TWI533586B - Device for motor cogging torque compensation and method thereof - Google Patents

Device for motor cogging torque compensation and method thereof Download PDF

Info

Publication number
TWI533586B
TWI533586B TW103114953A TW103114953A TWI533586B TW I533586 B TWI533586 B TW I533586B TW 103114953 A TW103114953 A TW 103114953A TW 103114953 A TW103114953 A TW 103114953A TW I533586 B TWI533586 B TW I533586B
Authority
TW
Taiwan
Prior art keywords
signal
error value
motor
current
rotation
Prior art date
Application number
TW103114953A
Other languages
Chinese (zh)
Other versions
TW201541850A (en
Inventor
陳譽元
李迪章
蔡明發
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW103114953A priority Critical patent/TWI533586B/en
Publication of TW201541850A publication Critical patent/TW201541850A/en
Application granted granted Critical
Publication of TWI533586B publication Critical patent/TWI533586B/en

Links

Description

馬達頓轉矩補償裝置及其方法 Motorton torque compensation device and method thereof

本發明係關於一種馬達頓轉矩補償裝置及其方法,特別是一種可不斷更新頓轉矩的傅立葉參數的馬達頓轉矩補償裝置及其方法。 The invention relates to a motor torque compensation device and a method thereof, in particular to a motorized torque compensation device and a method thereof for continuously updating a Fourier parameter of a torque.

在工業應用上,由於永磁馬達(如軸向磁通永磁馬達(Axial-Flux Permanent Magnet,AFPM))具有高效率、緊密結構與高轉矩密度等特性,已在越來越多的應用領域中廣泛的使用。例如於汽車工業中,永磁馬達即因上述特性而被使用在電動車的引擎部分。於電力系統中,永磁馬達即應用在風力發電機與飛輪儲能上。不僅如此,許多計算機產品例如影印機、掃描器、電腦硬碟、CD-ROM、數位相機,或是醫療輔助用品如運動健身器材等,均需使用永磁馬達作為動力來源。 In industrial applications, permanent magnet motors (such as Axial-Flux Permanent Magnet (AFPM)) have been used in more and more applications due to their high efficiency, compact structure and high torque density. Widely used in the field. For example, in the automotive industry, a permanent magnet motor is used in the engine portion of an electric vehicle due to the above characteristics. In the power system, the permanent magnet motor is applied to the energy storage of the wind turbine and the flywheel. Moreover, many computer products such as photocopiers, scanners, computer hard drives, CD-ROMs, digital cameras, or medical aids such as sports and fitness equipment require permanent magnet motors as a source of power.

然而,當永磁馬達運作時常會因為頓轉矩(cogging torque)的產生,而影響永磁馬達的效率。頓轉矩(cogging torque)是由於轉子永久磁鐵與定子齒槽位置改變時,氣隙磁阻隨著位置變化,磁路中的磁通與磁場能量亦隨之變化,而產生的漣波訊號。而頓轉矩的產生會使馬達產生震動及噪音,這在多數應用場合是不能被接受的。並且,伴隨著震動及噪音的產生,頓轉矩亦會降低馬達的輸出功率與效率,對於需高輸出功率的應用領域中,如何減少馬達之頓轉矩是個重要的課題。 However, when the permanent magnet motor operates, it often affects the efficiency of the permanent magnet motor due to the occurrence of cogging torque. The cogging torque is the chopping signal generated by the magnetic flux and magnetic field energy in the magnetic circuit as the position of the rotor permanent magnet and the stator cogging changes. The generation of torque can cause vibration and noise in the motor, which is unacceptable in most applications. Moreover, with the generation of vibration and noise, the torque will also reduce the output power and efficiency of the motor. In the application field where high output power is required, how to reduce the torque of the motor is an important issue.

有鑑於以上的問題,本發明提供一種馬達頓轉矩補償裝置及其方法,藉由不斷更新頓轉矩的傅立葉預估參數,以解決馬達運作時產生震動以及噪音之問題。 In view of the above problems, the present invention provides a motor torque compensation device and a method thereof, which solve the problem of vibration and noise generated during operation of the motor by continuously updating the Fourier estimation parameters of the torque.

依據本發明所揭露的馬達頓轉矩補償方法,具有下列步驟。所述步驟包括首先偵測馬達之轉動狀態以取得馬達的轉動訊號以及馬達的第一電流訊號。接著計算第一誤差值以及第二誤差值,第一誤差值係關聯於轉動訊號,第二誤差值係關聯於第一電流訊號。接著至少依據第一誤差值、第二誤差值以及轉動訊號執行頓轉矩之傅立葉參數預估以取得多個預估參數。接著至少依據第一誤差值、轉動訊號以及多個預估參數以產生控制命令的電流控制訊號。以及最後至少依據第二誤差值、第三誤差值、電流控制訊號、第一電流訊號以及轉動訊號產生控制命令的電壓控制訊號,以調整馬達之轉動狀態,其中第三誤差值係關聯於第一電流訊號。 The motor torque compensation method according to the present invention has the following steps. The step includes first detecting a rotational state of the motor to obtain a rotational signal of the motor and a first current signal of the motor. The first error value and the second error value are then calculated, the first error value being associated with the rotation signal and the second error value being associated with the first current signal. Then, the Fourier parameter estimation of the torque is performed based on at least the first error value, the second error value, and the rotation signal to obtain a plurality of estimation parameters. Then, at least the first error value, the rotation signal and the plurality of estimation parameters are used to generate a current control signal of the control command. And finally, the voltage control signal for generating the control command based on at least the second error value, the third error value, the current control signal, the first current signal, and the rotation signal to adjust the rotation state of the motor, wherein the third error value is associated with the first Current signal.

依據本發明所揭露的馬達頓轉矩補償裝置,包括訊號偵測模組、轉動狀態控制模組、電流控制模組以及參數估算模組。所述訊號偵測模組用以偵測馬達之轉動狀態以取得馬達的轉動訊號以及馬達的第一電流訊號。所述轉動狀態控制模組,耦接訊號偵測模組,轉動狀態控制模組用以計算第一誤差值,第一誤差值係關聯於轉動訊號。所述電流控制模組,耦接訊號偵測模組以及轉動狀態控制模組,電流控制模組用以計算第二誤差值以及第三誤差值,第二誤差值以及第三誤差值均關聯於第一電流訊號。以及參數估算模組,耦接訊號偵測模組、轉動狀態控制模組以及電流控制模組,參數估算模組用以至少依據第一誤差值、第二誤差值以及轉動訊號執行頓轉矩之傅立葉參數預估以取 得多個預估參數,轉動狀態控制模組用以至少依據第一誤差值、轉動訊號以及多個預估參數以產生控制命令的電流控制訊號,電流控制模組用以至少依據第二誤差值、第三誤差值、電流控制訊號、第一電流訊號以及轉動訊號產生控制命令的電壓控制訊號,以調整馬達之轉動狀態。 The motor torque compensation device according to the invention comprises a signal detection module, a rotation state control module, a current control module and a parameter estimation module. The signal detecting module is configured to detect a rotation state of the motor to obtain a rotation signal of the motor and a first current signal of the motor. The rotation state control module is coupled to the signal detection module, and the rotation state control module is configured to calculate a first error value, where the first error value is associated with the rotation signal. The current control module is coupled to the signal detection module and the rotation state control module, and the current control module is configured to calculate a second error value and a third error value, wherein the second error value and the third error value are all associated with The first current signal. And a parameter estimation module coupled to the signal detection module, the rotation state control module and the current control module, wherein the parameter estimation module is configured to perform the torque according to at least the first error value, the second error value, and the rotation signal. Fourier parameter estimation to take a plurality of estimation parameters, the rotation state control module is configured to generate a current control signal of the control command according to at least the first error value, the rotation signal and the plurality of estimation parameters, and the current control module is configured to use at least the second error value The third error value, the current control signal, the first current signal, and the voltage control signal of the rotation signal generating the control command to adjust the rotation state of the motor.

綜上所述,本發明透過偵測馬達之轉動狀態以取得馬達之轉動訊號以及第一電流訊號,並依據轉動訊號、第一電流訊號與控制命令計算以產生多個誤差值,接著藉由計算得出的多個誤差值執行頓轉矩之傅立葉參數預估以得到多個預估參數,並進而得到新的電流控制訊號以及電壓控制訊號以調整馬達之轉動狀態。最後藉由不斷更新頓轉矩之傅立葉參數,進而追蹤並抵銷頓轉矩的效應,使馬達震動與噪音可受到相當程度的抑制。 In summary, the present invention detects the rotation signal of the motor and the first current signal by detecting the rotation state of the motor, and calculates a plurality of error values according to the rotation signal, the first current signal and the control command, and then calculates The obtained plurality of error values perform a Fourier parameter estimation of the torque to obtain a plurality of estimated parameters, and further obtain a new current control signal and a voltage control signal to adjust the rotation state of the motor. Finally, by continuously updating the Fourier parameters of the torque, the effect of the torque is tracked and offset, so that the motor vibration and noise can be suppressed to a considerable extent.

以上之關於本發明內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。 The above description of the present invention and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention.

10‧‧‧馬達頓轉矩補償裝置 10‧‧‧Daton torque compensation device

102‧‧‧訊號偵測模組 102‧‧‧Signal Detection Module

1022‧‧‧訊號偵測單元 1022‧‧‧Signal Detection Unit

1024‧‧‧座標轉換單元 1024‧‧‧ coordinate conversion unit

104‧‧‧轉動狀態控制模組 104‧‧‧Rotary state control module

1042‧‧‧位置控制單元 1042‧‧‧Location Control Unit

1044‧‧‧速度控制單元 1044‧‧‧Speed Control Unit

106‧‧‧電流控制模組 106‧‧‧ Current Control Module

1062‧‧‧電流控制單元 1062‧‧‧ Current Control Unit

1064‧‧‧電流誤差估算單元 1064‧‧‧ Current Error Estimation Unit

108‧‧‧參數估算模組 108‧‧‧Parameter estimation module

110‧‧‧控制訊號轉換模組 110‧‧‧Control signal conversion module

1102‧‧‧座標轉換單元 1102‧‧‧Coordinate conversion unit

1104‧‧‧直流交流訊號轉換單元 1104‧‧‧DC AC signal conversion unit

20‧‧‧馬達 20‧‧‧Motor

第1圖係依據本發明一實施例的馬達頓轉矩補償裝置及馬達的功能方塊圖。 Fig. 1 is a functional block diagram of a motor torque compensation device and a motor according to an embodiment of the present invention.

第2圖係依據本發明另一實施例的馬達頓轉矩補償裝置及馬達的功能方塊圖。 Fig. 2 is a functional block diagram of a motor torque compensation device and a motor according to another embodiment of the present invention.

第3圖為依據本發明一實施例之馬達頓轉矩補償方法的方法流程圖。 3 is a flow chart of a method of a motor torque compensation method according to an embodiment of the present invention.

第4圖為依據本發明另一實施例之馬達頓轉矩補償方法的流程圖。 4 is a flow chart of a motor torque compensation method according to another embodiment of the present invention.

第5圖為本發明一實施例的轉速訊號以及轉速控制訊號之訊號比較圖。 FIG. 5 is a signal comparison diagram of a rotational speed signal and a rotational speed control signal according to an embodiment of the present invention.

第6圖為依據本發明一實施例的估測與量測之頓轉矩的比較圖。 Figure 6 is a graph comparing the estimated and measured torques in accordance with an embodiment of the present invention.

第7圖為依據本發明一實施例的補償前以及補償後之轉矩的比較圖。 Figure 7 is a comparison diagram of torque before and after compensation in accordance with an embodiment of the present invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。 The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.

請參閱第1圖,第1圖為根據本發明一實施例馬達頓轉矩補償裝置及馬達的功能方塊圖。如第1圖所示,馬達頓轉矩補償裝置10包含訊號偵測模組102、轉動狀態控制模組104、電流控制模組106、參數估算模組108以及控制訊號轉換模組110,其中,電流控制模組106耦接參數估算模組108、訊號偵測模組102、轉動狀態控制模組104以及控制訊號轉換模組110。 Please refer to FIG. 1. FIG. 1 is a functional block diagram of a motor torque compensation device and a motor according to an embodiment of the present invention. As shown in FIG. 1 , the motor torque compensation device 10 includes a signal detection module 102 , a rotation state control module 104 , a current control module 106 , a parameter estimation module 108 , and a control signal conversion module 110 . The current control module 106 is coupled to the parameter estimation module 108, the signal detection module 102, the rotation state control module 104, and the control signal conversion module 110.

訊號偵測模組102用以偵測馬達20之轉動狀態以取得馬達20的轉動訊號以及馬達20的第一電流訊號,其中,轉動訊號包含馬達20的轉子的位置訊號以及轉速訊號。轉動狀態控制模組104用以計算第一誤差值,第一誤差值係關聯於轉動訊號。電流控制模組106用以計算第二誤差值以及第三誤差值,第二誤差值以及第三誤差值均關聯於第一電流訊號,其中,馬達20於實際上可以是永磁直流馬達(permanent magnet direct current,PMDC)、永磁交流馬達(permanent magnet alternate current PMAC)、表面式永磁(surface permanent magnet,SPM)馬達、內藏式永磁(interior permanent magnet,IPM)馬達或是其他任何使用磁力來運作之馬達20,本發明並不以此為限。 The signal detecting module 102 is configured to detect the rotation state of the motor 20 to obtain the rotation signal of the motor 20 and the first current signal of the motor 20, wherein the rotation signal includes the position signal of the rotor of the motor 20 and the rotation speed signal. The rotation state control module 104 is configured to calculate a first error value, the first error value being associated with the rotation signal. The current control module 106 is configured to calculate a second error value and a third error value, wherein the second error value and the third error value are all associated with the first current signal, wherein the motor 20 is actually a permanent magnet DC motor (permanent Magnet direct current (PMDC), permanent magnet alternate current (PMAC), surface permanent magnet (SPM) motor, internal permanent magnet (IPM) motor or any other use The motor 20 that is operated by magnetic force is not limited to this invention.

當計算出前述第一誤差值及第二誤差值後,參數估算模組108 用以至少依據第一誤差值、第二誤差值以及轉動訊號執行頓轉矩之傅立葉參數預估以取得多個預估參數。並於計算出多個預估參數後,轉動狀態控制模組104用以至少依據第一誤差值、轉動訊號以及多個預估參數以產生控制命令的電流控制訊號。電流控制模組106用以至少依據電流控制訊號、第二誤差值、第三誤差值、第一電流訊號以及轉動訊號產生控制命令的電壓控制訊號,以調整馬達20之轉動狀態。 After calculating the first error value and the second error value, the parameter estimation module 108 The Fourier parameter estimation is performed according to at least the first error value, the second error value, and the rotation signal to obtain a plurality of estimation parameters. After calculating the plurality of estimated parameters, the rotation state control module 104 is configured to generate a current control signal of the control command according to at least the first error value, the rotation signal, and the plurality of estimation parameters. The current control module 106 is configured to adjust the rotation state of the motor 20 according to at least the current control signal, the second error value, the third error value, the first current signal, and the voltage control signal of the rotation signal generating control command.

請參閱第2圖,第2圖為根據本發明另一實施例馬達頓轉矩補償裝置及馬達的功能方塊圖。如第2圖所示,訊號偵測模組102包含訊號偵測單元1022以及座標轉換單元1024,其中,訊號偵測單元1022耦接座標轉換單元1024。訊號偵測單元1022用以偵測馬達20之轉動狀態以得到馬達的第二電流訊號以及轉動訊號。於實際上,訊號偵測單元1022可以是霍爾感測器(hall sensor)或是任何可以偵測並擷取馬達20的轉動訊號以及馬達20的第二電流訊號之裝置,本發明在此並不以此為限。 Please refer to FIG. 2. FIG. 2 is a functional block diagram of a motor torque compensation device and a motor according to another embodiment of the present invention. As shown in FIG. 2, the signal detecting module 102 includes a signal detecting unit 1022 and a coordinate converting unit 1024. The signal detecting unit 1022 is coupled to the coordinate converting unit 1024. The signal detecting unit 1022 is configured to detect the rotation state of the motor 20 to obtain the second current signal and the rotation signal of the motor. In fact, the signal detecting unit 1022 can be a hall sensor or any device that can detect and capture the rotation signal of the motor 20 and the second current signal of the motor 20, and the present invention is Not limited to this.

前述座標轉換單元1024用以將馬達20的第二電流訊號轉換成第一電流訊號,其中,第一電流訊號包括直軸(direction-axis)電流訊號以及分軸(quadrature-axis)電流訊號。換句話說,當訊號偵測單元1022偵測並擷取馬達20的第二電流訊號後,即輸出馬達20的第二電流訊號至座標轉換單元1024,座標轉換單元1024再依據所擷取馬達20的不同種類的第二電流訊號給與相對應的轉換方程,將馬達20的第二電流訊號轉變為具有直軸電流訊號以及分軸電流訊號的第一電流訊號。於一個實施例中,馬達20的第二電流訊號為三相電流訊號,座標轉換單元1024透過派克轉換(Park's Transformation)將三相電流訊號轉換成直軸電流訊號以及分軸電流訊號,或者,訊號偵測單元1022亦可以直接偵測馬 達20的直軸電流訊號以及分軸電流訊號,本發明在此並不加以限制。 The coordinate conversion unit 1024 is configured to convert the second current signal of the motor 20 into a first current signal, wherein the first current signal comprises a direction-axis current signal and a quadrature-axis current signal. In other words, after the signal detecting unit 1022 detects and captures the second current signal of the motor 20, the second current signal of the motor 20 is outputted to the coordinate conversion unit 1024, and the coordinate conversion unit 1024 is further determined according to the captured motor 20. The different kinds of second current signals are given to the corresponding conversion equations, and the second current signal of the motor 20 is converted into a first current signal having a direct current signal and a split current signal. In one embodiment, the second current signal of the motor 20 is a three-phase current signal, and the coordinate conversion unit 1024 converts the three-phase current signal into a direct-axis current signal and a split-axis current signal through a Park's Transformation, or a signal. The detecting unit 1022 can also directly detect the horse The direct current signal and the split current signal of up to 20 are not limited herein.

前述轉動狀態控制模組104包含位置控制單元1042,位置控制單元1042用以計算第四誤差值,並依據第四誤差值與轉動訊號計算第一誤差值,其中,第四誤差值係關聯於轉動訊號。不僅如此,第四誤差值係依據第一關係式計算得出,第一關係式為: 其中,Z4為第四誤差值,θm為轉動訊號的位置訊號,θm *為控制命令的位置控制訊號。更進一步的說,當使用者欲控制馬達20的轉子的位置時,使用者可透過輸入控制命令中的位置命令,而位置命令經轉變為位置控制訊號後,即輸入至位置控制單元1042。位置控制單元1042則將由訊號偵測模組102所接收到的轉動訊號中的位置訊號與位置控制訊號相減,以得到馬達20此時的轉子位置與使用者所欲控制馬達20之轉子位置的差值,其中,轉動訊號中的位置訊號可以是由訊號偵測單元1022所擷取得到,亦可以將訊號偵測單元1022所擷取的轉速訊號經由積分計算後得到,本發明於此並不加以限制。 The rotation state control module 104 includes a position control unit 1042. The position control unit 1042 is configured to calculate a fourth error value, and calculate a first error value according to the fourth error value and the rotation signal, wherein the fourth error value is associated with the rotation. Signal. Moreover, the fourth error value is calculated according to the first relation, and the first relationship is: Where Z 4 is the fourth error value, θ m is the position signal of the rotation signal, and θ m * is the position control signal of the control command. Furthermore, when the user wants to control the position of the rotor of the motor 20, the user can input the position command in the control command, and the position command is input to the position control unit 1042 after being converted into the position control signal. The position control unit 1042 subtracts the position signal of the rotation signal received by the signal detection module 102 from the position control signal to obtain the rotor position of the motor 20 at this time and the rotor position of the motor 20 that the user desires to control. The difference signal, wherein the position signal in the rotation signal can be obtained by the signal detecting unit 1022, or the speed signal captured by the signal detecting unit 1022 can be obtained by integrating the calculation, and the present invention does not Limit it.

位置控制單元1042於前述計算得出第四誤差值後,第一誤差值則可依據第二關係式計算得出,第二關係式為: 其中,z1為第一誤差值,kθ為位置控制常數,Z4為第四誤差值,wm為轉動訊號的轉速訊號,wm *表示控制命令的轉速控制訊號。換句話說,於計算出馬達20於此時轉子位置與使用者欲控制轉子位置之差值後,即進一步的計算馬達20之轉子此時的轉速與使用者欲控制馬達20之轉子的轉速的差值,並將位置的差值加權後與轉速的差值相加以得到馬達20之轉子的轉動誤差值。位置控制單元 1042於計算出第一誤差值後,即將第一誤差值輸出至參數估算模組108。 After the position control unit 1042 calculates the fourth error value, the first error value may be calculated according to the second relationship, and the second relationship is: Where z 1 is the first error value, k θ is the position control constant, Z 4 is the fourth error value, w m is the rotational speed signal of the rotational signal, and w m * represents the rotational speed control signal of the control command. In other words, after calculating the difference between the rotor position of the motor 20 and the position of the rotor to be controlled by the user, the speed of the rotor of the motor 20 at this time is further calculated and the rotational speed of the rotor of the motor 20 is controlled by the user. The difference is added, and the difference of the positions is weighted and added to the difference of the rotational speeds to obtain the rotational error value of the rotor of the motor 20. After calculating the first error value, the position control unit 1042 outputs the first error value to the parameter estimation module 108.

此外,於使用者輸入控制命令的位置命令以及轉速命令,以轉換成位置控制訊號以及轉速控制訊號的步驟中,使用者可以僅輸入控制命令的位置命令,而轉速控制訊號可透過位置命令轉換成位置控制訊號後,將位置控制訊號經過微分得到。或者,使用者亦可僅輸入控制命令中的轉速命令,而位置控制訊號可透過轉速命令轉換成轉速控制訊號後,將轉速控制訊號經過積分得到,端看使用者需要,本發明在此不加以限制。 In addition, in the step of the user inputting the position command of the control command and the rotation speed command to convert into the position control signal and the rotation speed control signal, the user can input only the position command of the control command, and the rotation speed control signal can be converted into the position command through the position command. After the position control signal, the position control signal is differentiated. Alternatively, the user can input only the rotational speed command in the control command, and the position control signal can be converted into the rotational speed control signal through the rotational speed command, and the rotational speed control signal is integrated, and the present invention does not need to be used here. limit.

接著,電流控制模組106包括電流誤差估算單元1064,電流誤差估算單元1064用以依據分軸電流訊號以及電流控制訊號的分軸電流控制訊號計算得出第二誤差值,且第二誤差值係依據一第三關係式計算,該第三關係式為: 其中,Z2表示第二誤差值,Iq表示分軸電流訊號,Iq *為分軸電流控制訊號。更進一步的說,當訊號偵測單元1022擷取馬達20的第二電流訊號後,即將馬達20的第二電流訊號經座標轉換單元1024轉換為分軸電流訊號以及直軸電流訊號,並將分軸電流訊號與控制命令中的分軸電流控制訊號相減以得出分軸電流訊號與分軸電流控制訊號之差值(第二誤差值),並將此第二誤差值輸出至參數估算模組108。 Next, the current control module 106 includes a current error estimating unit 1064. The current error estimating unit 1064 is configured to calculate a second error value according to the split current signal and the split current control signal of the current control signal, and the second error value is According to a third relational calculation, the third relation is: Wherein, Z 2 represents a second error value, I q represents a split current signal, and I q * is a split current control signal. Further, after the signal detecting unit 1022 captures the second current signal of the motor 20, the second current signal of the motor 20 is converted into a split current signal and a direct current signal by the coordinate converting unit 1024, and will be divided into The axis current signal is subtracted from the split current control signal in the control command to obtain a difference between the split current signal and the split current control signal (second error value), and the second error value is output to the parameter estimation mode. Group 108.

於計算出第一誤差值以及第二誤差值並輸入至參數估算模組108後,參數估算模組108將第一誤差值、第二誤差值以及轉動訊號以加權方式計算,以取得多個預估參數。此些預估參數係透過第四關係式取得,第四關係式為: 其中,為此些預估參數中第一預估參數,為此些預估參數中第二預估參數,為此些預估參數中第三預估參數,λ 1λ 2n 以及λ 3n 皆為正的常數,K T 為馬達頓轉矩常數,J為馬達轉動慣量,B為馬達黏滯磨擦係數,k θ 為位置控制常數,k w 為轉速控制常數,n為正整數,k為馬達定子槽數與轉子極數的最小公倍數。前述第一預估參數、第二預估參數以及第三預估參數即分別為將估測之頓轉矩以傅立葉級數展開,其展開式中的常數項、餘弦波之係數以及正弦波之係數之微分,因傅立葉級數為所屬技術領域具有通常知識者所熟知,故在此不再加以贅述。 After calculating the first error value and the second error value and inputting to the parameter estimation module 108, the parameter estimation module 108 calculates the first error value, the second error value, and the rotation signal in a weighted manner to obtain multiple pre- Estimate the parameters. These estimated parameters are obtained through the fourth relation, and the fourth relation is: among them, The first estimated parameter among the estimated parameters, For the second estimated parameter of the estimated parameters, For the third estimated parameters of the estimated parameters, λ 1 , λ 2 n and λ 3 n are all positive constants, K T is the motor torque constant, J is the motor moment of inertia, and B is the motor viscous friction. The coefficient, k θ is the position control constant, k w is the rotational speed control constant, n is a positive integer, and k is the least common multiple of the number of motor stator slots and the number of rotor poles. The first estimated parameter, the second estimated parameter and the third estimated parameter respectively are the expansion of the estimated torque in a Fourier series, and the constant term in the expanded form. Cosine wave coefficient And the coefficient of the sine wave The differentiation, as the Fourier series is well known to those of ordinary skill in the art, will not be described here.

前述轉動狀態控制模組104更包含速度控制單元1044,速度控制單元1044用以將位置控制單元1042所計算得出之第一誤差值、轉動訊號、控制命令的轉速控制訊號以及此些預估參數分別以加權方式計算,以得出電流控制訊號,並且電流控制訊號係透過第五關係式計算得出,第五關係式為: 其中,為對第一預估參數對時間積分後之數值,即為將頓轉矩依傅立葉級數展開中之常數項,為對第二預估參數對時間積分後之數值,即為將頓轉矩依傅立葉級數展開中之餘弦波之係數,為對第三預估參數積分後之數值,即為將頓轉矩訊號依傅立葉級數展開中之正弦波之係數,為對該控制訊號的微分 後之數值,N為正整數且N大於2。 The rotation state control module 104 further includes a speed control unit 1044, and the speed control unit 1044 is configured to use the first error value calculated by the position control unit 1042, the rotation signal, the rotation speed control signal of the control command, and the estimation parameters. Calculated in a weighted manner to obtain a current control signal, and the current control signal is calculated through a fifth relationship, and the fifth relationship is: among them, In order to integrate the time of the first estimated parameter with time, that is, the constant value of the expansion torque according to the Fourier series expansion, The value obtained by integrating the second estimated parameter with time, that is, the coefficient of the cosine wave in the expansion of the torque according to the Fourier series, The value obtained by integrating the third estimated parameter is the coefficient of the sine wave in the expansion of the torque signal according to the Fourier series. For the value after the differentiation of the control signal, N is a positive integer and N is greater than 2.

前述電流控制模組106更包含電流控制單元1062,電流控制單元1062用以將第二誤差值、第三誤差值、電流控制訊號、分軸電流訊號以及轉動訊號以加權方式計算,以得到電壓控制訊號。電壓控制訊號係透過第六關係式計算得到,第六關係式為: 其中,Φ PM 為馬達轉子磁通量,Rs為馬達定子電阻,Ls為馬達定子自感,wr為馬達轉子電器轉速,kd為直軸電流控制常數,kq為分軸電流控制常數,為電壓控制訊號中直軸電壓控制訊號,為電壓控制訊號中分軸電壓控制訊號。前述第三誤差值係透由電流誤差估算單元1064透過第七關係式計算得出,第七關係式為: 其中,I d 為直軸電流訊號,為控制命令的直軸電流控制訊號。 The current control module 106 further includes a current control unit 1062, and the current control unit 1062 is configured to calculate the second error value, the third error value, the current control signal, the split current signal, and the rotation signal in a weighted manner to obtain voltage control. Signal. The voltage control signal is calculated through the sixth relation, and the sixth relation is: Where Φ PM is the motor rotor flux, R s is the motor stator resistance, L s is the motor stator self-inductance, w r is the motor rotor electrical speed, k d is the direct-axis current control constant, and k q is the split-axis current control constant. For the direct axis voltage control signal in the voltage control signal, It is the split voltage control signal in the voltage control signal. The third error value is calculated by the current error estimating unit 1064 through the seventh relation, and the seventh relation is: Where I d is a direct current signal, The direct current control signal for the control command.

前述控制訊號轉換模組110具有座標轉換單元1102以及直流交流訊號轉換單元1104,座標轉換單元1102用以將所產生的電壓控制訊號透過座標轉換,轉換成馬達20的輸入電壓訊號,直流交流訊號轉換單元1104用以將馬達20的輸入電壓訊號經過訊號轉換為該馬達20的電壓驅動訊號,以調整馬 達20之轉動狀態。於實際上,直流交流訊號轉換單元1104可以是直流交流脈衝寬度調變反向器(direct current-alternate current pulse width modulation inverter,DC-AC PWM Inverter)或是其他可以將輸入電壓訊號轉換成驅動馬達20的電壓驅動訊號,本發明於此並不加以限制。除此之外,本發明之座標轉換單元1102與座標轉換單元1024於另一實施例中可以為同一個座標轉換單元,用以將訊號偵測單元1022所偵測到的馬達20的第二電流訊號轉換成直軸電流訊號以及分軸電流訊號,以及將電流控制單元1062所產生的電壓控制訊號轉換成馬達20的輸入電壓訊號,本發明並不以此為限。 The control signal conversion module 110 has a coordinate conversion unit 1102 and a DC signal conversion unit 1104. The coordinate conversion unit 1102 is configured to convert the generated voltage control signal into a input voltage signal of the motor 20 through a coordinate conversion, and convert the DC signal into a DC signal. The unit 1104 is configured to convert the input voltage signal of the motor 20 into a voltage driving signal of the motor 20 to adjust the horse. Up to 20 rotation state. In practice, the DC signal conversion unit 1104 can be a direct current-alternate current pulse width modulation inverter (DC-AC PWM Inverter) or other can convert the input voltage signal into a drive motor. The voltage driving signal of 20 is not limited herein. In addition, the coordinate conversion unit 1102 and the coordinate conversion unit 1024 of the present invention may be the same coordinate conversion unit for using the second current of the motor 20 detected by the signal detection unit 1022. The signal is converted into a direct current signal and a split current signal, and the voltage control signal generated by the current control unit 1062 is converted into an input voltage signal of the motor 20. The invention is not limited thereto.

本發明於此以一個例子說明,請參閱第2圖,當使用者欲控制馬達20之轉子的位置以及轉子的轉速時,使用者輸入控制命令中的位置命令以及轉速命令,而位置命令以及轉速命令經計算機裝置(未繪於圖示)轉換為位置控制訊號以及轉速控制訊號後,輸入至位置控制單元1042中。當訊號偵測單元1022偵測得到馬達20之轉動訊號以及第二電流訊號(如三相電流訊號),並經由座標轉換單元1024將三相電流訊號轉換為直軸電流訊號以及分軸電流訊號後,即將轉動訊號傳輸至位置控制單元1042以計算馬達20此時轉子之位置與位置控制訊號以產生第四誤差值,並將第四誤差值以及此時轉子之轉速以及轉速控制訊號之差距以加權方式計算,以產生第一誤差值。 The present invention is described by way of example. Referring to FIG. 2, when the user wants to control the position of the rotor of the motor 20 and the rotational speed of the rotor, the user inputs a position command and a rotational speed command in the control command, and the position command and the rotational speed. The command is converted into a position control signal and a speed control signal by a computer device (not shown) and then input to the position control unit 1042. When the signal detecting unit 1022 detects the rotation signal of the motor 20 and the second current signal (such as the three-phase current signal), and converts the three-phase current signal into the direct-axis current signal and the split-axis current signal via the coordinate conversion unit 1024. The rotation signal is transmitted to the position control unit 1042 to calculate the position and position control signal of the motor 20 at this time to generate a fourth error value, and the fourth error value and the difference between the rotation speed of the rotor and the rotation speed control signal are weighted. The method is calculated to generate a first error value.

接著,前述由座標轉換單元1024將三相電流訊號轉換為直軸電流訊號以及分軸電流訊號後,即將直軸電流訊號以及分軸電流訊號傳輸至電流誤差估算單元1064,計算直軸電流訊號與直軸電流控制訊號的差距以產生第三誤差,以及計算分軸電流訊號與分軸電流控制訊號的差距以產生第二誤差。當計算出前述第一誤差值以及第二誤差值後,位置控制單元1042以及電流誤差估 算單元1064分別將第一誤差值以及第二誤差值輸出至參數估算模組108,當參數估算模組108接收到第一誤差值、第二誤差值、轉動訊號以及經座標轉換單元1024轉換得出的第一電流訊號後,參數估算模組108執行頓轉矩之傅立葉參數預估以取得多個預估參數,並將此些預估參數傳送至速度控制單元1044以及電流控制單元1062。 Then, after the coordinate conversion unit 1024 converts the three-phase current signal into the direct-axis current signal and the split-axis current signal, the direct-axis current signal and the split-axis current signal are transmitted to the current error estimating unit 1064 to calculate the direct-axis current signal and The straight-axis current controls the difference of the signals to generate a third error, and calculates a difference between the split-axis current signal and the split-axis current control signal to generate a second error. After calculating the aforementioned first error value and the second error value, the position control unit 1042 and the current error estimate The calculating unit 1064 outputs the first error value and the second error value to the parameter estimating module 108, respectively. When the parameter estimating module 108 receives the first error value, the second error value, the rotation signal, and the coordinate conversion unit 1024, After the first current signal is output, the parameter estimation module 108 performs a Fourier parameter estimation of the torque to obtain a plurality of estimated parameters, and transmits the estimated parameters to the speed control unit 1044 and the current control unit 1062.

速度控制單元1044於接收由參數估算模組108所傳輸的多個預估參數、位置控制單元1042所傳輸的第一誤差值以及轉動訊號後,即透過第五關係式將電流控制訊號計算得出,並將電流控制訊號傳送至電流控制單元1062中。當電流控制單元接收到電流控制訊號後,依據從參數估算模組所輸出的多個預估參數、電流誤差模組所計算得出之第二誤差值以及第三誤差值、轉動訊號以及由座標轉換單元1024轉換得出的直軸電流訊號、分軸電流訊號經由第六關係式計算得出電壓控制訊號,其中,電壓控制訊號包含直軸電壓控制訊號以及分軸電壓控制訊號。 After receiving the plurality of estimation parameters transmitted by the parameter estimation module 108, the first error value transmitted by the position control unit 1042, and the rotation signal, the speed control unit 1044 calculates the current control signal through the fifth relationship. And transmitting the current control signal to the current control unit 1062. After the current control unit receives the current control signal, the second error value and the third error value, the rotation signal, and the coordinate are calculated according to the plurality of estimation parameters and the current error module outputted from the parameter estimation module. The direct axis current signal and the split current signal converted by the converting unit 1024 are calculated by the sixth relation to obtain a voltage control signal, wherein the voltage control signal includes a direct axis voltage control signal and a split voltage control signal.

接著,於計算得出直軸電壓控制訊號以及分軸電壓控制訊號後,電流控制單元1062將之輸出至座標轉換單元1102以轉換成輸入電壓訊號(例如三相電壓訊號),並經由直流交流訊號轉換單元1104將三相電壓訊號轉變為電壓驅動訊號來調整馬達20之轉子的轉速以及轉子的位置,並藉由不斷更新電流控制訊號以及電壓控制訊號以追蹤並減少馬達20之頓轉矩。 Then, after the straight-axis voltage control signal and the split-axis voltage control signal are calculated, the current control unit 1062 outputs the signal to the coordinate conversion unit 1102 to be converted into an input voltage signal (for example, a three-phase voltage signal), and is transmitted via a DC AC signal. The converting unit 1104 converts the three-phase voltage signal into a voltage driving signal to adjust the rotational speed of the rotor of the motor 20 and the position of the rotor, and tracks and reduces the torque of the motor 20 by continuously updating the current control signal and the voltage control signal.

為了使所屬技術領域具有通常知識者能更了解本發明所述之馬達頓轉矩補償裝置,以下搭配本發明之馬達頓轉矩補償方法做進一步的說明。接著,請一併參閱第1圖以及第3圖,其中第3圖為依據本發明一實施例之馬達頓轉矩補償方法的方法流程圖。如第3圖所示,於步驟S300中,訊號偵測模 組102偵測馬達20之轉動狀態。於步驟S302中,訊號偵測模組102取得馬達20的轉動訊號以及馬達20的第一電流訊號。於步驟S304中,轉動狀態控制模組104計算第一誤差值。於步驟S306中,電流控制模組106計算第二誤差值。於步驟S308中,參數估算模組108執行頓轉矩之傅立葉參數預估以取得多個預估參數。於步驟S310中,轉動狀態控制模組104產生控制命令的電流控制訊號命令。於步驟S312中,電流控制模組106產生控制命令的電壓控制訊號。於步驟S314中,電流控制模組106輸出電壓控制訊號以調整馬達20之轉動狀態。 In order to make those skilled in the art more aware of the motor torque compensation device of the present invention, the following description will be further provided with the motor torque compensation method of the present invention. Next, please refer to FIG. 1 and FIG. 3 together, wherein FIG. 3 is a flow chart of a method for the motor torque compensation method according to an embodiment of the present invention. As shown in FIG. 3, in step S300, the signal detection mode Group 102 detects the rotational state of motor 20. In step S302, the signal detecting module 102 acquires the rotation signal of the motor 20 and the first current signal of the motor 20. In step S304, the rotation state control module 104 calculates a first error value. In step S306, the current control module 106 calculates a second error value. In step S308, the parameter estimation module 108 performs a Fourier parameter estimation of the torque to obtain a plurality of estimation parameters. In step S310, the rotation state control module 104 generates a current control signal command of the control command. In step S312, the current control module 106 generates a voltage control signal for the control command. In step S314, the current control module 106 outputs a voltage control signal to adjust the rotation state of the motor 20.

接著,請一併參閱第2圖以及第4圖,其中第4圖為依據本發明另一實施例之馬達頓轉矩補償方法的流程圖,於步驟S400中,訊號偵測單元1022偵測馬達20之轉動狀態。於步驟S402中,訊號偵測單元1022取得馬達20的轉動訊號以及馬達20的第一電流訊號。於步驟S404中,座標轉換單元1024將馬達20的第一電流訊號透過座標轉換,轉換成直軸電流訊號以及分軸電流訊號。於步驟S406中,位置控制單元1042依據第一關係式計算第四誤差值。 Next, please refer to FIG. 2 and FIG. 4 together. FIG. 4 is a flowchart of a motor torque compensation method according to another embodiment of the present invention. In step S400, the signal detecting unit 1022 detects the motor. 20 rotation state. In step S402, the signal detecting unit 1022 obtains the rotation signal of the motor 20 and the first current signal of the motor 20. In step S404, the coordinate conversion unit 1024 converts the first current signal of the motor 20 into a straight-axis current signal and a split-axis current signal through coordinate conversion. In step S406, the position control unit 1042 calculates a fourth error value according to the first relationship.

於步驟S408中,位置控制單元104依據第四誤差值以及第二關係式計算第一誤差值。於步驟S410中,電流誤差估算單元1064依據第三關係式計算第二誤差值,以及依據第七關係式計算第三誤差值。於步驟S412中,參數估算模組108將第一誤差值、第二誤差值以及轉動訊號透過第四關係式以加權方式計算以取得多個預估參數。於步驟S414中,速度控制單元1044將第一誤差值、轉動訊號、控制命令的速度控制訊號以及多個預估參數分別以加權方式計算以取得控制命令的電流控制訊號。於步驟S416中,電流控制單元1062將第二誤差值、第三誤差值、電流控制訊號、分軸電流訊號以及轉動訊號以加權方式計算以取得控制命令的電壓控制訊號。於步驟S418中,座標轉換單元1102 將電壓控制訊號透過座標轉換,轉換成馬達20的輸入電壓訊號。於步驟S420中,該直流交流訊號轉換單元1104將馬達20的輸入電壓訊號經過訊號轉換為該馬達20的電壓驅動訊號以調整馬達20之轉動狀態。 In step S408, the position control unit 104 calculates the first error value according to the fourth error value and the second relation. In step S410, the current error estimating unit 1064 calculates a second error value according to the third relation, and calculates a third error value according to the seventh relation. In step S412, the parameter estimation module 108 calculates the first error value, the second error value, and the rotation signal in a weighted manner through the fourth relation to obtain a plurality of estimation parameters. In step S414, the speed control unit 1044 calculates the first error value, the rotation signal, the speed control signal of the control command, and the plurality of estimation parameters in a weighted manner to obtain the current control signal of the control command. In step S416, the current control unit 1062 calculates the second error value, the third error value, the current control signal, the split current signal, and the rotation signal in a weighted manner to obtain the voltage control signal of the control command. In step S418, the coordinate conversion unit 1102 The voltage control signal is converted into a input voltage signal of the motor 20 through coordinate conversion. In step S420, the DC signal conversion unit 1104 converts the input voltage signal of the motor 20 into a voltage driving signal of the motor 20 to adjust the rotation state of the motor 20.

接著,請一併參閱第1圖及第5圖,第5圖為本發明一實施例的轉速訊號以及轉速控制訊號之訊號比較圖。由第5圖所示,於馬達頓轉矩補償裝置10在開始運作前1秒時,馬達20的轉速訊號的數值尚與轉速控制訊號的數值係有差距。但隨運作時間增長,可以於第5圖觀察出,因馬達頓轉矩補償裝置10不斷的藉由計算轉速訊號與轉速控制訊號的差值,並將差值經由參數估算模組計算得出多個頓轉矩的預估參數,以及將前述數值輸入至電流控制模組1062以計算新的電壓控制訊號,以調整馬達20之轉動狀態,馬達20的轉速訊號的數值與轉速控制訊號的數值的差距漸漸減少。於運作時間經過2秒後,馬達20的轉速訊號的數值與轉速控制訊號的數值即大致相等。 Next, please refer to FIG. 1 and FIG. 5 together. FIG. 5 is a signal comparison diagram of the rotational speed signal and the rotational speed control signal according to an embodiment of the present invention. As shown in Fig. 5, the value of the rotational speed signal of the motor 20 is still different from the numerical value of the rotational speed control signal one second before the start of the motor torque compensation device 10. However, as the operation time increases, it can be observed in FIG. 5, because the motor torque compensation device 10 continuously calculates the difference between the speed signal and the speed control signal, and calculates the difference through the parameter estimation module. Estimating parameters of the individual torque, and inputting the foregoing values to the current control module 1062 to calculate a new voltage control signal to adjust the rotation state of the motor 20, the value of the rotational speed signal of the motor 20 and the value of the rotational speed control signal The gap is gradually decreasing. After 2 seconds of the operation time, the value of the rotational speed signal of the motor 20 is approximately equal to the value of the rotational speed control signal.

請一併參閱第1圖以及第6圖,第6圖為依據本發明一實施例的估測與量測之頓轉矩的比較圖。由第6圖所示,其由參數估測模組108所計算得出的頓轉矩之波形,與實際量測出之頓轉矩之波形,不管在振幅大小、相位變化以及頻率上均接近。請參閱第7圖,第7圖為依據本發明一實施例的補償前以及補償後之轉矩的比較圖。如第7圖所示,於補償前之轉矩數值,因尚未消除頓轉矩之影響,其變化幅度大約0.3左右。當依據本發明之馬達頓轉矩補償方法不斷追蹤頓轉矩之狀態並消除頓轉矩後,其轉矩之變化幅度即趨近於0,可以看見本發明之馬達頓轉矩補償方法法能有效消除頓轉矩,並使轉矩維持在一個定值。 Please refer to FIG. 1 and FIG. 6 together. FIG. 6 is a comparison diagram of estimated and measured torques according to an embodiment of the present invention. As shown in Fig. 6, the waveform of the torque calculated by the parameter estimation module 108 and the waveform of the measured torque of the actual amount are close to the magnitude, phase change and frequency. . Please refer to FIG. 7. FIG. 7 is a comparison diagram of torque before and after compensation according to an embodiment of the present invention. As shown in Fig. 7, the torque value before compensation is about 0.3 due to the effect of not canceling the torque. When the motor torque compensation method according to the present invention continuously tracks the state of the torque and eliminates the torque, the magnitude of the torque changes to zero, and the motor torque compensation method of the present invention can be seen. Effectively eliminates torque and maintains torque at a constant value.

綜上所述,本發明透過偵測馬達之轉動狀態以取得馬達之轉動 訊號以及第一電流訊號,將轉動訊號、第一電流訊號與控制命令所轉換之位置控制訊號、轉速控制訊號以及電流控制訊號計算以產生多個誤差值、透過多個誤差值執行頓轉矩之傅立葉參數預估以得到多個預估參數。並依據多個預估參數、多個誤差值、所取得的轉動訊號以及第一電流訊號,以得到新的電流控制訊號以及電壓控制訊號,最後再將電壓控制訊號轉換成電壓驅動訊號以調整馬達之轉動狀態。並藉由不斷更新頓轉矩之傅立葉參數,進而追蹤並抵銷頓轉矩的效應,使馬達震動與噪音可受到相當程度的抑制。 In summary, the present invention detects the rotation of the motor by detecting the rotation state of the motor. The signal and the first current signal calculate the position control signal, the speed control signal and the current control signal converted by the rotation signal, the first current signal and the control command to generate a plurality of error values, and execute the torque through the plurality of error values Fourier parameter estimation to obtain multiple estimated parameters. And according to a plurality of estimated parameters, a plurality of error values, the obtained rotation signal and the first current signal, to obtain a new current control signal and a voltage control signal, and finally converting the voltage control signal into a voltage driving signal to adjust the motor The state of rotation. And by continuously updating the Fourier parameters of the torque, the effect of the torque is tracked and offset, so that the motor vibration and noise can be suppressed to a considerable extent.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

10‧‧‧馬達頓轉矩補償裝置 10‧‧‧Daton torque compensation device

102‧‧‧訊號偵測模組 102‧‧‧Signal Detection Module

1022‧‧‧訊號偵測單元 1022‧‧‧Signal Detection Unit

1024‧‧‧座標轉換單元 1024‧‧‧ coordinate conversion unit

104‧‧‧轉動狀態控制模組 104‧‧‧Rotary state control module

1042‧‧‧位置控制單元 1042‧‧‧Location Control Unit

1044‧‧‧速度控制單元 1044‧‧‧Speed Control Unit

106‧‧‧電流控制模組 106‧‧‧ Current Control Module

1062‧‧‧電流控制單元 1062‧‧‧ Current Control Unit

1064‧‧‧電流誤差估算單元 1064‧‧‧ Current Error Estimation Unit

108‧‧‧參數估算模組 108‧‧‧Parameter estimation module

110‧‧‧控制訊號轉換模組 110‧‧‧Control signal conversion module

1102‧‧‧座標轉換單元 1102‧‧‧Coordinate conversion unit

1104‧‧‧直流交流訊號轉換單元 1104‧‧‧DC AC signal conversion unit

20‧‧‧馬達 20‧‧‧Motor

Claims (30)

一種馬達頓轉矩補償方法,其包含下列步驟:偵測一馬達之轉動狀態,藉以取得該馬達的一轉動訊號以及一第一電流訊號;計算一第一誤差值以及一第二誤差值,該第一誤差值係關聯於該轉動訊號,該第二誤差值係關聯於該第一電流訊號;至少依據該第一誤差值、該第二誤差值以及該轉動訊號執行頓轉矩之傅立葉參數預估,藉以取得多個預估參數;至少依據該第一誤差值、該轉動訊號以及該些預估參數,藉以產生一控制命令的一電流控制訊號;以及至少依據該第二誤差值、一第三誤差值、該電流控制訊號、該第一電流訊號以及該轉動訊號產生該控制命令的一電壓控制訊號,以調整該馬達之轉動狀態,其中,該第三誤差值係關聯於該第一電流訊號;其中,該些預估參數包括第一預估參數、第二預估參數以及第三預估參數,該傅立葉參數預估為將估測之該頓轉矩以傅立葉級數展開的展開式,且該第一預估參數、該第二預估參數以及該第三預估參數分別為該展開式中的常數項、餘弦波之係數以及正弦波之係數之微分。 A motor torque compensation method includes the steps of: detecting a rotation state of a motor, thereby obtaining a rotation signal of the motor and a first current signal; calculating a first error value and a second error value, The first error value is associated with the rotation signal, and the second error value is associated with the first current signal; and the Fourier parameter pre-determination is performed according to at least the first error value, the second error value, and the rotation signal Estimating, by which a plurality of estimation parameters are obtained; at least a current control signal for generating a control command based on the first error value, the rotation signal, and the estimation parameters; and at least the second error value, The third error value, the current control signal, the first current signal, and the rotation signal generate a voltage control signal of the control command to adjust a rotation state of the motor, wherein the third error value is associated with the first current a signal; wherein the estimated parameters include a first estimated parameter, a second estimated parameter, and a third estimated parameter, and the Fourier parameter is estimated to be estimated The expansion torque is expanded by a Fourier series, and the first estimation parameter, the second estimation parameter, and the third estimation parameter are constant terms in the expansion, coefficients of the cosine wave, and sine The differential of the coefficient of the wave. 如請求項1所述之馬達頓轉矩補償方法,其中,於偵測該馬達之轉動狀態以取得該馬達的該轉動訊號以及該馬達的該第一電流訊號的步驟中,更包含有:偵測該馬達之轉動狀態以得到該馬達的第二電流訊號以及該轉動訊號;以及 將該馬達的第二電流訊號透過座標轉換,以轉換成該第一電流訊號,其中該第一電流訊號包括一直軸電流訊號以及一分軸電流訊號。 The motor torque compensation method of claim 1, wherein the step of detecting the rotation state of the motor to obtain the rotation signal of the motor and the first current signal of the motor further comprises: detecting Measuring a rotation state of the motor to obtain a second current signal of the motor and the rotation signal; Transducing the second current signal of the motor to the first current signal through a coordinate, wherein the first current signal comprises a constant current signal and a split current signal. 如請求項2所述之馬達頓轉矩補償方法,其中,於計算該第一誤差值以及該第二誤差值,該第一誤差值係關聯於該轉動訊號,該第二誤差值係關聯於該第一電流訊號的步驟中,更包含有:計算一第四誤差值,並依據該第四誤差值與該轉動訊號計算該第一誤差值,其中該第四誤差值係關聯於該轉動訊號。 The motor torque compensation method according to claim 2, wherein the first error value and the second error value are calculated, the first error value is associated with the rotation signal, and the second error value is associated with The step of the first current signal further includes: calculating a fourth error value, and calculating the first error value according to the fourth error value, wherein the fourth error value is associated with the rotation signal . 如請求項3所述之馬達頓轉矩補償方法,其中,該第四誤差值係依據一第一關係式計算得出,該第一關係式為: 其中,Z4為該第四誤差值,θm為該轉動訊號的位置訊號,θm *為該控制命令的位置控制訊號。 The motor torque compensation method according to claim 3, wherein the fourth error value is calculated according to a first relationship, wherein the first relationship is: Wherein Z 4 is the fourth error value, θ m is the position signal of the rotation signal, and θ m * is the position control signal of the control command. 如請求項4所述之馬達頓轉矩補償方法,其中,該第一誤差值係依據一第二關係式計算得出,該第二關係式為: 其中,Z1為該第一誤差值,kθ為位置控制常數,Z4為該第四誤差值,wm為該轉動訊號的轉速訊號,wm *表示該控制命令的轉速控制訊號。 The motor torque compensation method according to claim 4, wherein the first error value is calculated according to a second relationship, wherein the second relationship is: Wherein Z 1 is the first error value, k θ is a position control constant, Z 4 is the fourth error value, w m is a rotation speed signal of the rotation signal, and w m * represents a rotation speed control signal of the control command. 如請求項2所述之馬達頓轉矩補償方法,其中,於計算該第一誤差值以及該第二誤差值,該第一誤差值係關聯於該轉動訊號,該第二誤差值係關聯於該第一電流訊號的步驟中,該第二誤差值係依據該分軸電流訊號以及該電流控制訊號的一分軸電流控制訊號計算得出。 The motor torque compensation method according to claim 2, wherein the first error value and the second error value are calculated, the first error value is associated with the rotation signal, and the second error value is associated with In the step of the first current signal, the second error value is calculated according to the split current signal and a split current control signal of the current control signal. 如請求項6所述之馬達頓轉矩補償方法,其中,該第二誤差值係依據一第三 關係式計算,該第三關係式為: 其中,Z2表示該第二誤差值,Iq表示該分軸電流訊號,Iq *為該分軸電流控制訊號。 The motor torque compensation method according to claim 6, wherein the second error value is calculated according to a third relation, wherein the third relationship is: Wherein Z 2 represents the second error value, I q represents the split current signal, and I q * is the split current control signal. 如請求項2所述之馬達頓轉矩補償方法,其中,於至少依據該第一誤差值、該第二誤差值以及該轉動訊號執行頓轉矩之傅立葉參數預估以取得多個預估參數的步驟中,更包含有:將該第一誤差值、該第二誤差值以及該轉動訊號以加權方式計算,以取得該些預估參數。 The motor torque compensation method according to claim 2, wherein the Fourier parameter estimation is performed based on the first error value, the second error value, and the rotation signal to obtain a plurality of estimation parameters. The step further includes: calculating the first error value, the second error value, and the rotation signal in a weighted manner to obtain the estimation parameters. 如請求項8所述之馬達頓轉矩補償方法,其中,該些預估參數係透過一第四關係式取得,該第四關係式為: 其中,為該些預估參數中該第一預估參數,為該些預估參數中該第二預估參數,為該些預估參數中該第三預估參數,λ 1λ 2n 以及λ 3n 皆為正的常數,K T 為馬達頓轉矩常數,J為馬達轉動慣量,B為馬達黏滯磨擦係數,k θ 為位置控制常數,k w 為轉速控制常數,n為正整數,k為馬達定子槽數與轉子極數的最小公倍數。 The motor torque compensation method according to claim 8, wherein the estimated parameters are obtained through a fourth relationship, wherein the fourth relationship is: among them, For the first estimated parameter among the estimated parameters, For the second estimated parameter of the estimated parameters, For the third estimated parameter among the estimated parameters, λ 1 , λ 2 n and λ 3 n are all positive constants, K T is the motor torque constant, J is the motor moment of inertia, and B is the motor viscosity. The friction coefficient, k θ is the position control constant, k w is the rotation speed control constant, n is a positive integer, and k is the least common multiple of the number of stator slots of the motor and the number of poles of the rotor. 如請求項9所述之馬達頓轉矩補償方法,其中,於至少依據該第一誤差值、 該轉動訊號以及該些預估參數以產生該控制命令的該電流控制訊號的步驟中,更包含有:將該第一誤差值、該轉動訊號、該控制命令的轉速控制訊號以及該些預估參數分別以加權方式計算,以得出該電流控制訊號。 The motor torque compensation method according to claim 9, wherein at least the first error value is used, The step of rotating the signal and the estimated parameters to generate the current control signal of the control command further includes: the first error value, the rotation signal, the rotation speed control signal of the control command, and the predictions The parameters are calculated in a weighted manner to derive the current control signal. 如請求項10所述之馬達頓轉矩補償方法,其中,該電流控制訊號係透過一第五關係式計算得出,該第五關係式為: 其中,為對該第一預估參數對時間積分後之數值,為對該第二預估參數對時間積分後之數值,為對該第三預估參數積分後之數值,為對該控制訊號的微分後之數值,N為正整數且N大於2。 The motor torque compensation method according to claim 10, wherein the current control signal is calculated through a fifth relation, wherein the fifth relationship is: among them, For the value of the first estimated parameter after the time is integrated, For the value of the second estimated parameter after the time is integrated, For the value of the third estimated parameter, For the value after the differentiation of the control signal, N is a positive integer and N is greater than 2. 如請求項11所述之馬達頓轉矩補償方法,其中,於至少依據該第二誤差值、該第三誤差值、該電流控制訊號、該第一電流訊號以及該轉動訊號產生該電壓控制訊號,以調整該馬達之轉動狀態,其中該第三誤差值係關聯於該第一電流訊號的步驟中,更包含有:將該第二誤差值、該第三誤差值、該電流控制訊號、該分軸電流訊號以及該轉動訊號以加權方式計算,以得到該電壓控制訊號。 The motor torque compensation method of claim 11, wherein the voltage control signal is generated according to at least the second error value, the third error value, the current control signal, the first current signal, and the rotation signal. The step of adjusting the rotation state of the motor, wherein the third error value is associated with the first current signal, further comprising: the second error value, the third error value, the current control signal, the The split current signal and the rotation signal are calculated in a weighted manner to obtain the voltage control signal. 如請求項12所述之馬達頓轉矩補償方法,其中,該電壓控制訊號係透過一第六關係式計算得到,該第六關係式為: 其中,Φ PM 為馬達轉子磁通量,Rs為馬達定子電阻,Ls為馬達定子自感,wr為馬達轉子電器轉速,kd為直軸電流控制常數,kq為分軸電流控制常數。 The motor torque compensation method according to claim 12, wherein the voltage control signal is calculated through a sixth relation, wherein the sixth relationship is: Where Φ PM is the motor rotor flux, R s is the motor stator resistance, L s is the motor stator self-inductance, w r is the motor rotor electrical speed, k d is the direct-axis current control constant, and k q is the split-axis current control constant. 如請求項13所述之馬達頓轉矩補償方法,其中,該第三誤差值係透過一第七關係式計算得出,該第七關係式為: 其中,I d 為該直軸電流訊號,為該控制命令的直軸電流控制訊號。 The motor torque compensation method according to claim 13, wherein the third error value is calculated through a seventh relation, wherein the seventh relationship is: Where I d is the direct current signal, The direct current control signal for this control command. 如請求項1所述之馬達頓轉矩補償方法,其中,於至少依據該第二誤差值、該第三誤差值、該電流控制訊號以及該轉動訊號產生該電壓控制訊號,以調整該馬達之轉動狀態,其中該第三誤差值係關聯於該第一電流訊號的步驟中,更包含有;將所產生的該電壓控制訊號透過座標轉換,轉換成該馬達的輸入電壓訊號;以及將該馬達的輸入電壓訊號經過訊號轉換為該馬達的電壓驅動訊號,以調整該馬達之轉動狀態。 The motor torque compensation method of claim 1, wherein the voltage control signal is generated according to at least the second error value, the third error value, the current control signal, and the rotation signal to adjust the motor a state of rotation, wherein the third error value is associated with the first current signal, further comprising: converting the generated voltage control signal to a input voltage signal of the motor through coordinate conversion; and the motor The input voltage signal is converted into a voltage driving signal of the motor by a signal to adjust the rotation state of the motor. 一種馬達頓轉矩補償裝置,其包含有:一訊號偵測模組,用以偵測一馬達之轉動狀態以取得該馬達的一轉動訊號以及該馬達的一第一電流訊號;一轉動狀態控制模組,耦接該訊號偵測模組,該轉動狀態控制模組用 以計算一第一誤差值,該第一誤差值係關聯於該轉動訊號;一電流控制模組,耦接該訊號偵測模組以及該轉動狀態控制模組,該電流控制模組用以計算一第二誤差值以及一第三誤差值,該第二誤差值以及該第三誤差值均關聯於該第一電流訊號;以及一參數估算模組,耦接該訊號偵測模組、該轉動狀態控制模組以及該電流控制模組,該參數估算模組用以至少依據該第一誤差值、該第二誤差值以及該轉動訊號執行頓轉矩之傅立葉參數預估以取得多個預估參數,該轉動狀態控制模組用以至少依據該第一誤差值、該轉動訊號以及該些預估參數以產生一控制命令的一電流控制訊號,該電流控制模組用以至少依據該第二誤差值、該第三誤差值、該電流控制訊號、該第一電流訊號以及該轉動訊號產生該控制命令的一電壓控制訊號,以調整該馬達之轉動狀態;其中,該些預估參數包括第一預估參數、第二預估參數以及第三預估參數,該傅立葉參數預估為將估測之該頓轉矩以傅立葉級數展開的展開式,且該第一預估參數、該第二預估參數以及該第三預估參數分別為該展開式中的常數項、餘弦波之係數以及正弦波之係數之微分。 A motor torque compensation device includes: a signal detection module for detecting a rotation state of a motor to obtain a rotation signal of the motor and a first current signal of the motor; and a rotation state control The module is coupled to the signal detecting module, and the rotating state control module is used Calculating a first error value associated with the rotation signal; a current control module coupled to the signal detection module and the rotation state control module, wherein the current control module is configured to calculate a second error value and a third error value, the second error value and the third error value are associated with the first current signal; and a parameter estimation module coupled to the signal detection module, the rotation a state control module and the current control module, the parameter estimation module is configured to obtain a plurality of predictions according to at least the first error value, the second error value, and the Fourier parameter estimation of the rotation signal a parameter, the rotation state control module is configured to generate a current control signal according to the first error value, the rotation signal, and the estimation parameters to generate a control command, and the current control module is configured to use at least the second The error value, the third error value, the current control signal, the first current signal, and the rotation signal generate a voltage control signal of the control command to adjust a rotation state of the motor; The estimated parameters include a first estimated parameter, a second estimated parameter, and a third estimated parameter, where the Fourier parameter is estimated to be an expanded version of the estimated torque in a Fourier series, and the An estimated parameter, the second estimated parameter, and the third estimated parameter are respectively a constant term in the expansion, a coefficient of a cosine wave, and a differential of coefficients of the sine wave. 如請求項16所述之馬達頓轉矩補償裝置,其中,該訊號偵測模組更包含有:一訊號偵測單元,用以偵測該馬達之轉動狀態以得到該馬達的第二電流訊號以及該轉動訊號;以及一座標轉換單元,用以將該馬達的第二電流訊號轉換成該第一電流訊號,其中,該第一電流訊號包括一直軸電流訊號以及一分軸電流訊號。 The motor torque compensation device of claim 16, wherein the signal detection module further comprises: a signal detecting unit for detecting a rotation state of the motor to obtain a second current signal of the motor And the rotating signal; and a standard conversion unit for converting the second current signal of the motor into the first current signal, wherein the first current signal comprises a linear current signal and a split current signal. 如請求項17所述之馬達頓轉矩補償裝置,其中,該轉動狀態控制模組更包含有: 一位置控制單元,用以計算一第四誤差值,並依據該第四誤差值與該轉動訊號計算該第一誤差值,其中該第四誤差值係關聯於該轉動訊號。 The motor torque compensation device of claim 17, wherein the rotation state control module further comprises: a position control unit is configured to calculate a fourth error value, and calculate the first error value according to the fourth error value and the rotation signal, wherein the fourth error value is associated with the rotation signal. 如請求項18所述之馬達頓轉矩補償裝置,其中,該第四誤差值係依據一第一關係式計算得出,該第一關係式為: 其中,Z4為該第四誤差值,θm為該轉動訊號的位置訊號,θm *為該控制命令的位置控制訊號。 The motor torque compensation device of claim 18, wherein the fourth error value is calculated according to a first relationship, the first relationship is: Wherein Z 4 is the fourth error value, θ m is the position signal of the rotation signal, and θ m * is the position control signal of the control command. 如請求項19所述之馬達頓轉矩補償裝置,其中,該第一誤差值係依據一第二關係式計算得出,該第二關係式為: 其中,Z1為該第一誤差值,kθ為位置控制常數,Z4為該第四誤差值,wm為該轉動訊號的轉速訊號,wm *表示該控制命令的轉速控制訊號。 The motor torque compensation device of claim 19, wherein the first error value is calculated according to a second relationship, the second relationship is: Wherein Z 1 is the first error value, k θ is a position control constant, Z 4 is the fourth error value, w m is a rotation speed signal of the rotation signal, and w m * represents a rotation speed control signal of the control command. 如請求項17所述之馬達頓轉矩補償裝置,其中,該電流控制模組包括:一電流誤差估算單元,用以依據該分軸電流訊號以及該電流控制訊號的一分軸電流控制訊號計算得出該第二誤差值。 The motor torque compensation device of claim 17, wherein the current control module comprises: a current error estimating unit configured to calculate a split current signal according to the split current signal and the current control signal The second error value is obtained. 如請求項21所述之馬達頓轉矩補償裝置,其中,該第二誤差值係依據一第三關係式計算,該第三關係式為: 其中,Z2表示該第二誤差值,Iq表示該分軸電流訊號,Iq *為該分軸電流控制訊號。 The motor torque compensation device of claim 21, wherein the second error value is calculated according to a third relation, wherein the third relationship is: Wherein Z 2 represents the second error value, I q represents the split current signal, and I q * is the split current control signal. 如請求項17所述之馬達頓轉矩補償裝置,其中,該參數估算模組更將該第一誤差值、該第二誤差值以及該轉動訊號以加權方式計算,以取得該些預估 參數。 The motor torque compensation device of claim 17, wherein the parameter estimation module further calculates the first error value, the second error value, and the rotation signal in a weighted manner to obtain the estimates parameter. 如請求項23所述之馬達頓轉矩補償裝置,其中,該些預估參數係透過一第四關係式取得,該第四關係式為: 其中,為該些預估參數中該第一預估參數,為該些預估參數中該第二預估參數,為該些預估參數中該第三預估參數,λ 1λ 2n 以及λ 3n 皆為正的常數,K T 為馬達頓轉矩常數,J為馬達轉動慣量,B為馬達黏滯磨擦係數,k 0 為位置控制常數,k w 為轉速控制常數,n為正整數,k為馬達定子槽數與轉子極數的最小公倍數。 The motor torque compensation device of claim 23, wherein the estimated parameters are obtained by a fourth relationship, wherein the fourth relationship is: among them, For the first estimated parameter among the estimated parameters, For the second estimated parameter of the estimated parameters, For the third estimated parameter among the estimated parameters, λ 1 , λ 2 n and λ 3 n are all positive constants, K T is the motor torque constant, J is the motor moment of inertia, and B is the motor viscosity. The friction coefficient, k 0 is the position control constant, k w is the rotational speed control constant, n is a positive integer, and k is the least common multiple of the number of motor stator slots and the number of rotor poles. 如請求項24所述之馬達頓轉矩補償裝置,其中,該轉動狀態控制模組包含:一速度控制單元,用以將該第一誤差值、該轉動訊號、該控制命令的轉速控制訊號以及該些預估參數分別以加權方式計算,以得出該電流控制訊號。 The motor torque compensation device of claim 24, wherein the rotation state control module comprises: a speed control unit for using the first error value, the rotation signal, the rotation speed control signal of the control command, and The estimated parameters are respectively calculated in a weighted manner to obtain the current control signal. 如請求項25所述之馬達頓轉矩補償裝置,其中,該電流控制訊號係透過一第五關係式計算得出,該第五關係式為: 其中,為對該第一預估參數對時間積分後之數值,為對該第二預估參數對時間積分後之數值,為對該第三預估參數積分後之數值,為 對該控制訊號的微分後之數值,N為正整數且N大於2。 The motor torque compensation device of claim 25, wherein the current control signal is calculated by a fifth relationship, the fifth relationship is: among them, For the value of the first estimated parameter after the time is integrated, For the value of the second estimated parameter after the time is integrated, For the value of the third estimated parameter, For the value after the differentiation of the control signal, N is a positive integer and N is greater than 2. 如請求項26所述之馬達頓轉矩補償裝置,其中,該電流控制模組包含:一電流控制單元,用以將該第二誤差值、該第三誤差值、該電流控制訊號、該分軸電流訊號以及該轉動訊號以加權方式計算,以得到該電壓控制訊號。 The motor torque compensation device of claim 26, wherein the current control module comprises: a current control unit for the second error value, the third error value, the current control signal, the minute The axis current signal and the rotation signal are calculated in a weighted manner to obtain the voltage control signal. 如請求項27所述之馬達頓轉矩補償裝置,其中,該電壓控制訊號係透過一第六關係式計算得到,該第六關係式為: 其中,Φ PM 為馬達轉子磁通量,Rs為馬達定子電阻,Ls為馬達定子自感,wr為馬達轉子電器轉速,kd為直軸電流控制常數,kq為分軸電流控制常數。 The motor torque compensation device of claim 27, wherein the voltage control signal is calculated by a sixth relation, wherein the sixth relationship is: Where Φ PM is the motor rotor flux, R s is the motor stator resistance, L s is the motor stator self-inductance, w r is the motor rotor electrical speed, k d is the direct-axis current control constant, and k q is the split-axis current control constant. 如請求項28所述之馬達頓轉矩補償裝置,其中,該第三誤差值係透過一第七關係式計算得出,該第七關係式為: 其中,I d 為該直軸電流訊號,為該控制命令的直軸電流控制訊號。 The motor torque compensation device of claim 28, wherein the third error value is calculated by a seventh relation, wherein the seventh relationship is: Where I d is the direct current signal, The direct current control signal for this control command. 如請求項16所述之馬達頓轉矩補償裝置,更包含有:一控制訊號轉換模組,耦接該電流控制模組,該控制訊號轉換模組具 有一座標轉換單元以及一訊號轉換單元,該座標轉換單元用以將所產生的該電壓控制訊號透過座標轉換,轉換成該馬達的輸入電壓訊號,該訊號轉換單元用以將該馬達的輸入電壓訊號經過訊號轉換為該馬達的電壓驅動訊號,以調整該馬達之轉動狀態。 The motor torque compensation device of claim 16, further comprising: a control signal conversion module coupled to the current control module, the control signal conversion module There is a standard conversion unit and a signal conversion unit, wherein the coordinate conversion unit converts the generated voltage control signal into a input voltage signal of the motor through a coordinate conversion, and the signal conversion unit is configured to input the voltage signal of the motor. The signal is converted into a voltage driving signal of the motor to adjust the rotation state of the motor.
TW103114953A 2014-04-25 2014-04-25 Device for motor cogging torque compensation and method thereof TWI533586B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103114953A TWI533586B (en) 2014-04-25 2014-04-25 Device for motor cogging torque compensation and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103114953A TWI533586B (en) 2014-04-25 2014-04-25 Device for motor cogging torque compensation and method thereof

Publications (2)

Publication Number Publication Date
TW201541850A TW201541850A (en) 2015-11-01
TWI533586B true TWI533586B (en) 2016-05-11

Family

ID=55220626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103114953A TWI533586B (en) 2014-04-25 2014-04-25 Device for motor cogging torque compensation and method thereof

Country Status (1)

Country Link
TW (1) TWI533586B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663812B (en) * 2017-11-07 2019-06-21 財團法人工業技術研究院 Electric motor with low cogging torque
CN110541811A (en) * 2019-09-24 2019-12-06 四川长虹空调有限公司 method for quickly acquiring low-frequency torque compensation angle of air-conditioning compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618346B (en) * 2015-11-27 2018-03-11 廣明光電股份有限公司 Method for dynamically compensating the torque ripple of a motor
TWI574500B (en) * 2016-04-01 2017-03-11 bo-rui Chen Axial Flux Motor and Power Control System and Method for Hybrid Vehicle
TWI584091B (en) * 2016-04-29 2017-05-21 新漢股份有限公司 Position teaching method of mechanism apparatus implemented by compensation of force
TWI604208B (en) * 2017-01-19 2017-11-01 義守大學 Method of estimating dc machine parameters by least squares method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663812B (en) * 2017-11-07 2019-06-21 財團法人工業技術研究院 Electric motor with low cogging torque
CN110541811A (en) * 2019-09-24 2019-12-06 四川长虹空调有限公司 method for quickly acquiring low-frequency torque compensation angle of air-conditioning compressor
CN110541811B (en) * 2019-09-24 2021-01-29 四川长虹空调有限公司 Method for quickly acquiring low-frequency torque compensation angle of air-conditioning compressor

Also Published As

Publication number Publication date
TW201541850A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
TWI533586B (en) Device for motor cogging torque compensation and method thereof
CN104079217B (en) Motor control assembly and magnetic pole position estimation method
KR101244299B1 (en) Method and system for sensorless torque control for ironless permanent magnet machine
KR101961106B1 (en) Sensorless control method and apparatus thereof
CN106208855B (en) Temperature estimation device for synchronous motor
JP6184073B2 (en) Method and system for estimating rotor angle of an electric machine
JP2007097263A (en) Method of estimating magnetic pole position of synchronous motor
JP5243651B2 (en) Motor control device for controlling d-axis current of permanent magnet synchronous motor
US20160156297A1 (en) Motor drive system, motor control apparatus and motor control method
JP2005198402A (en) Controller of synchronous motor, electric apparatus and module
JP3764144B2 (en) System and method for estimating the position of a rotor of a permanent magnet motor
KR100845110B1 (en) Estimating method of inertia moment for sensorless inverter
JP2010200515A (en) Device for estimating magnet temperature of motor
TW201710924A (en) Method for estimating parameters of the induction machine by the polynomial regression
Zhao Position/speed sensorless control for permanent-magnet synchronous machines
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
WO2018069865A2 (en) Flux observer for induction motor and flux estimation method for induction motor
JP5515885B2 (en) Electric vehicle control device
JP2010035351A (en) Device for estimating rotor position of synchronous electric motor
JP2007089336A (en) Revolution detection device and revolution detection method of turbocharger with electric motor
JP2000308399A (en) Velocity control device of rotating machine
JP5106295B2 (en) Rotor position estimation device for synchronous motor
Staffler et al. Extended mechanical observer structure with load torque estimation for sensorless dynamic control of permanent magnet synchronous machines
Zhou et al. High-order terminal sliding-mode observer for speed estimation of induction motors
CN109586622A (en) Underwater propeller control method based on sliding formwork control