TWI534871B - Replacement gate process and device manufactured using the same - Google Patents

Replacement gate process and device manufactured using the same Download PDF

Info

Publication number
TWI534871B
TWI534871B TW102115869A TW102115869A TWI534871B TW I534871 B TWI534871 B TW I534871B TW 102115869 A TW102115869 A TW 102115869A TW 102115869 A TW102115869 A TW 102115869A TW I534871 B TWI534871 B TW I534871B
Authority
TW
Taiwan
Prior art keywords
layer
etch stop
hard mask
substrate
contact etch
Prior art date
Application number
TW102115869A
Other languages
Chinese (zh)
Other versions
TW201443981A (en
Inventor
王俊傑
曹博昭
梁家瑞
鄒世芳
林建廷
陳正國
傅思逸
洪裕祥
張仲甫
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW102115869A priority Critical patent/TWI534871B/en
Publication of TW201443981A publication Critical patent/TW201443981A/en
Application granted granted Critical
Publication of TWI534871B publication Critical patent/TWI534871B/en

Links

Description

取代閘極製程及應用其製得之元件 Replace the gate process and apply the components it produces

本發明是有關於一種取代閘極製程及應用其製得之元件,且特別是有關於一種可控制閘極高度的取代閘極製程及應用其製得之元件。 SUMMARY OF THE INVENTION The present invention is directed to a device for replacing a gate process and for the use thereof, and more particularly to a replacement gate process for controlling gate height and for fabricating the same.

近年來半導體元件尺寸日益減小。對半導體業界來說,持續縮小半導體結構的尺寸之外,還可同時改善速率、效能、密度及降低成本,一直是重要的發展目標。隨著半導體元件尺寸的縮小,元件的電子特性也必須維持甚至是加以改善,以達到市場產品之要求。近年來高介電常數介電層-金屬閘極(high k-metal gate,HKMG)技術已成為高性能和低待機功率邏輯元件的主流。 In recent years, the size of semiconductor components has been decreasing. For the semiconductor industry, continuing to reduce the size of semiconductor structures, while simultaneously improving speed, performance, density, and cost reduction, has been an important development goal. As the size of semiconductor components shrinks, the electronic characteristics of the components must be maintained or even improved to meet market product requirements. In recent years, high dielectric constant dielectric-metal gate (HKMG) technology has become the mainstream of high performance and low standby power logic components.

高介電常數介電層-金屬閘極製程又可分為閘極先製(Gate first)製程和閘極後製(Gate last)製程。以閘極後製製程(又稱為取代閘極製程,replacement gate process)為例,是以例如多晶矽或非晶矽等材料製作虛擬閘極,之後移除虛擬閘極再置換為金屬閘極。而高介電常數(High K)薄膜在半導體工業的記憶體應用中是一重要元件,應用高介電常數之材料於記憶體內可提升記 憶體內之電容值。於HKMG製程中,高介電常數介電層可以在製作虛擬閘極之前先形成,此稱為高介電常數介電層先製(High K first)之HKMG製程;也可以在虛擬閘極製作和移除後再形成,此稱為高介電常數介電層後製(High K last)之HKMG製程。無論是何種HKMG製程,對於最終閘極高度(gate height)與表面形貌(topography)都需要極度精確的控制,使製得之半導體元件具有優異的電性表現。 The high-k dielectric layer-metal gate process can be further divided into a gate first process and a gate last process. For example, in the post-gate process (also referred to as a replacement gate process), a dummy gate is formed by a material such as polysilicon or amorphous germanium, and then the dummy gate is removed and replaced with a metal gate. High dielectric constant (High K) thin films are an important component in memory applications in the semiconductor industry. High dielectric constant materials can be used to enhance memory in memory. Recall the capacitance value in the body. In the HKMG process, the high-k dielectric layer can be formed before the dummy gate is formed. This is called the high-k dielectric layer (High K first) HKMG process; it can also be fabricated in the virtual gate. And formed after removal, this is called the high-k dielectric layer post-production (High K last) HKMG process. Regardless of the HKMG process, extreme precision control is required for the final gate height and topography, resulting in superior electrical performance of the fabricated semiconductor components.

第1A~1D圖係為一種傳統高介電常數介電層-金屬 閘極(HKMG)之製造方法示意圖。如第1A圖所示,提供之一基板10上例如形成有一假性閘極12(dummy gate)包括一多晶矽層121和一硬質遮罩層(hard mask layer)122,假性閘極12兩側形成間隙壁(spacers)14(可以是單層或多層間隙壁,如圖中所示之第一間隙壁141和第二間隙壁142)。基板10上還形成有接觸蝕刻停止層16覆蓋間隙壁14,和層間介電層(interlayer dielectric,ILD)17形成於接觸蝕刻停止層16上。基板10上可選擇性地成長一磊晶層(epitaxy layer)101。如第1B圖所示,例如以化學機械研磨(CMP)方式,先平坦化層間介電層17至接觸蝕刻停止層16,以暴露出接觸蝕刻停止層16之上表面。接著,如第1C圖所示,例如以乾式蝕刻方式,移除部份的層間介電層17、間隙壁14和假性閘極12,其中硬質遮罩層122完全被移除,多晶矽層121則部份被移除。之後,如第1D圖所示,剩下的多晶矽層121’則以濕式蝕刻方式去除,形成溝槽18。後續再填入金屬於溝槽18中(未顯示於 圖示)。 1A~1D is a traditional high dielectric constant dielectric layer-metal Schematic diagram of the manufacturing method of the gate (HKMG). As shown in FIG. 1A, a dummy gate 12 is formed on one of the substrates 10, and includes a polysilicon layer 121 and a hard mask layer 122. Both sides of the dummy gate 12 are provided. Spacers 14 are formed (which may be single or multiple spacers, first spacer 141 and second spacer 142 as shown). A contact etch stop layer 16 is formed on the substrate 10 to cover the spacers 14, and an interlayer dielectric (ILD) 17 is formed on the contact etch stop layer 16. An epitaxy layer 101 can be selectively grown on the substrate 10. As shown in FIG. 1B, the interlayer dielectric layer 17 is first planarized to contact the etch stop layer 16 by, for example, a chemical mechanical polishing (CMP) method to expose the upper surface of the contact etch stop layer 16. Next, as shown in FIG. 1C, a portion of the interlayer dielectric layer 17, the spacers 14, and the dummy gates 12 are removed, for example, by dry etching, wherein the hard mask layer 122 is completely removed, and the polysilicon layer 121 is removed. Then part of it was removed. Thereafter, as shown in Fig. 1D, the remaining polysilicon layer 121' is removed by wet etching to form trenches 18. Subsequent refilling of the metal in the trench 18 (not shown in Graphic).

在目前製程中,間隙壁14(如第一間隙壁141和第 二間隙壁142)和接觸蝕刻停止層16的材料相異,例如分別是氧化物、以中空陰極放電方法(hollow cathode discharge,HCD)生長的氮化物、和氮化物,其對以乾式蝕刻或濕式蝕刻移除假性閘極12的抗蝕度低。為了保持最終閘極高度(gate height)HG在一定的高度值,因此製程中需要較高的假性閘極12高度。以目前20nm HKMG製程和應用上述第1A~1D圖製法為例,若所需製得的最終閘極高度HG是1000Å,則第1A圖中多晶矽層121和硬質遮罩層122所需形成之高度分別為1000Å。然而,過高的假性閘極高度會影響到製得元件之電性表現,例如影響到輕摻雜汲極(lightly doped drain)的摻雜能力。 In the current process, the spacers 14 (such as the first spacer 141 and the second spacer 142) and the material contacting the etch stop layer 16 are different, for example, oxide, hollow cathode discharge (HCD). The grown nitride, and nitride, which have low corrosion resistance to the dummy gate 12 by dry etching or wet etching. In order to maintain the final gate height H G at a certain height value, a high false gate 12 height is required in the process. Taking the current 20nm HKMG process and applying the above 1A~1D drawing method as an example, if the final gate height H G required to be obtained is 1000 Å, the polysilicon layer 121 and the hard mask layer 122 in FIG. 1A are required to be formed. The height is 1000Å. However, too high a false gate height can affect the electrical performance of the fabricated component, such as the doping ability of a lightly doped drain.

本發明係有關於一種取代閘極製程及(replacement gate process)應用其製得之元件,不但可精確控制最終閘極高度與維持各層結構之表面形貌,製得之半導體元件亦具有優異的電性表現。 The present invention relates to an element obtained by replacing a gate process and a replacement gate process, which not only can precisely control the final gate height and maintain the surface topography of each layer structure, but also has excellent electrical properties. Sexual performance.

根據本發明,提出一種取代閘極製程,包括:提供一基板和形成一假性閘極結構於基板上,其中假性閘極結構包括一暫置層位於基板上,一硬質遮罩層位於暫置層上,間隙壁位於暫置層和硬質遮罩層之兩側,及一接觸蝕刻停 止層覆蓋基板、間隙壁和硬質遮罩層層,且間隙壁和接觸蝕刻停止層係為相同材料;移除接觸蝕刻停止層之一頂部以暴露出硬質遮罩層;移除硬質遮罩層;和移除暫置層以形成一溝槽。 According to the present invention, a replacement gate process is provided, comprising: providing a substrate and forming a dummy gate structure on the substrate, wherein the dummy gate structure comprises a temporary layer on the substrate, and a hard mask layer is temporarily On the layer, the spacer is located on both sides of the temporary layer and the hard mask layer, and a contact etch stop The stop layer covers the substrate, the spacer and the hard mask layer, and the spacer and the contact etch stop layer are the same material; removing the top of one of the contact etch stop layers to expose the hard mask layer; removing the hard mask layer And removing the temporary layer to form a trench.

根據本發明,提出一種半導體結構,包括一基板;間隙壁相對的形成於基板上且以一溝槽分隔;一圖案化接觸蝕刻停止層(patterned CESL)形成於間隙壁外側且覆蓋基板;其中間隙壁和接觸蝕刻停止層係為相同材料。 According to the present invention, a semiconductor structure is provided, comprising: a substrate; the spacers are oppositely formed on the substrate and separated by a trench; a patterned contact etch stop layer (patterned CESL) is formed on the outside of the spacer and covers the substrate; The wall and contact etch stop layers are of the same material.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

10、20、40‧‧‧基板 10, 20, 40‧‧‧ substrates

101、201‧‧‧磊晶層 101, 201‧‧‧ epitaxial layer

12、22‧‧‧假性閘極 12, 22‧‧‧false gate

121、121’‧‧‧多晶矽層 121, 121'‧‧‧ polycrystalline layer

221‧‧‧暫置層 221‧‧‧ temporary layer

122、222‧‧‧硬質遮罩層 122, 222‧‧‧ hard mask layer

222a‧‧‧硬質遮罩層之表面 222a‧‧‧The surface of the hard mask layer

14、24、44‧‧‧間隙壁 14, 24, 44‧ ‧ spacers

141、241‧‧‧第一間隙壁 141, 241‧‧‧ first gap

142、242‧‧‧第二間隙壁 142, 242‧‧‧ second gap

16、16’、26、26’、46‧‧‧接觸蝕刻停止層 16, 16', 26, 26', 46‧‧‧ contact etch stop layer

26a‧‧‧接觸蝕刻停止層之上表面 26a‧‧‧Contact etch stop layer upper surface

17、17’、27、27’、27”、47‧‧‧層間介電層 17, 17', 27, 27', 27", 47‧ ‧ interlayer dielectric layers

18、28、48‧‧‧溝槽 18, 28, 48‧‧‧ trench

31‧‧‧閘極介電層 31‧‧‧ gate dielectric layer

41‧‧‧淺溝槽隔離 41‧‧‧Shallow trench isolation

49‧‧‧鰭狀通道 49‧‧‧Fin channel

491‧‧‧介電層 491‧‧‧ dielectric layer

HG‧‧‧閘極高度 H G ‧‧‧gate height

S‧‧‧源極 S‧‧‧ source

D‧‧‧汲極 D‧‧‧汲

第1A~1D圖係為一種傳統高介電常數介電層-金屬閘極(HKMG)之製造方法示意圖。 The 1A~1D diagram is a schematic diagram of a conventional high dielectric constant dielectric layer-metal gate (HKMG) manufacturing method.

第2A~2E圖係為本揭露之第一實施例之高介電常數介電層-金屬閘極(high K-metal gate process,HKMG)之製造方法示意圖。 2A-2E are schematic views showing a manufacturing method of a high-k dielectric gate process (HKMG) according to the first embodiment of the present disclosure.

第3圖為本揭露之第二實施例之高介電常數介電層-金屬閘極(HKMG)製程中,於假性閘極移除後形成溝槽之一半導體元件之示意圖。 FIG. 3 is a schematic view showing a semiconductor device in which a trench is formed after a dummy gate is removed in a high-k dielectric-metal gate (HKMG) process according to a second embodiment of the present disclosure.

第4圖為本揭露之第三實施例之鰭狀場效電晶體製程中,於假性閘極移除後形成溝槽之一半導體元件之示意圖。 FIG. 4 is a schematic view showing a semiconductor device in which a trench is formed after the dummy gate is removed in the fin field effect transistor process of the third embodiment of the present disclosure.

實施例係提出一取代閘極製程及應用其製得之元件,不但可精確控制最終閘極高度(gate height)與表面形貌(topography),且使製得之半導體元件亦具有優異的電性表現。根據本揭露之製造方法,係利用材料蝕刻之高選擇比搭配特殊製程,使所需製作之假性閘極高度降低,而仍可達到以傳統製程製作(需較高的假性閘極高度)而得到的相同最終閘極高度。 The embodiment proposes a replacement gate process and the components obtained by the same, which not only can precisely control the final gate height and surface topography, but also make the fabricated semiconductor component have excellent electrical properties. which performed. According to the manufacturing method of the present disclosure, the high selectivity of the material etching is matched with the special process, so that the false gate height of the desired fabrication is reduced, and the conventional process can be achieved (higher false gate height is required). And get the same final gate height.

以下係參照所附圖式敘述本揭露應用之相關實施例。本揭露可應用在高介電常數介電層-金屬閘極製程,而進行一般電晶體或鰭式場效電晶體等元件之製作。圖式中相同或類似的標號係用以標示相同或類似之部分。需注意的是,圖式係已簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製,因此並非作為限縮本揭露保護範圍之用;而細部製造步驟亦不僅限於實施例之敘述與圖示,可依實際應用製程之不同而加以變化與修飾。再者,未於本揭露提出的其他實施態樣也可能可以應用。 Related embodiments of the disclosed application are described below with reference to the accompanying drawings. The present disclosure can be applied to a high-k dielectric layer-metal gate process to fabricate components such as a general transistor or a fin field effect transistor. The same or similar reference numerals are used to designate the same or similar parts. It should be noted that the drawings have been simplified to clearly illustrate the contents of the embodiments, and the dimensional ratios in the drawings are not drawn to the scale of the actual products, and therefore are not intended to limit the scope of protection; It is not limited to the description and illustration of the embodiments, and can be changed and modified depending on the actual application process. Furthermore, other implementations not presented in this disclosure may also be applicable.

第2A~2E圖係為本揭露之第一實施例之高介電常數介電層-金屬閘極(high K-metal gate process,HKMG)之製造方法示意圖。第一實施例中,是應用本揭露於一高介電常數介電層 後製(High K last)之HKMG製程為例作說明。 2A-2E are schematic views showing a manufacturing method of a high-k dielectric gate process (HKMG) according to the first embodiment of the present disclosure. In the first embodiment, the application is disclosed in a high-k dielectric layer The HKK process of High K last is taken as an example.

如第2A圖所示,提供一基板20和形成一假性閘極 結構(dummy gate structure)於基板20上,其中假性閘極結構包括一暫置層(dummy layer)221位於基板20上、一硬質遮罩層(hard mask layer)222位於暫置層221上、間隙壁(spacers)24位於暫置層221和硬質遮罩層222之兩側,及一接觸蝕刻停止層(contact etch stop layer,CESL)26覆蓋基板20、間隙壁24和硬質遮罩層層222。其中,暫置層221和硬質遮罩層222係構成元件中之一假性閘極22(dummy gate)。基板20上可選擇性地成長一磊晶層(epitaxy layer)201;如第2A圖中所示,接觸蝕刻停止層26亦形成於磊晶層201上。 As shown in FIG. 2A, a substrate 20 is provided and a dummy gate is formed A dummy gate structure is disposed on the substrate 20, wherein the dummy gate structure includes a dummy layer 221 on the substrate 20, and a hard mask layer 222 is disposed on the temporary layer 221, Spacers 24 are located on both sides of the temporary layer 221 and the hard mask layer 222, and a contact etch stop layer (CESL) 26 covers the substrate 20, the spacers 24, and the hard mask layer 222. . The temporary layer 221 and the hard mask layer 222 constitute one of the dummy gates 22 of the components. An epitaxial layer 201 is selectively grown on the substrate 20; as shown in FIG. 2A, a contact etch stop layer 26 is also formed on the epitaxial layer 201.

此實施例中,假性閘極結構更包括一層間介電層 (interlayer dielectric,ILD)27覆蓋於接觸蝕刻停止層26上。實施例中,暫置層221例如是一多晶矽層或一非晶矽層;而間隙壁24可以是單層或多層間隙壁,如圖中所示之第一間隙壁241和第二間隙壁242。 In this embodiment, the dummy gate structure further includes an interlayer dielectric layer An interlayer dielectric (ILD) 27 is overlaid on the contact etch stop layer 26. In the embodiment, the temporary layer 221 is, for example, a polysilicon layer or an amorphous germanium layer; and the spacers 24 may be a single layer or a plurality of spacers, as shown in the first spacer 241 and the second spacer 242. .

再者,第一實施例中,間隙壁24和接觸蝕刻停止層 26係為相同材料,而硬質遮罩層222之材料係不同於間隙壁24和接觸蝕刻停止層26之材料。一實施例中,間隙壁24(包括第一間隙壁241和第二間隙壁242)和接觸蝕刻停止層26之材料例如是以原子層沉積(atomic layer deposition,ALD)之碳氮化矽(SiCN)。一實施例中,硬質遮罩層222之材料例如(但不限制地) 是氮化物或氧化物;一實施例中,硬質遮罩層222之材料係為氮化矽。 Furthermore, in the first embodiment, the spacers 24 and the contact etch stop layer The 26 is the same material, and the material of the hard mask layer 222 is different from the material of the spacer 24 and the contact etch stop layer 26. In one embodiment, the spacers 24 (including the first spacers 241 and the second spacers 242) and the material contacting the etch stop layer 26 are, for example, atomic layer deposition (ALD) carbonitride (SiCN). ). In one embodiment, the material of the hard mask layer 222 is, for example but not limited to, It is a nitride or an oxide; in one embodiment, the material of the hard mask layer 222 is tantalum nitride.

如第2B圖所示,平坦化層間介電層27以暴露接觸 蝕刻停止層26之一上表面26a。一實施例中,層間介電層27之材料例如是氧化物,而層間介電層27係以化學機械研磨(chemical mechanical planarization or polishing,CMP)進行平坦化之步驟。 As shown in FIG. 2B, the interlayer dielectric layer 27 is planarized to expose the contacts One of the upper surfaces 26a of the etch stop layer 26 is etched. In one embodiment, the material of the interlayer dielectric layer 27 is, for example, an oxide, and the interlayer dielectric layer 27 is a step of planarization by chemical mechanical planarization or polishing (CMP).

接著,如第2C圖所示,例如是利用乾式蝕刻方式, 移除接觸蝕刻停止層26之頂部(top portion)以暴露出硬質遮罩層222之表面222a。 Next, as shown in FIG. 2C, for example, by dry etching, The top portion of the contact etch stop layer 26 is removed to expose the surface 222a of the hard mask layer 222.

然後,如第2D圖所示,例如是利用濕式蝕刻方式, 移除硬質遮罩層222。一實施例中,若間隙壁24和接觸蝕刻停止層26之材料為以原子層沉積之碳氮化矽(SiCN),硬質遮罩層222之材料例為氮化物,則硬質遮罩層222可利用一磷酸鹽系溶液(phosphate-based solution)進行濕式蝕刻。由於蝕刻液對硬質遮罩層222和間隙壁24/接觸蝕刻停止層26的高選擇比,使硬質遮罩層222進行濕式蝕刻期間不會對間隙壁24和接觸蝕刻停止層26造成損害。 Then, as shown in FIG. 2D, for example, by wet etching, The hard mask layer 222 is removed. In one embodiment, if the material of the spacer 24 and the contact etch stop layer 26 is atomic layer deposited carbonitride (SiCN), and the material of the hard mask layer 222 is nitride, the hard mask layer 222 can be Wet etching is performed using a phosphate-based solution. Due to the high selectivity of the etchant to the hard mask layer 222 and the spacers 24/contact etch stop layer 26, the barrier layer 24 and the contact etch stop layer 26 are not damaged during the wet etch of the hard mask layer 222.

之後,如第2E圖所示,移除暫置層221以形成一 溝槽(trench)28。一實施例中,例如是利用乾蝕刻或濕式蝕刻方式移除暫置層221。 Thereafter, as shown in FIG. 2E, the temporary layer 221 is removed to form a Trench 28. In one embodiment, the temporary layer 221 is removed, for example, by dry etching or wet etching.

應用本揭露於一高介電常數介電層後製(High K last) 之HKMG製程中,於後續步驟可形成一高介電常數介電層於溝槽 28中,和形成一金屬閘極於溝槽28。一應用例中,一界面層(interfacial layer,IL)可選擇性的形成於溝槽28中的基板20上以隔絕高介電常數介電層和基板20之接觸,而高介電常數介電層可形成於溝槽28內之側壁和底部的界面層上;接著,形成一金屬層以填滿溝槽28,並例如利用CMP對金屬層平坦化製程,以形成金屬閘極於溝槽28處,完成假性閘極之置換。 The application is disclosed in a high dielectric constant dielectric layer (High K last) In the HKMG process, a high-k dielectric layer can be formed in the trench in a subsequent step. In 28, a metal gate is formed in the trench 28. In an application example, an interfacial layer (IL) may be selectively formed on the substrate 20 in the trench 28 to insulate the contact between the high-k dielectric layer and the substrate 20, and the high-k dielectric is high. A layer may be formed on the sidewalls of the sidewalls and the bottom of the trenches 28; then, a metal layer is formed to fill the trenches 28, and the metal layer is planarized, for example, by CMP to form metal gates in the trenches 28 At the place, complete the replacement of the false gate.

一實施例中,界面層之材料例如是一氧化物 (oxide)。高介電常數介電層之材料不限制地例如是氧化鉿(afnium oxide)、氧化鉿(hafnium silicon oxide)、氧化鑭(lanthanum oxide)、氧化鋯(zirconium oxide)、矽氧化鋯(zirconium silicon oxide)、氧化鉭(tantalum oxide)、二氧化鈦(titanium oxide)、鋇鍶鈦氧化物(barium strontium titanium oxide)、鋇鈦氧化物(barium titanium oxide)、鍶鈦氧化物(strontium titanium oxide)、氧化釔(ttrium oxide、氧化鋁(aluminum oxide)、鉛鈧鉭氧化物(lead scandium tantalum oxide)、鈮鋅酸鉛(lead zinc niobate),或其他適用之材料。金屬層/金屬閘極之材料例如是適合用以調整N型電晶體或P型電晶體之功函數的功函數金屬,如氮化鈦(TiN)、氮化鉭(TaN)、碳化鈦(titanium carbide,TiC)、碳化鉭(tantalum carbide,TaC)、碳化鎢(tungsten carbide,WC)、或氮化鈦鋁(aluminum titanium nitride,TiAlN)、鋁化鈦(titanium aluminide,TiAl)、鋁化鋯(zirconium aluminide,ZrAl)、鋁化鎢(tungsten aluminide,WAl)、鋁化鉭(tantalum aluminide,TaAl)、或鋁化鉿(hafnium aluminide, HfAl)、以及低電阻率之金屬如鋁、銅、或其他適用之金屬材料。 In one embodiment, the material of the interface layer is, for example, an oxide (oxide). The material of the high-k dielectric layer is, for example, afnium oxide, hafnium silicon oxide, lanthanum oxide, zirconium oxide, zirconium silicon oxide. ), tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, cerium oxide Ttrium oxide, aluminum oxide, lead scandium tantalum oxide, lead zinc niobate, or other suitable materials. Metal layer/metal gate materials are suitable, for example. A work function metal that adjusts the work function of an N-type transistor or a P-type transistor, such as titanium nitride (TiN), tantalum nitride (TaN), titanium carbide (TiC), tantalum carbide (TaC) ), tungsten carbide (WC), or aluminum titanium nitride (TiAlN), titanium aluminide (TiAl), zirconium aluminide (ZrAl), tungsten aluminide (tungsten aluminide) , WAl), tantalum aluminide (TaAl), or hafnium aluminide (hafnium aluminide, HfAl), and low resistivity metals such as aluminum, copper, or other suitable metallic materials.

本揭露亦可應用於一高介電常數介電層先製(High K first)之HKMG製程,其方法流程類似第2A~2E圖,除了在假性閘極結構中形成一閘極介電層(gate dielectric layer)位於基板20和暫置層221之間。第3圖為本揭露之第二實施例之高介電常數介電層-金屬閘極(HKMG)製程中,於假性閘極移除後形成溝槽之一半導體元件之示意圖。請同時參照第2A~2E圖和第3圖。第二實施例中,在基板20上先形成閘極介電層31再形成假性閘極於閘極介電層31上(即高介電常數介電層先製),之後如第2A~2E圖所述之方法移除假性閘極而形成溝槽28,溝槽28中具有閘極介電層31。而依據實際應用製程,閘極介電層31可以是單層或多層結構,例如是單一高介電常數介電層(high-K dielectric layer),或是包括一界面層(如氧化層、或前述之材料)和高介電常數介電層形成於界面層上的一多層結構,本揭露對此並不多做限制。後續步驟再形成一金屬層以填滿溝槽28,並對金屬層平坦化後而形成金屬閘極於溝槽28處,完成假性閘極之置換。 The disclosure can also be applied to a high dielectric constant dielectric layer (High The KMG process of K first) has a method flow similar to that of FIGS. 2A-2E except that a gate dielectric layer is formed between the substrate 20 and the temporary layer 221 in the dummy gate structure. FIG. 3 is a schematic view showing a semiconductor device in which a trench is formed after a dummy gate is removed in a high-k dielectric-metal gate (HKMG) process according to a second embodiment of the present disclosure. Please also refer to Figures 2A~2E and Figure 3. In the second embodiment, the gate dielectric layer 31 is formed on the substrate 20 and the dummy gate is formed on the gate dielectric layer 31 (ie, the high-k dielectric layer is formed first), and then the second layer is as follows. The method described in FIG. 2E removes the dummy gate to form a trench 28 having a gate dielectric layer 31 therein. According to the practical application process, the gate dielectric layer 31 may be a single layer or a multilayer structure, such as a single high-k dielectric layer, or an interface layer (such as an oxide layer, or The foregoing material) and the high-k dielectric layer are formed on a multi-layer structure on the interface layer, and the disclosure is not limited thereto. Subsequent steps further form a metal layer to fill the trenches 28, and planarize the metal layer to form a metal gate at the trench 28 to complete the replacement of the dummy gate.

本揭露亦可應用於一鰭狀場效電晶體(FinFET)之製 程。其方法流程類似第2A~2E圖。請同時參照第2A~2E圖和第4圖。第4圖為本揭露之第三實施例之鰭狀場效電晶體製程中,於假性閘極移除後形成溝槽之一半導體元件之示意圖。第三實施例中,一鰭狀通道49(例如是一鰭狀矽,Silicon fin)形成於基板上,基板處例如是具有淺溝槽隔離(shallow trench isolation,STI)41。 鰭狀通道49之延伸方向(如平行X方向)係與溝槽48之延伸方向(如平行Y方向)垂直。且一介電層491覆蓋於鰭狀通道49和暴露的基板表面上。假性閘極結構(即後續形成溝槽48和金屬閘極之位置)則形成於鰭狀通道49和基板上且暴露出鰭狀通道49之一部份。再者,一源極S和一汲極D分別形成於鰭狀通道49之暴露部份之相對兩側,且並位於間隙壁44之外側且鄰近間隙壁44。如第2A~2E圖之製法,在具有鰭狀通道49之基板上先形成假性閘極結構(包括如暫置層、硬質遮罩層、間隙壁44、接觸蝕刻停止層46和層間介電層47),再透過高選擇比之乾式/濕式蝕刻方式而移除假性閘極,形成溝槽48。後續步驟再形成一金屬層以填滿溝槽48,並對金屬層平坦化後而形成金屬閘極於溝槽48處,完成假性閘極之置換。所形成的金屬閘極係跨過鰭狀通道49,形成可控制電流流動的閘極環繞的立體(3D)鰭狀架構。 The disclosure can also be applied to a fin field effect transistor (FinFET) system. Cheng. The method flow is similar to the 2A~2E diagram. Please also refer to Figures 2A~2E and Figure 4. FIG. 4 is a schematic view showing a semiconductor device in which a trench is formed after the dummy gate is removed in the fin field effect transistor process of the third embodiment of the present disclosure. In the third embodiment, a fin-shaped channel 49 (for example, a fin fin) is formed on the substrate, and the substrate has, for example, a shallow trench isolation (STI) 41. The extending direction of the fin passages 49 (e.g., the parallel X direction) is perpendicular to the extending direction of the grooves 48 (e.g., parallel to the Y direction). And a dielectric layer 491 overlies the fin channel 49 and the exposed substrate surface. A dummy gate structure (i.e., a location where the trench 48 and the metal gate are subsequently formed) is formed on the fin via 49 and the substrate and exposes a portion of the fin via 49. Furthermore, a source S and a drain D are formed on opposite sides of the exposed portion of the fin channel 49, respectively, and are located on the outer side of the spacer 44 and adjacent to the spacer 44. As in the method of FIGS. 2A-2E, a dummy gate structure (including, for example, a temporary layer, a hard mask layer, a spacer 44, a contact etch stop layer 46, and an interlayer dielectric) is formed on a substrate having a fin channel 49. Layer 47), through the high selection, removes the dummy gates by dry/wet etching to form trenches 48. Subsequent steps further form a metal layer to fill the trenches 48, and planarize the metal layer to form a metal gate at the trench 48 to complete the replacement of the dummy gate. The resulting metal gates span the finned passages 49 to form a three-dimensional (3D) fin structure that surrounds the gates that control the flow of current.

根據上述實施例揭露之製造方法,可降低需製作之假性閘極高度,而仍可達到以傳統製程製作(需較高的假性閘極高度)而得到的相同最終閘極高度,下降的假性閘極高度可減少離子植入製程對元件電性表現之影響,例如減少輕摻雜汲極(lightly doped drain)摻雜時之陰影效應(shadow effect)。請比對第1A圖和第2A圖,和比對第1D圖和第2E圖,假設欲製得最終閘極高度HG為1000Å,應用傳統製法需分別形成約為1000Å高度的多晶矽層121(即暫置層)和硬質遮罩層122,但應用實施例之製造方法僅需形成分別形成約為500Å高度的暫置層221和硬質遮罩層222。 一實施例中,暫置層221之厚度(/高度)例如為400 Å至1200 Å之範圍(inventor提供),然而本露揭並不限制於該些厚度(/高度)範圍,暫置層221之厚度(/高度)係由實際應用所需之最終閘極高度而作適當選擇。再者,應用實施例揭露之製造方法,利用乾式/濕式蝕刻的高選擇比,使硬質遮罩層222進行蝕刻時也不會對間隙壁24和接觸蝕刻停止層26造成損傷,而不影響各層的表面形貌(topography),使製得之半導體元件具有優異的電性表現。 According to the manufacturing method disclosed in the above embodiments, the pseudo gate height to be fabricated can be reduced, and the same final gate height obtained by the conventional process (which requires a higher false gate height) can be achieved. The false gate height reduces the effect of the ion implantation process on the electrical performance of the component, such as reducing the shadow effect of lightly doped drain doping. Please compare 1A and 2A, and compare 1D and 2E, assuming that the final gate height H G is 1000 Å, and a polysilicon layer 121 of about 1000 Å height is required to be formed by conventional methods. That is, the temporary layer) and the hard mask layer 122, but the manufacturing method of the application embodiment only needs to form the temporary layer 221 and the hard mask layer 222 which respectively form a height of about 500 Å. In one embodiment, the thickness (/height) of the temporary layer 221 is, for example, in the range of 400 Å to 1200 Å (provided by the inventor), but the disclosure is not limited to the thickness (/height) range, and the temporary layer 221 The thickness (/height) is suitably selected from the final gate height required for practical use. Furthermore, the manufacturing method disclosed in the embodiment does not affect the spacer 24 and the contact etch stop layer 26 when the hard mask layer 222 is etched by using the high selectivity ratio of the dry/wet etching. The surface topography of each layer gives the resulting semiconductor component excellent electrical performance.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

20‧‧‧基板 20‧‧‧Substrate

201‧‧‧磊晶層 201‧‧‧Elevation layer

22‧‧‧假性閘極 22‧‧‧false gate

221‧‧‧暫置層 221‧‧‧ temporary layer

222‧‧‧硬質遮罩層 222‧‧‧hard mask layer

222a‧‧‧硬質遮罩層之表面 222a‧‧‧The surface of the hard mask layer

24‧‧‧間隙壁 24‧‧‧ spacer

241‧‧‧第一間隙壁 241‧‧‧First gap

242‧‧‧第二間隙壁 242‧‧‧Second gap

26’‧‧‧接觸蝕刻停止層 26'‧‧‧Contact etch stop layer

27”‧‧‧層間介電層 27"‧‧‧Interlayer dielectric layer

Claims (19)

一種取代閘極製程(replacement gate process),包括:提供一基板和形成一假性閘極結構(dummy gate structure)於該基板上,其中該假性閘極結構包括一暫置層(dummy layer)位於該基板上,一硬質遮罩層(hard mask layer)位於該暫置層上,間隙壁(spacers)位於該暫置層和該硬質遮罩層之兩側,及一接觸蝕刻停止層(contact etch stop layer,CESL)覆蓋該基板、該些間隙壁和該硬質遮罩層,以及一層間介電層覆蓋於該接觸蝕刻停止層上,且該些間隙壁和該接觸蝕刻停止層係為相同材料;平坦化該層間介電層,以暴露出該接觸蝕刻停止層之一上表面,並形成一圖案化層間介電層,其中覆蓋該硬質遮罩層的該接觸蝕刻停止層之該上表面係與該圖案化層間介電層之一上表面齊平;乾蝕刻該接觸蝕刻停止層以移除該接觸蝕刻停止層之一頂部(top portion),且該蝕刻步驟係停止於該硬質遮罩層之一上表面,以暴露出該硬質遮罩層;移除該硬質遮罩層;和移除該暫置層以形成一溝槽(trench)。 A replacement gate process includes: providing a substrate and forming a dummy gate structure on the substrate, wherein the dummy gate structure includes a dummy layer Located on the substrate, a hard mask layer is located on the temporary layer, spacers are located on both sides of the temporary layer and the hard mask layer, and a contact etch stop layer (contact An etch stop layer (CESL) covers the substrate, the spacers and the hard mask layer, and an interlayer dielectric layer overlying the contact etch stop layer, and the spacers and the contact etch stop layer are the same Materialing: planarizing the interlayer dielectric layer to expose an upper surface of the contact etch stop layer and forming a patterned interlayer dielectric layer, wherein the upper surface of the contact etch stop layer covering the hard mask layer And aligning the contact etch stop layer to remove a top portion of the contact etch stop layer, and the etching step is stopped at the hard mask One of the layers Surface, to expose the hard mask layer; removing the hard mask layer; and removing the temporary layer to form a trench counter (trench). 如申請專利範圍第1項所述之製程,其中該硬質遮罩層之材料係不同於該些間隙壁和該接觸蝕刻停止層之材料。 The process of claim 1, wherein the material of the hard mask layer is different from the material of the spacers and the contact etch stop layer. 如申請專利範圍第1項所述之製程,其中該暫置層係為一多晶矽層或一非晶矽層。 The process of claim 1, wherein the temporary layer is a polysilicon layer or an amorphous layer. 如申請專利範圍第1項所述之製程,其中該些間隙壁和該接觸蝕刻停止層之材料係為以原子層沉積(atomic layer deposition,ALD)之碳氮化矽。 The process of claim 1, wherein the spacers and the material of the contact etch stop layer are tantalum carbonitrides (atomic layer deposition (ALD)). 如申請專利範圍第1項所述之製程,其中該硬質遮罩層之材料係為氮化物或氧化物。 The process of claim 1, wherein the material of the hard mask layer is a nitride or an oxide. 如申請專利範圍第5項所述之製程,其中該硬質遮罩層之材料係為氮化矽。 The process of claim 5, wherein the material of the hard mask layer is tantalum nitride. 如申請專利範圍第1項所述之製程,其中係以乾式蝕刻方式移除該接觸蝕刻停止層之該頂部以暴露出該硬質遮罩層。 The process of claim 1, wherein the top of the contact etch stop layer is removed by dry etching to expose the hard mask layer. 如申請專利範圍第1項所述之製程,其中係以濕式蝕刻方式移除該硬質遮罩層。 The process of claim 1, wherein the hard mask layer is removed by wet etching. 如申請專利範圍第1項所述之製程,其中該假性閘極結構更包括一閘極介電層(gate dielectric layer)位於該基板和該暫置層之間。 The process of claim 1, wherein the dummy gate structure further comprises a gate dielectric layer between the substrate and the temporary layer. 如申請專利範圍第9項所述之製程,其中該閘極介電層為單一高介電常數介電層(high-K dielectric layer),或是包括一氧化層和該高介電常數介電層形成於該氧化層上的一多層結構。 The process of claim 9, wherein the gate dielectric layer is a single high-k dielectric layer, or includes an oxide layer and the high-k dielectric. A layer is formed on the oxide layer in a multilayer structure. 如申請專利範圍第1項所述之製程,更包括形成一高介電常數介電層於該溝槽中。 The process of claim 1, further comprising forming a high-k dielectric layer in the trench. 如申請專利範圍第1項所述之製程,更包括形成一金屬閘極於該溝槽。 The process of claim 1, further comprising forming a metal gate to the trench. 如申請專利範圍第1項所述之製程,其中一鰭狀通道形 成於該基板上,該假性閘極結構形成於該鰭狀通道和該基板上且暴露出該鰭狀通道之一部份,一源極和一汲極分別形成於該鰭狀通道之該暴露部份之相對兩側並鄰近該假性閘極結構。 For example, the process described in claim 1 of the patent scope, wherein a fin-shaped channel Formed on the substrate, the dummy gate structure is formed on the fin channel and the substrate and exposes a portion of the fin channel, and a source and a drain are respectively formed on the fin channel. The opposite sides of the exposed portion are adjacent to the dummy gate structure. 如申請專利範圍第1項所述之製程,其中該暫置層之一厚度為400Å至1200Å之範圍。 The process of claim 1, wherein one of the temporary layers has a thickness ranging from 400 Å to 1200 Å. 一種半導體結構,包括:一基板;間隙壁(spacers)相對的形成於該基板上,且以一溝槽(trench)分隔;一圖案化接觸蝕刻停止層(patterned CESL)形成於該些間隙壁外側且覆蓋該基板;其中該些間隙壁和該接觸蝕刻停止層係為相同材料;一鰭狀通道形成於該基板上,該鰭狀通道之延伸方向係與該溝槽之延伸方向垂直;以及一金屬層填滿該溝槽並覆蓋部分之該鰭狀通道。 A semiconductor structure includes: a substrate; spacers are oppositely formed on the substrate and separated by a trench; and a patterned contact etch stop layer (patterned CESL) is formed on the outside of the spacer And covering the substrate; wherein the spacers and the contact etch stop layer are the same material; a fin channel is formed on the substrate, the fin channel extending in a direction perpendicular to the extending direction of the trench; A metal layer fills the trench and covers a portion of the finned channel. 如申請專利範圍第15項所述之半導體結構,其中該些間隙壁和該接觸蝕刻停止層之材料係為以原子層沉積(atomic layer deposition,ALD)之碳氮化矽。 The semiconductor structure of claim 15, wherein the spacers and the material of the contact etch stop layer are tantalum carbonitrides (atomic layer deposition (ALD)). 如申請專利範圍第15項所述之半導體結構,其中形成於該溝槽之該金屬層係做為一金屬閘極。 The semiconductor structure of claim 15, wherein the metal layer formed in the trench is a metal gate. 如申請專利範圍第17項所述之半導體結構,更包括一高介電常數介電層形成於該溝槽中,且位於該基板和該金屬閘極之 間。 The semiconductor structure of claim 17, further comprising a high-k dielectric layer formed in the trench and located at the substrate and the metal gate between. 如申請專利範圍第15項所述之半導體結構,更包括一源極和一汲極,該源極和該汲極分別形成於該鰭狀通道之相對兩側,並位於該些間隙壁之外側且鄰近該些間隙壁。 The semiconductor structure of claim 15 further comprising a source and a drain, the source and the drain being respectively formed on opposite sides of the fin channel and located outside the spacer And adjacent to the spacers.
TW102115869A 2013-05-03 2013-05-03 Replacement gate process and device manufactured using the same TWI534871B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102115869A TWI534871B (en) 2013-05-03 2013-05-03 Replacement gate process and device manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102115869A TWI534871B (en) 2013-05-03 2013-05-03 Replacement gate process and device manufactured using the same

Publications (2)

Publication Number Publication Date
TW201443981A TW201443981A (en) 2014-11-16
TWI534871B true TWI534871B (en) 2016-05-21

Family

ID=52423405

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102115869A TWI534871B (en) 2013-05-03 2013-05-03 Replacement gate process and device manufactured using the same

Country Status (1)

Country Link
TW (1) TWI534871B (en)

Also Published As

Publication number Publication date
TW201443981A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
TWI646683B (en) Semiconductor structure and method of forming same
TWI593103B (en) Methods of forming stressed layers on finfet semiconductor devices and the resulting devices
US9673100B2 (en) Semiconductor device having contact plug in two dielectric layers and two etch stop layers
TWI525715B (en) Integrated circuits and methods for fabricating integrated circuits having metal gate electrodes
TWI759277B (en) Semiconductor devices, finfet devices and methods of forming the same
US8759208B2 (en) Method for manufacturing contact holes in CMOS device using gate-last process
KR101423373B1 (en) Semiconductor device having metal gate electrode and method of fabrication thereof
US10262894B2 (en) FinFET device and method for forming the same
US9984974B1 (en) Method for fabricating semiconductor device having a patterned metal layer embedded in an interlayer dielectric layer
TWI821384B (en) Method of fabricating integrated circuit and semiconductor device and semiconductor structure
US10483377B2 (en) Devices and methods of forming unmerged epitaxy for FinFet device
US9159798B2 (en) Replacement gate process and device manufactured using the same
TWI758890B (en) Field-effect transistors with channel regions that include a two-dimensional material on a mandrel
KR20130069289A (en) Finfets with multiple threshold voltages
US9728455B2 (en) Semiconductor device and method for fabricating the same
TW202234526A (en) Semiconductor devices and methods for forming the same
TW201905986A (en) Semiconductor device and manufacturing method thereof
US20160322468A1 (en) Semiconductor device
CN108695233B (en) Semiconductor device and method for manufacturing the same
TWI534871B (en) Replacement gate process and device manufactured using the same
US8466013B2 (en) Method for manufacturing a semiconductor structure
US10283412B2 (en) Semiconductor device and fabrication method thereof
TWI810998B (en) Semiconductor device and method of fabricating the same
TW202133277A (en) Semiconductor devices and methods of formation