TWI536501B - Method for fabricating memory device - Google Patents
Method for fabricating memory device Download PDFInfo
- Publication number
- TWI536501B TWI536501B TW103121927A TW103121927A TWI536501B TW I536501 B TWI536501 B TW I536501B TW 103121927 A TW103121927 A TW 103121927A TW 103121927 A TW103121927 A TW 103121927A TW I536501 B TWI536501 B TW I536501B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- region
- substrate
- forming
- filling
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Description
本發明是有關於一種半導體元件的製造方法,且特別是有關於一種記憶元件的製造方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a memory device.
記憶體可以分為揮發性記憶體(Volatile memory)與非揮發性記憶體(Non-volatile memory)兩類。揮發性記憶體在電源供應中斷後,其記憶體所儲存的資料便會消失;而非揮發性記憶體即使電源供應中斷,其記憶體所儲存的資料並不會消失,重新供電後,就能夠讀取記憶體中的資料。因此,非揮發性記憶體可廣泛地應用在電子產品,尤其是可攜帶性產品。Memory can be divided into two types: volatile memory (Volatile memory) and non-volatile memory (Non-volatile memory). Volatile memory will disappear after the power supply is interrupted. The non-volatile memory will not disappear after the power supply is interrupted. After re-powering, it will be able to Read the data in the memory. Therefore, non-volatile memory can be widely used in electronic products, especially portable products.
隨著記憶元件的積集度提高與尺寸縮小,為了確保多個記憶胞(Memory cell)之間彼此電性隔離,必須形成多個隔離結構與介電層,而多個隔離結構與介電層必須經由多道複雜的微影製程來形成,所以可能造成隔離結構與介電層之間的對準失誤(Mis-alignment)以及增加製程變異(Process variation)。因此,目前極需一種可以簡化製程來製造記憶元件並減輕對準失誤問題的製造方法。As the integration of the memory elements increases and the size is reduced, in order to ensure that the plurality of memory cells are electrically isolated from each other, a plurality of isolation structures and dielectric layers must be formed, and the plurality of isolation structures and dielectric layers It must be formed through multiple complex lithography processes, which may cause mis-alignment between the isolation structure and the dielectric layer and increase process variation. Therefore, there is a great need for a manufacturing method that simplifies the process to fabricate memory components and mitigate alignment errors.
本發明提供一種記憶元件的製造方法,其可簡化製程,以達到減少製程變異以及降低製程成本的功效。The invention provides a method for manufacturing a memory element, which can simplify the process to reduce the variation of the process and reduce the cost of the process.
本發明提供一種記憶元件的製造方法,其步驟包括提供基底,上述基底具有第一區以及第二區。於第一區與第二區的基底上形成堆疊層,上述堆疊層包括儲存層、第一導體層以及第一罩幕層。然後,圖案化堆疊層,以形成多數個第一圖案化的堆疊層,上述第一圖案化的堆疊層沿著第一方向延伸,從第一區延伸到第二區,每一第一圖案化的堆疊層兩側分別具有開口。接著,於基底上形成填充層,上述填充層填入上述開口中。在基底的第一區上形成第二罩幕層,第二罩幕層未覆蓋第二區的填充層上。之後,以填充層為罩幕,移除第二區內的第一圖案化的堆疊層以及部分基底,以於第二區的基底中形成多個溝渠。The present invention provides a method of fabricating a memory device, the steps of which include providing a substrate having a first region and a second region. A stacked layer is formed on the substrates of the first region and the second region, and the stacked layer includes a storage layer, a first conductor layer, and a first mask layer. Then, the stacked layers are patterned to form a plurality of first patterned stacked layers, the first patterned stacked layers extending along the first direction, extending from the first region to the second region, each first patterned The stacked layers each have an opening on each side. Next, a filling layer is formed on the substrate, and the filling layer is filled in the opening. A second mask layer is formed on the first region of the substrate, and the second mask layer does not cover the fill layer of the second region. Thereafter, the first patterned stacked layer and the partial substrate in the second region are removed by using the filling layer as a mask to form a plurality of trenches in the substrate of the second region.
在本發明的一實施例中,上述的溝渠形成之後,更包括移除填充層,裸露出第一區的第一圖案化的堆疊層的表面。然後,在第一區的第一圖案化的堆疊層之間的開口中形成多數個埋入式介電層,並在第二區的溝渠中形成多個隔離結構。接著,移除第一罩幕層,以暴露第一導體層的表面。之後,於基底上形成在第二方向延伸的第二導體層,並將第一區的每一第一圖案化的堆疊層圖案化成多數個第二圖案化的堆疊層。In an embodiment of the invention, after the trench is formed, the method further includes removing the filling layer to expose the surface of the first patterned stacked layer of the first region. Then, a plurality of buried dielectric layers are formed in the openings between the first patterned stacked layers of the first region, and a plurality of isolation structures are formed in the trenches of the second region. Next, the first mask layer is removed to expose the surface of the first conductor layer. Thereafter, a second conductor layer extending in the second direction is formed on the substrate, and each of the first patterned stacked layers of the first region is patterned into a plurality of second patterned stacked layers.
在本發明的一實施例中,移除上述填充層的方法包括乾式蝕刻法或濕式蝕刻法。In an embodiment of the invention, the method of removing the above-described filling layer includes a dry etching method or a wet etching method.
在本發明的一實施例中,上述埋入式介電層與隔離結構為同時形成。In an embodiment of the invention, the buried dielectric layer and the isolation structure are formed simultaneously.
在本發明的一實施例中,上述埋入式介電層與隔離結構的形成方法包括在基底上形成介電材料層,介電材料層填入於第一區的第一圖案化的堆疊層之間的開口之中,並填入於第二區的溝渠之中,且覆蓋第一罩幕層。然後,以第一罩幕層為停止層,移除第一罩幕層上的介電材料層。In an embodiment of the invention, the method for forming the buried dielectric layer and the isolation structure includes forming a dielectric material layer on the substrate, and the dielectric material layer is filled in the first patterned stacked layer of the first region. Among the openings between the openings, and filled in the trenches of the second zone, and covering the first mask layer. Then, the first mask layer is used as a stop layer to remove the dielectric material layer on the first mask layer.
在本發明的一實施例中,上述填充層的材料與第一罩幕層的材料不同。In an embodiment of the invention, the material of the filling layer is different from the material of the first mask layer.
在本發明的一實施例中,上述填充層的材料包括流體材料。In an embodiment of the invention, the material of the filling layer comprises a fluid material.
在本發明的一實施例中,上述流體材料包括光阻或有機介電材料。In an embodiment of the invention, the fluid material comprises a photoresist or an organic dielectric material.
在本發明的一實施例中,上述填充層的形成方法包括旋轉塗佈法、高密度電漿化學氣相沉積法(HDPCVD)或增強高深寬比溝填製程(Enhanced High Aspect Ratio Process,eHARP)。In an embodiment of the invention, the method for forming the filling layer comprises a spin coating method, a high density plasma chemical vapor deposition (HDPCVD) method or an enhanced high aspect ratio process (eHARP). .
在本發明的一實施例中,在形成上述填充層之前,更包括在每一第一圖案化的堆疊層兩側的基底中分別形成埋入式摻雜區,埋入式摻雜區沿著第一方向延伸。In an embodiment of the invention, before forming the filling layer, further comprising forming a buried doping region in each of the substrates on both sides of each of the first patterned stacked layers, the buried doping region along The first direction extends.
基於上述,本發明則可藉由填充層做為蝕刻溝渠的罩幕,之後,可以同時形成埋入式介電層與隔離結構。如此一來,本發明之記憶元件的製造方法便可簡化製程,以達到減少製程變異以及降低製程成本的功效。Based on the above, the present invention can be used as a mask for etching trenches by using a filling layer, after which a buried dielectric layer and an isolation structure can be simultaneously formed. In this way, the manufacturing method of the memory element of the present invention can simplify the process, thereby reducing the process variation and reducing the cost of the process.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
圖1A至圖1K為依照本發明實施例所繪示的記憶元件之製造流程的上視圖。圖2A至圖2K分別為沿圖1A至圖1K之II-II’線的剖面示意圖。圖3A至圖3K分別為沿圖1A至圖1K之III-III’線的剖面示意圖。圖4為沿圖1K之IV-IV’線的剖面示意圖。1A-1K are top views of a manufacturing process of a memory device according to an embodiment of the invention. 2A to 2K are schematic cross-sectional views taken along line II-II' of Figs. 1A to 1K, respectively. 3A to 3K are schematic cross-sectional views taken along line III-III' of Figs. 1A to 1K, respectively. Figure 4 is a schematic cross-sectional view taken along line IV-IV' of Figure 1K.
請參照圖1A、圖2A以及圖3A,首先,於基底10中形成堆疊層11。基底10具有第一區R1與第二區R2(如圖1A所示)。在一實施例中,第一區R1可例如為主動區;而第二區R2可例如為周邊區。基底10例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。Referring to FIG. 1A, FIG. 2A and FIG. 3A, first, a stacked layer 11 is formed in the substrate 10. The substrate 10 has a first region R1 and a second region R2 (as shown in FIG. 1A). In an embodiment, the first zone R1 may be, for example, an active zone; and the second zone R2 may be, for example, a perimeter zone. The substrate 10 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator (SOI)). The semiconductor is, for example, an atom of the IVA group, such as ruthenium or osmium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as tantalum carbide or germanium telluride, or a semiconductor compound formed of a group IIIA atom and a group VA atom, such as gallium arsenide.
接著,於第一區R1與第二區R2的基底10上形成堆疊層11。堆疊層11包括儲存層12(例如是高介電常數材料)、第一導體層14(例如是做為控制閘極)以及第一罩幕層16。在一實施例中,儲存層12可例如是由穿隧介電層、電荷儲存層以及阻擋層所構成的複合層。舉例來說,上述複合層可由氧化層/氮化層/氧化層(Oxide-Nitride-Oxide, ONO)所構成,其可為三層或更多層,本發明並不限於此,其形成方法可以是化學氣相沉積法、熱氧化法等。Next, a stacked layer 11 is formed on the substrate 10 of the first region R1 and the second region R2. The stacked layer 11 includes a storage layer 12 (eg, a high dielectric constant material), a first conductor layer 14 (eg, as a control gate), and a first mask layer 16. In an embodiment, the storage layer 12 can be, for example, a composite layer composed of a tunneling dielectric layer, a charge storage layer, and a barrier layer. For example, the composite layer may be composed of an oxide layer/nitride layer/oxide layer (Oxide-Nitride-Oxide, ONO), which may be three or more layers, and the invention is not limited thereto, and the formation method thereof may be It is a chemical vapor deposition method, a thermal oxidation method, or the like.
第一導體層14材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法來形成。第一罩幕層16的材料例如是矽材料或金屬材料等。只要第一罩幕層16的材料與基底10、儲存層12以及第一導體層14的材料之間具有高度的蝕刻選擇比,本發明之第一罩幕層16的材料並不限於此。The material of the first conductor layer 14 is, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof can be formed by chemical vapor deposition. The material of the first mask layer 16 is, for example, a tantalum material or a metal material. The material of the first mask layer 16 of the present invention is not limited thereto as long as the material of the first mask layer 16 has a high etching selectivity ratio with the material of the substrate 10, the storage layer 12, and the first conductor layer 14.
請參照圖1B、圖2B以及圖3B,圖案化堆疊層11,以形成多數個圖案化的堆疊層11a。圖案化的堆疊層11a沿著第一方向D1延伸,從第一區R1延伸到第二區R2。每一圖案化的堆疊層11a兩側分別具有開口18。在一實施例中,圖案化的方法可利用微影與蝕刻製程移除部分第一罩幕層16、部分第一導體層14以及部分儲存層12,以於每一圖案化的堆疊層11a兩側形成開口18,暴露基底10的表面(如圖1B所示)。圖案化的堆疊層11a包括第一罩幕層16a、第一導體層14a以及儲存層12a。蝕刻製程可以是乾式蝕刻法,例如是濺鍍蝕刻法或反應性離子蝕刻法等。Referring to FIGS. 1B, 2B, and 3B, the stacked layers 11 are patterned to form a plurality of patterned stacked layers 11a. The patterned stacked layer 11a extends along the first direction D1, extending from the first region R1 to the second region R2. Each of the patterned stacked layers 11a has an opening 18 on each side. In one embodiment, the patterning method may utilize a lithography and etching process to remove portions of the first mask layer 16, a portion of the first conductor layer 14, and a portion of the storage layer 12, such that each patterned layer 11a The side is formed with an opening 18 exposing the surface of the substrate 10 (as shown in Figure 1B). The patterned stacked layer 11a includes a first mask layer 16a, a first conductor layer 14a, and a storage layer 12a. The etching process may be a dry etching method such as a sputtering etching method or a reactive ion etching method.
之後,在每一圖案化的堆疊層11a兩側的基底10中分別形成埋入式摻雜區100。具體來說,進行離子植入製程,以於開口18所裸露的基底10中形成埋入式摻雜區100。換言之,埋入式摻雜區100位於每一圖案化的堆疊層11a兩側之開口18所裸露的基底10中。埋入式摻雜區100沿著第一方向D1延伸,從第一區R1延伸到第二區R2。在一實施例中,基底10具有第一導電型;埋入式摻雜區100則具有第二導電型。第一導電型例如是P型;第二導電型例如是N型,反之亦然。在一實施例中,埋入式摻雜區100所植入的摻質例如是磷或是砷,摻雜的劑量例如是1.0´1015 /cm2 至3.0´1015 /cm2 ,植入的能量例如是10keV至20keV。Thereafter, a buried doping region 100 is formed in each of the substrates 10 on both sides of each of the patterned stacked layers 11a. Specifically, an ion implantation process is performed to form the buried doped region 100 in the exposed substrate 10 of the opening 18. In other words, the buried doped region 100 is located in the substrate 10 exposed by the openings 18 on either side of each patterned stacked layer 11a. The buried doped region 100 extends along the first direction D1 and extends from the first region R1 to the second region R2. In an embodiment, the substrate 10 has a first conductivity type; the buried doped region 100 has a second conductivity type. The first conductivity type is, for example, a P type; the second conductivity type is, for example, an N type, and vice versa. In an embodiment, the doping implanted in the buried doping region 100 is, for example, phosphorus or arsenic, and the doping dose is, for example, 1.0 ́10 15 /cm 2 to 3.0 ́10 15 /cm 2 , implanted. The energy is, for example, 10 keV to 20 keV.
請參照圖1C、圖2C以及圖3C,於基底10上形成填充層110,填充層110填入於開口18中。本發明之填充層110與第一罩幕層16的材料不同,且與第一罩幕層16之間具有高蝕刻選擇比。填充層110的材料包括流體材料。流體材料可以是光阻或有機介電材料。本發明之填充層110的材料並不限於此,只要具有高度填充特性且能填入具有高深寬比的結構即可。填充層110的形成方法例如是旋轉塗佈法、高密度電漿法或增強高深寬比溝填製程。在一實施例中,在第一罩幕層16上方之填充層110的厚度T1例如為100 nm至500 nm。Referring to FIG. 1C , FIG. 2C and FIG. 3C , a filling layer 110 is formed on the substrate 10 , and the filling layer 110 is filled in the opening 18 . The fill layer 110 of the present invention is different in material from the first mask layer 16 and has a high etch selectivity ratio with the first mask layer 16. The material of the fill layer 110 includes a fluid material. The fluid material can be a photoresist or an organic dielectric material. The material of the filling layer 110 of the present invention is not limited thereto as long as it has a high filling property and can be filled with a structure having a high aspect ratio. The formation method of the filling layer 110 is, for example, a spin coating method, a high-density plasma method, or an enhanced high aspect ratio groove filling process. In an embodiment, the thickness T1 of the filling layer 110 above the first mask layer 16 is, for example, 100 nm to 500 nm.
接著,在基底10的第一區R1上形成第二罩幕層20。第二罩幕層20未覆蓋第二區R2的填充層110。第二罩幕層20的材料例如是碳或光阻類材料等。第二罩幕層20的形成方法例如是旋轉塗佈法。在一實施例中,可以更包括抗反射層19。抗反射層19位於第一區R1與第二區R2的填充層110上。第一區R1的抗反射層19位於第二罩幕層20與填充層110之間。第二區R2的抗反射層19則裸露出來。抗反射層19的材料與例如是有機聚合物、碳或氮氧化矽等。抗反射層19的材料與第二罩幕層20的材料不同,其形成方法例如是旋轉塗佈法或化學氣相沉積法(CVD)法。Next, a second mask layer 20 is formed on the first region R1 of the substrate 10. The second mask layer 20 does not cover the fill layer 110 of the second region R2. The material of the second mask layer 20 is, for example, a carbon or photoresist type material or the like. The method of forming the second mask layer 20 is, for example, a spin coating method. In an embodiment, the anti-reflective layer 19 may be further included. The anti-reflection layer 19 is located on the filling layer 110 of the first region R1 and the second region R2. The anti-reflective layer 19 of the first region R1 is located between the second mask layer 20 and the filling layer 110. The anti-reflection layer 19 of the second region R2 is exposed. The material of the anti-reflection layer 19 is, for example, an organic polymer, carbon or bismuth oxynitride or the like. The material of the anti-reflection layer 19 is different from the material of the second mask layer 20, and is formed by, for example, a spin coating method or a chemical vapor deposition (CVD) method.
之後,請參照圖1D、圖2D以及圖3D,以圖1C、圖2C以及圖3C的第二罩幕層20為罩幕,移除第二區R2的抗反射層19與部分填充層110,以暴露第二區R2的第一罩幕層16的頂面。詳細地說,為了確保第二區R2的第一罩幕層16的頂面的填充層110可以完全被移除,在蝕刻過程中,會採取過蝕刻(Over etching)的方式進行,使得第二區R2的開口18內的填充層110的頂面會略低於第二區R2的第一罩幕層16的頂面。其移除方法可以是乾式蝕刻法,例如是濺鍍蝕刻法或反應性離子蝕刻法等。接著,移除第二罩幕層20。在一實施例中,移除第二罩幕層20的方法可以是先以高密度電漿灰化圖案化的第二罩幕層20,之後,再進行濕式清洗製程。1D, 2D, and 3D, with the second mask layer 20 of FIGS. 1C, 2C, and 3C as a mask, the anti-reflective layer 19 and the partially filled layer 110 of the second region R2 are removed. To expose the top surface of the first mask layer 16 of the second region R2. In detail, in order to ensure that the filling layer 110 of the top surface of the first mask layer 16 of the second region R2 can be completely removed, during the etching process, an over etching method is performed, so that the second The top surface of the fill layer 110 in the opening 18 of the region R2 will be slightly lower than the top surface of the first mask layer 16 of the second region R2. The removal method may be a dry etching method such as a sputtering etching method or a reactive ion etching method. Next, the second mask layer 20 is removed. In one embodiment, the second mask layer 20 may be removed by first patterning the second mask layer 20 with high density plasma ashing, followed by a wet cleaning process.
請參照圖1E、圖2E以及圖3E,以圖1C、2C與3C的抗反射層19與填充層110為罩幕,移除第二區R2的圖案化的堆疊層11a及其下方的部分基底10,以於第二區R2的基底10中形成多個溝渠22(圖1D、圖2D以及圖3D)。請繼續參考圖3D,填充層110位於埋入式摻雜區100上方,因此,填充層110做為蝕刻罩幕層時,可自對準未覆蓋填充層110的區域形成溝渠22,而不會因為進行多道微影製程而產生對準失誤的問題。因此,溝渠22可稱為自對準接觸區域(Self-Aligned Contact Region)。第一罩幕層16a上的填充層110具有足夠厚度T1,因此,縱使在移除第二區R2的圖案化的堆疊層11a以及部分基底10的過程中,雖然在第一區R1上的抗反射層19與部分填充層110也會同時被移除,然而仍有部分的填充層110可以留下來,覆蓋在第一區R1的第一罩幕層16a的頂面上(圖1E以及圖2E),因此第一區R1的第一罩幕層16a不會遭受蝕刻破壞。Referring to FIG. 1E, FIG. 2E and FIG. 3E, the anti-reflective layer 19 and the filling layer 110 of FIGS. 1C, 2C and 3C are used as a mask to remove the patterned stacked layer 11a of the second region R2 and a portion of the substrate below it. 10, a plurality of trenches 22 are formed in the substrate 10 of the second region R2 (FIGS. 1D, 2D, and 3D). Referring to FIG. 3D , the filling layer 110 is located above the buried doping region 100. Therefore, when the filling layer 110 is used as an etching mask layer, the trench 22 can be formed by self-aligning the region not covering the filling layer 110 without The problem of misalignment occurs due to the multi-pass lithography process. Therefore, the trench 22 can be referred to as a Self-Aligned Contact Region. The filling layer 110 on the first mask layer 16a has a sufficient thickness T1, and thus, even in the process of removing the patterned stacked layer 11a of the second region R2 and a portion of the substrate 10, although resistant to the first region R1 The reflective layer 19 and the partially filled layer 110 are also removed at the same time, however, a portion of the filled layer 110 may remain, covering the top surface of the first mask layer 16a of the first region R1 (FIG. 1E and FIG. 2E). Therefore, the first mask layer 16a of the first region R1 is not subjected to etching damage.
請參照圖1F、圖2F以及圖3F,移除填充層110,裸露出第一區R1的圖案化的堆疊層11a的表面,並且暴露出第一區R1與第二區R2的埋入式摻雜區100。移除填充層110的方法包括乾式剝除法或濕式剝除法。乾式剝除法例如是濺鍍蝕刻法或反應性離子蝕刻法等。濕式剝除法例如是使用氫氟酸、硝酸和氫氟酸的混合溶液或熱磷酸(150°C~200°C)等的蝕刻液來進行蝕刻。Referring to FIG. 1F, FIG. 2F and FIG. 3F, the filling layer 110 is removed, the surface of the patterned stacked layer 11a of the first region R1 is exposed, and the buried blend of the first region R1 and the second region R2 is exposed. Miscellaneous area 100. The method of removing the filling layer 110 includes a dry stripping method or a wet stripping method. The dry stripping method is, for example, a sputtering etching method or a reactive ion etching method. The wet stripping method is performed by, for example, etching using a mixed solution of hydrofluoric acid, nitric acid, and hydrofluoric acid or hot phosphoric acid (150 ° C to 200 ° C).
請參照圖1G、圖2G以及圖3G,在基底10上形成介電材料層24。介電材料層24填入於第一區R1的開口18之中,並填入於第二區R2的溝渠22之中,且覆蓋第一罩幕層16a。介電材料層24的材料例如是氧化矽。氧化矽例如是旋塗式介電質(Spin-On Dielectric, SOD)、高密度電漿氧化物(High Density Plasma, HDP Oxide)或增強高深寬比溝填製程形成的氧化層。Referring to FIGS. 1G, 2G, and 3G, a dielectric material layer 24 is formed on the substrate 10. The dielectric material layer 24 is filled in the opening 18 of the first region R1 and filled in the trench 22 of the second region R2 and covers the first mask layer 16a. The material of the dielectric material layer 24 is, for example, ruthenium oxide. The cerium oxide is, for example, a spin-on dielectric (SOD), a high-density plasma oxide (HDP Oxide), or an oxide layer formed by an enhanced high aspect ratio trench filling process.
請參照圖1H、圖2H以及圖3H,以第一罩幕層16a為停止層,移除第一罩幕層16a上的介電材料層24,以同時在第一區R1的圖案化的堆疊層11a之間的開口18中形成多數個埋入式介電層24a,並在第二區R2的溝渠22中形成多個隔離結構24b。移除第一罩幕層16a上的介電材料層24的方法例如是化學機械研磨製程。埋入式介電層24a的頂面與第一罩幕層16a的頂面可為共平面(Coplanar),或者由於過研磨(Over-polishing)的關係,使得埋入式介電層24a的頂面略低於第一罩幕層16a的頂面。Referring to FIG. 1H, FIG. 2H and FIG. 3H, the first mask layer 16a is used as a stop layer, and the dielectric material layer 24 on the first mask layer 16a is removed to simultaneously form a patterned stack in the first region R1. A plurality of buried dielectric layers 24a are formed in the openings 18 between the layers 11a, and a plurality of isolation structures 24b are formed in the trenches 22 of the second region R2. The method of removing the dielectric material layer 24 on the first mask layer 16a is, for example, a chemical mechanical polishing process. The top surface of the buried dielectric layer 24a and the top surface of the first mask layer 16a may be coplanar, or the top of the buried dielectric layer 24a due to over-polishing relationship. The face is slightly lower than the top surface of the first mask layer 16a.
請參照圖1I、圖2I以及圖3I,移除第一罩幕層16a,以暴露第一導體層14a、埋入式介電層24a以及隔離結構24b的表面。其移除第一罩幕層16a的方法包括濕式蝕刻法。濕式蝕刻法例如是利用熱磷酸來進行。Referring to FIGS. 1I, 2I, and 3I, the first mask layer 16a is removed to expose the surfaces of the first conductor layer 14a, the buried dielectric layer 24a, and the isolation structure 24b. The method of removing the first mask layer 16a includes a wet etching method. The wet etching method is performed, for example, using hot phosphoric acid.
請參照圖1J、圖2J以及圖3J,於基底10上依序形成第二導體層28以及罩幕層30。在一實施例中,第二導體層28的材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法。第二導體層28的厚度例如為500埃至1000埃。Referring to FIGS. 1J, 2J, and 3J, the second conductor layer 28 and the mask layer 30 are sequentially formed on the substrate 10. In an embodiment, the material of the second conductor layer 28 is, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof may utilize a chemical vapor deposition method. The thickness of the second conductor layer 28 is, for example, 500 angstroms to 1000 angstroms.
請參照圖1K、圖2K、圖3K以及圖4,進行微影與蝕刻的方式圖案化罩幕層30與第二導體層28,以於基底10上形成在第二方向D2延伸的多個罩幕層30a以及多個第二導體層28a(例如是做為字元線),並繼續蝕刻第一區R1的第一導體層14a,以形成第一導體層14b。蝕刻的方法可利用乾式蝕刻法,例如是濺鍍蝕刻法或反應性離子蝕刻法等。儲存層12a包括被第一導體層14b覆蓋的儲存層12b以及未被第一導體層14a覆蓋的儲存層12c。第一導體層14b與儲存層12b構成多數個圖案化的堆疊層11b。多數個圖案化的堆疊層11b位於第一區R1的基底10上。每一圖案化的堆疊層11b之間具有埋入式介電層24a,使得多數個圖案化的堆疊層11b之間彼此電性隔離。在一實施例中,其可形成N×N的矩陣(Matrix)。Referring to FIG. 1K, FIG. 2K, FIG. 3K and FIG. 4, the mask layer 30 and the second conductor layer 28 are patterned by lithography and etching to form a plurality of masks extending in the second direction D2 on the substrate 10. The curtain layer 30a and the plurality of second conductor layers 28a (for example, as word lines) continue to etch the first conductor layer 14a of the first region R1 to form the first conductor layer 14b. The etching method can be performed by a dry etching method such as a sputtering etching method or a reactive ion etching method. The storage layer 12a includes a storage layer 12b covered by the first conductor layer 14b and a storage layer 12c not covered by the first conductor layer 14a. The first conductor layer 14b and the storage layer 12b constitute a plurality of patterned stacked layers 11b. A plurality of patterned stacked layers 11b are located on the substrate 10 of the first region R1. A buried dielectric layer 24a is disposed between each patterned stacked layer 11b such that a plurality of patterned stacked layers 11b are electrically isolated from each other. In an embodiment, it may form an N x N matrix.
由於填充層110具有高度填充性且具有易於塗佈與移除的特性,因此本發明可將填充層110填充於第二圖案化的堆疊層11a之間(圖3C)。再者,由於填充層110與第一罩幕層16a之間具有高蝕刻選擇比的特性,故可用以當作罩幕層,以在基底10中形成溝渠22(圖3E)。將填充層110移除之後,在基底10上形成介電材料層24,經化學機械研磨或回蝕刻之後,即可在溝渠22之中形成隔離結構24b,並同時在圖案化的堆疊層11b之間形成埋入式介電層24a(圖2G、3G、2H、3H)。Since the filling layer 110 is highly filled and has characteristics of easy coating and removal, the present invention can fill the filling layer 110 between the second patterned stacked layers 11a (FIG. 3C). Moreover, since the filling layer 110 and the first mask layer 16a have a high etching selectivity ratio, they can be used as a mask layer to form the trench 22 in the substrate 10 (Fig. 3E). After the filling layer 110 is removed, a dielectric material layer 24 is formed on the substrate 10, and after chemical mechanical polishing or etch back, the isolation structure 24b can be formed in the trenches 22, and simultaneously in the patterned stacked layer 11b. A buried dielectric layer 24a is formed (Figs. 2G, 3G, 2H, 3H).
請參考圖1K、圖2K、圖3K以及圖4所示,本發明實施例之記憶元件包括多條第二導體層28a(例如是做為字元線)、多個圖案化的堆疊層11b、多個埋入式介電層24a、多條埋入式摻雜區100以及多個隔離結構24b。多條埋入式摻雜區(例如是做為位元線)100位於基底10的第一區R1與第二區R2上,其沿著第一方向D1延伸。所述第二導體層28a位於第一區R1上,其沿著第二方向D2延伸,跨過埋入式摻雜區100。每一第二導體層28a下方有多個圖案化的堆疊層11b。每一個圖案化的堆疊層11b包括儲存層12b與第一導體層14b。埋入式介電層24a沿著第一方向D1延伸,位於第一區R1與第二區R2上且位於埋入式摻雜區100上方。在第一區R1上的每一埋入式介電層24a分隔相鄰的兩個圖案化的堆疊層11b。在第二區R2上的埋入式介電層24a則與基底10中位於埋入式摻雜區100兩側的隔離結構24b連接成一體結構。Referring to FIG. 1K, FIG. 2K, FIG. 3K and FIG. 4, the memory element of the embodiment of the present invention includes a plurality of second conductor layers 28a (for example, as word lines), a plurality of patterned stacked layers 11b, A plurality of buried dielectric layers 24a, a plurality of buried doped regions 100, and a plurality of isolation structures 24b. A plurality of buried doped regions (eg, as bit lines) 100 are located on the first region R1 and the second region R2 of the substrate 10, which extend along the first direction D1. The second conductor layer 28a is located on the first region R1 and extends along the second direction D2 across the buried doping region 100. Below each of the second conductor layers 28a is a plurality of patterned stacked layers 11b. Each of the patterned stacked layers 11b includes a storage layer 12b and a first conductor layer 14b. The buried dielectric layer 24a extends along the first direction D1 and is located on the first region R1 and the second region R2 and above the buried doping region 100. Each of the buried dielectric layers 24a on the first region R1 separates the adjacent two patterned stacked layers 11b. The buried dielectric layer 24a on the second region R2 is connected to the isolation structure 24b on both sides of the buried doping region 100 in the substrate 10 to form a unitary structure.
綜上所述,本發明在埋入式摻雜區(例如是做為位元線)上形成的填充層,可做為蝕刻溝渠時的罩幕,使得溝渠可以自行對準形成於埋入式摻雜區的兩側。而且此製程方法可以不需要多道微影製程,僅利用簡單的微影製程、沉積製程以及平坦化製程即可同時形成埋入式介電層與隔離結構。因此,本發明之記憶元件的製造方法具有簡化製程,以達到減少製程變異以及降低製程成本的功效。In summary, the filling layer formed on the buried doped region (for example, as a bit line) can be used as a mask for etching the trench, so that the trench can be self-aligned and formed in the buried type. Both sides of the doped region. Moreover, the process method can simultaneously form a buried dielectric layer and an isolation structure by using a simple lithography process, a deposition process, and a planarization process without requiring multiple lithography processes. Therefore, the manufacturing method of the memory element of the present invention has a simplified process to achieve the effects of reducing process variation and reducing process cost.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
10‧‧‧基底
11‧‧‧堆疊層
11a、11b‧‧‧圖案化的堆疊層
12、12a、12b、12c‧‧‧儲存層
14、14a‧‧‧第一導體層
16、16a‧‧‧第一罩幕層
18‧‧‧開口
19‧‧‧抗反射層
20‧‧‧第二罩幕層
22‧‧‧溝渠
24‧‧‧介電材料層
24a‧‧‧埋入式介電層
24b‧‧‧隔離結構
28、28a‧‧‧第二導體層
30、30a‧‧‧罩幕層
100‧‧‧埋入式摻雜區
110‧‧‧填充層
R1、R2‧‧‧區
D1、D2‧‧‧方向
T1‧‧‧厚度10‧‧‧Base
11‧‧‧Stacking
11a, 11b‧‧‧ patterned stacking layers
12, 12a, 12b, 12c‧‧‧ storage layer
14, 14a‧‧‧ first conductor layer
16, 16a‧‧‧ first cover layer
18‧‧‧ openings
19‧‧‧Anti-reflective layer
20‧‧‧Second cover layer
22‧‧‧ Ditch
24‧‧‧ dielectric material layer
24a‧‧‧ Buried dielectric layer
24b‧‧‧Isolation structure
28, 28a‧‧‧Second conductor layer
30, 30a‧‧ ‧ cover layer
100‧‧‧Buried doped area
110‧‧‧ fill layer
R1, R2‧‧‧
D1, D2‧‧‧ direction
T1‧‧‧ thickness
圖1A至圖1K為依照本發明實施例所繪示的記憶元件之製造流程的上視圖。 圖2A至圖2K分別為沿圖1A至圖1K之II-II’線的剖面示意圖。 圖3A至圖3K分別為沿圖1A至圖1K之III-III’線的剖面示意圖。 圖4為沿圖1K之IV-IV’線的剖面示意圖。1A-1K are top views of a manufacturing process of a memory device according to an embodiment of the invention. 2A to 2K are schematic cross-sectional views taken along line II-II' of Figs. 1A to 1K, respectively. 3A to 3K are schematic cross-sectional views taken along line III-III' of Figs. 1A to 1K, respectively. Figure 4 is a schematic cross-sectional view taken along line IV-IV' of Figure 1K.
10‧‧‧基底 10‧‧‧Base
11b‧‧‧第二圖案化的堆疊層 11b‧‧‧Second patterned stack
12b‧‧‧儲存層 12b‧‧‧ storage layer
14b‧‧‧第一導體層 14b‧‧‧First conductor layer
24a‧‧‧埋入式介電層 24a‧‧‧ Buried dielectric layer
28a‧‧‧第二導體層 28a‧‧‧Second conductor layer
30a‧‧‧罩幕層 30a‧‧‧ Cover layer
100‧‧‧埋入式摻雜區 100‧‧‧Buried doped area
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103121927A TWI536501B (en) | 2014-06-25 | 2014-06-25 | Method for fabricating memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103121927A TWI536501B (en) | 2014-06-25 | 2014-06-25 | Method for fabricating memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201601254A TW201601254A (en) | 2016-01-01 |
TWI536501B true TWI536501B (en) | 2016-06-01 |
Family
ID=55641309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103121927A TWI536501B (en) | 2014-06-25 | 2014-06-25 | Method for fabricating memory device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI536501B (en) |
-
2014
- 2014-06-25 TW TW103121927A patent/TWI536501B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201601254A (en) | 2016-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8293603B2 (en) | Methods of fabricating semiconductor devices | |
US7709345B2 (en) | Trench isolation implantation | |
KR101096976B1 (en) | Semiconductor device and method of fabricating the same | |
US9252044B2 (en) | Shallow trench isolation for end fin variation control | |
US20190221570A1 (en) | Semiconductor device and method for fabricating the same | |
KR100799125B1 (en) | Method for manufacturing a semiconductor device having a capacitor | |
TWI729522B (en) | Semiconductor devices and methods of manufacturing the same | |
US20130302968A1 (en) | Memory device and method for manufacturing memory device | |
WO2012066049A1 (en) | A method for forming a buried dielectric layer underneath a semiconductor fin | |
KR100520846B1 (en) | Method of forming floating gate and method of manufacturing non-volatile memory device using the same | |
US20190319037A1 (en) | Method of manufacturing memory device | |
US9837272B2 (en) | Methods of manufacturing semiconductor devices | |
US7208369B2 (en) | Dual poly layer and method of manufacture | |
KR20130036553A (en) | Method of manufacturing a semiconductor device | |
KR20120126433A (en) | Semiconductor device and manufacturing method of the same | |
JP2013197417A (en) | Method for manufacturing nonvolatile semiconductor memory device | |
JP2012033530A (en) | Semiconductor device and method of manufacturing the same | |
US7172939B1 (en) | Method and structure for fabricating non volatile memory arrays | |
JP3963629B2 (en) | Semiconductor device and manufacturing method thereof | |
US20110057264A1 (en) | Method for protecting the gate of a transistor and corresponding integrated circuit | |
KR20040013529A (en) | Method of manufacturing in Split gate flash memory device | |
TWI536501B (en) | Method for fabricating memory device | |
US9070753B1 (en) | Method for fabricating memory device | |
TWI539559B (en) | Memory device and method for fabricating the same | |
US9343477B2 (en) | Semiconductor device and method for fabricating the same |