TWI535264B - Six-primary solid illuminator - Google Patents

Six-primary solid illuminator Download PDF

Info

Publication number
TWI535264B
TWI535264B TW103139337A TW103139337A TWI535264B TW I535264 B TWI535264 B TW I535264B TW 103139337 A TW103139337 A TW 103139337A TW 103139337 A TW103139337 A TW 103139337A TW I535264 B TWI535264 B TW I535264B
Authority
TW
Taiwan
Prior art keywords
light
blue light
blue
combined
beam splitter
Prior art date
Application number
TW103139337A
Other languages
Chinese (zh)
Other versions
TW201618544A (en
Inventor
黃俊杰
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW103139337A priority Critical patent/TWI535264B/en
Priority to US14/684,946 priority patent/US9465222B2/en
Publication of TW201618544A publication Critical patent/TW201618544A/en
Application granted granted Critical
Publication of TWI535264B publication Critical patent/TWI535264B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/23Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using wavelength separation, e.g. using anaglyph techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1026Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators
    • G02B27/1033Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • G02B27/1053Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/22Stereoscopic photography by simultaneous viewing using single projector with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/334Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using spectral multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Projection Apparatus (AREA)

Description

六原色固態光源 Six primary color solid state light source

本發明是有關於一種六原色固態光源,特別是一種提供立體顯示的六原色固態光源。 The invention relates to a six primary color solid state light source, in particular to a six primary color solid state light source for providing stereoscopic display.

利用人類的兩眼視差,習知的立體顯示裝置以分別提供觀賞者之兩眼不同的影像來達成三維顯示。而依照達成不同影像的方式差異,立體顯示裝置包含偏振式、紅藍式或波長多工式。 Using human two-eye parallax, the conventional stereoscopic display device achieves three-dimensional display by providing different images of the two eyes of the viewer. According to the difference in the way of achieving different images, the stereoscopic display device includes a polarization type, a red-blue type or a wavelength multiplexing type.

波長多工式立體顯示裝置,顧名思義,是以提供觀賞者具不同波長範圍的影像來達成三維顯示。而因彩色影像多由加法三原色(R(紅色)、G(綠色)、B(藍色))來混合出色域空間內的各種顏色,因此習知的波長多工式立體顯示裝置以兩組三原色R1、G1、B1與R2、G2、B2來區分左右眼影像。 The wavelength multiplexed stereoscopic display device, as the name suggests, provides three-dimensional display by providing viewers with images of different wavelength ranges. Since the color image is mostly mixed with the three primary colors (R (red), G (green), B (blue)), the conventional wavelength multiplexed stereo display device has two sets of three primary colors. R1, G1, B1 and R2, G2, and B2 distinguish left and right eye images.

傳統的波長多工式立體顯示裝置以二組光源來提供兩組三原色,然而,常見用於作為光源的雷射,其波長位於綠色之雷射光源效率不高,且價格昂貴致使光源所佔的成本比例大幅上升。因此如何在提供兩組三原色的同時,改善上述之缺點,是業界共同努力的目標。 The conventional wavelength multiplexed stereoscopic display device provides two sets of three primary colors by two sets of light sources. However, it is commonly used as a laser for a light source, and the wavelength of the green laser light source is not high, and the price is expensive, so that the light source occupies The cost ratio has risen sharply. Therefore, how to improve the above shortcomings while providing two sets of three primary colors is the goal of the industry.

本發明係為了欲解決習知技術之問題而提供之一 種六原色固態光源,包括一藍光輸出單元、一紅光光源、一第一光致發元件、一第二光致發元件、一第一光學模組、一第二光學模組、一多頻段濾波片以及一稜鏡組。藍光輸出單元持續同時輸出一第一藍光以及一第二藍光,該第一藍光的波長範圍不同於該第二藍光的波長範圍,其中,在一第一模態下,該第一藍光以及該第二藍光被調制為S偏光而輸出成為一第一組合光,在一第二模態下,該第一藍光以及該第二藍光被調制為P偏光而輸出成為一第二組合光。其中,在該第一模態下,該第一組合光進入該第一光學模組,對該第一光致發元件進行激發以產生一黃光,該黃光與該第一組合光穿過該第一光學模組,並由該多頻段濾波片進行濾波,以產生一第一原色組合光,該第一原色組合光經過該稜鏡組而輸出,其中,在該第二模態下,該第二組合光以及該紅光進入該第二光學模組,該第二組合光對該第二光致發元件進行激發以產生一綠光,該紅光、綠光與該第一組合光穿過該第一光學模組,並由該多頻段濾波片進行濾波,以產生一第二原色組合光,該第二原色組合光經過該稜鏡組而輸出。 The present invention is provided in order to solve the problems of the prior art. a six primary color solid state light source, comprising a blue light output unit, a red light source, a first photo-emitting component, a second photo-emitting component, a first optical module, a second optical module, and a multi-band Filter and a group. The blue light output unit continuously outputs a first blue light and a second blue light, and the first blue light has a wavelength range different from a wavelength range of the second blue light, wherein, in a first mode, the first blue light and the first blue light The two blue lights are modulated into S-polarized light and output as a first combined light. In a second mode, the first blue light and the second blue light are modulated into P-polarized light and output as a second combined light. Wherein, in the first mode, the first combined light enters the first optical module, and the first photo-emitting element is excited to generate a yellow light, and the yellow light and the first combined light pass through The first optical module is filtered by the multi-band filter to generate a first primary color combined light, and the first primary color combined light is output through the buffer group, wherein, in the second mode, The second combined light and the red light enter the second optical module, and the second combined light excites the second photo-emitting element to generate a green light, the red light, the green light and the first combined light Passing through the first optical module and filtering by the multi-band filter to generate a second primary color combined light, and the second primary color combined light is output through the set.

應用本發明實施例之六原色固態光源,由於以持續點亮的第一藍光光源以及第二藍光光源,分別對第一光致發光件以及第二光致發光件進行激發,因此可大幅提高黃光以及綠光的激發量,有效提昇系統亮度。 According to the six primary color solid-state light source of the embodiment of the present invention, since the first blue light source and the second blue light source are respectively excited by the first light-emitting source and the second blue light source that are continuously illuminated, the yellow light can be greatly improved. The amount of light and green light boosts the brightness of the system.

100‧‧‧六原色固態光源 100‧‧‧ Six primary color solid state light source

110‧‧‧第一藍光光源 110‧‧‧First blue light source

112‧‧‧紅光光源 112‧‧‧Red light source

114‧‧‧第二藍光光源 114‧‧‧Second blue light source

115‧‧‧第二組合光束 115‧‧‧Second combined beam

117‧‧‧紅光光束 117‧‧‧Red light beam

118‧‧‧第一組合光束 118‧‧‧First combined beam

119‧‧‧黃光光束 119‧‧‧Yellow beam

120‧‧‧第二光學模組 120‧‧‧Second optical module

122‧‧‧第一光學模組 122‧‧‧First optical module

130‧‧‧第二光致發元件 130‧‧‧Second light-emitting element

132‧‧‧第一光致發元件 132‧‧‧First photo-emitting component

140‧‧‧第二偏振分光鏡 140‧‧‧Second polarization beam splitter

141‧‧‧綠光反射板 141‧‧‧Green light reflector

142‧‧‧第一偏振分光鏡 142‧‧‧First polarization beam splitter

150‧‧‧多頻段濾波片 150‧‧‧Multi-band filter

160‧‧‧第二波片 160‧‧‧second wave plate

162‧‧‧第一波片 162‧‧‧ first wave

180‧‧‧透鏡組 180‧‧‧ lens group

192‧‧‧第一透鏡 192‧‧‧ first lens

194‧‧‧第二透鏡 194‧‧‧second lens

200‧‧‧稜鏡組 200‧‧‧稜鏡 group

202‧‧‧第二稜鏡 202‧‧‧Second

204‧‧‧第一稜鏡 204‧‧‧ first page

206‧‧‧全反射間隙 206‧‧‧ total reflection gap

300‧‧‧藍光輸出單元 300‧‧‧Blue output unit

311‧‧‧第一光調制元件 311‧‧‧First Light Modulation Element

312‧‧‧第二光調制元件 312‧‧‧Second light modulation element

320‧‧‧偏極化分光鏡 320‧‧‧Polarizing Beamsplitter

321‧‧‧第一入光面 321‧‧‧The first entrance

322‧‧‧第二入光面 322‧‧‧Second entrance

323‧‧‧第一出光面 323‧‧‧The first glazing

324‧‧‧第二出光面 324‧‧‧second glazing

331‧‧‧第一半波板 331‧‧‧ first half wave board

332‧‧‧第二半波板 332‧‧‧ second half wave plate

B1‧‧‧第一藍光 B1‧‧‧First Blu-ray

B2‧‧‧第二藍光 B2‧‧‧second blue light

第1圖為依照本發明六原色固態光源一實施例之架構示意 圖。 1 is a schematic diagram showing an embodiment of a six primary color solid state light source according to the present invention. Figure.

第2圖為本發明六原色固態光源之頻譜圖。 Figure 2 is a spectrum diagram of a six primary color solid state light source of the present invention.

第3圖為本發明六原色固態光源之第二偏振分光鏡(wire-grid PBS)140的穿透頻譜圖。 Figure 3 is a perspective view of the second spectrum of the six-primary solid-state light source of the present invention, a second polarization polarizer (wire-grid PBS) 140.

第4圖係顯示綠光反光板的穿透頻譜圖。 Figure 4 shows the penetration spectrum of the green reflector.

第5圖為本發明六原色固態光源之第一偏振分光鏡的穿透頻譜圖。 Fig. 5 is a perspective view showing the penetration spectrum of the first polarization beam splitter of the six primary color solid-state light sources of the present invention.

第6圖為本發明六原色固態光源之多頻段濾波片的穿透頻譜圖。 Figure 6 is a perspective view of the multi-band filter of the six primary color solid-state light sources of the present invention.

第7圖為本發明六原色固態光源之第一模態的光路示意圖。 Figure 7 is a schematic view of the optical path of the first mode of the six primary color solid state light sources of the present invention.

第8圖,其為本發明六原色固態光源之第二模態的光路示意圖。 Figure 8 is a schematic view showing the optical path of the second mode of the six primary color solid state light sources of the present invention.

鑒於習知作為提供兩組獨立光源的六原色光源中,其每一組獨立光源的三原色(紅、綠以及藍色)為由雷射光源構成。而綠光雷射由於效率不高且價錢昂貴,使得整體光源成本上升。另外,作為兩組獨立光源,紅光雷射必須選用兩組具有鑑別率的波長,為了選用作為適當的雷射光源,整體光源成本勢必也會提升。 In view of the conventional six primary color light sources providing two independent light sources, the three primary colors (red, green, and blue) of each of the independent light sources are composed of laser light sources. The green laser is costly due to its inefficiency and high price. In addition, as two independent light sources, the red laser must use two sets of wavelengths with discrimination rate. In order to be selected as an appropriate laser source, the overall light source cost is bound to increase.

本發明之六原色固態光源以雷射光源以及光致發光元件作為光源,其中雷射光源所發射之光束一部分激發光致發光元件,所激發之光線再與另一部分之雷射光線共同作為光源使用。並且搭配多頻段濾波片,將光路設計為六原色固態光源輸出兩組波長互不重疊的原色組合。除此之外,額外搭配控 制器,使得兩組不同模態的原色組合分別成為觀察者左眼和右眼之影像,以使觀察者得到立體顯示影像。 The six primary color solid-state light source of the invention uses a laser light source and a photoluminescent element as a light source, wherein a part of the light beam emitted by the laser light source excites the photoluminescent element, and the excited light is used together with another part of the laser light as a light source. . And with multi-band filter, the optical path is designed as a six-primary solid-state light source to output two sets of primary colors that do not overlap each other. In addition to this, additional matching control The controller makes the original color combinations of the two different modes become the images of the observer's left and right eyes respectively, so that the observer can obtain the stereoscopic display image.

請參照第1圖,第1圖為依照本發明六原色固態光源一實施例之架構示意圖。六原色固態光源100包含一藍光輸出單元300、紅光光源112、第二光致發光件130、第一光致發光件132、第二光學模組120、第一光學模組122、多頻段濾波片150以及稜鏡組200。 Please refer to FIG. 1. FIG. 1 is a schematic structural view of an embodiment of a six primary color solid state light source according to the present invention. The six primary color solid state light source 100 includes a blue light output unit 300, a red light source 112, a second photoluminescent device 130, a first photoluminescent device 132, a second optical module 120, a first optical module 122, and a multi-band filter. Sheet 150 and 稜鏡 group 200.

參照第1圖,藍光輸出單元300包括第一藍光光源110、第二藍光光源114、第一光調制元件311、第二光調制元件312、偏極化分光鏡320、第一半波板331以及第二半波板332。其中第一半波板331和第二半波板332是波長選擇性(color selective)半波長板。該第一藍光光源110,提供第一藍光B1。該第一光調制元件311調制該第一藍光B1為偏極光。該第二藍光光源114,提供第二藍光B2。該第二光調制元件312調制該第二藍光B2為偏極光。該偏極化分光鏡(Polarization Beam Splitter:PBS)320,包括第一入光面321、第二入光面322、第一出光面323以及第二出光面324。第一半波板331,設於該第一出光面323。第二半波板332設於該第二出光面324。 Referring to FIG. 1, the blue light output unit 300 includes a first blue light source 110, a second blue light source 114, a first light modulation element 311, a second light modulation element 312, a polarization beam splitter 320, a first half wave plate 331, and The second half wave plate 332. The first half-wave plate 331 and the second half-wave plate 332 are color selective half-wavelength plates. The first blue light source 110 provides a first blue light B1. The first light modulation element 311 modulates the first blue light B1 into polarized light. The second blue light source 114 provides a second blue light B2. The second light modulating element 312 modulates the second blue light B2 into polarized light. The Polarization Beam Splitter (PBS) 320 includes a first light incident surface 321 , a second light incident surface 322 , a first light emitting surface 323 , and a second light emitting surface 324 . The first half wave plate 331 is disposed on the first light emitting surface 323. The second half-wave plate 332 is disposed on the second light-emitting surface 324.

在一第一模態下,該第一藍光B1被該第一光調制元件311調制為P偏光,該第一藍光B1進入該第一入光面321,穿過該偏極化分光鏡320,並被該第二半波板332調制為S偏光,該第二藍光B2被該第二光調制元件312調制為S偏光,該第二藍光322進入該第二入光面322,並由該偏極化分光鏡320所反射。此時,該藍光輸出單元300輸出S偏光之該第一藍光B1 以及該第二藍光B2。 In a first mode, the first blue light B1 is modulated by the first light modulation element 311 into P-polarized light, and the first blue light B1 enters the first light incident surface 321 and passes through the polarization beam splitter 320. And being modulated by the second half-wave plate 332 into S-polarized light, the second blue light B2 is modulated by the second light modulation element 312 into S-polarized light, and the second blue light 322 enters the second light-incident surface 322, and The polarization beam splitter 320 reflects. At this time, the blue light output unit 300 outputs the first blue light B1 of the S polarized light. And the second blue light B2.

在一第二模態下,該第一藍光B1被該第一光調制元件311調制為S偏光,該第一藍光B1進入該第一入光面321,由該偏極化分光鏡320所反射,並被該第一半波板331調制為P偏光,該第二藍光B2被該第二光調制元件調制為P偏光,該第二藍光B2進入該第二入光面322,並並穿過該偏極化分光鏡320。此時,該藍光輸出單元300輸出P偏光之該第一藍光B1以及該第二藍光B2。 In a second mode, the first blue light B1 is modulated by the first light modulation element 311 into S polarized light, and the first blue light B1 enters the first light incident surface 321 and is reflected by the polarization beam splitter 320. And being modulated by the first half-wave plate 331 into P-polarized light, the second blue light B2 being modulated by the second light modulating element into P-polarized light, the second blue light B2 entering the second light-incident surface 322, and passing through The polarization beam splitter 320. At this time, the blue light output unit 300 outputs the first blue light B1 and the second blue light B2 of the P-polarized light.

在一實施例中,第一藍光光源110為雷射光源,且其波長波峰位於為442奈米(nm)至448奈米(nm)之間。第二藍光光源114為雷射光源,且其波長波峰位於為463奈米(nm)至467奈米(nm)之間。 In one embodiment, the first blue light source 110 is a laser source and has a wavelength peak between 442 nanometers (nm) and 448 nanometers (nm). The second blue light source 114 is a laser source and has a wavelength peak between 463 nanometers (nm) and 467 nanometers (nm).

紅光光源112用以提供紅光,在一實施例中,紅光光源112為雷射光源,且其波長波峰位於為637奈米(nm)至641奈米(nm)之間。 The red light source 112 is used to provide red light. In one embodiment, the red light source 112 is a laser source and has a wavelength peak between 637 nanometers (nm) and 641 nanometers (nm).

第一光致發光件132受激發後提供黃光,其中第一光致發光件132為由黃色螢光粉材料構成,且黃光的波長為自480奈米(nm)至700奈米(nm)之波段。 The first photoluminescent element 132 is excited to provide yellow light, wherein the first photoluminescent element 132 is composed of a yellow fluorescent powder material, and the wavelength of the yellow light is from 480 nanometers (nm) to 700 nanometers (nm). ) The band.

第二光致發光件130受激發後提供綠光,其中第二光致發光件130為由綠色螢光粉材料構成,且綠光的波長為自470奈米(nm)至700奈米(nm)之波段。 The second photoluminescent device 130 is excited to provide green light, wherein the second photoluminescent device 130 is composed of a green phosphor material, and the wavelength of the green light is from 470 nanometers (nm) to 700 nm (nm). ) The band.

在上述實施例中,雷射光源所發射光線之波長彼此不重疊,而螢光粉材料光源之波段有部份重疊,如第2圖所示,第2圖為本發明六原色固態光源之頻譜圖。第2圖中波長由 短至長依序第一藍光光源110、第二藍光光源114、第二光致發光件130(綠光)、第一光致發光件132(黃光)以及紅光光源112。 In the above embodiment, the wavelengths of the light beams emitted by the laser light source do not overlap each other, and the wavelength bands of the light source of the phosphor powder material partially overlap, as shown in FIG. 2, and FIG. 2 is a spectrum of the six primary color solid-state light sources of the present invention. Figure. The wavelength in Figure 2 is The short-to-long sequential first blue light source 110, the second blue light source 114, the second photoluminescent element 130 (green light), the first photoluminescent element 132 (yellow light), and the red light source 112.

第一光學模組122用以導引該藍光輸出單元300輸出S偏光之該第一藍光B1以及該第二藍光B2(第一模態)以及第一光致發光件132之光線。 The first optical module 122 is configured to guide the blue light output unit 300 to output the first blue light B1 of the S polarized light and the second blue light B2 (the first mode) and the light of the first photoluminescent element 132.

第二光學模組120用以導引該藍光輸出單元300輸出P偏光之該第一藍光B1以及該第二藍光B2(第二模態)以及紅光光源112和第二光致發光件130發射之光線。 The second optical module 120 is configured to guide the blue light output unit 300 to output the P-polarized first blue light B1 and the second blue light B2 (second mode) and the red light source 112 and the second photoluminescent device 130 to emit Light.

第二光學模組120用以引導將藍光輸出單元300輸出P偏光之該第一藍光B1以及該第二藍光B2(第二模態)射入第二光致發光件130作激發,並且引導藍光輸出單元300輸出P偏光之該第一藍光B1以及該第二藍光B2(第二模態)、紅光光源112所發射之紅光以及第二光致發光件130所發射之綠光整合於一起後射向同一方向。第二光學模組120包含第二偏振分光鏡(wire-grid PBS)140、綠光反光板(green reflector)141、第二波片160以及透鏡組180。 The second optical module 120 is configured to guide the first blue light B1 that outputs the P-polarized light to the blue light output unit 300, and the second blue light B2 (the second mode) is incident on the second light-emitting device 130 to excite and guide the blue light. The output unit 300 outputs the first blue light B1 of the P-polarized light and the second blue light B2 (the second mode), the red light emitted by the red light source 112, and the green light emitted by the second photoluminescent device 130 are integrated. After the shot in the same direction. The second optical module 120 includes a second wire-grid PBS 140, a green reflector 141, a second wave plate 160, and a lens group 180.

請先看到第3圖,第3圖為本發明六原色固態光源之第二偏振分光鏡(wire-grid PBS)140的穿透頻譜圖。第二偏振分光鏡140對P極化和S極化之光線有不同的穿透頻譜,而為了方面說明,藍光輸出單元300輸出之該第一藍光B1以及該第二藍光B2、紅光光源112所發射之紅光以及第二光致發光件130所發射之綠光的波長位置也一併列於第3圖中。 Please first see Fig. 3, which is a perspective view of the second spectrum of the six-primary solid-state light source of the invention, a second polarization polarizer (wire-grid PBS) 140. The second polarization beam splitter 140 has different penetration spectra for the P-polarized and S-polarized light beams. For the sake of illustration, the blue light output unit 300 outputs the first blue light B1 and the second blue light B2 and the red light source 112. The wavelengths of the emitted red light and the green light emitted by the second photoluminescent element 130 are also listed in Figure 3.

以P極化之光線來說,藍光輸出單元300輸出P偏光之該第一藍光B1以及該第二藍光B2(第二模態),將穿透第二偏振分光鏡140。 In the case of P-polarized light, the first blue light B1 and the second blue light B2 (second mode), which the blue output unit 300 outputs P-polarized light, will penetrate the second polarization beam splitter 140.

另一方面,紅光光源112所提供之紅光,可穿過第二偏振分光鏡140。 On the other hand, the red light provided by the red light source 112 can pass through the second polarization beam splitter 140.

之外,第二光致發光件130受激發之綠光,在接觸第二偏振分光鏡140之前,已直接被綠光反光板141所反射。第4圖係顯示綠光反光板141的穿透頻譜圖。 In addition, the excited green light of the second photoluminescent element 130 is directly reflected by the green light reflecting plate 141 before contacting the second polarizing beam splitter 140. Fig. 4 is a view showing a penetration spectrum of the green light reflecting plate 141.

請再回到第1圖,第二光學模組120中的第二波片160為四分之一波片。當光線穿透第二波片160時,光線在穿透前與穿透後產生四分之一個波長的相位差。透鏡組180包含第一透鏡192以及第二透鏡194。第一透鏡192以及第二透鏡194的共同配置可使得射向第二光致發光件130之光線聚焦於第二光致發光件130。同樣地,當光線自第二光致發光件130射出時,光線將透過透鏡組180的導引而在擴散後均勻射出。 Returning to FIG. 1 , the second wave plate 160 in the second optical module 120 is a quarter wave plate. When the light penetrates the second wave plate 160, the light produces a phase difference of one quarter wavelength before and after the penetration. The lens group 180 includes a first lens 192 and a second lens 194. The common configuration of the first lens 192 and the second lens 194 can cause light that is directed toward the second photoluminescent member 130 to be focused on the second photoluminescent member 130. Similarly, when light is emitted from the second photoluminescent element 130, the light will be transmitted through the lens group 180 to be uniformly emitted after diffusion.

第一光學模組122用以引導將該藍光輸出單元300輸出S偏光之該第一藍光B1以及該第二藍光B2(第一模態)射入第一光致發光件132作激發,並且引導該藍光輸出單元300輸出S偏光之該第一藍光B1以及該第二藍光B2(第一模態)以及第一光致發光件132所發之黃光整合於一起後射向同一方向。第一光學模組122包含第一偏振分光鏡(blue-oriented PBS)142、第一波片162以及透鏡組180。 The first optical module 122 is configured to guide the first blue light B1 and the second blue light B2 (first mode) that output the S-polarized light to the blue light output unit 300 to be excited into the first light-emitting device 132, and guide The blue light output unit 300 outputs the first blue light B1 of the S-polarized light and the second blue light B2 (the first mode) and the yellow light emitted by the first photoluminescent device 132 are integrated and then shot in the same direction. The first optical module 122 includes a first blue-oriented PBS 142, a first wave plate 162, and a lens group 180.

請先看到第5圖,第5圖為本發明六原色固態光源之第一偏振分光鏡的穿透頻譜圖。第一偏振分光鏡142對P極化和S極化之光線有不同的穿透頻譜,而為了方便說明,藍光輸出單元300輸出S偏光之該第一藍光B1以及該第二藍光B2(第一模態)以及第一光致發光件132所發出之黃光的波長位置也一併列於第4圖中。 Please see FIG. 5 first. FIG. 5 is a perspective view of the first polarization beam splitter of the six primary color solid-state light source of the present invention. The first polarization beam splitter 142 has different penetration spectra for the P-polarized and S-polarized light beams. For convenience of explanation, the blue light output unit 300 outputs the first blue light B1 and the second blue light B2 of the S-polarized light (first The modality and the wavelength position of the yellow light emitted by the first photoluminescent member 132 are also listed in Fig. 4.

以S極化之光線來說,第一偏振分光鏡142將波長 485奈米(nm)以下之光線反射,而波長485奈米(nm)以上之光線將穿透第一偏振分光鏡142。因此,藍光輸出單元300輸出S偏光之該第一藍光B1以及該第二藍光B2(第一模態)將於第一偏振分光鏡142反射。同時,第一光致發光件132受激發之黃光,則穿過該第一偏振分光鏡142。 In the case of S-polarized light, the first polarization beam splitter 142 will wavelength Light below 485 nm (nm) reflects, while light above 485 nm (nm) will penetrate the first polarizing beam splitter 142. Therefore, the first blue light B1 and the second blue light B2 (first mode) of the blue output unit 300 outputting the S-polarized light are reflected by the first polarization beam splitter 142. At the same time, the first photoluminescent element 132 is excited by the yellow light and passes through the first polarizing beam splitter 142.

請再回到第1圖,第一光學模組122中的第一波片162為四分之一波片。當光線穿透第一波片162時,光線在穿透前與穿透後產生四分之一個波長的相位差。透鏡組180包含第一透鏡192以及第二透鏡194。第一透鏡192以及第二透鏡194的共同配置可使得通過透鏡組180之光線聚焦於第一光致發光件132。同樣地,當光線自第一光致發光件132射出時,光線將透過透鏡組180的導引而在擴散後均勻射出。 Returning to FIG. 1 , the first wave plate 162 in the first optical module 122 is a quarter wave plate. When the light penetrates the first wave plate 162, the light produces a phase difference of one quarter wavelength before and after the penetration. The lens group 180 includes a first lens 192 and a second lens 194. The common configuration of the first lens 192 and the second lens 194 can focus the light passing through the lens group 180 on the first photoluminescent member 132. Similarly, when light is emitted from the first photoluminescent member 132, the light will be transmitted through the lens group 180 to be uniformly emitted after diffusion.

在上述第一模態以及第二模態所提供之光線分別受到第二光學模組120以及第一光學模組122的導引後最終將射向多頻段濾波片150。根據本發明一實施例,多頻段濾波片(band-filer)150能夠使波長範圍落入第一波段或第二波段之光束反射而使其他波長範圍之光束穿透。 The light provided by the first mode and the second mode is finally guided by the second optical module 120 and the first optical module 122 to be finally directed to the multi-band filter 150. According to an embodiment of the invention, the multi-band filter 150 enables the light beam having a wavelength range falling within the first band or the second band to be reflected by the light beam of other wavelength ranges.

請看到第6圖,第6圖為本發明六原色固態光源之多頻段濾波片的穿透頻譜圖。多頻段濾波片150對不同的波長波段區間有不同的穿透率。 Please see Fig. 6, which is a breakthrough spectrum diagram of the multi-band filter of the six primary color solid-state light sources of the present invention. The multi-band filter 150 has different transmittances for different wavelength band intervals.

請再回到第1圖,稜鏡組200包含第二稜鏡202以及第一稜鏡204,且第二稜鏡202與第一稜鏡204用以定義全反射間隙206於其間。稜鏡組200與全反射間隙206之間的界面會將來自多頻段濾波片150之光反射至目標位置。 Referring back to FIG. 1, the stack 200 includes a second weir 202 and a first weir 204, and the second weir 202 and the first weir 204 are used to define a total reflection gap 206 therebetween. The interface between the stack 200 and the total reflection gap 206 reflects light from the multi-band filter 150 to the target location.

根據本發明一實施例,稜鏡組200中之第一稜鏡204設置於第一偏振分光鏡142與第一波片162之間,其中第一 偏振分光鏡142與第一波片162分別貼覆於第一稜鏡204上。第一稜鏡204與全反射間隙206之間的界面配置為能夠允許來自第一波片162之光通過並射向至多頻段濾波片150。 According to an embodiment of the invention, the first buffer 204 of the stack 200 is disposed between the first polarization beam splitter 142 and the first wave plate 162, wherein the first The polarization beam splitter 142 and the first wave plate 162 are respectively attached to the first crucible 204. The interface between the first turn 204 and the total reflection gap 206 is configured to allow light from the first wave plate 162 to pass through and to the multi-band filter 150.

本發明六原色固態光源100之各元件特性與用途已詳細敘述於上,在接下來的敘述中,將著重於第一模態以及第二模態的光路輸出作說明。 The characteristics and uses of the elements of the six primary color solid-state light source 100 of the present invention have been described in detail above. In the following description, the optical path output focusing on the first mode and the second mode will be described.

[第一模態] [First Modal]

參照第7圖,其為本發明六原色固態光源之第一模態的光路示意圖。本實施例中的光路敘述將配合第5圖的第一偏振分光鏡142穿透頻譜以及第6圖的多頻段濾波片150穿透頻譜作說明。另外,為了便於說明,在圖式和說明中的藍光輸出單元300輸出S偏光之該第一藍光B1以及該第二藍光B2(第一模態)以及第一光致發光件132所發射之黃光僅以一條光線進行說明。並且,藍光輸出單元300輸出S偏光之該第一藍光B1以及該第二藍光B2(第一模態)為第一組合光束118以及第一光致發光件132所發射的為黃光光束119,合先敘明。 Referring to Figure 7, it is a schematic diagram of the optical path of the first mode of the six primary color solid state light sources of the present invention. The optical path description in this embodiment will be described in conjunction with the spectrum of the first polarization beam splitter 142 of Fig. 5 and the spectrum of the multi-band filter 150 of Fig. 6. In addition, for convenience of explanation, the blue light output unit 300 in the drawing and the description outputs the first blue light B1 of the S polarized light and the second blue light B2 (the first mode) and the yellow light emitted by the first photoluminescent element 132. Light is only described by one light. And the blue light output unit 300 outputs the first blue light B1 of the S-polarized light and the second blue light B2 (the first mode) as the first combined light beam 118 and the first light-emitting element 132 emits a yellow light beam 119. First described.

第一組合光束118對準第一偏振分光鏡142,且稜鏡組200中之第一稜鏡204設置於第一偏振分光鏡142與第一波片162之間。第一組合光束118相對第一偏振分光鏡142為S極化,並如第4圖所示,第一組合光束118將於第一偏振分光鏡142反射。第一組合光束118被第一偏振分光鏡142反射後穿透第一波片162,並透過透鏡組180的導引聚焦於第一光致發光件132上。 The first combined beam 118 is aligned with the first polarizing beam splitter 142, and the first turn 204 of the stack 200 is disposed between the first polarizing beam splitter 142 and the first wave plate 162. The first combined beam 118 is S-polarized with respect to the first polarization beam splitter 142, and as shown in FIG. 4, the first combined beam 118 will be reflected by the first polarization beam splitter 142. The first combined beam 118 is reflected by the first polarizing beam splitter 142 and penetrates the first wave plate 162 and is focused on the first photoluminescent member 132 through the guiding of the lens group 180.

接著,部分第一組合光束118於第一光致發光件132產生反射,而另一部分第一組合光束118激發第一光致發光件132。因此,第一光致發光件132受激發後發射黃光光束119, 其中反射後的第一組合光束118與黃光光束119以平行第一組合光束118原入射方向行進,並再度透過透鏡組180的導引而在擴散後均勻射出。 Next, a portion of the first combined beam 118 produces a reflection at the first photoluminescent member 132, and another portion of the first combined beam 118 excites the first photoluminescent member 132. Therefore, the first photoluminescent element 132 is excited to emit a yellow light beam 119, The reflected first combined beam 118 and the yellow light beam 119 travel in parallel with the original incident direction of the first combined beam 118, and are again transmitted through the lens group 180 to be uniformly emitted after diffusion.

由於第一組合光束118於每一次穿透第一波片162後,其將產生四分之一波長的相位差。第一組合光束118於第一光致發光件132反射前後,其分別穿透第一波片162一次,且將產生二分之一波長的相位差。因此,第一組合光束118經過二分之一波長相位差的改變後,其相對第一偏振分光鏡142轉為P極化。 Since the first combined beam 118 penetrates the first wave plate 162 each time, it will produce a phase difference of a quarter wavelength. The first combined beam 118 passes through the first wave plate 162 one time before and after the first photoluminescent element 132 reflects, and will produce a phase difference of one-half wavelength. Therefore, after the first combined beam 118 undergoes a change in the phase difference of one-half wavelength, it is converted to P-polarization with respect to the first polarization beam splitter 142.

再如第4圖所示,P極化的第一組合光束118其波長位置對應於第一偏振分光鏡142為穿透。另一方面,黃光光束119對應於第一偏振分光鏡142也為穿透。 As further shown in FIG. 4, the P-polarized first combined beam 118 has a wavelength position corresponding to that of the first polarization beam splitter 142. On the other hand, the yellow light beam 119 is also penetrated corresponding to the first polarization beam splitter 142.

因此,自第一光致發光件132射向第一偏振分光鏡142的第一組合光束118與黃光光束119將穿透第一偏振分光鏡142。根據本發明一實施例,第一稜鏡204與全反射間隙206之間的界面配置為能夠允許來自第一波片162之第一組合光束118與黃光光束119通過並射向至多頻段濾波片150。 Therefore, the first combined beam 118 and the yellow beam 119 that are directed from the first photoluminescent member 132 toward the first polarizing beam splitter 142 will penetrate the first polarizing beam splitter 142. According to an embodiment of the invention, the interface between the first meandering 204 and the total reflection gap 206 is configured to allow the first combined beam 118 and the yellow light beam 119 from the first wave plate 162 to pass through and to the multi-band filter. 150.

請再看到第6圖,於多頻段濾波片150的穿透頻譜中,當第一組合光束118射至多頻段濾波片150時,第一組合光束118中的第一藍光B1將被多頻段濾波片150所反射,第二藍光B2則穿過多頻段濾波片150。同時,第一光致發光件132的黃光光束119波段為自480奈米(nm)至700奈米(nm),當黃光光束119射至多頻段濾波片150時,黃光光束119波長中位於536奈米(nm)至622奈米(nm)間的光(包含紅光R1以及綠光G2)將於多頻段濾波片150反射。根據上述光路設置,第一組合光束118以及黃光光束119以互相平行的方式入射且反射於多 頻段濾波片150,而當第一組合光束118以及黃光光束119反射多頻段濾波片150後,互相平行之具有第一藍光B1以及具有黃光的黃光光束119將共同組成第一原色組合(B1G2R1)。最後,稜鏡組200與全反射間隙206之間的界面會將來自多頻段濾波片150之第一原色組合反射至如箭頭所指之方向102,以完成六原色固態光源100中第一原色組合的輸出。 Please see FIG. 6 again. In the penetration spectrum of the multi-band filter 150, when the first combined beam 118 is incident on the multi-band filter 150, the first blue light B1 in the first combined beam 118 will be multi-band filtered. The slice 150 is reflected, and the second blue light B2 passes through the multi-band filter 150. At the same time, the yellow light beam 119 of the first photoluminescent element 132 is from 480 nanometers (nm) to 700 nanometers (nm). When the yellow light beam 119 is incident on the multi-band filter 150, the yellow light beam 119 wavelength Light between 536 nanometers (nm) and 622 nanometers (nm) (including red light R1 and green light G2) will be reflected by the multi-band filter 150. According to the above optical path arrangement, the first combined beam 118 and the yellow light beam 119 are incident in parallel with each other and reflected more The frequency band filter 150, and when the first combined beam 118 and the yellow light beam 119 reflect the multi-band filter 150, the first blue light B1 and the yellow light beam 119 having the yellow light parallel to each other will together form a first primary color combination ( B1G2R1). Finally, the interface between the stack 200 and the total reflection gap 206 reflects the first primary color combination from the multi-band filter 150 to the direction 102 as indicated by the arrow to complete the first primary color combination in the six primary color solid state light source 100. Output.

[第二模態] [Second mode]

參照第8圖,其為本發明六原色固態光源之第二模態的光路示意圖。本實施例中的光路敘述將配合第3圖的第二偏振分光鏡140穿透頻譜,第4圖的綠光反光板141穿透頻譜以及第6圖的多頻段濾波片150穿透頻譜作說明。另外,為了便於說明,在圖式和說明中的藍光輸出單元300輸出P偏光之該第一藍光B1以及該第二藍光B2(第二模態)、紅光光源112以及第二光致發光件130所發射之光僅以一條光線進行說明。並且,藍光輸出單元300輸出P偏光之該第一藍光B1以及該第二藍光B2(第二模態)為第二組合光束115,第二光致發光件130所發射的為綠光光束116以及紅光光源112所發射的為紅光光束117,合先敘明。 Referring to Figure 8, it is a schematic diagram of the optical path of the second mode of the six primary color solid state light source of the present invention. The optical path description in this embodiment will cooperate with the second polarization beam splitter 140 of FIG. 3 to penetrate the spectrum, the green light reflector 141 of FIG. 4 penetrates the spectrum, and the multi-band filter 150 of FIG. 6 penetrates the spectrum for explanation. . In addition, for convenience of explanation, the blue light output unit 300 in the drawing and the description outputs the first blue light B1 of the P-polarized light and the second blue light B2 (the second mode), the red light source 112, and the second photoluminescent element. The light emitted by 130 is illustrated by only one light. Moreover, the blue light output unit 300 outputs the first blue light B1 of the P-polarized light and the second blue light B2 (the second mode) as the second combined light beam 115, and the second light-emitting element 130 emits the green light beam 116 and The red light source 112 emits a red light beam 117, which is described first.

發射第二組合光束115和紅光光束117對準第二偏振分光鏡140,其中第二組合光束115以及紅光光束117相對第二偏振分光鏡140皆為P極化。因此,如第3圖所示,P極化的第二組合光束115以及紅光光束117將穿透第二偏振分光鏡140。接著,第二組合光束115將射向第二光致發光件130,而紅光光束117將射向多頻段濾波片150。 The second combined beam 115 and the red beam 117 are emitted to the second polarization beam splitter 140, wherein the second combined beam 115 and the red beam 117 are both P-polarized with respect to the second polarization beam splitter 140. Therefore, as shown in FIG. 3, the P-polarized second combined beam 115 and the red light beam 117 will penetrate the second polarization beam splitter 140. Next, the second combined beam 115 will be directed toward the second photoluminescent element 130, and the red beam 117 will be directed toward the multi-band filter 150.

第二組合光束115穿透第二偏振分光鏡140以及第二波片160後透過透鏡組180進入第二光致發光件130,其中第 二組合光束115透過透鏡組180的導引聚焦於第二光致發光件130上。 The second combined beam 115 penetrates the second polarizing beam splitter 140 and the second wave plate 160 and then enters the second photoluminescent device 130 through the lens group 180, wherein The second combined beam 115 is focused on the second photoluminescent element 130 through the guidance of the lens group 180.

接著,部分第二組合光束115於第二光致發光件130產生反射,而另一部分第二組合光束115激發第二光致發光件130。因此,第二光致發光件130受激發後發射綠光光束116,其中反射後的第二組合光束115與綠光光束116以平行第二組合光束115原入射方向行進,且再度透過透鏡組180的導引,透鏡組180將光線擴散後均勻地射向第二偏振分光鏡140。 Then, a portion of the second combined beam 115 produces a reflection at the second photoluminescent element 130, and another portion of the second combined beam 115 excites the second photoluminescent element 130. Therefore, the second photoluminescent device 130 is excited to emit the green light beam 116, wherein the reflected second combined light beam 115 and the green light beam 116 travel in parallel with the original incident direction of the second combined light beam 115, and pass through the lens group 180 again. Guided by the lens group 180, the light is diffused and uniformly directed toward the second polarization beam splitter 140.

由於第二組合光束115每一次穿透第二波片160後,其將產生四分之一波長的相位差。也就是說,第二組合光束115於第二光致發光件130反射前後,其分別穿透第二波片160一次,因此將產生二分之一波長的相位差。而原本相對第二偏振分光鏡140為P極化之第二組合光束115,在經過二分之一波長相位差的改變後,其相對第二偏振分光鏡140轉為S極化。 Since the second combined beam 115 penetrates the second wave plate 160 each time, it will produce a phase difference of a quarter wavelength. That is to say, before and after the second combined light beam 115 is reflected by the second photoluminescent element 130, it penetrates the second wave plate 160 once, so that a phase difference of one-half wavelength is generated. The second combined beam 115, which is originally P-polarized with respect to the second polarization beam splitter 140, is converted to S-polarized relative to the second polarization beam splitter 140 after a change in phase difference of one-half wavelength.

再如第3圖所示,第二組合光束115於S極化下,其於第二偏振分光鏡140產生反射。而同前所述,第二光致發光件130所產生的綠光光束116,則被綠光反光板141所反射。 As shown in FIG. 3, the second combined beam 115 is reflected by the second polarization beam splitter 140 under S polarization. As described above, the green light beam 116 generated by the second photoluminescent element 130 is reflected by the green light reflecting plate 141.

因此,自第二光致發光件130射向第二偏振分光鏡140的第二組合光束115與綠光光束116將於第二偏振分光鏡140發生反射。而第二偏振分光鏡140與第二波片160為非平行設置,使得反射後的第二組合光束115、綠光光束116與穿透第二偏振分光鏡140的紅光光束117將一同射向多頻段濾波片150。 Therefore, the second combined beam 115 and the green light beam 116 that are emitted from the second photoluminescent element 130 toward the second polarization beam splitter 140 are reflected by the second polarization beam splitter 140. The second polarization beam splitter 140 and the second wave plate 160 are non-parallel, such that the reflected second combined beam 115, the green light beam 116 and the red light beam 117 penetrating the second polarization beam splitter 140 are directed together. Multi-band filter 150.

在上述實施例中,透過第二偏振分光鏡140與綠光光束116可避免因為角度偏差而造成分光鏡分光失效的情形。 In the above embodiment, the second polarizing beam splitter 140 and the green light beam 116 can be prevented from causing the spectroscopic spectroscopic failure due to the angular deviation.

請再看到第6圖,當第二組合光束115以及紅光光束117射至多頻段濾波片150時,第二組合光束115中的第一藍光B1被反射,第二藍光B2則穿透多頻段濾波片150。而紅光光束(R2)117(波峰位於為637奈米(nm)至641奈米(nm)之間)皆穿透多頻段濾波片150。 Referring again to FIG. 6, when the second combined beam 115 and the red light beam 117 are incident on the multi-band filter 150, the first blue light B1 in the second combined light beam 115 is reflected, and the second blue light B2 is transmitted through the multi-band. Filter 150. The red light beam (R2) 117 (with peaks between 637 nanometers (nm) and 641 nanometers (nm)) penetrates the multi-band filter 150.

接著,第二光致發光件130的綠光光束116波段為自470奈米(nm)至700奈米(nm),當綠光光束116射至多頻段濾波片150時,波長位於470奈米(nm)至536奈米(nm)間以及大於622奈米(nm)的光將穿透多頻段濾波片150。而於綠光光束116波長中,大於622奈米(nm)的光強只占部分比例,因此第二光致發光件130穿透多頻段濾波片150的光以495奈米(nm)至536奈米(nm)的綠光為主,即對應於第5圖的綠光區域G1。 Next, the green light beam 116 of the second photoluminescent device 130 has a wavelength band from 470 nanometers (nm) to 700 nanometers (nm). When the green light beam 116 is incident on the multi-band filter 150, the wavelength is at 470 nm ( Light between nm) and 536 nm (nm) and greater than 622 nm (nm) will penetrate the multi-band filter 150. In the green light beam 116 wavelength, the light intensity greater than 622 nanometers (nm) is only a partial proportion, so the second photoluminescent device 130 penetrates the multi-band filter 150 light to 495 nanometers (nm) to 536. The green light of nanometer (nm) is dominant, that is, corresponds to the green light region G1 of Fig. 5.

根據上述光路設置,第二藍光B2、綠光光束116以及紅光光束117以互相平行的方式入射且穿透多頻段濾波片150,而當第二藍光B2、紅光光束117以及綠光光束116穿透多頻段濾波片150後,其將共同組成第二原色組合(B2G1R2)。 According to the above optical path arrangement, the second blue light B2, the green light beam 116, and the red light beam 117 are incident in parallel with each other and penetrate the multi-band filter 150, and when the second blue light B2, the red light beam 117, and the green light beam 116 After penetrating the multi-band filter 150, they will collectively form a second primary color combination (B2G1R2).

最後,稜鏡組200與全反射間隙206之間的界面會將來自多頻段濾波片150之第二原色組合反射至如箭頭所指之方向102,以完成六原色固態光源100中第二原色組合的輸出。 Finally, the interface between the stack 200 and the total reflection gap 206 reflects the second primary color combination from the multi-band filter 150 to the direction 102 as indicated by the arrow to complete the second primary color combination in the six primary color solid state light source 100. Output.

綜合以上,本發明之六原色固態光源為輸出第一原色組合以及第二原色組合,其中兩組原色組合分別具有藍色、綠色以及紅色的原色光。 In summary, the six primary color solid-state light sources of the present invention output a first primary color combination and a second primary color combination, wherein the two primary color combinations respectively have blue, green, and red primary color lights.

應用本發明實施例之六原色固態光源,由於以持續點亮的第一藍光光源以及第二藍光光源,分別對第一光致發光件以及第二光致發光件進行激發,因此可大幅提高黃光以及 綠光的激發量,有效提昇系統亮度。 According to the six primary color solid-state light source of the embodiment of the present invention, since the first blue light source and the second blue light source are respectively excited by the first light-emitting source and the second blue light source that are continuously illuminated, the yellow light can be greatly improved. Light and The amount of green light is activated to effectively increase the brightness of the system.

雖然本發明已以具體之較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此項技術者,在不脫離本發明之精神和範圍內,仍可作些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and may be modified and modified without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧六原色固態光源 100‧‧‧ Six primary color solid state light source

110‧‧‧第一藍光光源 110‧‧‧First blue light source

112‧‧‧紅光光源 112‧‧‧Red light source

114‧‧‧第二藍光光源 114‧‧‧Second blue light source

115‧‧‧第二組合光束 115‧‧‧Second combined beam

117‧‧‧紅光光束 117‧‧‧Red light beam

118‧‧‧第一組合光束 118‧‧‧First combined beam

119‧‧‧黃光光束 119‧‧‧Yellow beam

120‧‧‧第二光學模組 120‧‧‧Second optical module

122‧‧‧第一光學模組 122‧‧‧First optical module

130‧‧‧第二光致發元件 130‧‧‧Second light-emitting element

132‧‧‧第一光致發元件 132‧‧‧First photo-emitting component

140‧‧‧第二偏振分光鏡 140‧‧‧Second polarization beam splitter

141‧‧‧綠光反射板 141‧‧‧Green light reflector

142‧‧‧第一偏振分光鏡 142‧‧‧First polarization beam splitter

150‧‧‧多頻段濾波片 150‧‧‧Multi-band filter

160‧‧‧第二波片 160‧‧‧second wave plate

162‧‧‧第一波片 162‧‧‧ first wave

180‧‧‧透鏡組 180‧‧‧ lens group

192‧‧‧第一透鏡 192‧‧‧ first lens

194‧‧‧第二透鏡 194‧‧‧second lens

200‧‧‧稜鏡組 200‧‧‧稜鏡 group

202‧‧‧第二稜鏡 202‧‧‧Second

204‧‧‧第一稜鏡 204‧‧‧ first page

206‧‧‧全反射間隙 206‧‧‧ total reflection gap

300‧‧‧藍光輸出單元 300‧‧‧Blue output unit

311‧‧‧第一光調制元件 311‧‧‧First Light Modulation Element

312‧‧‧第二光調制元件 312‧‧‧Second light modulation element

320‧‧‧偏極化分光鏡 320‧‧‧Polarizing Beamsplitter

321‧‧‧第一入光面 321‧‧‧The first entrance

322‧‧‧第二入光面 322‧‧‧Second entrance

323‧‧‧第一出光面 323‧‧‧The first glazing

324‧‧‧第二出光面 324‧‧‧second glazing

331‧‧‧第一半波板 331‧‧‧ first half wave board

332‧‧‧第二半波板 332‧‧‧ second half wave plate

B1‧‧‧第一藍光 B1‧‧‧First Blu-ray

B2‧‧‧第二藍光 B2‧‧‧second blue light

Claims (10)

一種六原色固態光源,包括:一藍光輸出單元,持續同時輸出一第一藍光以及一第二藍光,該第一藍光的波長範圍不同於該第二藍光的波長範圍,其中,在一第一模態下,該第一藍光以及該第二藍光被調制為S偏光而輸出成為一第一組合光,在一第二模態下,該第一藍光以及該第二藍光被調制為P偏光而輸出成為一第二組合光;一紅光光源,提供一紅光;一第一光致發元件;一第二光致發元件;一第一光學模組;一第二光學模組;一多頻段濾波片;以及一稜鏡組,其中,在該第一模態下,該第一組合光進入該第一光學模組,對該第一光致發元件進行激發以產生一黃光,該黃光與該第一組合光穿過該第一光學模組,並由該多頻段濾波片進行據波,以產生一第一原色組合光,該第一原色組合光經過該稜鏡組而輸出,其中,在該第二模態下,該第二組合光以及該紅光進入該第二光學模組,該第二組合光對該第二光致發元件進行激發以產生一綠光,該紅光、綠光與該第一組合光穿過該第二光學模組,並由該多頻段濾波片進行濾波,以產 生一第二原色組合光,該第二原色組合光經過該稜鏡組而輸出。 A six primary color solid state light source, comprising: a blue light output unit continuously outputting a first blue light and a second blue light, wherein the first blue light has a wavelength range different from a wavelength range of the second blue light, wherein, in a first mode The first blue light and the second blue light are modulated into S-polarized light and output as a first combined light. In a second mode, the first blue light and the second blue light are modulated into P-polarized light and output. Forming a second combined light; a red light source providing a red light; a first light emitting element; a second light emitting element; a first optical module; a second optical module; And a filter set, wherein, in the first mode, the first combined light enters the first optical module, and the first photo-emitting element is excited to generate a yellow light, the yellow The light and the first combined light pass through the first optical module, and are subjected to a wave by the multi-band filter to generate a first primary color combined light, and the first primary color combined light is output through the set of the primary color. Wherein, in the second mode, the second combined light And the red light enters the second optical module, the second combined light excites the second photo-emitting element to generate a green light, and the red light, the green light, and the first combined light pass through the second An optical module that is filtered by the multi-band filter to produce A second primary color combined light is generated, and the second primary color combined light is output through the stack. 如申請專利範圍第1項所述之六原色固態光源,其中,該藍光輸出單元包括:一第一藍光光源,提供該第一藍光;一第一光調制元件,調制該第一藍光成為偏振光;一第二藍光光源,提供一第二藍光,該第一藍光的波長範圍不同於該第二藍光的波長範圍;一第二光調制元件,調制該第二藍光成為偏振光;一偏極化分光鏡(Polarization Beam Splitter:PBS),包括一第一入光面、一第二入光面、一第一出光面以及一第二出光面;一第一半波板,設於該第一出光面;以及一第二半波板,設於該第二出光面;其中,在該第一模態下,該第一藍光被該第一光調制元件調制為P偏光,該第一藍光進入該第一入光面,穿過該偏極化分光鏡,並被該第二半波板調制為S偏光,該第二藍光被該第二光調制元件調制為S偏光,該第二藍光進入該第二入光面,並由該偏極化分光鏡所反射,藉此該輸出該第一組合光;其中,在該第二模態下,該第一藍光被該第一光調制元件調制為S偏光,該第一藍光進入該第一入光面,由該偏極化分光鏡所反射,並被該第一半波板調制為P偏光,該第二藍光被該第二光調制元件調制為P偏光,該第二藍光進 入該第二入光面,並並穿過該偏極化分光鏡,藉此該輸出該第二組合光。 The ninth primary color solid-state light source of claim 1, wherein the blue light output unit comprises: a first blue light source for providing the first blue light; and a first light modulating element modulating the first blue light to be polarized light a second blue light source, providing a second blue light having a wavelength range different from a wavelength range of the second blue light; a second light modulating element modulating the second blue light to become polarized light; A light splitting beam splitter (PBS) includes a first light incident surface, a second light incident surface, a first light emitting surface, and a second light emitting surface. A first half wave plate is disposed on the first light emitting surface. And a second half-wave plate disposed on the second light-emitting surface; wherein, in the first mode, the first blue light is modulated by the first light modulation element into P-polarized light, and the first blue light enters the surface a first light incident surface passing through the polarization beam splitter and modulated by the second half wave plate into S polarized light, the second blue light being modulated by the second light modulation element into S polarized light, the second blue light entering the The second entrance surface is reversed by the polarization beam splitter Thereby outputting the first combined light; wherein, in the second mode, the first blue light is modulated by the first light modulation element into S-polarized light, and the first blue light enters the first light incident surface, Reflected by the polarization beam splitter, and modulated by the first half-wave plate into P-polarized light, the second blue light is modulated by the second light modulation element into P-polarized light, and the second blue light enters And entering the second light incident surface and passing through the polarization beam splitter, whereby the second combined light is output. 如申請專利範圍第1項所述之六原色固態光源,其中,該第一光學模組包括一第一偏振分光鏡以及一第一四分之一波片,該第一組合光進入該第一光學模組後,被該第一偏振分光鏡反射並穿過該第一四分之一波片而接觸該第一光致發元件,接著,該第一組合光返回穿過該第一四分之一波片,並被該第一偏振分光鏡所反射。 The six-primary solid-state light source of claim 1, wherein the first optical module comprises a first polarization beam splitter and a first quarter wave plate, and the first combined light enters the first After the optical module is reflected by the first polarization beam splitter and passes through the first quarter wave plate to contact the first light emitting element, and then the first combined light returns through the first quarter One of the wave plates is reflected by the first polarization beam splitter. 如申請專利範圍第3項所述之六原色固態光源,其中,該第一偏振分光鏡為一藍光旋轉偏振分光鏡(blue-oriented PBS)。 The six primary color solid state light source of claim 3, wherein the first polarization beam splitter is a blue-oriented PBS. 如申請專利範圍第1項所述之六原色固態光源,其中,該第二光學模組包括一第二偏振分光鏡、一第二四分之一波片以及一綠光反光板,該第二組合光進入該第二光學模組後,穿過該第二偏振分光鏡、該綠光反光板以及該第二四分之一波片而接觸該第二光致發元件,接著,該第二組合光返回穿過該第二四分之一波片,並被該第二偏振分光鏡所反射。 The six-primary solid-state light source according to claim 1, wherein the second optical module comprises a second polarization beam splitter, a second quarter wave plate and a green light reflector, the second After the combined light enters the second optical module, the second polarizing beam splitter, the green light reflecting plate and the second quarter wave plate are contacted to contact the second photo-emitting element, and then the second The combined light returns through the second quarter wave plate and is reflected by the second polarization beam splitter. 如申請專利範圍第5項所述之六原色固態光源,其中,該第二光致發元件所被激發之該綠光,穿過該第二四分之一波片,並被該綠光反光板所反射。 The solid-state light source of six primary colors according to claim 5, wherein the green light excited by the second photo-emitting element passes through the second quarter-wave plate and is reflected by the green light. Reflected by the board. 如申請專利範圍第5項所述之六原色固態光源,其中,該第二偏振分光鏡為一網格偏振分光鏡(wire-grid PBS)。 The six primary color solid state light source of claim 5, wherein the second polarization beam splitter is a wire-grid PBS. 如申請專利範圍第1項所述之六原色固態光源,其中, 該第一藍光光源、該第二藍光光源以及該紅光光源為雷射光。 For example, the six primary color solid-state light sources described in claim 1 of the patent scope, wherein The first blue light source, the second blue light source, and the red light source are laser light. 如申請專利範圍第1項所述之六原色固態光源,其中,該稜鏡組包含一第一稜鏡以及一第二稜鏡,且該第一稜鏡以及該第二稜鏡用以定義一全反射間隙於其間。 The solid-state light source of the six primary colors according to claim 1, wherein the group includes a first frame and a second frame, and the first frame and the second frame are used to define a The total reflection gap is between them. 如申請專利範圍第1項所述之六原色固態光源,其中,當該第一組合光束射至該多頻段濾波片時,該第一組合光束中的該第一藍光將被該多頻段濾波片所反射,該第二藍光則穿過該多頻段濾波片,該當第二組合光束射至該多頻段濾波片時,該第二組合光束中的該第一藍光被反射,該第二藍光則穿透該多頻段濾波片。 The six primary color solid-state light source of claim 1, wherein when the first combined beam is incident on the multi-band filter, the first blue light in the first combined beam is to be multi-band filter Reflected, the second blue light passes through the multi-band filter, and when the second combined beam is incident on the multi-band filter, the first blue light in the second combined beam is reflected, and the second blue light is worn Through the multi-band filter.
TW103139337A 2014-11-13 2014-11-13 Six-primary solid illuminator TWI535264B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103139337A TWI535264B (en) 2014-11-13 2014-11-13 Six-primary solid illuminator
US14/684,946 US9465222B2 (en) 2014-11-13 2015-04-13 Six-primary solid state illuminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103139337A TWI535264B (en) 2014-11-13 2014-11-13 Six-primary solid illuminator

Publications (2)

Publication Number Publication Date
TW201618544A TW201618544A (en) 2016-05-16
TWI535264B true TWI535264B (en) 2016-05-21

Family

ID=55961530

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103139337A TWI535264B (en) 2014-11-13 2014-11-13 Six-primary solid illuminator

Country Status (2)

Country Link
US (1) US9465222B2 (en)
TW (1) TWI535264B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338304B2 (en) 2017-06-01 2019-07-02 Delta Electronics, Inc. Backlight module and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201609787D0 (en) * 2016-06-03 2016-07-20 Barco Nv Projector with improved contrast
CN109188700B (en) * 2018-10-30 2021-05-11 京东方科技集团股份有限公司 Optical display system and AR/VR display device
CN109634040B (en) * 2019-01-23 2021-03-30 苏州佳世达光电有限公司 Projector and driving circuit thereof
CN115576166A (en) * 2020-03-12 2023-01-06 中强光电股份有限公司 Illumination system and projection device
CN116047849A (en) 2020-04-30 2023-05-02 中强光电股份有限公司 Illumination system and projection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995917B1 (en) * 1999-04-08 2006-02-07 Sharp Laboratories Of America, Inc. Projection display system using polarized light
ATE415786T1 (en) 2003-10-21 2008-12-15 Barco Nv METHOD AND DEVICE FOR PERFORMING A STEREOSCOPIC IMAGE DISPLAY BASED ON COLOR SELECTIVE FILTERS
JP4530743B2 (en) * 2004-07-02 2010-08-25 オリンパス株式会社 Color composition element and projection apparatus using the same
US20100208342A1 (en) 2009-02-19 2010-08-19 Projectiondesign As Methods and systems for creating passive stereo 3d images

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338304B2 (en) 2017-06-01 2019-07-02 Delta Electronics, Inc. Backlight module and display device

Also Published As

Publication number Publication date
TW201618544A (en) 2016-05-16
US9465222B2 (en) 2016-10-11
US20160139419A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
TWI535264B (en) Six-primary solid illuminator
US9261770B2 (en) Apparatus and method for combining laser beams of different polarization
JP2002357708A5 (en)
US10649321B2 (en) Light source device and projector
US11720012B2 (en) Optical system
US10599025B2 (en) Light source device and projector
TWI534509B (en) Solid state illuminator and operating method using the same
US10542241B2 (en) Projector
JP2015145976A (en) Light source device and projection type display device using the same
TWI480581B (en) Illumination system for stereoscopic projection device
US11372321B2 (en) Projector and multi-projection system
US9568740B2 (en) Six-primary solid state illuminator and operating method using the same
US10866498B2 (en) Wavelength conversion element, light source apparatus, and image projection apparatus
JP6512762B2 (en) Lighting device and image display device using the same
JP2015145977A (en) Light source device and projection type display device using the same
TWI465772B (en) Stereoscopic display illuminator and stereoscopic display device
JP5804536B2 (en) Illumination optical system and projection display device
CN105652458B (en) Six primary color solid state light sources
WO2017018372A1 (en) Light source device and projection device
JP6752924B2 (en) Lighting device and image display device using it
WO2016147578A1 (en) Projector
JP2021033226A5 (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees