TWI533032B - Three-dimensional display device - Google Patents
Three-dimensional display device Download PDFInfo
- Publication number
- TWI533032B TWI533032B TW102138323A TW102138323A TWI533032B TW I533032 B TWI533032 B TW I533032B TW 102138323 A TW102138323 A TW 102138323A TW 102138323 A TW102138323 A TW 102138323A TW I533032 B TWI533032 B TW I533032B
- Authority
- TW
- Taiwan
- Prior art keywords
- polarization
- layer
- liquid crystal
- light
- polarization direction
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
- Polarising Elements (AREA)
Description
本揭露係關於一立體顯示器,特別是一種可切換平面顯示或立體顯示的立體顯示器。 The present disclosure relates to a stereoscopic display, and more particularly to a stereoscopic display that can switch between a flat display or a stereoscopic display.
近年來,立體顯像技術(three-dimensional vision,3D)被大量應用在許多電影中。一般人可能前往電影院觀賞3D電影,也可能是使用家中的顯示裝置觀賞3D電影。一般而言,進入電影院觀賞3D電影時需佩戴3D眼鏡。使用家中的顯示裝置觀賞3D電影也可能佩戴3D眼鏡。 In recent years, three-dimensional vision (3D) has been widely used in many movies. Ordinary people may go to the cinema to watch 3D movies, or they may use a home display device to watch 3D movies. In general, 3D glasses are required to enter a movie theater to watch 3D movies. It is also possible to wear 3D glasses when viewing 3D movies using a display device at home.
然而,除了上述方式外,現在有許多可攜式裝置可用以播放影片。當使用者使用可攜式裝置播放3D電影時,若需要佩戴3D眼鏡觀賞3D電影,則殊為不便。因此,裸視立體顯示技術(direct 3D stereoscopic)被發展出來。使用裸視立體顯示器,則可直接觀賞3D電影,而不需要佩戴3D眼鏡。而更進一步地,可變光學裝置(optical variable device)被應用於切換平面顯示(two-dimensional vision,2D)或立體顯示。因此可以選擇性地以可攜式裝置播放平面顯示影像或是立體顯示影像。 However, in addition to the above, there are many portable devices available to play movies. When a user plays a 3D movie using a portable device, it is inconvenient to wear a 3D glasses to watch a 3D movie. Therefore, direct 3D stereoscopic display technology has been developed. With a stereoscopic stereo display, you can watch 3D movies directly without having to wear 3D glasses. Further, an optical variable device is applied to a two-dimensional vision (2D) or a stereoscopic display. Therefore, the flat display image or the stereoscopic display image can be selectively played by the portable device.
然而,在應用可變光學裝置以選擇性地播放平面 或立體影像時,往往會遇到暗態漏光與亮態亮度不足的問題,因此急需一種新的3D顯示器結構設計用以解決此問題而改善3D影像與2D影像的品質。 However, in the application of variable optics to selectively play the plane Or stereoscopic images often encounter problems with dark state light leakage and insufficient brightness. Therefore, a new 3D display structure design is urgently needed to solve this problem and improve the quality of 3D images and 2D images.
有鑑於以上的問題,本揭露提出一種立體顯示器,藉由讓入射到液晶顯示面板的光的偏振型態是圓形偏振,以避免通過液晶顯示面板而出射的光具有橢圓偏振的特性,從而解決暗態漏光與亮態亮度不足的問題。同時減少偏振主動式微透鏡與液晶顯示面板的距離,使得立體顯示器的最佳可視距離得以被降低,而能適用於可攜式裝置上。 In view of the above problems, the present disclosure proposes a stereoscopic display that solves the problem that the polarization of the light incident on the liquid crystal display panel is circularly polarized to avoid the elliptically polarized light emitted by the liquid crystal display panel. Dark state light leakage and insufficient brightness of the bright state. At the same time, the distance between the polarization active microlens and the liquid crystal display panel is reduced, so that the optimal viewing distance of the stereoscopic display can be reduced, and the utility model can be applied to the portable device.
依據本發明的一種立體顯示器,包括偏振轉換層(polarization transformer layer)、液晶顯示面板、相位延遲層、偏振主動式微透鏡(polarization active micro-lens,PAM)以及偏光層。液晶顯示面板配置於偏振轉換層上。相位延遲層配置於液晶顯示面板上。偏振主動式微透鏡配置於相位延遲層上。偏光層配置於偏振主動式微透鏡上。 A stereoscopic display according to the present invention includes a polarization transformer layer, a liquid crystal display panel, a phase retardation layer, a polarization active micro-lens (PAM), and a polarizing layer. The liquid crystal display panel is disposed on the polarization conversion layer. The phase retardation layer is disposed on the liquid crystal display panel. The polarization active microlens is disposed on the phase retardation layer. The polarizing layer is disposed on the polarization active microlens.
偏振轉換層係用以調整入射光以得到第一偏振光,其中第一偏振光的偏振型態是圓形偏振,且第一偏振光具有第一光譜分布。液晶顯示面板係用以調整第一偏振光以產生第二偏振光,其中第二偏振光具有第二光譜分布,且第二偏振光的偏振型態是圓形偏振。相位延遲層係用以調整第二偏振光以得到第三偏振光,第三偏振光的偏振型態係線性 偏振。偏振主動式微透鏡係用以調整第三偏振光以產生第四偏振光,其中第四偏振光的偏振型態是線性偏振,且第四偏振光具有被指定的傳遞方向。偏光層用以選擇性地讓第四偏振光通過。 The polarization conversion layer is configured to adjust the incident light to obtain the first polarized light, wherein the polarization form of the first polarized light is a circular polarization, and the first polarized light has a first spectral distribution. The liquid crystal display panel is configured to adjust the first polarized light to generate the second polarized light, wherein the second polarized light has a second spectral distribution, and the polarized form of the second polarized light is a circular polarization. The phase retardation layer is configured to adjust the second polarized light to obtain a third polarized light, and the polarization state of the third polarized light is linear polarization. The polarization active microlens is configured to adjust the third polarized light to generate fourth polarized light, wherein the polarized pattern of the fourth polarized light is linearly polarized, and the fourth polarized light has a specified transfer direction. The polarizing layer is for selectively passing the fourth polarized light.
綜上所述,本發明的立體顯示器係藉由一個偏振轉換層使進入液晶顯示面板的光的偏振型態是圓形偏振,以避免通過液晶顯示面板的光具有橢圓偏振的特性,從而解決暗態漏光與亮態亮度不足的問題。同時可減少偏振主動式微透鏡與液晶顯示面板的距離,使得立體顯示器的最佳可視距離得以被降低,而能適用於可攜式裝置上。 In summary, the stereoscopic display of the present invention uses a polarization conversion layer to make the polarization state of the light entering the liquid crystal display panel circularly polarized, so as to avoid the elliptically polarized light of the light passing through the liquid crystal display panel, thereby solving the darkness. The problem of insufficient light leakage and bright state brightness. At the same time, the distance between the polarization active microlens and the liquid crystal display panel can be reduced, so that the optimal viewing distance of the stereoscopic display can be reduced, and the utility model can be applied to the portable device.
以上之關於本揭露內容的說明及以下的實施方式的說明係用以示範與解釋本發明的精神與原理,並且提供本發明的專利申請範圍更進一步的解釋。 The above description of the disclosure and the following description of the embodiments are intended to illustrate and explain the spirit and principles of the invention, and to provide further explanation of the scope of the invention.
1、4‧‧‧立體顯示器 1, 4‧‧‧ stereo display
11a‧‧‧偏振轉換層 11a‧‧‧Polarization conversion layer
13‧‧‧液晶顯示面板 13‧‧‧LCD panel
11b‧‧‧相位延遲層 11b‧‧‧ phase retardation layer
15‧‧‧偏振主動式微透鏡 15‧‧‧Polarized Active Microlens
17‧‧‧偏光層 17‧‧‧ polarizing layer
19‧‧‧偏振方向控制層 19‧‧‧Polarization direction control layer
131、151‧‧‧液晶層 131, 151‧‧‧ liquid crystal layer
133‧‧‧濾色片層 133‧‧‧ color filter layer
135‧‧‧上基板 135‧‧‧Upper substrate
137‧‧‧下基板 137‧‧‧lower substrate
153‧‧‧等向性材料層 153‧‧‧Iotropic material layer
155、157‧‧‧平行光 155, 157‧‧ ‧ parallel light
156、158‧‧‧聚焦點 156, 158‧‧ ‧ focus point
21‧‧‧左眼 21‧‧‧ Left eye
23‧‧‧右眼 23‧‧‧ right eye
25‧‧‧透鏡配向 25‧‧‧ lens alignment
27‧‧‧下表面配向 27‧‧‧ Lower surface alignment
32‧‧‧入射光 32‧‧‧ incident light
33‧‧‧第一偏振光 33‧‧‧First polarized light
34‧‧‧第二偏振光 34‧‧‧Second polarized light
35、351、353‧‧‧第三偏振光 35, 351, 353‧‧‧ third polarized light
36、361、363、37‧‧‧第四偏振光 36, 361, 363, 37‧‧‧ fourth polarized light
401、501、601、701‧‧‧偏振轉換層的下表面 401, 501, 601, 701‧‧ ‧ the lower surface of the polarization conversion layer
402、502、602、702‧‧‧液晶顯示面板的上表面 402, 502, 602, 702‧‧‧ upper surface of the liquid crystal display panel
403、503、603、703‧‧‧相位延遲層的下表面 403, 503, 603, 703‧‧‧ the lower surface of the phase retardation layer
404a、504a、604a、704a‧‧‧偏振主動式微透鏡的下表面 404a, 504a, 604a, 704a‧‧‧ lower surface of polarized active microlens
404b、504b、604b、704b‧‧‧偏振主動式微透鏡的上表面 404b, 504b, 604b, 704b‧‧‧ upper surface of polarized active microlens
405a、505a、605a、705a‧‧‧偏振方向控制層的下表面 405a, 505a, 605a, 705a‧‧‧ the lower surface of the polarization direction control layer
405b、505b、605b、705b‧‧‧偏振方向控制層的上表面 405b, 505b, 605b, 705b‧‧‧ upper surface of the polarization direction control layer
406、506、606、706‧‧‧偏光層的下表面 406, 506, 606, 706‧‧‧ lower surface of the polarizing layer
f‧‧‧焦距 F‧‧•focal length
P‧‧‧界面上一點 A little bit on the P‧‧‧ interface
P32~P36、Po、P41a~P41d、P42a~P42d、P51a~P51d、P52a~P52d、P61a~P61d、P62a~P62d、P71a~P71d、P72a~P72d‧‧‧偏振方向 P 32 ~ P 36 , P o , P 41a ~ P 41d , P 42a ~ P 42d , P 51a ~ P5 1d , P 52a ~ P 52d , P 61a ~ P 61d , P 62a ~ P 62d , P 71a ~ P 71d , P 72a ~ P 72d ‧‧‧ polarization direction
v‧‧‧視距 V‧‧ ‧ line of sight
第1圖係依據本發明一實施例的立體顯示器結構圖。 1 is a structural view of a stereoscopic display according to an embodiment of the present invention.
第2A圖係本發明一實施例中偏振主動式微透鏡的俯視圖。 2A is a plan view of a polarization active microlens in an embodiment of the present invention.
第2B圖係本發明一實施例中偏振主動式微透鏡的部分側視圖。 2B is a partial side view of a polarization active microlens in an embodiment of the present invention.
第2C圖係本發明一實施例中偏振主動式微透鏡的運作示意圖。 2C is a schematic view showing the operation of a polarization active microlens according to an embodiment of the present invention.
第2D圖係本發明一實施例中偏振主動式微透鏡上表面配向與下表面配向示意圖。 2D is a schematic view showing the alignment of the upper surface alignment and the lower surface of the polarization active microlens according to an embodiment of the present invention.
第3A圖係依據本發明一實施例的立體顯示器結構圖。 3A is a structural view of a stereoscopic display according to an embodiment of the present invention.
第3B圖至第3F圖係用以說明入射光經過每一層後的偏振狀態。 3B to 3F are diagrams for explaining the polarization state of incident light after passing through each layer.
第3G圖係依據本發明另一實施例的立體顯示器結構圖。 FIG. 3G is a structural diagram of a stereoscopic display according to another embodiment of the present invention.
第4A圖及第4B圖係分別用以描述一實施例中的兩個實作模式中,光在本發明每一層的上表面及下表面的偏振方向的示意圖。 4A and 4B are schematic views for respectively describing the polarization directions of light on the upper and lower surfaces of each layer of the present invention in two implementation modes in an embodiment.
第4C圖係用以描述對應於第4A圖以及第4B圖的實施例的立體顯示器的光穿透率與電壓的關係圖。 Fig. 4C is a diagram for describing the relationship between the light transmittance and the voltage of the stereoscopic display corresponding to the embodiments of Figs. 4A and 4B.
第5A圖及第5B圖係分別用以描述一實施例中的兩個實作模式中,光在本發明每一層的上表面及下表面的偏振方向的示意圖。 5A and 5B are schematic views for respectively describing the polarization directions of light on the upper and lower surfaces of each layer of the present invention in two implementation modes in an embodiment.
第5C圖係用以描述對應於第5A圖以及第5B圖的實施例的立體顯示器的光穿透率與電壓的關係圖。 Fig. 5C is a diagram for describing the relationship between the light transmittance and the voltage of the stereoscopic display corresponding to the embodiments of Figs. 5A and 5B.
第6A圖及第6B圖係分別用以描述一實施例中的兩個實作模式中,光在本發明每一層的上表面及下表面的偏振方向的示意圖。 6A and 6B are diagrams for describing the polarization directions of light on the upper and lower surfaces of each layer of the present invention, respectively, in two implementation modes in an embodiment.
第6C圖係用以描述對應於第6A圖以及第6B圖的實施例的立體顯示器的光穿透率與電壓的關係圖。 Fig. 6C is a diagram for describing the relationship between the light transmittance and the voltage of the stereoscopic display corresponding to the embodiments of Figs. 6A and 6B.
第7A圖及第7B圖係分別用以描述一實施例中的兩個實作 模式中,光在本發明每一層的上表面及下表面的偏振方向的示意圖。 7A and 7B are respectively used to describe two implementations in an embodiment In the mode, a schematic diagram of the direction of polarization of light on the upper and lower surfaces of each layer of the present invention.
第7C圖係用以描述對應於第7A圖以及第7B圖的實施例的立體顯示器的光穿透率與電壓的關係圖。 Fig. 7C is a diagram for describing the relationship between the light transmittance and the voltage of the stereoscopic display corresponding to the embodiments of Figs. 7A and 7B.
以下在實施方式中詳細敘述本發明的詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明的技術內容並據以實施,且根據本說明書所揭露的內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關的目的及優點。以下的實施例係進一步詳細說明本發明的觀點,但非以任何觀點限制本發明的範疇。 The detailed features and advantages of the present invention are set forth in the detailed description of the embodiments of the present invention. The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but do not limit the scope of the invention in any way.
請參見第1圖,第1圖係依據本發明一實施例的立體顯示器結構圖。如第1圖所示,立體顯示器1包括偏振轉換層(polarization transformer)11a、液晶顯示面板13、相位延遲層11b、偏振主動式微透鏡(polarization active micro-lens,PAM)15以及偏光層17。液晶顯示面板13配置於偏振轉換層11a上。相位延遲層11b配置於液晶顯示面板13上。偏振主動式微透鏡15配置於相位延遲層11b上。偏光層17配置於偏振主動式微透鏡15上。 Please refer to FIG. 1. FIG. 1 is a structural diagram of a stereoscopic display according to an embodiment of the present invention. As shown in FIG. 1, the stereoscopic display 1 includes a polarization conversion layer 11a, a liquid crystal display panel 13, a phase retardation layer 11b, a polarization active micro-lens (PAM) 15, and a polarizing layer 17. The liquid crystal display panel 13 is disposed on the polarization conversion layer 11a. The phase retardation layer 11b is disposed on the liquid crystal display panel 13. The polarization active microlens 15 is disposed on the phase retardation layer 11b. The polarizing layer 17 is disposed on the polarization active microlens 15.
偏振轉換層11a用以調整入射光以得到第一偏振光,其中第一偏振光的偏振型態是圓形偏振。於一實施例中,偏振轉換層11a可以包括一個偏光層以及一個相位延遲量是 四分之一波長的相位延遲層。入射光先通過偏光層得到線性偏振光,而後線性偏振光通過相位延遲層而得到圓形偏振光。如此一來,不管入射光是何種形態,從偏振轉換層11a出射的第一偏振光的偏振型態會是圓形偏振。於另一實施例中,偏振轉換層11a可以只有相位延遲量是四分之一波長的相位延遲層。於此實施例中,則限定入射光必須是線性偏振光,則從偏振轉換層11a出射的第一偏振光的偏振型態會是圓形偏振。偏振轉換層11a中的相位延遲層的相位延遲量不限於四分之一波長,亦可為四分之三波長、負四分之一波長、負四分之三波長或其他可用以將光源轉換成圓型偏振光的相位延遲量。 The polarization conversion layer 11a is for adjusting the incident light to obtain the first polarized light, wherein the polarization form of the first polarized light is a circular polarization. In an embodiment, the polarization conversion layer 11a may include a polarizing layer and a phase delay amount is A quarter-wavelength phase retardation layer. The incident light first passes through the polarizing layer to obtain linearly polarized light, and then the linearly polarized light passes through the phase retardation layer to obtain circularly polarized light. In this way, regardless of the form of the incident light, the polarization state of the first polarized light emitted from the polarization conversion layer 11a is circularly polarized. In another embodiment, the polarization conversion layer 11a may have only a phase retardation layer whose phase retardation amount is a quarter wavelength. In this embodiment, it is defined that the incident light must be linearly polarized light, and the polarization state of the first polarized light emitted from the polarization conversion layer 11a may be circularly polarized. The phase retardation amount of the phase retardation layer in the polarization conversion layer 11a is not limited to a quarter wavelength, and may be three-quarter wavelength, negative quarter wavelength, negative three-quarter wavelength, or the like to convert the light source. The amount of phase delay of the circularly polarized light.
液晶顯示面板13用以調整第一偏振光以得到第二偏振光,且第二偏振光的偏振型態亦是圓形偏振。液晶顯示面板13包括液晶層131、濾色片層133、上基板135以及下基板137。於一實施例中,液晶顯示面板13中的液晶層131是多域垂直排列型(multi-domain vertical alignment,MVA)液晶時,當光通過液晶顯示面板13,若液晶顯示面板13的驅動電壓為最大值,則第一偏振光與第二偏振光的偏振方向會相差90度,反之,若液晶顯示面板13的驅動電壓為零,則第一偏振光與第二偏振光的偏振方向相差0度。而液晶顯示面板13中的濾色片層133係用以改變通過的光的光譜分布。舉例來說,液晶顯示面板13可以是多域垂直排列型液晶顯示面板、 圖樣化垂直排列型(patterned vertical alignment,PVA)液晶顯示面板、扭轉向列式型(twisted nematic,TN)液晶顯示面板或其他可選擇性改變光的偏振方向的液晶顯示面板,而不以此為限。 The liquid crystal display panel 13 is configured to adjust the first polarized light to obtain the second polarized light, and the polarization form of the second polarized light is also circularly polarized. The liquid crystal display panel 13 includes a liquid crystal layer 131, a color filter layer 133, an upper substrate 135, and a lower substrate 137. In one embodiment, when the liquid crystal layer 131 in the liquid crystal display panel 13 is a multi-domain vertical alignment (MVA) liquid crystal, when the light passes through the liquid crystal display panel 13, if the driving voltage of the liquid crystal display panel 13 is The maximum value is such that the polarization directions of the first polarized light and the second polarized light are different by 90 degrees. Conversely, if the driving voltage of the liquid crystal display panel 13 is zero, the polarization directions of the first polarized light and the second polarized light are different by 0 degrees. . The color filter layer 133 in the liquid crystal display panel 13 is used to change the spectral distribution of the passing light. For example, the liquid crystal display panel 13 may be a multi-domain vertical alignment type liquid crystal display panel, Patterned vertical alignment (PVA) liquid crystal display panel, twisted nematic (TN) liquid crystal display panel or other liquid crystal display panel capable of selectively changing the polarization direction of light, without limit.
相位延遲層11b用以調整第二偏振光以得到第三偏振光,其中第三偏振光的偏振型態是線性偏振。例如,相位延遲層11b的相位延遲量可以是四分之一波長,則因為第二偏振光的偏振型態是圓形偏振,通過相位延遲層11b後會產生具有線性偏振型態的第三偏振光。相位延遲層11b的相位延遲量不限於四分之一波長,亦可為四分之三波長、負四分之一波長、負四分之三波長或其他可以將圓偏振光轉變成線性偏振光的相位延遲量,而不以此為限。 The phase retardation layer 11b is configured to adjust the second polarized light to obtain a third polarized light, wherein the polarization type of the third polarized light is linearly polarized. For example, the phase retardation amount of the phase retardation layer 11b may be a quarter wavelength, and since the polarization pattern of the second polarized light is a circular polarization, a third polarization having a linear polarization pattern is generated after passing through the phase retardation layer 11b. Light. The phase retardation amount of the phase retardation layer 11b is not limited to a quarter wavelength, and may be three-quarters of a wavelength, a negative quarter-wavelength, a negative three-quarter wavelength, or the like, which can convert circularly polarized light into linearly polarized light. The amount of phase delay, not limited to this.
偏振主動式微透鏡15用以調整第三偏振光以得到第四偏振光,其中第四偏振光的偏振型態是線性偏振。請參見第2A圖至第2C圖,第2A圖係本發明一實施例中偏振主動式微透鏡的俯視圖,第2B圖係本發明一實施例中偏振主動式微透鏡的部分側視圖,第2C圖係本發明一實施例中偏振主動式微透鏡的運作示意圖。如第2B圖所示,偏振主動式微透鏡15包括液晶層151以及等向性材料層153,等向性材料層153配置於液晶層151之上。藉由分別對液晶層151以及等向性材料層153選用適當的材料,可以將液晶層151視為多個凸透鏡並列。因此,當第一組平行光155由上方射入,會聚焦於第一聚焦點156。當第二組平行光157由上方射入,會聚焦 於第二聚焦點158。 The polarization active microlens 15 is used to adjust the third polarized light to obtain a fourth polarized light, wherein the polarization form of the fourth polarized light is linearly polarized. 2A to 2C, FIG. 2A is a plan view of a polarization active microlens according to an embodiment of the present invention, and FIG. 2B is a partial side view of a polarization active microlens according to an embodiment of the present invention, and FIG. 2C A schematic diagram of the operation of a polarization active microlens in an embodiment of the invention. As shown in FIG. 2B, the polarization active microlens 15 includes a liquid crystal layer 151 and an isotropic material layer 153, and the isotropic material layer 153 is disposed on the liquid crystal layer 151. The liquid crystal layer 151 can be regarded as a plurality of convex lenses in parallel by selecting appropriate materials for the liquid crystal layer 151 and the isotropic material layer 153, respectively. Therefore, when the first set of parallel light 155 is incident from above, it will focus on the first focus point 156. When the second set of parallel light 157 is incident from above, it will focus At a second focus point 158.
依據光的可逆性,當第一聚焦點156以及第二聚焦點158分別發出光線時,如第2C圖所示,第一聚焦點156的光線與第二聚焦點158的光線即可分別被人的左眼21以及右眼23接收。以此一技術,可以實現裸視立體顯示。同時,第一聚焦點156以及第二聚焦點158到液晶層151與等向性材料層153的界面上一點P的距離大約為焦距f。液晶層151與等向性材料層153的界面上一點P到左眼21以及右眼23的距離大約為視距v。P點、左眼21以及右眼23形成第一三角形,而P點、第一聚焦點156以及第二聚焦點158形成第二三角形。第一三角形與第二三角形為相似三角形,因此焦距f與視距v成正比。因此必須以適當的設計縮短焦距f以使視距縮短。換句話說,若能縮短點光源(以本發明的結構來說就是液晶顯示面板13的上表面上的一點)至P點的距離,同時適當的設計焦距f,則可以縮短視距v,從而使立體顯示器的最佳可視距離縮短而適用於可攜式顯示裝置。 According to the reversibility of the light, when the first focus point 156 and the second focus point 158 respectively emit light, as shown in FIG. 2C, the light of the first focus point 156 and the light of the second focus point 158 can be respectively The left eye 21 and the right eye 23 are received. With this technology, stereoscopic stereoscopic display can be realized. At the same time, the distance between the first focus point 156 and the second focus point 158 to the point P of the liquid crystal layer 151 and the interface of the isotropic material layer 153 is approximately the focal length f. The distance from the point P to the left eye 21 and the right eye 23 at the interface of the liquid crystal layer 151 and the isotropic material layer 153 is approximately the viewing distance v. The P point, the left eye 21, and the right eye 23 form a first triangle, and the P point, the first focus point 156, and the second focus point 158 form a second triangle. The first triangle and the second triangle are similar triangles, so the focal length f is proportional to the line of sight v. Therefore, the focal length f must be shortened with an appropriate design to shorten the viewing distance. In other words, if the distance from the point source (the point on the upper surface of the liquid crystal display panel 13 in the structure of the present invention) to the point P can be shortened, and the focal length f is appropriately designed, the line of sight v can be shortened, thereby The optimal visual distance of the stereoscopic display is shortened and is suitable for a portable display device.
此外,請參考第2D圖,第2D圖係本發明一實施例中偏振主動式微透鏡上表面配向與下表面配向示意圖。如第2D圖所示,偏振主動式微透鏡15中的液晶層151的上表面具有透鏡配向25,而液晶層151的下表面具有下表面配向27。當第三偏振光穿透偏振主動式微透鏡15時,因為液晶層151中的液晶的配向從下表面配向27轉變為透鏡配向25, 所以液晶會改變第三偏振光的偏振方向而產生第四偏振光。第四偏振光與第三偏振光的偏振方向的夾角等於透鏡配向25與下表面配向27的夾角。 In addition, please refer to FIG. 2D. FIG. 2D is a schematic diagram showing the alignment of the upper surface alignment and the lower surface of the polarization active microlens according to an embodiment of the present invention. As shown in FIG. 2D, the upper surface of the liquid crystal layer 151 in the polarization active microlens 15 has a lens alignment 25, and the lower surface of the liquid crystal layer 151 has a lower surface alignment 27. When the third polarized light penetrates the polarization active microlens 15, since the alignment of the liquid crystal in the liquid crystal layer 151 is changed from the lower surface alignment 27 to the lens alignment 25, Therefore, the liquid crystal changes the polarization direction of the third polarized light to generate the fourth polarized light. The angle between the polarization directions of the fourth polarized light and the third polarized light is equal to the angle between the lens alignment 25 and the lower surface alignment 27.
偏光層17用以決定第四偏振光穿透偏光層17的穿透比例。在實作上,若第四偏振光的偏振方向平行於偏光層17的穿透軸配向,則第四偏振光可完全穿透偏光層17,此即為亮態。若第四偏振光的偏振方向正交於偏光層17的穿透軸配向,則第四偏振光完全不穿透偏光層17,此即為暗態。若第四偏振光的偏振方向與偏光層17的穿透軸配向並非正交亦非平行,則穿透的比例正比於第四偏振光的偏振方向與偏光層17的穿透軸配向夾角的餘弦值。舉例來說,偏光層17可以是碘系偏光膜、染料型偏光膜、金屬材質偏光膜、共軛烯高分子偏光膜或其他適於產生線性偏振光的裝置,而不以此為限。 The polarizing layer 17 is used to determine the penetration ratio of the fourth polarized light penetrating the polarizing layer 17. In practice, if the polarization direction of the fourth polarized light is parallel to the alignment axis of the polarizing layer 17, the fourth polarized light can completely penetrate the polarizing layer 17, which is a bright state. If the polarization direction of the fourth polarized light is orthogonal to the transmission axis alignment of the polarizing layer 17, the fourth polarized light does not penetrate the polarizing layer 17 at all, which is a dark state. If the polarization direction of the fourth polarized light is not orthogonal or non-parallel to the alignment axis of the polarizing layer 17, the ratio of the penetration is proportional to the cosine of the polarization direction of the fourth polarized light and the alignment axis of the polarizing layer 17 value. For example, the polarizing layer 17 may be an iodine-based polarizing film, a dye-based polarizing film, a metal-based polarizing film, a conjugated olefin polymer polarizing film, or other device suitable for generating linearly polarized light, and is not limited thereto.
於本發明一實施例中,請參見第3A圖至第3F圖,第3A圖係依據本發明一實施例的立體顯示器結構圖,第3B圖至第3F圖係用以說明入射光經過每一層後的偏振狀態。於本例子中,偏振轉換層11a中的相位延遲層以及相位延遲層11b分別可提供四分之一波長以及負四分之一波長的相位延遲量。液晶顯示面板13係多域垂直排列液晶顯示面板。偏振主動式微透鏡15的下表面配向27平行於XY平面,與負Y軸的夾角為60度,而偏振主動式微透鏡15的透鏡配 向25平行於Y軸。偏光層17的穿透軸配向平行於X軸。 In an embodiment of the present invention, please refer to FIG. 3A to FIG. 3F. FIG. 3A is a structural view of a stereoscopic display according to an embodiment of the present invention, and FIGS. 3B to 3F are used to illustrate incident light passing through each layer. Post-polarization state. In the present example, the phase retardation layer and the phase retardation layer 11b in the polarization conversion layer 11a respectively provide a phase retardation amount of a quarter wavelength and a negative quarter wavelength. The liquid crystal display panel 13 is a multi-domain vertically aligned liquid crystal display panel. The lower surface alignment 27 of the polarization active microlens 15 is parallel to the XY plane, and the angle with the negative Y axis is 60 degrees, and the lens of the polarization active microlens 15 is matched. The direction 25 is parallel to the Y axis. The transmission axis of the polarizing layer 17 is aligned parallel to the X axis.
如第3B圖所示,當入射光32(例如為雜散光,其具有偏振方向P32)經過偏振轉換層11a後,因為偏振轉換層11a中的偏光層的關係而得到一個線性偏振光,而後又因為相位延遲而形成具有圓形偏振的第一偏振光33,第一偏振光33具有偏振方向P33。如第3C圖所示,當第一偏振光33經過液晶顯示面板13時,因其為圓偏振光,液晶顯示面板13不會對第一偏振光33的偏振型態造成影響。因此第一偏振光33通過液晶顯示面板13後所得到的第二偏振光34也是圓偏振光,其具有偏振方向P34。第二偏振光34與第一偏振光33至少在光譜分布有差異。如第3D圖所示,第二偏振光34經過相位延遲層11b後產生第三偏振光35,因為相位延遲層11b可提供負四分之一波長的相位延遲量,因此第三偏振光35的偏振型態是線性偏振,且其具有偏振方向P35。 As shown in FIG. 3B, when incident light 32 (for example, stray light having a polarization direction P32 ) passes through the polarization conversion layer 11a, a linearly polarized light is obtained due to the relationship of the polarization layer in the polarization conversion layer 11a, and then Further, the first polarized light 33 having a circular polarization is formed due to the phase retardation, and the first polarized light 33 has a polarization direction P 33 . As shown in FIG. 3C, when the first polarized light 33 passes through the liquid crystal display panel 13, since it is circularly polarized light, the liquid crystal display panel 13 does not affect the polarization state of the first polarized light 33. Therefore, the second polarized light 34 obtained after the first polarized light 33 passes through the liquid crystal display panel 13 is also circularly polarized light having a polarization direction P 34 . The second polarized light 34 and the first polarized light 33 differ at least in spectral distribution. As shown in FIG. 3D, the second polarized light 34 passes through the phase retardation layer 11b to generate the third polarized light 35, because the phase retardation layer 11b can provide a phase retardation amount of a negative quarter wavelength, and thus the third polarized light 35 The polarization mode is linearly polarized and has a polarization direction P35 .
如第3E圖所示,當第三偏振光35進入偏振主動式微透鏡15後,偏振方向被偏振主動式微透鏡15中的液晶層151所改變,且經過液晶層151的聚焦,從R點發射的第三偏振光351以及從L點發射的第三偏振光353分別被轉變成具有第一傳遞方向的第四偏振光361以及具有第二傳遞方向的第四偏振光363,第四偏振光361以及363都具有偏振方向P36。如第3F圖所示,當第四偏振光361及363遇到偏光層17時,偏光層17的穿透軸配向會決定第四偏振光361及363 的通過比例。據此可以決定使用者的雙眼37所接收到的光的強弱。舉例來說,第四偏振光361的偏振方向平行於偏光層17的穿透軸配向,則第四偏振光361通過偏光層17後亮度不變。第四偏振光363的偏振方向與偏光層17的穿透軸配向具有六十度的夾角,則第四偏振光363通過偏光層17後亮度減半。而無論如何,通過偏光層17後的光都具有偏振方向Po。 As shown in FIG. 3E, when the third polarized light 35 enters the polarization active microlens 15, the polarization direction is changed by the liquid crystal layer 151 in the polarization active microlens 15, and is focused by the liquid crystal layer 151, and is emitted from the R point. The third polarized light 351 and the third polarized light 353 emitted from the L point are respectively converted into the fourth polarized light 361 having the first transfer direction and the fourth polarized light 363 having the second transfer direction, the fourth polarized light 361 and 363 has a polarization direction P 36 . As shown in FIG. 3F, when the fourth polarized lights 361 and 363 encounter the polarizing layer 17, the transmission axis alignment of the polarizing layer 17 determines the passage ratio of the fourth polarized lights 361 and 363. Accordingly, the intensity of light received by the user's eyes 37 can be determined. For example, the polarization direction of the fourth polarized light 361 is parallel to the transmission axis of the polarizing layer 17, and the brightness of the fourth polarized light 361 after passing through the polarizing layer 17 does not change. The polarization direction of the fourth polarized light 363 has an angle of sixty degrees with the transmission axis of the polarizing layer 17, and the fourth polarized light 363 is halved in brightness after passing through the polarizing layer 17. In any case, the light passing through the polarizing layer 17 has a polarization direction P o .
於本發明實施例中,在偏振主動式微透鏡15與偏光層17之間更包含一個偏振方向控制層19,如第3G圖所示。實作上偏振方向控制層19可以是扭曲向列型液晶,且上表面配向與下表面配向相差90度。當偏振方向控制層19所受到的驅動電壓為0時,穿過偏振方向控制層19的光線的偏振方向會隨著液晶的排列而改變90度。當偏振方向控制層19所受到的驅動電壓極大時,因為液晶的排列會平行於驅動電壓,因此液晶的排列沒有旋轉,而通過偏振方向控制層19的光線的偏振方向不改變。藉此,偏振方向控制層19搭配偏光層17以及液晶顯示面板13,可以控制影像的輸出結果,從而達到切換顯示平面影像以及立體影像的效果,其機制詳述如下。於本實施例中,偏振方向控制層19的下表面配向平行於偏振主動式微透鏡15的透鏡配向25,而偏振方向控制層19的上表面配向平行於偏振主動式微透鏡15的穿透軸配向27。 In the embodiment of the present invention, a polarization direction control layer 19 is further included between the polarization active microlens 15 and the polarizing layer 17, as shown in FIG. 3G. The polarization direction control layer 19 may be a twisted nematic liquid crystal, and the upper surface alignment is 90 degrees out of alignment with the lower surface. When the driving voltage received by the polarization direction controlling layer 19 is 0, the polarization direction of the light passing through the polarization direction controlling layer 19 is changed by 90 degrees with the arrangement of the liquid crystal. When the driving voltage applied to the polarization direction controlling layer 19 is extremely large, since the arrangement of the liquid crystals is parallel to the driving voltage, the arrangement of the liquid crystals does not rotate, and the polarization direction of the light passing through the polarization direction controlling layer 19 does not change. Thereby, the polarization direction control layer 19 is matched with the polarizing layer 17 and the liquid crystal display panel 13, and the output result of the image can be controlled, thereby achieving the effect of switching the display plane image and the stereoscopic image. The mechanism is as follows. In the present embodiment, the lower surface of the polarization direction control layer 19 is aligned parallel to the lens alignment 25 of the polarization active microlens 15, and the upper surface of the polarization direction control layer 19 is aligned parallel to the transmission axis alignment of the polarization active microlens 15 .
請參見第4A圖,第4A圖係用以描述一操作模式中光在本發明立體顯示器4每一層的偏振方向的示意圖。 如第4A圖所示,本發明的立體顯示器由下到上為偏振轉換層401、液晶顯示面板的液晶層402、相位延遲層403、偏振主動式微透鏡的下表面404a、偏振主動式微透鏡的上表面404b、偏振方向控制層的下表面405a、偏振方向控制層的上表面405b以及偏光層406。每條虛線分別代表所在的表面的穿透軸方向或配向方向。於此實施例中,液晶顯示面板中的液晶層402係多域垂直排列型液晶,且受到的驅動電壓為最大,因此通過液晶顯示面板的光線的偏振方向會改變90度。同時,偏振方向控制層受到的驅動電壓為0,因此通過偏振方向控制層的光線的偏振方向也會改變90度。 Referring to FIG. 4A, FIG. 4A is a diagram for describing the polarization direction of light in each layer of the stereoscopic display 4 of the present invention in an operation mode. As shown in FIG. 4A, the stereoscopic display of the present invention is a polarization conversion layer 401 from bottom to top, a liquid crystal layer 402 of a liquid crystal display panel, a phase retardation layer 403, a lower surface 404a of a polarization active microlens, and a polarization active microlens. The surface 404b, the lower surface 405a of the polarization direction controlling layer, the upper surface 405b of the polarization direction controlling layer, and the polarizing layer 406. Each dashed line represents the direction of the transmission axis or the direction of alignment of the surface on which it is located. In this embodiment, the liquid crystal layer 402 in the liquid crystal display panel is a multi-domain vertical alignment type liquid crystal, and the driving voltage is maximized, so that the polarization direction of the light passing through the liquid crystal display panel changes by 90 degrees. At the same time, the polarization direction control layer receives a driving voltage of 0, so the polarization direction of the light passing through the polarization direction control layer also changes by 90 degrees.
首先可以看到,偏振轉換層401的穿透軸配向與正X軸夾60度角,因此穿過偏振轉換層401的光線的偏振方向P41a與正X軸夾60度角。當液晶顯示面板所接受的驅動電壓值為最大時,光線通過液晶顯示面板的液晶層402及相位延遲層403後,光線的偏振方向被改變90度,因此到達偏振主動式微透鏡的下表面404a的光線的偏振方向P41b與負X軸夾30度角。接著,當光線穿過偏振主動式微透鏡到達偏振主動式微透鏡的上表面404b時,因為偏振主動式微透鏡內的液晶的配向轉變,所以從偏振主動式微透鏡的上表面404b出射的光線的偏振方向P41c平行於X軸。隨後,光線從偏振方向控制層的下表面405a射入,而從偏振方向控制層的上表面405b射出而到達偏光層的下表面406。當偏振方向控制層未施 加電壓時,光線的偏振方向P41d旋轉90度而平行於Y軸,因此與偏光層的穿透軸配向正交,因此,穿過偏光層的光線的比例為0,此即為暗態。 First, it can be seen that the transmission axis alignment of the polarization conversion layer 401 is at a 60 degree angle to the positive X axis, so that the polarization direction P 41a of the light passing through the polarization conversion layer 401 is at a 60 degree angle with the positive X axis. When the driving voltage value received by the liquid crystal display panel is maximum, after the light passes through the liquid crystal layer 402 and the phase retardation layer 403 of the liquid crystal display panel, the polarization direction of the light is changed by 90 degrees, and thus reaches the lower surface 404a of the polarization active microlens. The polarization direction P 41b of the light is at a 30 degree angle to the negative X axis. Then, when the light passes through the polarization active microlens to reach the upper surface 404b of the polarization active microlens, the polarization direction of the light emitted from the upper surface 404b of the polarization active microlens is due to the alignment transition of the liquid crystal in the polarization active microlens. 41c is parallel to the X axis. Subsequently, light is incident from the lower surface 405a of the polarization direction controlling layer, and is emitted from the upper surface 405b of the polarization direction controlling layer to reach the lower surface 406 of the polarizing layer. When no voltage is applied to the polarization direction controlling layer, the polarization direction P 41d of the light is rotated by 90 degrees and parallel to the Y axis, and thus orthogonal to the transmission axis of the polarizing layer, and therefore, the ratio of the light passing through the polarizing layer is 0, This is the dark state.
於另一操作模式中,請參見第4B圖,第4B圖係用以描述一操作模式中光在本發明立體顯示器4每一層的偏振方向的示意圖。如第4B圖所示,本發明的立體顯示器由下到上為偏振轉換層401、液晶顯示面板的液晶層402、相位延遲層403、偏振主動式微透鏡的下表面404a、偏振主動式微透鏡的上表面404b、偏振方向控制層的下表面405a、偏振方向控制層的上表面405b以及偏光層406。每條虛線分別代表所在的表面的穿透軸方向或配向方向。於此實施例中,液晶顯示面板中的液晶層402係多域垂直排列型液晶,且受到的驅動電壓為0,因此通過液晶顯示面板的光線的偏振方向不會改變。同時,偏振方向控制層受到的驅動電壓為0,因此通過偏振方向控制層的光線的偏振方向也會改變90度。 In another mode of operation, please refer to FIG. 4B, which is a schematic diagram for describing the polarization direction of light in each layer of the stereoscopic display 4 of the present invention in an operational mode. As shown in FIG. 4B, the stereoscopic display of the present invention is a polarization conversion layer 401 from bottom to top, a liquid crystal layer 402 of a liquid crystal display panel, a phase retardation layer 403, a lower surface 404a of a polarization active microlens, and a polarization active microlens. The surface 404b, the lower surface 405a of the polarization direction controlling layer, the upper surface 405b of the polarization direction controlling layer, and the polarizing layer 406. Each dashed line represents the direction of the transmission axis or the direction of alignment of the surface on which it is located. In this embodiment, the liquid crystal layer 402 in the liquid crystal display panel is a multi-domain vertical alignment type liquid crystal, and the driving voltage is 0, so the polarization direction of the light passing through the liquid crystal display panel does not change. At the same time, the polarization direction control layer receives a driving voltage of 0, so the polarization direction of the light passing through the polarization direction control layer also changes by 90 degrees.
首先可以看到,偏振轉換層401的穿透軸配向與正X軸夾60度角,因此穿過偏振轉換層401的光線的偏振方向P42a與正X軸夾60度角。當液晶顯示面板所接受的驅動電壓值為0時,光線通過液晶顯示面板的液晶層402及相位延遲層403後,光線的偏振方向不改變,因此到達偏振主動式微透鏡的下表面404a的光線的偏振方向P42b與正X軸夾60度角。接著,當光線穿過偏振主動式微透鏡到達偏振主動式微 透鏡的上表面404b時,因為偏振主動式微透鏡內的液晶的配向轉變,所以從偏振主動式微透鏡的上表面404b出射的光線的偏振方向P42c平行於Y軸。隨後,光線從偏振方向控制層的下表面405a射入,而從偏振方向控制層的上表面405b射出而到達偏光層的下表面406。當偏振方向控制層未施加電壓時,光線的偏振方向P42d旋轉90度而平行於X軸,因此與偏光層的穿透軸配向平行,因此,穿過偏光層的光線的比例最大,此即為亮態。 First you can see, the transmission axis of the polarization conversion layer 401 and the positive X-axis alignment clamp 60 degrees, so the polarization direction of the light passing through the polarization conversion layer 401 and the P 42a interposed positive X-axis angle of 60 degrees. When the driving voltage value received by the liquid crystal display panel is 0, after the light passes through the liquid crystal layer 402 and the phase retardation layer 403 of the liquid crystal display panel, the polarization direction of the light does not change, and thus the light reaching the lower surface 404a of the polarization active microlens is The polarization direction P 42b is at a 60 degree angle to the positive X axis. Then, when the light passes through the polarization active microlens to reach the upper surface 404b of the polarization active microlens, the polarization direction of the light emitted from the upper surface 404b of the polarization active microlens is due to the alignment transition of the liquid crystal in the polarization active microlens. 42c is parallel to the Y axis. Subsequently, light is incident from the lower surface 405a of the polarization direction controlling layer, and is emitted from the upper surface 405b of the polarization direction controlling layer to reach the lower surface 406 of the polarizing layer. When the polarization direction control layer is not applied with a voltage, the polarization direction P 42d of the light is rotated by 90 degrees and parallel to the X axis, and thus is aligned with the alignment axis of the polarization layer, so that the proportion of light passing through the polarizing layer is the largest, that is, It is bright.
第一實施例中3D顯示器於3D模式下的情形穿透率-電壓曲線如第4C圖所示,當穿透率到達飽和值(最大值)時為亮態,其操作模式如第4B圖及其敘述所示,穿透率為零時為暗態,其操作模式如第4A圖及其敘述所示。 In the case where the 3D display of the 3D display in the first embodiment is in the 3D mode, the transmittance-voltage curve is as shown in FIG. 4C, and when the transmittance reaches the saturation value (maximum value), it is in a bright state, and its operation mode is as shown in FIG. 4B and As shown in the description, the transmittance is zero when the transmittance is zero, and the operation mode is as shown in Fig. 4A and its description.
於再一實作模式中,請參見第5A圖,第5A圖係用以描述一實作模式中光在本發明立體顯示器每一層的偏振方向的示意圖。如第5A圖所示,本發明的立體顯示器由下到上為偏振轉換層501、液晶顯示面板的液晶層502、相位延遲層503、偏振主動式微透鏡的下表面504a、偏振主動式微透鏡的上表面504b、偏振方向控制層的下表面505a、偏振方向控制層的上表面505b以及偏光層506。每條虛線分別代表所在的表面的穿透軸方向或配向方向。於此實施例中,液晶顯示面板中的液晶層502係多域垂直排列型液晶,且受到的驅動電壓為最大,因此通過液晶顯示面板的光線的偏振方向會 改變90度。同時,偏振方向控制層受到的驅動電壓為最大,因此通過偏振方向控制層的光線的偏振方向不會改變。 In still another implementation mode, please refer to FIG. 5A, which is a schematic diagram for describing the polarization direction of light in each layer of the stereoscopic display of the present invention in an implementation mode. As shown in FIG. 5A, the stereoscopic display of the present invention is a polarization conversion layer 501 from bottom to top, a liquid crystal layer 502 of a liquid crystal display panel, a phase retardation layer 503, a lower surface 504a of a polarization active microlens, and a polarization active microlens. The surface 504b, the lower surface 505a of the polarization direction controlling layer, the upper surface 505b of the polarization direction controlling layer, and the polarizing layer 506. Each dashed line represents the direction of the transmission axis or the direction of alignment of the surface on which it is located. In this embodiment, the liquid crystal layer 502 in the liquid crystal display panel is a multi-domain vertical alignment type liquid crystal, and the driving voltage is maximized, so the polarization direction of the light passing through the liquid crystal display panel is Change 90 degrees. At the same time, the polarization direction control layer receives the maximum driving voltage, so the polarization direction of the light passing through the polarization direction control layer does not change.
首先可以看到,偏振轉換層501的穿透軸配向與正X軸夾60度角,因此穿過偏振轉換層501的光線的偏振方向P51a與正X軸夾60度角。當液晶顯示面板所接受的驅動電壓值為最大時,光線通過液晶顯示面板的液晶層502及相位延遲層503後,光線的偏振方向被改變90度,因此到達偏振主動式微透鏡的下表面504a的光線的偏振方向P51b與負X軸夾30度角。接著,當光線穿過偏振主動式微透鏡到達偏振主動式微透鏡的上表面504b時,因為偏振主動式微透鏡內的液晶的配向轉變,所以從偏振主動式微透鏡的上表面504b出射的光線的偏振方向P51c平行於X軸。隨後,光線從偏振方向控制層的下表面505a射入,而從偏振方向控制層的上表面505b射出而到達偏光層506。當偏振方向控制層施加最大電壓時,光線的偏振方向P51d不旋轉而仍平行於X軸,因此與偏光層的穿透軸配向平行,因此,穿過偏光層的光線的比例為最大,此即為亮態。 First, it can be seen that the transmission axis alignment of the polarization conversion layer 501 is at a 60 degree angle to the positive X axis, so that the polarization direction P 51a of the light passing through the polarization conversion layer 501 is at a 60 degree angle to the positive X axis. When the driving voltage value received by the liquid crystal display panel is the maximum, after the light passes through the liquid crystal layer 502 and the phase retardation layer 503 of the liquid crystal display panel, the polarization direction of the light is changed by 90 degrees, and thus reaches the lower surface 504a of the polarization active microlens. The polarization direction P 51b of the light is clipped at a 30 degree angle to the negative X axis. Then, when the light passes through the polarization active microlens to the upper surface 504b of the polarization active microlens, the polarization direction of the light emitted from the upper surface 504b of the polarization active microlens is due to the alignment transition of the liquid crystal in the polarization active microlens. 51c is parallel to the X axis. Subsequently, light is incident from the lower surface 505a of the polarization direction controlling layer, and is emitted from the upper surface 505b of the polarization direction controlling layer to reach the polarizing layer 506. When the polarization direction control layer applies the maximum voltage, the polarization direction P 51d of the light does not rotate but is still parallel to the X axis, and thus is parallel to the alignment axis of the polarization layer, so that the proportion of the light passing through the polarizing layer is the largest. It is bright.
於更一實作模式中,請參見第5B圖,第5B圖係用以描述一實作模式中,光在本發明立體顯示器每一層的偏振方向的示意圖。如第5B圖所示,本發明的立體顯示器由下到上為偏振轉換層501、液晶顯示面板的液晶層502、相位延遲層503、偏振主動式微透鏡的下表面504a、偏振主動式微透 鏡的上表面504b、偏振方向控制層的下表面505a、偏振方向控制層的上表面505b以及偏光層506。每條虛線分別代表所在的表面的穿透軸方向或配向方向。於此實施例中,液晶顯示面板中的液晶層502係多域垂直排列型液晶,且受到的驅動電壓為0,因此通過液晶顯示面板的光線的偏振方向不會改變。同時,偏振方向控制層受到的驅動電壓為最大,因此通過偏振方向控制層的光線的偏振方向不會改變。 In a more practical mode, please refer to FIG. 5B, which is a schematic diagram for describing the polarization direction of light in each layer of the stereoscopic display of the present invention in a practical mode. As shown in FIG. 5B, the stereoscopic display of the present invention is a polarization conversion layer 501 from bottom to top, a liquid crystal layer 502 of a liquid crystal display panel, a phase retardation layer 503, a lower surface 504a of a polarization active microlens, and a polarization active micro-transparent. The upper surface 504b of the mirror, the lower surface 505a of the polarization direction controlling layer, the upper surface 505b of the polarization direction controlling layer, and the polarizing layer 506. Each dashed line represents the direction of the transmission axis or the direction of alignment of the surface on which it is located. In this embodiment, the liquid crystal layer 502 in the liquid crystal display panel is a multi-domain vertical alignment type liquid crystal, and the driving voltage is 0, so that the polarization direction of the light passing through the liquid crystal display panel does not change. At the same time, the polarization direction control layer receives the maximum driving voltage, so the polarization direction of the light passing through the polarization direction control layer does not change.
首先可以看到,偏振轉換層501的穿透軸配向與正X軸夾60度角,因此穿過偏振轉換層501的光線的偏振方向P52a與正X軸夾60度角。當液晶顯示面板所接受的驅動電壓值為0時,光線通過液晶顯示面板的液晶層502及相位延遲層503後光線的偏振方向不被改變,因此到達偏振主動式微透鏡的下表面504a的光線的偏振方向P52b與正X軸夾60度角。接著,當光線穿過偏振主動式微透鏡到達偏振主動式微透鏡的上表面504b時,因為偏振主動式微透鏡內的液晶的配向轉變,所以從偏振主動式微透鏡的上表面504b出射的光線的偏振方向P52c平行於Y軸。隨後,光線從偏振方向控制層的下表面505a射入,而從偏振方向控制層的上表面505b射出而到達偏光層506。當偏振方向控制層施加最大電壓時,光線的偏振方向P52d不旋轉而仍平行於Y軸,因此與偏光層的穿透軸配向正交,因此,穿過偏光層的光線的比例為0,此即為暗態。 Firstly can be seen, the polarization conversion layer 501 in alignment with the transmission axis positive X-axis clamp 60 degrees, so the polarization direction of the light passing through the polarization conversion layer 501 and the P 52a interposed positive X-axis angle of 60 degrees. When the driving voltage value received by the liquid crystal display panel is 0, the polarization direction of the light is not changed after the light passes through the liquid crystal layer 502 and the phase retardation layer 503 of the liquid crystal display panel, and thus the light reaching the lower surface 504a of the polarization active microlens is The polarization direction P 52b is at a 60 degree angle to the positive X axis. Then, when the light passes through the polarization active microlens to the upper surface 504b of the polarization active microlens, the polarization direction of the light emitted from the upper surface 504b of the polarization active microlens is due to the alignment transition of the liquid crystal in the polarization active microlens. 52c is parallel to the Y axis. Subsequently, light is incident from the lower surface 505a of the polarization direction controlling layer, and is emitted from the upper surface 505b of the polarization direction controlling layer to reach the polarizing layer 506. When the polarization direction control layer applies the maximum voltage, the polarization direction P 52d of the light does not rotate but is still parallel to the Y axis, and thus is orthogonal to the transmission axis of the polarizing layer, and therefore, the ratio of the light passing through the polarizing layer is 0, This is the dark state.
第一實施例中3D顯示器於2D模式下的情形穿透率-電壓曲線如第5C圖所示,當穿透率到達飽和值(最大值)時為亮態,其操作模式如第5A圖及其敘述所示,穿透率為零時為暗態,其操作模式如第5B圖及其敘述所示。 In the case where the 3D display in the 2D mode is in the 2D mode, the transmittance-voltage curve is as shown in FIG. 5C, and when the transmittance reaches the saturation value (maximum value), it is in a bright state, and its operation mode is as shown in FIG. 5A and As shown in the description, the transmittance is zero when the transmittance is zero, and the operation mode is as shown in Fig. 5B and its description.
於再一實作模式中,請參見第6A圖,第6A圖係用以描述一實作模式中,光在本發明立體顯示器每一層的偏振方向的示意圖。如第6A圖所示,本發明的立體顯示器由下到上為偏振轉換層601、液晶顯示面板的液晶層602、相位延遲層603、偏振主動式微透鏡的下表面604a、偏振主動式微透鏡的上表面604b、偏振方向控制層的下表面605a、偏振方向控制層的上表面605b以及偏光層606。每條虛線分別代表所在的表面的穿透軸方向或配向方向。於此實施例中,液晶顯示面板中的液晶層602係多域垂直排列型液晶,且受到的驅動電壓為最大,因此通過液晶顯示面板的光線的偏振方向會改變90度。同時,偏振方向控制層受到的驅動電壓為0,因此通過偏振方向控制層的光線的偏振方向也會改變90度。 In still another implementation mode, please refer to FIG. 6A, which is a schematic diagram for describing the polarization direction of light in each layer of the stereoscopic display of the present invention in a practical mode. As shown in FIG. 6A, the stereoscopic display of the present invention is a polarization conversion layer 601 from bottom to top, a liquid crystal layer 602 of a liquid crystal display panel, a phase retardation layer 603, a lower surface 604a of a polarization active microlens, and a polarization active microlens. The surface 604b, the lower surface 605a of the polarization direction controlling layer, the upper surface 605b of the polarization direction controlling layer, and the polarizing layer 606. Each dashed line represents the direction of the transmission axis or the direction of alignment of the surface on which it is located. In this embodiment, the liquid crystal layer 602 in the liquid crystal display panel is a multi-domain vertical alignment type liquid crystal, and the driving voltage is maximized, so that the polarization direction of the light passing through the liquid crystal display panel changes by 90 degrees. At the same time, the polarization direction control layer receives a driving voltage of 0, so the polarization direction of the light passing through the polarization direction control layer also changes by 90 degrees.
首先可以看到,偏振轉換層601的穿透軸配向與負X軸夾30度角,因此穿過偏振轉換層601的光線的偏振方向P61a與負X軸夾30度角。當液晶顯示面板所接受的驅動電壓值為最大時,光線通過液晶顯示面板的液晶層602及相位延遲層603後,光線的偏振方向被改變90度,因此到達偏振主動式微透鏡的下表面604a的光線的偏振方向P61b與正X軸 夾60度角。接著,當光線穿過偏振主動式微透鏡到達偏振主動式微透鏡的上表面604b時,因為偏振主動式微透鏡內的液晶的配向轉變,所以從偏振主動式微透鏡的上表面604b出射的光線的偏振方向P61c平行於Y軸。隨後,光線從偏振方向控制層的下表面605a射入,而從偏振方向控制層的上表面605b射出而到達偏光層606。當偏振方向控制層未施加電壓時,光線的偏振方向P61d旋轉90度而平行於X軸,因此與偏光層的穿透軸配向平行,因此,穿過偏光層的光線的比例為最大,此即為亮態。 First, it can be seen that the transmission axis alignment of the polarization conversion layer 601 is at a 30 degree angle to the negative X axis, so that the polarization direction P 61a of the light passing through the polarization conversion layer 601 is 30 degrees from the negative X axis. When the value of the driving voltage received by the liquid crystal display panel is maximum, after the light passes through the liquid crystal layer 602 and the phase retardation layer 603 of the liquid crystal display panel, the polarization direction of the light is changed by 90 degrees, and thus reaches the lower surface 604a of the polarization active microlens. The polarization direction P 61b of the light is at a 60 degree angle to the positive X axis. Then, when the light passes through the polarization active microlens to reach the upper surface 604b of the polarization active microlens, the polarization direction of the light emitted from the upper surface 604b of the polarization active microlens is due to the alignment transition of the liquid crystal in the polarization active microlens. 61c is parallel to the Y axis. Subsequently, light is incident from the lower surface 605a of the polarization direction controlling layer, and is emitted from the upper surface 605b of the polarization direction controlling layer to reach the polarizing layer 606. When no voltage is applied to the polarization direction control layer, the polarization direction P 61d of the light is rotated by 90 degrees and parallel to the X axis, and thus is aligned with the transmission axis of the polarizing layer, so that the proportion of light passing through the polarizing layer is maximum. It is bright.
於更一實作模式中,請參見第6B圖,第6B圖係用以描述一實作模式中,光在本發明立體顯示器每一層的偏振方向的示意圖。如第6B圖所示,本發明的立體顯示器由下到上為偏振轉換層601、液晶顯示面板的液晶層602、相位延遲層603、偏振主動式微透鏡的下表面604a、偏振主動式微透鏡的上表面604b、偏振方向控制層的下表面605a、偏振方向控制層的上表面605b以及偏光層606。每條虛線分別代表所在的表面的穿透軸方向或配向方向。於此實施例中,液晶顯示面板中的液晶層602係多域垂直排列型液晶,且受到的驅動電壓為0,因此通過液晶顯示面板的光線的偏振方向不會改變。同時,偏振方向控制層受到的驅動電壓為0,因此通過偏振方向控制層的光線的偏振方向會改變90度。 In a more practical mode, please refer to FIG. 6B, which is a schematic diagram for describing the polarization direction of light in each layer of the stereoscopic display of the present invention in a practical mode. As shown in FIG. 6B, the stereoscopic display of the present invention is a polarization conversion layer 601 from bottom to top, a liquid crystal layer 602 of a liquid crystal display panel, a phase retardation layer 603, a lower surface 604a of a polarization active microlens, and a polarization active microlens. The surface 604b, the lower surface 605a of the polarization direction controlling layer, the upper surface 605b of the polarization direction controlling layer, and the polarizing layer 606. Each dashed line represents the direction of the transmission axis or the direction of alignment of the surface on which it is located. In this embodiment, the liquid crystal layer 602 in the liquid crystal display panel is a multi-domain vertical alignment type liquid crystal, and the driving voltage is 0, so the polarization direction of the light passing through the liquid crystal display panel does not change. At the same time, the polarization direction control layer receives a driving voltage of 0, so the polarization direction of the light passing through the polarization direction control layer changes by 90 degrees.
首先可以看到,偏振轉換層601的穿透軸配向與 負X軸夾30度角,因此穿過偏振轉換層601的光線的偏振方向P62a與負X軸夾30度角。當液晶顯示面板所接受的驅動電壓值為0時,光線通過液晶顯示面板的液晶層602及相位延遲層603後,光線的偏振方向不被改變,因此到達偏振主動式微透鏡的下表面604a的光線的偏振方向P62b與負X軸夾30度角。接著,當光線穿過偏振主動式微透鏡到達偏振主動式微透鏡的上表面604b時,因為偏振主動式微透鏡內的液晶的配向轉變,所以從偏振主動式微透鏡的上表面604b出射的光線的偏振方向P62c平行於X軸。隨後,光線從偏振方向控制層的下表面605a射入,而從偏振方向控制層的上表面605b射出而到達偏光層606。當偏振方向控制層未施加電壓時,光線的偏振方向P62d旋轉90度而平行於Y軸,因此與偏光層的穿透軸配向正交,因此,穿過偏光層的光線的比例為0,此即為暗態。 First, it can be seen that the transmission axis alignment of the polarization conversion layer 601 is at a 30 degree angle with the negative X axis, so that the polarization direction P 62a of the light passing through the polarization conversion layer 601 is 30 degrees from the negative X axis. When the driving voltage value received by the liquid crystal display panel is 0, after the light passes through the liquid crystal layer 602 and the phase retardation layer 603 of the liquid crystal display panel, the polarization direction of the light is not changed, and thus the light reaching the lower surface 604a of the polarization active microlens is obtained. The polarization direction P 62b is at a 30 degree angle to the negative X axis. Then, when the light passes through the polarization active microlens to reach the upper surface 604b of the polarization active microlens, the polarization direction of the light emitted from the upper surface 604b of the polarization active microlens is due to the alignment transition of the liquid crystal in the polarization active microlens. 62c is parallel to the X axis. Subsequently, light is incident from the lower surface 605a of the polarization direction controlling layer, and is emitted from the upper surface 605b of the polarization direction controlling layer to reach the polarizing layer 606. When no voltage is applied to the polarization direction control layer, the polarization direction P 62d of the light is rotated by 90 degrees and parallel to the Y axis, so that it is orthogonal to the transmission axis of the polarizing layer, and therefore, the ratio of the light passing through the polarizing layer is 0. This is the dark state.
第二實施例中3D顯示器於3D模式下的情形穿透率-電壓曲線如第6C圖所示,當穿透率到達飽和值(最大值)時為亮態,其操作模式如第6A圖及其敘述所示,穿透率為零時為暗態,其操作模式如第6B圖及其敘述所示。 In the second embodiment, the case of the 3D display in the 3D mode has a transmittance-voltage curve as shown in FIG. 6C. When the transmittance reaches a saturation value (maximum value), it is in a bright state, and its operation mode is as shown in FIG. 6A and As shown in the description, the transmittance is zero when the transmittance is zero, and the operation mode is as shown in Fig. 6B and its description.
於另一實作模式中,請參見第7A圖,第7A圖係用以描述一實作模式中,光在本發明立體顯示器每一層的偏振方向的示意圖。如第7A圖所示,本發明的立體顯示器由下到上為偏振轉換層701、液晶顯示面板的液晶層702、相位 延遲層703、偏振主動式微透鏡的下表面704a、偏振主動式微透鏡的上表面704b、偏振方向控制層的下表面705a、偏振方向控制層的上表面705b以及偏光層706。每條虛線分別代表所在的表面的穿透軸方向或配向方向。於此實施例中,液晶顯示面板中的液晶層702係多域垂直排列型液晶,且受到的驅動電壓為最大,因此通過液晶顯示面板的光線的偏振方向會改變90度。同時,偏振方向控制層受到的驅動電壓為最大,因此通過偏振方向控制層的光線的偏振方向不會改變。 In another implementation mode, please refer to FIG. 7A, which is a schematic diagram for describing the polarization direction of light in each layer of the stereoscopic display of the present invention in an implementation mode. As shown in FIG. 7A, the stereoscopic display of the present invention is a polarization conversion layer 701 from bottom to top, a liquid crystal layer 702 of a liquid crystal display panel, and a phase. The retardation layer 703, the lower surface 704a of the polarization active microlens, the upper surface 704b of the polarization active microlens, the lower surface 705a of the polarization direction control layer, the upper surface 705b of the polarization direction control layer, and the polarizing layer 706. Each dashed line represents the direction of the transmission axis or the direction of alignment of the surface on which it is located. In this embodiment, the liquid crystal layer 702 in the liquid crystal display panel is a multi-domain vertical alignment type liquid crystal, and the driving voltage is maximized, so that the polarization direction of the light passing through the liquid crystal display panel changes by 90 degrees. At the same time, the polarization direction control layer receives the maximum driving voltage, so the polarization direction of the light passing through the polarization direction control layer does not change.
首先可以看到,偏振轉換層701的穿透軸配向與負X軸夾30度角,因此穿過偏振轉換層701的光線的偏振方向P71a與負X軸夾30度角。當液晶顯示面板所接受的驅動電壓值為最大時,光線通過液晶顯示面板的液晶層702及相位延遲層703後,光線的偏振方向被改變90度,因此到達偏振主動式微透鏡的下表面704a的光線的偏振方向P71b與正X軸夾60度角。接著,當光線穿過偏振主動式微透鏡到達偏振主動式微透鏡的上表面704b時,因為偏振主動式微透鏡內的液晶的配向轉變,所以從偏振主動式微透鏡的上表面704b出射的光線的偏振方向P71c平行於Y軸。隨後,光線從偏振方向控制層的下表面705a射入,而從偏振方向控制層的上表面705b射出而到達偏光層706。當偏振方向控制層施加最大電壓時,光線的偏振方向P71d不旋轉而仍平行於Y軸,因此與偏光層的穿透軸配向正交,因此,穿過偏光層的光線的比例為 0,此即為暗態。 First, it can be seen that the transmission axis alignment of the polarization conversion layer 701 is at a 30 degree angle with the negative X axis, so that the polarization direction P 71a of the light passing through the polarization conversion layer 701 is at a 30 degree angle with the negative X axis. When the value of the driving voltage received by the liquid crystal display panel is maximum, after the light passes through the liquid crystal layer 702 and the phase retardation layer 703 of the liquid crystal display panel, the polarization direction of the light is changed by 90 degrees, and thus reaches the lower surface 704a of the polarization active microlens. The polarization direction P 71b of the light is at a 60 degree angle to the positive X axis. Then, when the light passes through the polarization active microlens to the upper surface 704b of the polarization active microlens, the polarization direction of the light emitted from the upper surface 704b of the polarization active microlens is due to the alignment transition of the liquid crystal in the polarization active microlens. 71c is parallel to the Y axis. Subsequently, light is incident from the lower surface 705a of the polarization direction controlling layer, and is emitted from the upper surface 705b of the polarization direction controlling layer to reach the polarizing layer 706. When the polarization direction control layer applies the maximum voltage, the polarization direction P 71d of the light does not rotate but is still parallel to the Y axis, and thus is orthogonal to the transmission axis of the polarizing layer, and therefore, the ratio of the light passing through the polarizing layer is 0, This is the dark state.
於更一實作模式中,請參見第7B圖,第7B圖係用以描述一實作模式中,光在本發明每一層的上表面及下表面的偏振方向的示意圖。如第7B圖所示,本發明的立體顯示器由下到上為偏振轉換層701、液晶顯示面板的液晶層702、相位延遲層703、偏振主動式微透鏡的下表面704a、偏振主動式微透鏡的上表面704b、偏振方向控制層的下表面705a、偏振方向控制層的上表面705b以及偏光層706。每條虛線分別代表所在的表面的穿透軸方向或配向方向。於此實施例中,液晶顯示面板中的液晶層702係多域垂直排列型液晶,且受到的驅動電壓為0,因此通過液晶顯示面板的光線的偏振方向不會改變。同時,偏振方向控制層受到的驅動電壓為最大,因此通過偏振方向控制層的光線的偏振方向不會改變。 In a more practical mode, please refer to FIG. 7B, which is a schematic diagram for describing the polarization directions of light on the upper and lower surfaces of each layer of the present invention in a practical mode. As shown in FIG. 7B, the stereoscopic display of the present invention is a polarization conversion layer 701 from bottom to top, a liquid crystal layer 702 of a liquid crystal display panel, a phase retardation layer 703, a lower surface 704a of a polarization active microlens, and a polarization active microlens. The surface 704b, the lower surface 705a of the polarization direction controlling layer, the upper surface 705b of the polarization direction controlling layer, and the polarizing layer 706. Each dashed line represents the direction of the transmission axis or the direction of alignment of the surface on which it is located. In this embodiment, the liquid crystal layer 702 in the liquid crystal display panel is a multi-domain vertical alignment type liquid crystal, and the driving voltage is 0, so the polarization direction of the light passing through the liquid crystal display panel does not change. At the same time, the polarization direction control layer receives the maximum driving voltage, so the polarization direction of the light passing through the polarization direction control layer does not change.
首先可以看到,偏振轉換層701的穿透軸配向與負X軸夾30度角,因此穿過偏振轉換層701的光線的偏振方向P72a與負X軸夾30度角。當液晶顯示面板所接受的驅動電壓值為0時,光線通過液晶顯示面板的液晶層702及相位延遲層703後,光線的偏振方向不被改變,因此到達偏振主動式微透鏡的下表面704a的光線的偏振方向P72b與負X軸夾30度角。接著,當光線穿過偏振主動式微透鏡到達偏振主動式微透鏡的上表面704b時,因為偏振主動式微透鏡內的液晶的配向轉變,所以從偏振主動式微透鏡的上表面704b出射的光 線的偏振方向P72c平行於X軸。隨後,光線從偏振方向控制層的下表面705a射入,而從偏振方向控制層的上表面705b射出而到達偏光層706。當偏振方向控制層施加最大電壓時,光線的偏振方向P72d不旋轉而仍平行於X軸,因此與偏光層的穿透軸配向平行,因此,穿過偏光層的光線的比例最大,此即為亮態。 First, it can be seen that the transmission axis alignment of the polarization conversion layer 701 is at a 30 degree angle with the negative X axis, so that the polarization direction P 72a of the light passing through the polarization conversion layer 701 is at a 30 degree angle with the negative X axis. When the driving voltage value received by the liquid crystal display panel is 0, after the light passes through the liquid crystal layer 702 and the phase retardation layer 703 of the liquid crystal display panel, the polarization direction of the light is not changed, and thus the light reaching the lower surface 704a of the polarization active microlens is obtained. The polarization direction P 72b is at a 30 degree angle to the negative X axis. Then, when the light passes through the polarization active microlens to the upper surface 704b of the polarization active microlens, the polarization direction of the light emitted from the upper surface 704b of the polarization active microlens is due to the alignment transition of the liquid crystal in the polarization active microlens. 72c is parallel to the X axis. Subsequently, light is incident from the lower surface 705a of the polarization direction controlling layer, and is emitted from the upper surface 705b of the polarization direction controlling layer to reach the polarizing layer 706. When the polarization direction control layer applies the maximum voltage, the polarization direction P 72d of the light does not rotate but is still parallel to the X axis, and thus is parallel to the alignment axis of the polarization layer, so that the proportion of light passing through the polarizing layer is the largest, that is, It is bright.
第二實施例中3D顯示器於2D模式下的情形穿透率-電壓曲線如第7C圖所示,當穿透率到達飽和值(最大值)時為亮態,其操作模式如第7B圖及其敘述所示,穿透率為零時為暗態,其操作模式如第7A圖及其敘述所示。 In the second embodiment, the case of the 3D display in the 2D mode has a transmittance-voltage curve as shown in FIG. 7C. When the transmittance reaches a saturation value (maximum value), it is in a bright state, and its operation mode is as shown in FIG. 7B and As shown in the description, the transmittance is zero when the transmittance is zero, and the operation mode is as shown in Fig. 7A and its description.
於前述多個實施例中,偏振轉換層11a的穿透軸配向與偏振主動式微透鏡15的下表面配向27可以平行也可以正交。此外,偏光層17的穿透軸配向可以正交也可以平行於偏振主動式微透鏡15的透鏡配向25。因此偏振轉換層11a的穿透軸配向與偏光層17的穿透軸配向可以相差一個第一角度。 In the foregoing various embodiments, the transmission axis alignment of the polarization conversion layer 11a may be parallel or orthogonal to the lower surface alignment 27 of the polarization active microlens 15. Further, the transmission axis alignment of the polarizing layer 17 may be orthogonal or parallel to the lens alignment 25 of the polarization active microlens 15. Therefore, the transmission axis alignment of the polarization conversion layer 11a and the transmission axis alignment of the polarization layer 17 may differ by a first angle.
藉由前述立體顯示器,由於增加相位延遲層11b於液晶顯示面板13和偏振主動式微透鏡15之間,並使進入液晶顯示面板13的第一偏振光的偏振型態是圓偏振,因此從液晶顯示面板13出射的第二偏振光也會是圓偏振,而後經過相位延遲層11b後出射的第三偏振光是線性偏振。因此由橢圓偏振光造成的暗態漏光以及亮態亮度不足的問題得以解 決。 With the stereoscopic display, since the phase retardation layer 11b is added between the liquid crystal display panel 13 and the polarization active microlens 15, and the polarization state of the first polarized light entering the liquid crystal display panel 13 is circularly polarized, the liquid crystal display is displayed. The second polarized light emitted from the panel 13 is also circularly polarized, and the third polarized light that is emitted after passing through the phase retardation layer 11b is linearly polarized. Therefore, the problem of dark state light leakage caused by elliptically polarized light and insufficient brightness of bright state is solved. Determined.
雖然本發明以前述的實施例揭露如上,然其並非用以限定本發明。在不脫離本發明的精神和範圍內,所為的更動與潤飾,均屬本發明的專利保護範圍。關於本發明所界定的保護範圍請參考所附的申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. The modifications and refinements of the present invention are within the scope of the patent protection of the present invention without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.
1‧‧‧立體顯示器 1‧‧‧ Stereoscopic display
11a‧‧‧偏振轉換層 11a‧‧‧Polarization conversion layer
13‧‧‧液晶顯示面板 13‧‧‧LCD panel
131‧‧‧液晶層 131‧‧‧Liquid layer
133‧‧‧濾色片層 133‧‧‧ color filter layer
135‧‧‧上基板 135‧‧‧Upper substrate
137‧‧‧下基板 137‧‧‧lower substrate
11b‧‧‧相位延遲層 11b‧‧‧ phase retardation layer
15‧‧‧偏振主動式微透鏡 15‧‧‧Polarized Active Microlens
17‧‧‧偏光層 17‧‧‧ polarizing layer
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102138323A TWI533032B (en) | 2013-10-23 | 2013-10-23 | Three-dimensional display device |
CN201310724244.XA CN103777360B (en) | 2013-10-23 | 2013-12-18 | three-dimensional display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102138323A TWI533032B (en) | 2013-10-23 | 2013-10-23 | Three-dimensional display device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201516472A TW201516472A (en) | 2015-05-01 |
TWI533032B true TWI533032B (en) | 2016-05-11 |
Family
ID=50569793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102138323A TWI533032B (en) | 2013-10-23 | 2013-10-23 | Three-dimensional display device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103777360B (en) |
TW (1) | TWI533032B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI829399B (en) * | 2022-10-21 | 2024-01-11 | 達擎股份有限公司 | Naked-vision three-dimensional display |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7242524B2 (en) * | 2003-11-25 | 2007-07-10 | Pc Mirage, Llc | Optical system for forming a real image in space |
KR100813977B1 (en) * | 2005-07-08 | 2008-03-14 | 삼성전자주식회사 | High resolution 2D-3D switchable autostereoscopic display apparatus |
KR100852758B1 (en) * | 2006-09-14 | 2008-08-18 | 한국과학기술연구원 | Image display system |
JP5018222B2 (en) * | 2007-05-09 | 2012-09-05 | セイコーエプソン株式会社 | Directional display |
CN102789065A (en) * | 2012-08-13 | 2012-11-21 | 京东方科技集团股份有限公司 | 3D (three-dimensional) display device and 3D system |
-
2013
- 2013-10-23 TW TW102138323A patent/TWI533032B/en not_active IP Right Cessation
- 2013-12-18 CN CN201310724244.XA patent/CN103777360B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
TW201516472A (en) | 2015-05-01 |
CN103777360B (en) | 2016-02-03 |
CN103777360A (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI414823B (en) | Three-dimensional display device, fabricating method and contraol method thereof | |
US10690990B2 (en) | Display device and display method | |
JP3452470B2 (en) | display | |
US8922724B2 (en) | Active shutter glasses and three-dimensional image recognition unit | |
JP3899099B2 (en) | Display device | |
WO2019205995A1 (en) | Display device, optical system and virtual reality head-mounted display device | |
US20210026154A1 (en) | Display system capable of switching display modes | |
US20120268816A1 (en) | Fresnel lens structure and 2d/3d image switching display apparatus using the same | |
US9210412B2 (en) | Active shutter glasses and a stereoscopic image projection system wherein viewing angles of a shutter section for the left and right eyes are wider on right and left sides than on upper and lower sides | |
WO2015070552A1 (en) | Liquid crystal lens and liquid crystal glasses | |
CN106932948A (en) | reflecting screen device and three-dimensional display system | |
CA3159693A1 (en) | Near-eye display with array optics | |
Lee et al. | 72‐4: Switchable lens based on cycloidal diffractive waveplate for AR and VR applications | |
TW201248273A (en) | Display apparatus and method for displaying images | |
TWI533032B (en) | Three-dimensional display device | |
JP2013148865A5 (en) | ||
WO2021173665A1 (en) | Digitally reconfigurable neutral density filter | |
KR102303956B1 (en) | Switchable polarization lens, the method of manufacturing the same, and 2-dimensional and 3-dimensional image display device using the same | |
US20190384068A1 (en) | Display device | |
CN104412150B (en) | Display device | |
US20220342274A1 (en) | Fast electroactive lens switching systems and methods | |
US10690926B1 (en) | Near-eye augmented reality device | |
TW202401082A (en) | Virtual reality display | |
Li et al. | Depth-Fused AR Display Using Broadband Pancharatnam-Berry Phase Lenses | |
KR101387830B1 (en) | Sub pannel and three dimensinaol image display having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |