressure within the soil tank 120 prior to discharge of the post-treatment gas 185 using the exhaust valve 310 in accordance with a preferred embodiment of the present invention.

基本上,在第18圖中,作業1810可安裝土壤箱120於處理腔室110內,土壤箱120包含受污染土壤125。處理腔室110及/或土壤箱120可為隔熱的及/或密封的,以保持壓力。受污染土壤125包含可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。作業1820可關閉在後處理氣體離開路徑198處的排氣閥310。然後,作業1830可注入預處理氣體180進入土壤箱120,這會提高土壤箱120的壓力,因為排氣閥310關閉。預處理氣體180的溫度也可升高,藉由熱源170處機械式升高及/或透過控制器172電子式升高。作業1840可停止注入預處理氣體180進入土壤箱120,這可維持土壤箱120的壓力與溫度。作業1850可打開在後處理氣體離開路徑198處的排氣閥310。當排氣閥310打開時,預處理氣體180可繼續通過注入埠口130注入,或者排氣閥310可被關閉。作業1860可將後處理氣體185排出土壤箱120。後處理氣體185包含可冷凝的碳氫化合物污染及/或不可冷凝的碳氫化合物污染。 Basically, in FIG. 18, operation 1810 can mount soil tank 120 within processing chamber 110, which contains contaminated soil 125. Processing chamber 110 and/or soil tank 120 may be insulated and/or sealed to maintain pressure. Contaminated soil 125 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination. The operation 1820 can close the exhaust valve 310 at the aftertreatment gas exit path 198. Work 1830 can then inject pretreatment gas 180 into soil tank 120, which increases the pressure of soil tank 120 because exhaust valve 310 is closed. The temperature of the pretreatment gas 180 may also be increased by mechanical rise of the heat source 170 and/or electronically by the controller 172. The operation 1840 may stop injecting the pretreatment gas 180 into the soil tank 120, which may maintain the pressure and temperature of the soil tank 120. Work 1850 can open exhaust valve 310 at aftertreatment gas exit path 198. When the exhaust valve 310 is open, the pre-treatment gas 180 may continue to be injected through the injection port 130, or the exhaust valve 310 may be closed. Work 1860 can exhaust aftertreatment gas 185 out of soil tank 120. The aftertreatment gas 185 contains condensable hydrocarbon contamination and/or non-condensable hydrocarbon contamination.

本案已經敘述一些實施例,然而,將理解的是,可進行各種修改而不偏離本發明所主張的精神與範圍。此外,圖式中描繪的邏輯流程不要求是所示的特定順序或連續的順序,才能達到所欲的結果。此外可從所述的流程提供其他步驟,或可消除步驟,且可從所述的系統增加或移除其他組件。因此,其他實施例都在以下的申請專利範圍的範圍內。 The present invention has been described in some embodiments, however, it is understood that various modifications may be made without departing from the spirit and scope of the invention. In addition, the logic flow depicted in the drawings is not required to be in a particular order or in a sequential order to achieve the desired result. Further steps may be provided from the described processes, or steps may be eliminated, and other components may be added or removed from the described systems. Accordingly, other embodiments are within the scope of the following claims.

110‧‧‧處理腔室 110‧‧‧Processing chamber

120‧‧‧土壤箱 120‧‧‧ soil tank

122‧‧‧蓋件 122‧‧‧Cover

125‧‧‧受污染土壤 125‧‧‧Contaminated soil

130‧‧‧注入埠口 130‧‧‧Injected into the mouth

140‧‧‧注入埠口閥 140‧‧‧Injection valve

150‧‧‧注入埠口套筒 150‧‧‧Injected into the mouth sleeve

160‧‧‧外壁 160‧‧‧ outer wall

170‧‧‧熱源 170‧‧‧heat source

172‧‧‧控制器 172‧‧‧ Controller

180‧‧‧預處理氣體 180‧‧‧Pretreatment gas

185‧‧‧後處理氣體 185‧‧‧ After treatment gas

190‧‧‧井屏蔽幕 190‧‧‧ well screen

198‧‧‧後處理氣體離開路徑 198‧‧‧ After treatment gas leaving the path

Claims (20)

一種熱去吸附土壤整治系統,包含:一處理腔室;至少一注入埠口,於一土壤箱安裝在該處理腔室內時,係耦接於該土壤箱的一外壁,其中該至少一注入埠口係配置來導引來自一源頭的預處理氣體進入該土壤箱的一熱散佈結構,其中,來自該熱散佈結構的一熱前端係用於去吸附該土壤箱中的受污染土壤;及該土壤箱的一頂部部分與該土壤箱的一底部部分,係配置來在不同的時間間隔,接收來自該熱散佈結構的預處理氣體。 A thermal desorption soil remediation system comprising: a processing chamber; at least one injection port, coupled to an outer wall of the soil tank when a soil tank is installed in the processing chamber, wherein the at least one injection port a port configuration configured to direct a pre-treatment gas from a source into the soil tank, wherein a thermal front end from the heat spread structure is used to desorb contaminated soil in the soil tank; A top portion of the soil tank and a bottom portion of the soil tank are configured to receive pretreatment gas from the heat spread structure at different time intervals. 如申請專利範圍第1項之系統,另包含:一注入埠口套筒,耦接至該至少一注入埠口,以於該處理腔室的一門打開時縮回。 The system of claim 1, further comprising: an injection port sleeve coupled to the at least one injection port to retract when a door of the processing chamber is opened. 如申請專利範圍第1項之系統,另包含:其中該頂部部分僅在該底部部分的處理完成之後,接收預處理氣體。 The system of claim 1, further comprising: wherein the top portion receives the pretreatment gas only after the processing of the bottom portion is completed. 如申請專利範圍第1項之系統,另包含:一排氣閥,定位在一後處理氣體離開路徑處(Post-treatment gas exit pathway),以允許該土壤箱交替於一加壓狀態與一壓力釋放狀態之間的 方式,來釋放來自該土壤箱的後處理氣體。 The system of claim 1, further comprising: an exhaust valve positioned at a post-treatment gas exit pathway to allow the soil tank to alternate between a pressurized state and a pressure Between release states The way to release the aftertreatment gas from the soil tank. 如申請專利範圍第4項之系統,另包含:其中在一單一注入埠口導引預處理氣體進入該土壤箱之後,量測該後處理氣體的一參數。 The system of claim 4, further comprising: measuring a parameter of the post-treatment gas after directing the pre-treatment gas into the soil tank at a single injection port. 一種熱去吸附土壤整治系統,包含:一處理腔室;至少一注入埠口,於一土壤箱安裝在該處理腔室內時,耦接於該處理腔室,其中該至少一注入埠口係配置來導引來自一源頭的預處理氣體進入該處理腔室,其中,來自該預處理氣體的一熱前端係用於去吸附該土壤箱中的受污染土壤;至少包含該注入埠口之一頂部部份,至少包含該注入埠口之一底部部份,當使用二或更多個注入埠口時,其中該底部部分係配置來在該頂部部分之前,接收預處理氣體;及一排氣閥,定位在一後處理氣體離開路徑處,以允許該處理腔室交替於一加壓狀態與一壓力釋放狀態之間的方式,釋放來自該土壤箱的後處理氣體。 A thermal desorption soil remediation system comprising: a processing chamber; at least one injection port, coupled to the processing chamber when a soil tank is installed in the processing chamber, wherein the at least one injection port is configured Directing a pretreatment gas from a source into the processing chamber, wherein a thermal front end from the pretreatment gas is used to desorb contaminated soil in the soil tank; at least one of the tops of the injection port is included a portion comprising at least a bottom portion of the injection port, wherein when two or more injection ports are used, wherein the bottom portion is configured to receive a pretreatment gas before the top portion; and an exhaust valve The post-treatment gas from the soil tank is released in a manner that allows the processing chamber to alternate between a pressurized state and a pressure released state. 如申請專利範圍第6項之系統,另包含:其中在一單一注入埠口導引預處理氣體進入該土壤箱之後,量測該後處 理氣體的一參數。 The system of claim 6, wherein the method further comprises: after guiding the pre-treatment gas into the soil tank in a single injection port, measuring the rear portion A parameter of the gas. 如申請專利範圍第6項之系統,另包含:其中該頂部部分僅在該底部部分處理完成之後接收預處理氣體。 The system of claim 6, further comprising: wherein the top portion receives the pretreatment gas only after the bottom portion has been processed. 如申請專利範圍第6項之系統,另包含:其中在該頂部部分與該底部部分處理完成之後,該頂部部分與該底部部分同時接收預處理氣體。 The system of claim 6, further comprising: wherein the top portion and the bottom portion simultaneously receive the pretreatment gas after the top portion and the bottom portion are processed. 如申請專利範圍第6項之系統,另包含:其中該至少一注入埠口以一脈衝的方式來導引預處理氣體進入該土壤箱中。 The system of claim 6, further comprising: wherein the at least one injection port directs the pretreatment gas into the soil tank in a pulse. 如申請專利範圍第6項之系統,另包含:其中當使用二或更多個注入埠口時,該至少一注入埠口係獨立地控制。 The system of claim 6, further comprising: wherein the at least one injection mouth is independently controlled when two or more injection ports are used. 如申請專利範圍第6項之系統,另包含:其中當使用二或更多個注入埠口時,該至少一注入埠口相繼地導引預處理氣體進入該土壤箱中。 The system of claim 6, further comprising: wherein the at least one injection port successively directs the pretreatment gas into the soil tank when two or more injection ports are used. 如申請專利範圍第6項之系統,另包含:其中該預處理氣體的溫度透過連續的預處理氣體注入而逐漸減小。 The system of claim 6, further comprising: wherein the temperature of the pretreatment gas is gradually reduced by continuous pretreatment gas injection. 如申請專利範圍第6項之系統,另包含:其中該土壤箱內的壓力透過連續的預處理氣體注入而逐漸增加。 The system of claim 6, wherein the pressure in the soil tank is gradually increased by continuous pretreatment gas injection. 如申請專利範圍第6項之系統,另包含:其中該熱前端之最大終端距離為24英寸。 For example, the system of claim 6 includes: wherein the thermal front end has a maximum terminal distance of 24 inches. 一種熱去吸附土壤整治方法,包含:安裝一土壤箱於一處理腔室內,該土壤箱包含受污染土壤;在注入預處理氣體進入該土壤箱的一頂部部分之前,注入預處理氣體進入該土壤箱的一底部部分,其中來自該預處理氣體的一熱前端係用於去吸附該土壤箱中的受污染土壤;以允許該土壤箱交替於一加壓狀態與一壓力釋放狀態之間的方式,從該土壤箱釋放後處理氣體;及當該處理腔室的一門打開時,縮回一可縮回的套筒。 A method for thermally desorbing soil remediation comprises: installing a soil tank in a processing chamber, the soil tank containing contaminated soil; and injecting a pretreatment gas into the soil before injecting the pretreatment gas into a top portion of the soil tank a bottom portion of the tank, wherein a hot front end from the pretreatment gas is used to desorb contaminated soil in the soil tank; to allow the soil tank to alternate between a pressurized state and a pressure released state The process gas is released from the soil tank; and when a door of the process chamber is opened, a retractable sleeve is retracted. 如申請專利範圍第16項之方法,另包含:在一單一注入埠口導引預處理氣體進入該土壤箱之後,量測該後處理氣體的一參數。 The method of claim 16, further comprising: measuring a parameter of the post-treatment gas after guiding the pre-treatment gas into the soil tank at a single injection port. 如申請專利範圍第16項之方法,另包含:其中該熱前端的最大終端距離為18英寸。 The method of claim 16, further comprising: wherein the thermal front end has a maximum terminal distance of 18 inches. 如申請專利範圍第16項之方法,另包含:其中該處理腔室內的壓力透過連續的預處理氣體注入而逐漸增加。 The method of claim 16, further comprising: wherein the pressure in the processing chamber is gradually increased by continuous pretreatment gas injection. 如申請專利範圍第16項之方法,另包含:其中該預處理氣體的溫度透過連續的預處理氣體注入而逐漸減小。 The method of claim 16, further comprising: wherein the temperature of the pretreatment gas is gradually reduced by continuous pretreatment gas injection.
TW103132194A 2013-09-17 2014-09-17 High resolution modular heating for soil evaporative desorption TWI538749B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361878623P 2013-09-17 2013-09-17
US14/264,019 US9364877B2 (en) 2013-04-29 2014-04-28 Soil box for evaporative desorption process
US201462048794P 2014-09-10 2014-09-10

Publications (2)

Publication Number Publication Date
TW201529188A TW201529188A (en) 2015-08-01
TWI538749B true TWI538749B (en) 2016-06-21

Family

ID=52689361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103132194A TWI538749B (en) 2013-09-17 2014-09-17 High resolution modular heating for soil evaporative desorption

Country Status (2)

Country Link
TW (1) TWI538749B (en)
WO (1) WO2015042198A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9636723B2 (en) * 2013-09-17 2017-05-02 Reterro, Inc. High resolution modular heating for soil evaporative desorption
CN113369294A (en) * 2021-06-10 2021-09-10 上海环土环境科技有限公司 Polluted soil ex-situ low-carbon circulating thermal desorption system
CN114425559A (en) * 2021-12-30 2022-05-03 中国石油化工股份有限公司 In-situ thermal desorption remediation method for soil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228804A (en) * 1992-06-25 1993-07-20 Balch Thomas H Method and apparatus for hydrocarbon-contaminated soil remediation
US20030147697A1 (en) * 2002-02-06 2003-08-07 Brady Patrick Richard Evaporative desorption soil treatment apparatus and process
US20040240942A1 (en) * 2002-05-22 2004-12-02 Richter Roger Todd Method and system for remediating contaminated soil
US7866920B2 (en) * 2002-12-05 2011-01-11 Meco Environmental, Llc Methods and systems for remediating contaminated soil
EP1604749B1 (en) * 2004-06-11 2009-07-29 D2G Method and system for cleaning a soil containing contaminants
KR101271727B1 (en) * 2012-07-09 2013-06-04 에이치플러스에코 주식회사 Purifying system for contaminated ground comprising horizontal injection pilot and horizontal extraction pilot and purifying method for contaminated ground thereof

Also Published As

Publication number Publication date
WO2015042198A1 (en) 2015-03-26
TW201529188A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
US9636723B2 (en) High resolution modular heating for soil evaporative desorption
CA2569621C (en) Method and system for cleaning a soil containing contaminants
CN103203355B (en) Ectopic thermal desorption treatment method of polluted soil
CN102671526B (en) Method and device for treating soil volatile organic pollutant through low temperature plasma
TWI538749B (en) High resolution modular heating for soil evaporative desorption
US10875062B2 (en) Sintered wave porous media treatment, apparatus and process for removal of organic compounds and nondestructive removal and condensation of per and polyfluoroalkyl substances and related fluorinated compounds
KR101176765B1 (en) The heat treatment of waste materials
TW201446350A (en) Soil box for evaporative desorption process
CN101947543B (en) Device for treating volatile organic polluted soil by utilizing clean tail gas of power plant
KR20070013328A (en) Method of smoking/burning type volume reduction treatment and apparatus therefor
CN107309257B (en) Heat-enhanced vapor extraction contaminated soil remediation device and method thereof
CN107855354A (en) A kind of organic polluted soil thermal desorption prosthetic device and method
CN106268208A (en) The experimental system of Low Temperature Plasma Treating organic polluted soil thermal desorption tail gas
CN106623393A (en) Integration device and technology for treating organic matter-polluted soil by microwaves at different location
CN110054383A (en) The pyrolysis processing method of oily sludge
US20160303625A1 (en) Heat travel distance
CN104707443A (en) VOCs tail gas treatment apparatus
CN201807602U (en) Treating device for volatile organic contaminated soil by utilizing cleaning tail gas from power plant
CN202398268U (en) Low-temperature plasma reactor
CN205650209U (en) Be used for palingenetic converter of powder activity charcoal
CN110508602B (en) Double-layer-film-structure heat strengthening and soil vapor extraction coupling system
US20150308680A1 (en) Melting furnace using anion oxygen
CN104941365B (en) Purifier for exhaust gas of industrial boiler
CN107413834A (en) A kind of multiple complexes of hot repair of organic polluted soil and application
CN106215608A (en) A kind of device and method processing chopped fiber thermal finalization high-temp waste gas

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees