TWI538691B - Preparation method of radiation-sensitive copolymer carrier for nanoparticles with chemotherapeutic pharmaceuticals - Google Patents

Preparation method of radiation-sensitive copolymer carrier for nanoparticles with chemotherapeutic pharmaceuticals Download PDF

Info

Publication number
TWI538691B
TWI538691B TW103131276A TW103131276A TWI538691B TW I538691 B TWI538691 B TW I538691B TW 103131276 A TW103131276 A TW 103131276A TW 103131276 A TW103131276 A TW 103131276A TW I538691 B TWI538691 B TW I538691B
Authority
TW
Taiwan
Prior art keywords
radiation
dissolved
diselenide
nanoparticles
block copolymer
Prior art date
Application number
TW103131276A
Other languages
Chinese (zh)
Other versions
TW201609154A (en
Inventor
林武智
杜定賢
李偉銘
李銘忻
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW103131276A priority Critical patent/TWI538691B/en
Publication of TW201609154A publication Critical patent/TW201609154A/en
Application granted granted Critical
Publication of TWI538691B publication Critical patent/TWI538691B/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Description

輻射敏感型共聚合物之奈米藥物載體的製備方法Method for preparing nanometer drug carrier of radiation-sensitive copolymer

本發明係關於一種輻射敏感型共聚合物之奈米藥物載體的製備方法,尤其是關於質子治療用的輻射敏感型共聚合物之奈米藥物所使用之載體的製備方法。The present invention relates to a method for preparing a radiation-sensitive copolymer nanomedicine carrier, and more particularly to a method for preparing a carrier for a radiation-sensitive copolymer nanomedicine for proton therapy.

根據衛生署統計資料顯示,癌症(惡性腫瘤)仍為國人十大死因榜首,其中更以肺癌及肝癌位居第一、二名。癌症之產生乃因人體細胞病變所致,目前臨床常用之治療方式多為手術、放射治療、化療、標靶治療等,不同的治療方式對於病灶所在處更是有不同的效果及適應症的差別。According to the statistics of the Department of Health, cancer (malignant tumors) is still the top of the top ten causes of death among Chinese people, with lung cancer and liver cancer ranking first and second. The cause of cancer is caused by human cytopathic diseases. At present, most commonly used treatments in the clinic are surgery, radiation therapy, chemotherapy, target therapy, etc. Different treatment methods have different effects and indications for the lesions. .

放射治療的基本原理乃是運用放射能以阻斷癌細胞核中的DNA雙螺旋長鏈,進而達到殺死癌細胞或抑制其成長為目的,給予腫瘤細胞理想的劑量,達成治療效果。但往往傳統光子治療產生之y射線或x光在穿過人體後,隨射線進入組織深度的增加,相對能量也成指數形式衰減,在尚未破壞腫瘤癌細胞前,就已經影響許多其他正常組織。然而,質子之物理特性在於質子束穿透人體組織時,其能量亦能隨著距離增加,並在射程末端(即腫瘤位置所在)降低速度,瞬間釋放出最大的能量,產生布拉格峰(Bragg Peak),在幾乎不傷害到其他健康組織的情況下,給予癌細胞高劑量的有效治療。由於質子治療具有散開性之布拉格峰(spread-out Bragg peak, SOBP)之特性,因此,病人在療程中除了可以降低正常組織受破壞的風險,放射治療的副作用,也相對的將減至極小。The basic principle of radiotherapy is to use radioactivity to block the long strands of DNA double helix in the nucleus of cancer cells, thereby killing cancer cells or inhibiting their growth, and giving tumor cells an ideal dose to achieve therapeutic effects. However, often the y-ray or x-ray produced by traditional photon therapy passes through the human body, and as the radiation enters the depth of the tissue, the relative energy also decays exponentially. Many other normal tissues have been affected before the tumor cells have been destroyed. However, the physical property of protons is that when the proton beam penetrates human tissue, its energy can also increase with distance, and at the end of the range (ie, where the tumor is located), the velocity is reduced, and the maximum energy is instantaneously released, resulting in a Bragg Peak. ), giving cancer cells a high dose of effective treatment without damaging other healthy tissues. Because proton therapy has the characteristics of spread-out Bragg peak (SOBP), in addition to reducing the risk of damage to normal tissues, the side effects of radiation therapy will be reduced to a minimum.

質子與X-光之物理特性不同,X-射線由於穿透力強,能治療深部組織的腫瘤,但缺點則是穿透至腫瘤過程中,前方的組織劑量高於腫瘤,穿過腫瘤後之組織仍有相當之殘餘劑量,容易傷害鄰近的正常組織。而質子穿越組織時會釋出少數能量,在到達所欲治療的腫瘤深度時即能釋出大量能量,稱為布拉格峯(Bragg peak),而在腫瘤後的正常組織完全沒有。由於單一布拉格尖峯並不寬,需將數個布拉格尖峯合在一起,就可擴展成腫瘤的大小,以提升質子治療之效果。質子放射治療為目前全世界最先進的腫瘤放射治療技術,質子放射治療對病灶區週邊正常細胞的傷害小很多,相對地副作用也較少,預計未來質子治療將會更為普遍化。Protons are different from the physical properties of X-rays. X-rays can treat tumors in deep tissues because of their strong penetrating power. However, the shortcoming is that they penetrate into the tumor process. The amount of tissue in front is higher than that of tumors. The tissue still has a considerable residual dose that is likely to damage adjacent normal tissue. Protons, when passing through the tissue, release a small amount of energy, which releases a large amount of energy when it reaches the depth of the tumor to be treated, called the Bragg peak, and the normal tissue behind the tumor is completely absent. Since the single Prague peak is not wide, it is necessary to combine several Prague peaks to expand the size of the tumor to enhance the effect of proton therapy. Proton radiation therapy is the most advanced tumor radiotherapy technology in the world. Proton radiation therapy has much less damage to normal cells around the lesion area, and relatively fewer side effects. It is expected that proton therapy will become more common in the future.

傳統照射治療使用X光定位及治療癌症腫瘤,無法準確控制其確實位置及劑量,造成身體表面與腫瘤之間的正常組織亦可能接收到劑量而遭致損壞。因此,需要一種能準確定位及施加適當劑量之治療裝置及方法。目前較為常用者係使用質子治療的方式,利用X光電腦斷層(XCT, X-ray computed tomography)攝影系統,用以定位腫瘤輪廓及施加最適當劑量,但使用X光電腦斷層的定位較為困難。Traditional irradiation therapy uses X-ray to locate and treat cancerous tumors, and it is impossible to accurately control the exact position and dose, and the normal tissue between the body surface and the tumor may also receive the dose and be damaged. Therefore, there is a need for a therapeutic device and method that can accurately position and apply an appropriate dose. At present, the most common method is to use proton therapy. X-ray computed tomography (XCT) imaging system is used to locate the tumor contour and apply the most appropriate dose, but it is difficult to locate using X-ray computed tomography.

美國專利公開文件US 2007/0031337 A1揭露一種質子斷層顯像可利用黃金(Gold)奈米粒子與抗體結合性佳的特性,使其與癌細胞中的抗原相吸引,而達到較佳的治療位置的定位及施加藥物劑量的控制。可預期將來利用質子斷層(Proton Computed Tomography,簡稱PCT)攝影系統可能成為一種趨勢。U.S. Patent Publication No. US 2007/0031337 A1 discloses that a proton tomographic image can utilize gold nanoparticle particles to have good binding properties to antibodies, thereby attracting antigens in cancer cells to achieve a better therapeutic position. The positioning and control of the applied drug dose. It is expected that the Proton Computed Tomography (PCT) photographic system may become a trend in the future.

本發明之目的在於提供一種輻射敏感型共聚合物之奈米藥物載體的製備方法,利用二硒化物(Diselenide)與3-氨基丙基聚乙二醇(Aminopropyl Poly(ethylene glycol))高分子互相反應後,得到二硒化物嵌段共聚合物(Diselenide Block Co-polymer)作為奈米藥物載體,其本身具備有親疏水性的特性,因此利用乳化方式可以使二硒化物嵌段共聚合物(Diselenide Block Co-polymer)自組裝成奈米球體。The object of the present invention is to provide a method for preparing a radiation-sensitive copolymer nano-medicine carrier, which utilizes diselenide and 3-aminopropylpoly(ethylene glycol) polymer to each other. After the reaction, a diselenide block copolymer (Diselenide Block Co-polymer) is obtained as a nano drug carrier, which itself has a hydrophilic-hydrophobic property, so that a diselenide block copolymer (Diselenide) can be obtained by an emulsification method. Block Co-polymer) self-assembles into nanospheres.

而且在乳化過程中會加入本身同樣具備親疏水性之二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶 (DSPE-PEG-biomarker)高分子,因此在高分子自組裝的過程中疏水端藉由有機溶劑的存在而彼此聚集排列,並將將親水端外露在外部水溶液當中,形成的穩定的奈米球體結構,因此當有機溶劑揮發後,奈米球體粒子會因內部疏水性的緣故而產生斥水效應。Moreover, during the emulsification process, a bis-stearoylphosphatidylethanolamine-polyethylene glycol-biomarker polymer which is also hydrophobic and hydrophobic is added, so that the hydrophobic end is in the process of self-assembly of the polymer. By arranging and arranging each other by the presence of an organic solvent, and exposing the hydrophilic end to the external aqueous solution, a stable nanosphere structure is formed, so that when the organic solvent is volatilized, the nanosphere particles are due to internal hydrophobicity. Produces a water repellent effect.

因此,導致水分子部會進入到其結構內部進一步破壞奈米粒子結構,此外由於奈米球體外表為親水端,而此可以穩定存在在水溶液當中,而在本研究中發展出具有輻射敏感型之二硒化物嵌段共聚合物,因此利用二硒化物嵌段共聚合物所製備出來的奈米球體結構,不但可以穩定存在於水溶液中,更能利用特定輻射波來控制載體結構的瓦解速度,因此更具備有發展成為輻射藥物載體之潛力。Therefore, the water molecules will enter the structure and further damage the structure of the nanoparticle. In addition, since the outer surface of the nanosphere is a hydrophilic end, it can be stably present in the aqueous solution, and in the present research, it has developed a radiation-sensitive type. The diselenide block copolymer, so the nanosphere structure prepared by using the diselenide block copolymer can not only stably exist in the aqueous solution, but also can utilize the specific radiation wave to control the disintegration speed of the carrier structure. Therefore, it has the potential to develop into a carrier of radiation drugs.

以下係本發明之輻射敏感型共聚合物之奈米藥物載體的製備方法之一較佳實施例,其至少包括以下步驟: 步驟S11:取0.05 莫耳的固體氫氧化鈉(NaOH) 2公克溶於水25毫升中後,加入50莫耳的硒粉3.95公克和十六烷基三甲基溴化銨100毫克,配置成硒(Se)溶液。 步驟S12:另取 6.6莫耳的硼氫化鈉( sodium borohydride,簡稱NaBH4)0.25公克和固體氫氧化鈉0.2公克,在冰浴下加入水溶液5毫升溶解之,在氮氣保護下,將此溶液邊攪拌邊滴入步驟S1所得的硒溶液中,置於室溫反應1小時候,再於約90℃下反應約半小時,使反應趨向完全後,得到的紅棕色溶液即為硒化鈉(Sodium selenide,Na2Se2)鹼性水溶液。 步驟S13:取十二烯基丁二酸酐(2-Dodecen-1-yl-succinic anhydride) 溶於四氫呋喃(Tetrehydrofuran,簡稱THF)當中後,再與步驟S2所得之硒化鈉鹼性水溶液互溶後,經反應約12小時後,利用管柱層析分離雜質,經高溫烘乾後得到產物二硒化物(Diselenide) 產物。 步驟S14:將步驟S3所得二硒化物產物回溶於四氫呋喃中,並加入帶有胺基之聚乙二醇高分子互溶後,加入交聯劑 1-乙基-(3-二甲基氨基丙基)碳醯二亞胺(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide ,簡稱EDC)或N-羥基丁二酰亞胺(N-Hydroxysuccinimide,簡稱NHS)進行反應約12小時後,利用管柱層析分離雜質,經高溫烘乾後得到最終產物二硒化物嵌段共聚合物(Diselenide Block Co-polymer),以用於後續包覆輻射奈米粒子或/及化療藥物。The following is a preferred embodiment of the preparation method of the radiation-sensitive copolymer nano-medicine carrier of the present invention, which comprises at least the following steps: Step S11: taking 0.05 mol of solid sodium hydroxide (NaOH) 2 g of solution After 25 ml of water, a solution of 3.95 g of 50 mol of selenium powder and 100 mg of cetyltrimethylammonium bromide was added to prepare a selenium (Se) solution. Step S12: Another 6.6 m sodium borohydride (NaBH4) 0.25 g and 0.2 g of solid sodium hydroxide were added, and 5 ml of an aqueous solution was dissolved in an ice bath, and the solution was stirred under a nitrogen atmosphere. While dropping into the selenium solution obtained in the step S1, reacting at room temperature for 1 hour, and then reacting at about 90 ° C for about half an hour to complete the reaction, the obtained reddish brown solution is sodium selenide (Sodium selenide, Na2Se2) alkaline aqueous solution. Step S13: after dissolving the dodecenyl succinic anhydride (2-Dodecen-1-yl-succinic anhydride) in tetrahydrofuran (Tetrehydrofuran, THF for short), and then dissolving with the alkaline aqueous solution of sodium selenide obtained in step S2, After about 12 hours of reaction, the impurities were separated by column chromatography and dried at a high temperature to obtain a product of the product diselenide. Step S14: The diselenide product obtained in the step S3 is dissolved in tetrahydrofuran, and the polyglycol with the amine group is added to the polymer, and the cross-linking agent 1-ethyl-(3-dimethylaminopropane) is added. Base for the reaction of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) or N-Hydroxysuccinimide (NHS) for about 12 hours, using a tube The impurities are separated by column chromatography and dried at a high temperature to obtain a final product, a diselenide block copolymer (Diselenide Block Co-polymer), for subsequent coating of the radiation nanoparticles or/and a chemotherapeutic drug.

利用前述之二硒化物嵌段共聚合物作為奈米藥物載體,與二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標記包覆輻射奈米粒子或/和化療藥物的奈米藥物的製備方法共有三種,分別敘述如下。Preparation of nanomedicine coated with radiation nanoparticles or/and chemotherapeutic drugs by using the above dis selenide block copolymer as a nano drug carrier and distearyl phosphatidylethanolamine-polyethylene glycol-biolabel There are three methods, which are described below.

1. 包覆輻射奈米粒子(Radiated nanoparticles,RNPs):取作為組成球體主要成分之高分子的二硒化物嵌段共聚合物(Diselenide Block Co-polymer) 10毫克,與協助穩定結構之乳化劑的二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶 (DSPE-PEG-biomarker) 2毫克,相互溶於超純水5毫升當中後,再加入溶有油相輻射性奈米粒子(Radiated nanoparticles) 4毫克之二氯甲烷(Dichloromethane)有機溶劑1毫升,其中二硒化物嵌段共聚合物:二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶:油相輻射性奈米粒子的比例為5:1:2,並且在冰浴下進行超音波震盪完成乳化狀態之後,加熱至約60℃ 將二氯甲烷有機溶劑移除,得到約為100奈米大小之攜帶輻射性奈米粒子之輻射敏感型奈米球體粒子(RNPs-Radiation-Sensitive nanoparticles)。1. Radiation-doped nanoparticles (RNPs): 10 mg of diselenide block copolymer (Diselenide Block Co-polymer) as a main component of the sphere, and an emulsifier that assists in stabilizing the structure. 2 stearoylphosphatidylethanolamine-polyethylene glycol-biomarker (DSPE-PEG-biomarker) 2 mg, dissolved in 5 ml of ultrapure water, and then added with oil phase irradiated nanoparticles ( Radiated nanoparticles) 4 mg of Dichloromethane organic solvent 1 ml, of which diselenide block copolymer: distearoylphosphatidylethanolamine-polyethylene glycol-biological target: oil phase radiation nano The ratio of the particles is 5:1:2, and after the ultrasonic wave is shaken in an ice bath to complete the emulsified state, the organic solvent is removed by heating to about 60 ° C to obtain a radioactive naphthalene having a size of about 100 nm. Radiation-sensitive nanosphere particles (RNPs-Radiation-Sensitive nanoparticles).

2. 包覆化療藥物(drug):取二硒化物嵌段共聚合物10毫克與二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶2毫克,相互溶於超純水5毫升當中,再加入溶有化療藥物阿黴素(Doxorubicin) 4毫克之二氯甲烷有機溶劑1毫升,其中二硒化物嵌段共聚合物:二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶:化療藥物阿黴素之比例為5:1:2,並且在冰浴下進行超音波震盪完成乳化狀態之後,加熱至約60℃將二氯甲烷有機溶劑移除,得到最終產物約為100奈米大小之攜帶阿黴素之輻射敏感型奈米球體粒子(DOX- Radiation-Sensitive nanoparticles)。2. Coated chemotherapeutic drug (drug): Take 10 mg of diselenide block copolymer and 2 mg of distearoylphosphatidylethanolamine-polyethylene glycol-biological target, and dissolve in 5 ml of ultrapure water. And then add 1 ml of dichloromethane organic solvent containing 4 mg of chemotherapeutic drug Doxorubicin, wherein the diselenide block copolymer: distearoylphosphatidylethanolamine-polyethylene glycol-biological target : The ratio of the chemotherapeutic drug doxorubicin is 5:1:2, and after the ultrasonic wave is shaken in an ice bath to complete the emulsified state, the organic solvent of methylene chloride is removed by heating to about 60 ° C to obtain a final product of about 100 nm. Rice-sized radiation-sensitive nanosphere particles (DOX- Radiation-Sensitive nanoparticles).

3.包覆輻射奈米粒子及化療藥物:取二硒化物嵌段共聚合物10毫克與二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶2毫克,相互溶於超純水5毫升當中,再加入溶有油相輻射奈米粒子2毫克和化療藥物2毫克之二氯甲烷有機溶劑1毫升,其中二硒化物嵌段共聚合物:二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶:油相輻射奈米粒子:化療藥物阿黴素之比例為5:1:1:1,並且在冰浴下進行超音波震盪完成乳化狀態之後,加熱至約60℃ 將二氯甲烷有機溶劑移除,得到最終產物約為120奈米大小之攜帶輻射奈米粒子及阿黴素之輻射敏感型奈米球體粒子(RNPs/DOX- Radiation-Sensitive nanoparticles)。3. Coated radiation nanoparticles and chemotherapeutic drugs: 10 mg of diselenide block copolymer and 2 mg of distearoylphosphatidylethanolamine-polyethylene glycol-biological target, dissolved in ultrapure water 5 In the milliliter, add 1 ml of methane chloride organic solvent dissolved in oil phase radiation nanoparticles and 2 mg of chemotherapeutic drug, wherein the diselenide block copolymer: distearoylphosphatidylethanolamine-polyethylene Alcohol-biological target: oil phase radiation nanoparticle: the ratio of the chemotherapy drug doxorubicin is 5:1:1:1, and after ultrasonic wave shock in an ice bath to complete the emulsified state, heat to about 60 ° C. The organic solvent of methyl chloride is removed to obtain a radiation-sensitive nanosphere particle (RNPs/DOX- Radiation-Sensitive nanoparticles) carrying a radiation nanoparticle and doxorubicin having a final product of about 120 nm.

利用本發明之輻射敏感型共聚合物之奈米藥物載體所製成之奈米藥物進行質子治療時,當高能質子射入體內,質子能量隨穿透深度遞減。當剛接觸到腫瘤時,質子能量可能已減為初始能量的1/3-1/4,視入射能量和穿透深度而定。質子撞擊到分佈在腫瘤上的238U時,如果質子能量在10–1000 MeV時,會有一定的機率讓238U產生核分裂反應,第1圖係質子(高能質子入射能量為100 MeV)撞擊到鈾-238產生分裂反應,分裂產物的發生比例隨質量數的變化分佈。這些分裂產物通常是不穩定的核種,仍會繼續發生衰變反應。When proton therapy is carried out using the nanomedicine prepared by the nanoparticle drug carrier of the radiation-sensitive copolymer of the present invention, when high-energy protons are injected into the body, the proton energy decreases with penetration depth. When just touching a tumor, the proton energy may have been reduced to 1/3-1/4 of the initial energy, depending on the incident energy and penetration depth. When protons hit 238U on the tumor, if the proton energy is 10–1000 MeV, there will be a chance to cause 238U to produce a nuclear fission reaction. The first picture is a proton (high-energy proton incident energy of 100 MeV) impinges on uranium. 238 produces a splitting reaction, and the proportion of occurrence of the cleavage product is distributed as a function of the mass number. These cleavage products are usually unstable nuclear species and will continue to undergo decay reactions.

表1係列出發生比例較高的分裂產物的核種名稱及其相關衰變反應數據,包括質子(高能質子入射能量為10~250 MeV)撞擊到鈾-238產生分裂反應,發生比例較高的分裂產物的核種名稱及其相關衰變反應數據。這些分裂產物在衰變過程中會放出高能電子,讓病患在做完質子治療後,仍可利用這些衰變產生的電子破壞腫瘤的癌細胞,加強治療效果。Table 1 lists the nuclear species names and their associated decay reaction data of higher proportion of split products, including protons (high-energy proton incident energy of 10~250 MeV), which impinge on uranium-238 to produce a splitting reaction, and a higher proportion of split products The name of the nuclear species and its associated decay response data. These cleavage products emit high-energy electrons during the decay process, so that after the proton therapy is completed, the patients can still use the electrons generated by these decays to destroy the cancer cells of the tumor and enhance the therapeutic effect.

表1 <TABLE style="BORDER-BOTTOM: medium none; BORDER-LEFT: medium none; BORDER-COLLAPSE: collapse; BORDER-TOP: medium none; BORDER-RIGHT: medium none; mso-border-alt: double windowtext 1.5pt; mso-yfti-tbllook: 1184; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-insideh: 1.5pt double windowtext; mso-border-insidev: 1.5pt double windowtext"_0004"MsoTableGrid" border="1" cellSpacing="0" cellPadding="0"><TBODY><tr><td></td><td> 產率(%) </td><td> 半衰期 </td><td> 衰變模式 </td><td> 衰變能量y (keV) (強度%) </td></tr><tr><td><sup>135碲</sup></td><td> 23.0 </td><td> 19.0 s </td><td> %Beta-=100 </td><td> Beta-: 5960(50%),5356(25%),5090(%16) </td></tr><tr><td><sup>91</sup><b>鍶</b></td><td> 10.8 </td><td> 9.63 h </td><td> %Beta-=100 </td><td> Beta-: 2707(29%),1402(25%),1127(%34.7) </td></tr><tr><td><sup>99</sup>鉬 </td><td> 9.9 </td><td> 65.94 h </td><td> %Beta-=100 </td><td> Beta-: 1214(82.4%),437(16.4%) </td></tr><tr><td><sup>140</sup>鑭 </td><td> 7.3 </td><td> 1.6781 d </td><td> %Beta-=100 </td><td> Beta-: 1679(19.2%),1246(5.7%),1240(%10.9) </td></tr><tr><td><sup>132碲</sup></td><td> 5.5 </td><td> 3.204 d </td><td> %Beta-=100 </td><td> Beta-: 215(100%) </td></tr><tr><td><sup>145</sup>鑭 </td><td> 4.8 </td><td> 24.8 s </td><td> %Beta-=100 </td><td> Beta-: 4110(15%),4040(19%),3992(%15) </td></tr><tr><td><sup>141</sup><b>鋇</b></td><td> 4.8 </td><td> 18.27 m </td><td> %Beta-=100 </td><td> Beta-:3023(7%),2746(18%),2565(%25) </td></tr><tr><td><sup>146</sup>鑭 </td><td> 4.3 </td><td> 6.27 s </td><td> %Beta-=100 </td><td> Beta-:6530(18%),6272(28%),5603(%5.5) </td></tr><tr><td><sup>135</sup><b>碘</b></td><td> 4.2 </td><td> 6.57 h </td><td> %Beta-=100 </td><td> Beta-:1388(23.8%),1083(8%),970(%21.9) </td></tr></TBODY></TABLE>Table 1         <TABLE style="BORDER-BOTTOM: medium none; BORDER-LEFT: medium none; BORDER-COLLAPSE: collapse; BORDER-TOP: medium none; BORDER-RIGHT: medium none; mso-border-alt: double windowtext 1.5pt; Mso-yfti-tbllook: 1184; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-insideh: 1.5pt double windowtext; mso-border-insidev: 1.5pt double windowtext"_0004"MsoTableGrid" border=" 1" cellSpacing="0" cellPadding="0"><TBODY><tr><td></td><td> Yield (%) </td><td> Half-life </td><td> Decay Mode </td><td> decay energy y (keV) (strength%) </td></tr><tr><td><sup>135碲</sup></td><td> 23.0 < /td><td> 19.0 s </td><td> %Beta-=100 </td><td> Beta-: 5960 (50%), 5356 (25%), 5090 (%16) </td ></tr><tr><td><sup>91</sup><b>锶</b></td><td> 10.8 </td><td> 9.63 h </td><td > %Beta-=100 </td><td> Beta-: 2707 (29%), 1402 (25%), 1127 (%34.7) </td></tr><tr><td><sup> 99</sup>molybdenum</td><td> 9.9 </td><td> 65.94 h </td><td> %Beta-=100 </td><td> Beta-: 1214 (82.4%) ,437 (16.4%) </td></tr><tr><td><sup>140</sup>镧</td><td> 7.3 </td><td> 1.6781 d </td> <td> %Beta-=100 </td><td> Beta-: 1679 (19.2%), 1246 (5.7%), 1240 (%10.9) </td></tr><tr><td>< Sup>132碲</sup></td><td> 5.5 </td><td> 3.204 d </td><td> %Beta-=100 </td><td> Beta-: 215(100 %) </td></tr><tr><td><sup>145</sup>镧</td><td> 4.8 </td><td> 24.8 s </td><td> % Beta-=100 </td><td> Beta-: 4110 (15%), 4040 (19%), 3992 (%15) </td></tr><tr><td><sup>141< /sup><b>钡</b></td><td> 4.8 </td><td> 18.27 m </td><td> %Beta-=100 </td><td> Beta-: 3023 (7%), 2746 (18%), 2565 (%25) </td></tr><tr><td><sup>146</sup>镧</td><td> 4.3 </ Td><td> 6.27 s </td><td> %Beta-=100 </td><td> Beta-:6530 (18%), 6272 (28%), 5603 (%5.5) </td> </tr><tr><td><sup>135</sup><b>iodine</b></td><td> 4.2 </td><td> 6.57 h </td><td> %Beta-=100 </td><td> Beta-:1388 (23.8%), 1083 (8%), 970 (%21.9) </td></tr></TBODY></TABLE>

由上所述可知,本發明之輻射敏感型共聚合物之奈米藥物及其載體的製造方法確實具提高癌細胞藥劑量之效益,有效改善施加藥物定位的準確性等問題,確已具有產業上之利用性、新穎性及進步性。As can be seen from the above, the method for producing a radiation-sensitive copolymer nano-medicine and a carrier thereof of the present invention has the advantages of improving the dose of the cancer cell, effectively improving the accuracy of applying the drug, and has an industry. Utilization, novelty and progress.

惟以上所述者,僅為本發明之一較佳實施例而已,並非用來限定本發明實施之範圍。即凡依本發明申請專利範圍所作之均等變化與修飾,皆為本發明專利範圍所涵蓋。The above description is only a preferred embodiment of the invention and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the patent application of the present invention are covered by the scope of the invention.

no

第1圖係本發明之質子(高能質子入射能量為100 MeV)撞擊到鈾-238產生分裂反應,分裂產物的發生比例隨質量數的變化分佈。Figure 1 shows that the protons of the present invention (high-energy proton incident energy is 100 MeV) collide with uranium-238 to produce a splitting reaction, and the proportion of split products is distributed as a function of mass.

no

Claims (7)

一種製作質子治療用之複合式奈米藥物載體的合成方法,至少包含以下步驟:步驟S11:取固體氫氧化鈉溶於水中後,加入硒粉和十六烷基三甲基溴化銨,配置成硒溶液;步驟S12:另取硼氫化鈉和固體氫氧化鈉,在冰浴下加入水溶液溶解之,在氮氣保護下,將此溶液邊攪拌邊滴入該步驟S11所得的硒溶液中,置於室溫反應1小時候,再於約90℃下反應約半小時,使反應趨向完全後,得到的紅棕色溶液即為硒化鈉鹼性水溶液;步驟S13:取十二烯基丁二酸酐溶於四氫呋喃當中後,再與該步驟S12所得之硒化鈉鹼性水溶液互溶後,經反應約12小時後,利用管柱層析分離雜質,經高溫烘乾後得到產物二硒化物產物;步驟S14:將該步驟S13所得產物回溶於四氫呋喃中,並加入帶有胺基之聚乙二醇高分子互溶後,加入交聯劑1-乙基-(3-二甲基氨基丙基)碳醯二亞胺或N-羥基丁二酰亞胺進行反應約12小時後,利用管柱層析分離雜質,經高溫烘乾後得到最終產物二硒化物嵌段共聚合物,以用於後續包覆輻射奈米例子或/及化療藥物。 A method for synthesizing a composite nanomedicine carrier for proton therapy comprises at least the following steps: Step S11: after dissolving solid sodium hydroxide in water, adding selenium powder and cetyltrimethylammonium bromide, and arranging Selenium solution; Step S12: Another sodium borohydride and solid sodium hydroxide are taken, dissolved in an aqueous solution under an ice bath, and the solution is added to the selenium solution obtained in the step S11 while stirring under a nitrogen atmosphere. After reacting at room temperature for 1 hour, and then reacting at about 90 ° C for about half an hour to complete the reaction, the obtained reddish brown solution is an alkaline aqueous solution of sodium selenide; Step S13: taking dodecenyl succinic anhydride After being dissolved in tetrahydrofuran, and then being mutually miscible with the alkaline aqueous solution of sodium selenide obtained in the step S12, after reacting for about 12 hours, the impurities are separated by column chromatography, and dried at a high temperature to obtain a product diselenide product; Step S14 : the product obtained in the step S13 is dissolved in tetrahydrofuran, and the polyglycol with the amine group is added to the polymer, and the cross-linking agent 1-ethyl-(3-dimethylaminopropyl)carbonium is added. Diimine or N-hydroxybutyl After the imide is reacted for about 12 hours, the impurities are separated by column chromatography, and dried at a high temperature to obtain a final product diselenide block copolymer for subsequent coating of radiation nanoparticles or/and chemotherapy drugs. . 一種使用請求項1所述之二硒化物嵌段共聚合物製備包覆輻射奈米粒子之質子治療用複合式奈米藥物的合成方法,至少包含:取該二硒化物嵌段共聚合物與二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶,相互溶於超純水當中後,再加入溶有油相輻射性奈米粒子之二氯甲烷有機溶劑,其中該二硒化物嵌段共聚合物:二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶:油相輻 射性奈米粒子的比例為5:1:2,並且在冰浴下進行超音波震盪完成乳化狀態之後,加熱至約60℃將該二氯甲烷有機溶劑移除,得到約為100奈米大小之攜帶輻射性奈米粒子之輻射敏感型奈米球體粒子。 A method for synthesizing a composite nanomedicine for proton therapy using the diselenide block copolymer prepared in claim 1, comprising at least: taking the diselenide block copolymer and a distearyl phosphatidylethanolamine-polyethylene glycol-biological target, which is dissolved in ultrapure water, and then added to a dichloromethane organic solvent in which oil phase radiation nanoparticles are dissolved, wherein the diselenide is embedded Segment Copolymer: distearoylphosphatidylethanolamine-polyethylene glycol-biological target: oil phase The ratio of the radioactive nanoparticles is 5:1:2, and after the ultrasonic wave is shaken in an ice bath to complete the emulsified state, the organic solvent is removed by heating to about 60 ° C to obtain a size of about 100 nm. Radiation-sensitive nanosphere particles carrying radioactive nanoparticles. 一種使用請求項1所述之二硒化物嵌段共聚合物製備包覆化療藥物之質子治療用複合式奈米藥物的合成方法,至少包含:取該二硒化物嵌段共聚合物與二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶,相互溶於超純水當中,再加入溶有化療藥物之二氯甲烷有機溶劑,其中該二硒化物嵌段共聚合物:二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶:化療藥物之比例為5:1:2,並且在冰浴下進行超音波震盪完成乳化狀態之後,加熱至約60℃將該二氯甲烷有機溶劑移除,得到最終產物約為100奈米大小之攜帶之輻射敏感型奈米球體粒子。 A method for preparing a proton-treated composite nanomedicine for coating a chemotherapeutic drug by using the diselenide block copolymer of claim 1, comprising at least: taking the diselenide block copolymer and the second hard a fatty acylphosphatidylethanolamine-polyethylene glycol-biological target, dissolved in ultrapure water, and then added to a dichloromethane organic solvent in which a chemotherapeutic drug is dissolved, wherein the diselenide block copolymer: distearyl Acylphosphatidylethanolamine-polyethylene glycol-biological target: the ratio of chemotherapeutic drugs is 5:1:2, and after ultrasonic wave shock in an ice bath to complete the emulsified state, the organic acid is heated to about 60 ° C. The solvent is removed to obtain a radiation-sensitive nanosphere particle of a final product of about 100 nanometers in size. 一種使用請求項1所述之二硒化物嵌段共聚合物製備包覆輻射奈米粒子和化療藥物之質子治療用複合式奈米藥物的合成方法,至少包含:取該二硒化物嵌段共聚合物與二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶,相互溶於超純水當中,再加入溶有油相輻射奈米粒子和化療藥物之二氯甲烷有機溶劑,其中二硒化物嵌段共聚合物:二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物標靶:油相輻射奈米粒子:化療藥物之比例為5:1:1:1,並且在冰浴下進行超音波震盪完成乳化狀態之後,加熱至約60℃將該二氯甲烷有機溶劑移除,得到最終產物約為120奈米大小之攜帶輻射奈米粒子及化療藥物之輻射敏感型奈米球體粒子。 A method for synthesizing a composite nanomedicine for proton therapy using the diselenide block copolymer of claim 1 to prepare a coated nanoparticle and a chemotherapeutic drug, comprising at least: taking the diselenide block The polymer and distearoylphosphatidylethanolamine-polyethylene glycol-biological target are mutually dissolved in ultrapure water, and then added with a dichloromethane organic solvent in which oil phase radiation nanoparticles and chemotherapeutic drugs are dissolved, wherein Selenide block copolymer: distearoylphosphatidylethanolamine-polyethylene glycol-biological target: oil phase radiation nanoparticles: the ratio of chemotherapy drugs is 5:1:1:1, and under ice bath After the ultrasonic vibration is completed and the emulsified state is completed, the dichloromethane organic solvent is removed by heating to about 60 ° C to obtain radiation-sensitive nanosphere particles carrying the radiation nanoparticles and the chemotherapeutic drug having a final product of about 120 nm. . 根據請求項2所述之合成方法,其中該輻射奈米粒子係鈾238。 The synthesis method according to claim 2, wherein the radiation nanoparticle is uranium 238. 根據請求項3所述之合成方法,其中該化療藥物係阿黴素。 The synthetic method according to claim 3, wherein the chemotherapeutic drug is doxorubicin. 根據請求項4所述之一種使用請求項1所述之方法,其中該輻射奈米粒子係鈾238,該化療藥物係阿黴素阿黴素。 The method according to claim 1, wherein the radiation nanoparticle is uranium 238, and the chemotherapeutic drug is doxorubicin.
TW103131276A 2014-09-11 2014-09-11 Preparation method of radiation-sensitive copolymer carrier for nanoparticles with chemotherapeutic pharmaceuticals TWI538691B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103131276A TWI538691B (en) 2014-09-11 2014-09-11 Preparation method of radiation-sensitive copolymer carrier for nanoparticles with chemotherapeutic pharmaceuticals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103131276A TWI538691B (en) 2014-09-11 2014-09-11 Preparation method of radiation-sensitive copolymer carrier for nanoparticles with chemotherapeutic pharmaceuticals

Publications (2)

Publication Number Publication Date
TW201609154A TW201609154A (en) 2016-03-16
TWI538691B true TWI538691B (en) 2016-06-21

Family

ID=56084949

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103131276A TWI538691B (en) 2014-09-11 2014-09-11 Preparation method of radiation-sensitive copolymer carrier for nanoparticles with chemotherapeutic pharmaceuticals

Country Status (1)

Country Link
TW (1) TWI538691B (en)

Also Published As

Publication number Publication date
TW201609154A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
Jia et al. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer
US9468608B2 (en) Preparation method of radiation sensitive copolymer carrier for coating radiated nanoparticles and chemotherapy drugs
Xiao et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy
TWI642437B (en) Application of compound containing &lt;sup&gt; 10 &lt;/ sup&gt; B in preparation and specific binding of β-amyloid protein
JP2008519014A (en) Nanoparticles comprising intracellular targeting elements, their preparation and use
EA020942B1 (en) Metallic nanoparticles, preparation and uses thereof
WO2017114317A1 (en) Compound for specific binding with β amyloid protein
Shanei et al. Investigating the sonodynamic-radiosensitivity effect of gold nanoparticles on HeLa cervical cancer cells
Wang et al. Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics
Rostami et al. Gold nanoparticles as cancer theranostic agents.
Rovais et al. Internalization capabilities of gold-198 nanoparticles: Comparative evaluation of effects of chitosan agent on cellular uptake into MCF-7
CN104984341B (en) A kind of preparation method of the composite Nano preparation of near-infrared laser triggering
CN107812191B (en) A dispersion for chemotherapy, microwave thermotherapy and CT imaging
JP6376979B2 (en) Method for synthesizing nanocarriers comprising radiation-sensitive copolymers as constituents
TWI538691B (en) Preparation method of radiation-sensitive copolymer carrier for nanoparticles with chemotherapeutic pharmaceuticals
Islamian et al. Nanoparticles promise new methods to boost oncology outcomes in breast cancer
Lee et al. Injectable Alginate Complex Hydrogel Loaded with Dual-Drug Nanovectors Offers Effective Photochemotherapy against Triple-Negative Breast Cancer
TWI674114B (en) Pharmaceutical composition, methods for preparing and using the same
US10773098B2 (en) Therapy for glioblastoma multiforme
Li et al. Anticancer effects and cell death pathways in ultralow-power 980 nm laser-triggered photodynamic therapy by Gd2O3: Yb, Tm nanoparticles
CN106309366A (en) Preparation method of polystyrene-polyacrylic acid nanometer drug carrying microsphere for photodynamics therapy
RU2781902C1 (en) Method for treating ehrlich adenocarcinoma by means of radiation therapy
EP3040310B1 (en) Preparation method of radiation sensitive copolymer carrier for coating radiated nanoparticles and chemotherapy drugs
RU2808984C1 (en) Method of proton therapy for solid ehrlich carcinoma
US10265426B2 (en) Scandium nano-radiopharmaceutical

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees