TWI532337B - Hybrid orthogonal frequency division multiple access system and method - Google Patents
Hybrid orthogonal frequency division multiple access system and method Download PDFInfo
- Publication number
- TWI532337B TWI532337B TW103127085A TW103127085A TWI532337B TW I532337 B TWI532337 B TW I532337B TW 103127085 A TW103127085 A TW 103127085A TW 103127085 A TW103127085 A TW 103127085A TW I532337 B TWI532337 B TW I532337B
- Authority
- TW
- Taiwan
- Prior art keywords
- information
- subcarrier group
- mapped
- frequency division
- multiple access
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/005—Interference mitigation or co-ordination of intercell interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/02—Channels characterised by the type of signal
- H04L5/023—Multiplexing of multicarrier modulation signals
- H04L5/026—Multiplexing of multicarrier modulation signals using code division
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2605—Symbol extensions, e.g. Zero Tail, Unique Word [UW]
- H04L27/2607—Cyclic extensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/02—Channels characterised by the type of signal
- H04L5/023—Multiplexing of multicarrier modulation signals
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
- Transmitters (AREA)
- Television Systems (AREA)
Description
本發明與無線通信系統有關。更特別的,本發明與一種混合正交分頻多重存取系統及方法有關。 The present invention is related to wireless communication systems. More particularly, the present invention relates to a hybrid orthogonal frequency division multiple access system and method.
未來的無線通信系統將預期提供像是對於用戶無線網際網路存取的廣帶服務。這種廣帶服務需要遍及一無線通道的可靠及高處理能力傳輸,其通常具有時間分散性及頻率選擇性。該無線通道則受到限制頻譜與多路徑凋零所造成內部符號干擾(ISI)的限制。對於下一代無線通信網路而言,正交分頻多工(OFDM)與正交分頻多重存取(OFDMA)則是最有希望的解答。 Future wireless communication systems will be expected to provide broadband services like access to the user's wireless Internet. This wideband service requires reliable and high throughput transmission over a wireless channel, which is typically time displeased and frequency selective. The wireless channel is limited by internal symbol interference (ISI) caused by limited spectrum and multipath fading. For next-generation wireless communication networks, Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA) are the most promising solutions.
正交分頻多工具有高頻譜效率,因為在該正交分頻多工系統中使用的該子載波於頻率中重疊,便可遍及子載波利用一種適合的調製編碼方案(MCS)。此外,正交分頻多工的執行很簡單,因為該基帶調變與解調可以利用簡單的反轉快速複立葉轉換(IFFT)及快速複立葉轉換(FFT)操作進行。該正交分頻多工的其他優點則包含一 種簡單的接收器結構與多路徑環境中的優良強健特性。 The orthogonal frequency division multi-tool has high spectral efficiency because the subcarriers used in the orthogonal frequency division multiplexing system overlap in frequency, and a suitable modulation coding scheme (MCS) can be utilized throughout the subcarriers. In addition, the implementation of orthogonal frequency division multiplexing is simple because the baseband modulation and demodulation can be performed using simple inversion fast Fourier transform (IFFT) and fast Fourier transform (FFT) operations. Other advantages of the orthogonal frequency division multiplexing include A simple receiver structure and excellent robustness in a multipath environment.
正交分頻多工與正交分頻多重存取已經被許多無線/有線通信系統標準所採用,像是數位聲音廣播(DAB)、走地式數位聲音廣播(DAB-T)、IEEE 802.11a/g、IEEE 802.16、非同步數位用戶專線(ADSL),並且是考慮在第三代合作伙伴計畫(3GPP)長期發展(LTE)、分碼多重存取2000(CDMA 2000)發展、第四代(4G)無線通訊系統、IEEE 802.11n等等中採用。 Orthogonal frequency division multiplexing and orthogonal frequency division multiple access have been adopted by many wireless/wireline communication system standards, such as digital sound broadcasting (DAB), digital terrestrial sound broadcasting (DAB-T), IEEE 802.11a. /g, IEEE 802.16, Asynchronous Digital Subscriber Line (ADSL), and is considered for the third generation of Partnership Project (3GPP) Long Term Development (LTE), Code Division Multiple Access 2000 (CDMA 2000) development, fourth generation (4G) adopted in wireless communication systems, IEEE 802.11n, etc.
正交分頻多工與正交分頻多重存取的主要問題,是很難消除或控制內部胞元干擾,以達到一的頻率重複利用因子。胞元之間的頻率跳躍與子媒介載波分配合作方式,已經被提出以消除內部胞元干擾。然而,這兩種方法的效率都受到限制。 The main problem of orthogonal frequency division multiplexing and orthogonal frequency division multiple access is that it is difficult to eliminate or control internal cell interference to achieve a frequency reuse factor. The manner in which frequency hopping between cells and sub-media carrier allocation cooperation has been proposed to eliminate internal cell interference. However, the efficiency of both methods is limited.
本發明與一種混合正交分頻多重存取(OFDMA)系統及方法有關。該系統包含一傳輸器與一接收器。該傳輸器包含一第一展開正交分頻多重存取子組件、一第一非展開正交分頻多重存取子組件以及一第一共同子組件。該第一展開正交分頻多重存取子組件展開輸入資料並映射該展開資料至一第一子載波群組。該第一非展開正交分頻多重存取子組件映射輸入資料至一第二子載波群組。該第一共同子組件利用正交分頻多重存取傳輸映射至該第一與第二子載波群組的輸入資料。該接收器包含一第二展開正交分 頻多重存取子組件、一第二非展開正交分頻多重存取子組件以及一第二共同子組件。該第二共同子組件利用正交分頻多重存取處理接收資料,以恢復映射至該子載波的資料。該第二展開正交分頻多重存取子組件藉由將使用者資料展開於碼域中的方式恢復該第一輸入資料,而該第二非展開正交分頻多重存取子組件則用於恢復該第二輸入資料。 The present invention is related to a hybrid orthogonal frequency division multiple access (OFDMA) system and method. The system includes a transmitter and a receiver. The transmitter includes a first unfolding orthogonal frequency division multiple access sub-assembly, a first non-expansion orthogonal frequency division multiple access sub-assembly, and a first common sub-assembly. The first expanded orthogonal frequency division multiple access sub-assembly expands the input data and maps the expanded data to a first sub-carrier group. The first non-expansion orthogonal frequency division multiple access sub-assembly maps the input data to a second sub-carrier group. The first common sub-assembly maps input data of the first and second sub-carrier groups by orthogonal frequency division multiple access transmission. The receiver includes a second expanded orthogonal segment a frequency multiple access sub-assembly, a second non-expansion orthogonal frequency division multiple access sub-assembly, and a second common sub-component. The second common sub-assembly receives data using orthogonal frequency division multiple access processing to recover data mapped to the sub-carrier. The second unfolding orthogonal frequency division multiple access sub-assembly recovers the first input data by expanding user data in the code domain, and the second non-expansion orthogonal frequency division multiple access sub-component is used The second input data is restored.
此後,術語“傳輸器”與“接收器”包含但不侷限為一種使用者配置(UE)、無線傳輸接收單元(WTRU)、移動站、固定式或移動式用戶單元、呼叫器、節點B、基站、位置控制器、存取點,或是任何具有在無線環境中操作能力的裝置形式。 Hereinafter, the terms "transmitter" and "receiver" include, but are not limited to, a user configuration (UE), a wireless transmission receiving unit (WTRU), a mobile station, a fixed or mobile subscriber unit, a pager, a node B, A base station, location controller, access point, or any form of device that has the ability to operate in a wireless environment.
本發明的特徵可以組合於一集成電路(IC)之中,或是配置在包括許多互連單元的電路之中。 Features of the invention may be combined in an integrated circuit (IC) or in a circuit comprising a plurality of interconnected units.
本發明可以應用於任何利用正交分頻多重存取(或正交分頻多工)及/或分碼多重存取(CDMA)的無線通信系統,像是IEEE 802.11、IEEE 802.16、第三代(3G)胞元式系統、第四代(4G)系統、衛星通信系統等等。 The present invention can be applied to any wireless communication system using orthogonal frequency division multiple access (or orthogonal frequency division multiplexing) and/or code division multiple access (CDMA), such as IEEE 802.11, IEEE 802.16, and third generation. (3G) cell-based systems, fourth-generation (4G) systems, satellite communication systems, and the like.
10‧‧‧混合正交分頻多重存取系統 10‧‧‧Hybrid Orthogonal Frequency Division Multiple Access System
101‧‧‧輸入資料 101‧‧‧ Input data
103、103’、105‧‧‧晶片 103, 103', 105‧‧‧ wafer
111‧‧‧輸入位元 111‧‧‧Input bits
113‧‧‧序列位元 113‧‧‧Sequence bits
115、127、201、203、209、212‧‧‧資料 115, 127, 201, 203, 209, 212‧‧‧ Information
123‧‧‧時間域資料 123‧‧‧Time domain information
125、217‧‧‧串列資料 125, 217‧‧‧Listed data
202‧‧‧多工器(第2圖) 202‧‧‧Multiplexer (Fig. 2)
204‧‧‧展開碼(第2圖) 204‧‧‧Expansion code (Fig. 2)
205‧‧‧序列資料 205‧‧‧Sequence data
207‧‧‧頻率域資料 207‧‧‧ Frequency Domain Information
211‧‧‧使用者資料 211‧‧‧ User data
500‧‧‧時間頻率耙式組合器 500‧‧‧Time frequency 组合 type combiner
502‧‧‧解展開器 502‧‧‧Expander
506‧‧‧多工器 506‧‧‧Multiplexer
508‧‧‧共軛 508‧‧‧ Conjugation
510‧‧‧加總乘法運算輸出 510‧‧‧Additional multiplication output
514‧‧‧加總輸出 514‧‧‧ total output
518‧‧‧解展開輸出 518‧‧‧Expanded output
CP‧‧‧循環前綴 CP‧‧‧ cyclic prefix
IDFT‧‧‧反轉離散複立葉轉換 IDFT‧‧‧Reversible Discrete Fourier Transform
OFDMA‧‧‧正交分頻多重存取 OFDMA‧‧ Orthogonal Frequency Division Multiple Access
P/S‧‧‧序列轉串列 P/S‧‧‧Sequences
s0~s9‧‧‧子載波 S0~s9‧‧‧ subcarrier
S/P‧‧‧串列轉序列 S/P‧‧‧ tandem sequence
T0~T6‧‧‧時間期間 During the period of T0~T6‧‧‧
第1圖為根據本發明所配置的示範混合正交分頻多重存取(OFDMA)系統塊狀圖。 1 is a block diagram of an exemplary hybrid orthogonal frequency division multiple access (OFDMA) system configured in accordance with the present invention.
第2圖顯示根據本發明頻率域展開與子載波映射的範例。 Figure 2 shows an example of frequency domain expansion and subcarrier mapping in accordance with the present invention.
第3圖顯示根據本發明展開與子載波映射的另一範例。 Figure 3 shows another example of unfolding and subcarrier mapping in accordance with the present invention.
第4圖顯示根據本發明進行子載波時間頻率跳躍的範例。 Figure 4 shows an example of subcarrier time frequency hopping in accordance with the present invention.
第5圖為根據本發明所配置的示範時間頻率耙式組合器塊狀圖。 Figure 5 is a block diagram of an exemplary time-frequency 组合 combiner configured in accordance with the present invention.
第1圖為根據本發明所的示範混合正交分頻多重存取系統10塊狀圖,其包含一傳輸器100與一接收器200。該傳輸器100包含一展開正交分頻多重存取子組件130、一非展開正交分頻多重存取子組件140以及一共同子組件150。在該展開正交分頻多重存取子組件130中,(用於一或多個使用者的)輸入資料101是利用一種展開碼展開,以產生多數個晶片103,而該晶片103接著被映射至子載波。在該非展開正交分頻多重存取子組件140中,(用於一或多個使用者的)輸入位元111則不進行展開便映射至子載波。 1 is a block diagram of an exemplary hybrid orthogonal frequency division multiple access system 10 in accordance with the present invention, including a transmitter 100 and a receiver 200. The transmitter 100 includes an unfolded orthogonal frequency division multiple access sub-assembly 130, a non-expansion orthogonal frequency division multiple access sub-assembly 140, and a common sub-assembly 150. In the expanded orthogonal frequency division multiple access sub-assembly 130, the input material 101 (for one or more users) is developed using a development code to generate a plurality of wafers 103, which are then mapped. To subcarriers. In the non-expansion orthogonal frequency division multiple access sub-assembly 140, input bits 111 (for one or more users) are mapped to subcarriers without expansion.
該展開正交分頻多重存取子組件130包含一展開器102與一第一子載波展開映射單元104。該非展開正交分頻多重存取子組件140包含一串列轉序列(S/P)轉換器112與一第二子載波映射單元114。該共同子組件150包含一N點反轉離散複立葉轉換(IDFT)處理器122、一序列轉串列(P/S)轉換器124與一循環前綴(CP)插入單 元126。 The expanded orthogonal frequency division multiple access sub-assembly 130 includes a spreader 102 and a first subcarrier expansion mapping unit 104. The non-expansion orthogonal frequency division multiple access sub-assembly 140 includes a serial sequence repeat (S/P) converter 112 and a second subcarrier mapping unit 114. The common sub-assembly 150 includes an N-point inverted discrete Fourier transform (IDFT) processor 122, a sequence-to-serial column (P/S) converter 124, and a cyclic prefix (CP) insertion list. Yuan 126.
假設在該系統中具有N個子載波,且在同時間有K個不同使用者在該系統中通信,在K個使用者之間,便透過該展開正交分頻多重存取子組件130傳輸資料至K s 個使用者。在該展開正交分頻多重存取子組件130與該非展開正交分頻多重存取子組件140中所使用的子載波數目分別為N s 與N o 。N s 與N o 的數值滿足0 N s N、0 N o N與N s +N o N的條件。 Suppose there are N subcarriers in the system, and there are K different users communicating in the system at the same time, and between the K users, the data is transmitted through the expanded orthogonal frequency division multiple access sub-assembly 130. To K s users. In the deployed multiple access OFDM sub-assembly 130 to expand the non-orthogonal multiple access number of sub-carrier frequency sub-assembly 140 is used with the N s N o, respectively. The values of N s and N o satisfy 0 N s N , 0 N o N and N s + N o The condition of N.
該輸入資料101由該展開器102展開至為多數個晶片103。該晶片103則由該子載波展開映射單元104映射至該N s 個子載波。該展開可以在時間域中、頻率域中或在兩者之中執行。對一特定使用者而言,在該時間域中與該頻率域中的展開因子則分別為SF t 與SF f 。對該使用者而言其聯合展開因子則為SF joint ,其等於SF t ×SF f 。當SF t =1時,該展開只在頻率域中執行,而當SF f =1時,該展開便只在時機域中執行。對於使用者i的頻率域展開則受到分配至該使用者i的子載波數目N s (i)的限制。該子載波的分配可以是靜態的或動態的。在對於每個使用者i的N s (i)=N s 情況中,該展開正交分頻多重存取則變為一種正交分頻多工。 The input data 101 is expanded by the expander 102 to a plurality of wafers 103. The chip 103 is then mapped by the subcarrier expansion mapping unit 104 to the N s subcarriers. The expansion can be performed in the time domain, in the frequency domain, or both. For a particular user, in the time domain and the frequency domain spreading factor is SF t respectively and SF f. The joint expansion factor for the user is SF joint , which is equal to SF t × SF f . When SF t =1, the expansion is performed only in the frequency domain, and when SF f =1, the expansion is performed only in the time domain. The frequency domain expansion for user i is limited by the number of subcarriers N s ( i ) assigned to the user i . The allocation of the subcarriers can be static or dynamic. In the case of N s ( i )= N s for each user i , the expanded orthogonal frequency division multiple access becomes an orthogonal frequency division multiplexing.
在該展開正交分頻多重存取子組件130中,一子載波可以映射至多於一個的使用者。在這種情況中,映射至相同子載波的兩個或多個使用者的輸入資料101則成為碼多工,並因此應該利用不同的展開碼展開。如果展開是同時在時間與頻率域中執行,在該時間域、該頻率域,或兩者 之中指定至使用者的展開碼便各不相同。 In the expanded orthogonal frequency division multiple access sub-assembly 130, one subcarrier can be mapped to more than one user. In this case, the input data 101 of two or more users mapped to the same subcarrier becomes code multiplexed and should therefore be developed with different expansion codes. If the expansion is performed simultaneously in the time and frequency domain, in the time domain, the frequency domain, or both The expansion codes assigned to the user are different.
第2圖顯示根據本發明頻率域展開與子載波映射的範例。該輸入資料101是由一多工器202以一展開碼204進行多工處理,以產生多數個晶片103’。該晶片103’由一串列轉序列轉換器206轉換為序列晶片103。該每個序列晶片103接著在傳送至該反轉離散複立葉轉換處理器122之前,都由該子載波映射單元104映射至該子載波之一。 Figure 2 shows an example of frequency domain expansion and subcarrier mapping in accordance with the present invention. The input data 101 is multiplexed by a multiplexer 202 with a development code 204 to produce a plurality of wafers 103'. The wafer 103' is converted to a sequence wafer 103 by a serial to serial converter 206. Each of the sequence wafers 103 is then mapped by the subcarrier mapping unit 104 to one of the subcarriers before being transmitted to the inverted discrete Fourier transform processor 122.
第3圖顯示根據本發明頻率域展開與子載波映射的另一範例。取代由一展開器進行展開碼的多工處理,其利用一重複器302以一晶片比率將每個輸入資料101重複多次以產生晶片103’。該晶片103’接著由一串列轉序列轉換器304轉換為序列晶片103。該每個序列晶片103接著在傳送至該反轉離散複立葉轉換處理器122之前,都由該子載波映射單元104映射至該子載波之一。 Figure 3 shows another example of frequency domain expansion and subcarrier mapping in accordance with the present invention. Instead of the multiplex processing of the unrolling code by a spreader, each repeater 302 is used to repeat each input data 101 at a wafer rate to produce a wafer 103'. The wafer 103' is then converted to a sequence wafer 103 by a serial to serial sequence converter 304. Each of the sequence wafers 103 is then mapped by the subcarrier mapping unit 104 to one of the subcarriers before being transmitted to the inverted discrete Fourier transform processor 122.
替代的,當輸入資料在該時間域中展開時,每個輸入資料都由一展開器展開以產生多數個晶片串流,而該晶片串流接著被映射至子載波。在這種情況中,該時間域展開也可以利用簡單地重複該輸入資料,而不使用一展開碼的方式執行。 Alternatively, when the input data is expanded in the time domain, each input data is expanded by a expander to produce a plurality of wafer streams, which are then mapped to the subcarriers. In this case, the time domain expansion can also be performed by simply repeating the input data without using a development code.
共同導引可以在該展開正交分頻多重存取子組件130中使用的子載波上傳輸。為了與其他使用者資料進行分辨,也可以將共同導引展開。 The common pilot can be transmitted on the subcarriers used in the spread orthogonal frequency division multiple access sub-assembly 130. In order to distinguish from other user data, the common guidance can also be expanded.
再次參考第1圖,在該非展開正交分頻多重存取子組件140中,不同使用者的輸入位元111由該串列轉序列轉 換器112轉換為序列位元113。該子載波映射單元114分配使用者至一或多個子載波,因此每個子載波最多由一個使用者所使用,且來自每個使用者的位元則由該子載波映射單元映射至分配至該使用者的子載波。在子方法中,使用者在該頻率域中為多工的。分配至使用者i的子載波數目則標示為N o (i),且0 N o (i) N o 。該子載波分配可以是靜態的或動態的。 Referring again to FIG. 1, in the non-expansion orthogonal frequency division multiple access sub-assembly 140, input bits 111 of different users are converted by the serial to serial sequence converter 112 into sequence bits 113. The subcarrier mapping unit 114 allocates the user to one or more subcarriers, so each subcarrier is used by at most one user, and the bit from each user is mapped by the subcarrier mapping unit to the use. Subcarriers. In the sub-method, the user is multiplexed in the frequency domain. The number of subcarriers allocated to user i is labeled as N o ( i ), and 0 N o ( i ) N o . This subcarrier allocation can be static or dynamic.
根據本發明,該非展開正交分頻多重存取子組件140可以以一種擬隨機方式於每個胞元中執行時間頻率跳躍。藉由時間域跳躍,在一胞元中進行傳輸的使用者則隨時間而改變(換言之,在一或多個正交分頻多工符號或圖框方面)。藉由頻率域跳躍,分配至一胞元中進行傳輸使用者的子載波,便在每一個或數個正交分頻多工符號或圖框處進行跳躍。在此方法中,可以消除並平均在該使用者與胞元之間的內部胞元干擾。 In accordance with the present invention, the non-expansion orthogonal frequency division multiple access sub-assembly 140 can perform time-frequency hopping in each cell in a quasi-random manner. By time domain hopping, the user transmitting in a cell changes over time (in other words, in one or more orthogonal frequency division multiplex symbols or frames). By frequency domain hopping, allocating to a cell for transmitting the user's subcarriers, jumping at each or several orthogonal frequency division multiplex symbols or frames. In this method, internal cell interference between the user and the cell can be eliminated and averaged.
第4圖顯示描述一種根據本發明的時間頻率跳躍範例,其在T0-T6的時間期間內使用10個子載波s0-s9。做為範例,在第4圖中子載波s2、s5、s8是用於展開正交分頻多重存取,而剩餘的子載波則用於非展開正交分頻多重存取。對於分配於非展開正交分頻多重存取的子載波而言,分配至使用者的子載波與時間期間是以一種擬隨機方式跳躍。舉例而言,用於使用者1的資料在T0透過s9、在T1透過s7、在T3透過s7、在T4透過s1與s9傳輸,而用於使用者2的資料則在T0透過s4、在T1透過s6、 在T2透過s3、在T4透過s0與s4傳輸。因此,其透過不同的正交分頻多工符號或圖框傳輸資料至不同的使用者,並消除內部胞元干擾。 Figure 4 shows an example of a time-frequency hopping according to the invention, which uses 10 sub-carriers s0-s9 during the time period of T0-T6. As an example, in Figure 4, subcarriers s2, s5, s8 are used to develop orthogonal frequency division multiple access, and the remaining subcarriers are used for non-expansion orthogonal frequency division multiple access. For subcarriers allocated to non-expansion orthogonal frequency division multiple access, the subcarriers allocated to the user and the time period are hopped in a quasi-random manner. For example, the data for user 1 is transmitted through s9 at T0, s7 at T1, s7 at T3, s1 and s9 at T4, and data for user 2 at S0 through s4 at T1. Through s6, It transmits through s3 at T2 and s0 and s4 at T4. Therefore, it transmits data to different users through different orthogonal frequency division multiplex symbols or frames, and eliminates internal cell interference.
再次參考第1圖,該晶片105與該資料115被提供至該反轉離散複立葉轉換處理器122。該反轉離散複立葉轉換處理器122將該晶片105與該資料115轉換為時間域資料123。該反轉離散複立葉轉換處理器122可以利用反轉快速複立葉轉換(IFFT)或等價的操作執行。該時間域資料123接著由該序列轉串列轉換器124轉換為串列資料125。接著由該循環前綴插入單元126將一循環前綴(也已知為一種護衛期間(GP))加入至該串列資料125。接著夠過該無線通道160傳輸資料127。 Referring again to FIG. 1, the wafer 105 and the data 115 are provided to the inverted discrete Fourier transform processor 122. The inverted discrete Fourier transform processor 122 converts the wafer 105 and the data 115 into time domain data 123. The inverted discrete Fourier transform processor 122 can be executed using Inverted Fast Fourier Transform (IFFT) or equivalent operations. The time domain data 123 is then converted by the serial to serial converter 124 into a serial data 125. A cyclic prefix (also known as a guard period (GP)) is then added by the cyclic prefix insertion unit 126 to the serial data 125. The wireless channel 160 is then transmitted over the data 127.
該接收器200包含用於正交分頻多重存取的一展開正交分頻多重存取子組件230、一非展開正交分頻多重存取子組件240以及一共同子組件250。該共同子組件250包含一循環前綴移除單元202、一串列轉序列轉換器204、一N點離散複立葉轉換(DFT)處理器206、一等化器208與一子載波解映射單元210。該展開正交分頻多重存取子組件230包含一碼域使用者分離單元214而該非展開正交分頻多重存取子組件240包含一序列轉串列轉換器216。 The receiver 200 includes an unrolled orthogonal frequency division multiple access sub-assembly 230, a non-expanded orthogonal frequency division multiple access sub-assembly 240, and a common sub-assembly 250 for orthogonal frequency division multiple access. The common sub-component 250 includes a cyclic prefix removal unit 202, a serial to serial sequencer 204, an N-point discrete complex leaf transform (DFT) processor 206, an equalizer 208, and a subcarrier demapping unit 210. . The expanded orthogonal frequency division multiple access sub-assembly 230 includes a code domain user separation unit 214 and the non-expansion orthogonal frequency division multiple access sub-assembly 240 includes a sequence-to-serial converter 216.
該接收器200接收透過該通道傳輸的資料201。該循環前綴移除單元202從接收資料201移除循環前綴。在循環前綴移除後,為時間域資料的資料203便由該串列轉序 列轉換器204轉換為序列資料205。該序列資料205被提供至該離散複立葉轉換處理器206,便轉換為頻率域資料207,其意味著在N個子載波上的N個序列資料。該離散複立葉轉換可以由快速複立葉轉換或等價操作執行。該頻率域資料207被提供至該等化器208,並在每個子載波執行資料等化。如同在傳統的正交分頻多工系統中,可以使用一種簡單的一階(one-tap)等化器。 The receiver 200 receives the data 201 transmitted through the channel. The cyclic prefix removal unit 202 removes the cyclic prefix from the received material 201. After the cyclic prefix is removed, the data 203 for the time domain data is forwarded by the serial sequence. Column converter 204 converts to sequence material 205. The sequence data 205 is provided to the discrete Fourier transform processor 206 for conversion to frequency domain data 207, which means N sequence data on N subcarriers. The discrete complex leaf transform can be performed by a fast Fourier transform or an equivalent operation. The frequency domain data 207 is provided to the equalizer 208 and performs data equalization on each subcarrier. As in conventional orthogonal frequency division multiplexing systems, a simple one-tap equalizer can be used.
在對每個子載波進行等化之後,對應於一特定使用者的資料便由該子載波解映射單元210分離,其是一種在該傳輸器100處由子載波展開映射單元104、114所執行的反向操作。在該非展開正交分頻多重存取子組件240中,該序列轉串列轉換器216將每個使用者資料211簡單地轉換為串列資料217。在該展開正交分頻多重存取子組件230中,在該分離子載波上的資料212則由該碼域使用者分離單元214進一步處理。根據在該傳輸器100處所做的展開方式,便在該碼域使用者分離單元214中,執行對應的使用者分離。舉例而言,如果在該傳輸器100處只在該時間域中執行該展開,便可以使用一種傳統的耙式組合器做為該碼域使用者分離單元214。如果在該傳輸器100處只在該頻率域中執行該展開,便可以使用一種傳統(頻率域)的解展開器做為該碼域使用者分離單元214。如果在該傳輸器100處於該時間域與該頻率域兩者中執行展開,便可以使用一種時間頻率耙式組合器做為該碼域使用者分離單元214。 After equalizing each subcarrier, the data corresponding to a particular user is separated by the subcarrier demapping unit 210, which is a counter performed by the subcarrier expansion mapping unit 104, 114 at the transmitter 100. To operate. In the non-expansion orthogonal frequency division multiple access sub-assembly 240, the serial to serial train converter 216 simply converts each user profile 211 into a serial data 217. In the expanded orthogonal frequency division multiple access sub-assembly 230, the data 212 on the separated subcarriers is further processed by the code domain user separation unit 214. Depending on the manner of deployment at the transmitter 100, corresponding user separation is performed in the code domain user separation unit 214. For example, if the expansion is performed only in the time domain at the transmitter 100, a conventional 组合 type combiner can be used as the code domain user separation unit 214. If the expansion is performed only in the frequency domain at the transmitter 100, a conventional (frequency domain) despreader can be used as the code domain user separation unit 214. If the transmitter 100 is performing expansion in both the time domain and the frequency domain, a time-frequency multiplexer can be used as the code domain user separation unit 214.
第5圖為根據本發明所配置的示範時間頻率耙式組合器500塊狀圖。該示範時間頻率耙式組合器500執行在時間域與頻率域兩者中的處理,以恢復在該傳輸器100處於該時間域與該頻率域兩者中展開的資料。應該注意的是該時間頻率耙式組合器500也可以利用不同的方式執行,第5圖中所提供的配置只是範例不是限制,而本發明的觀點也不侷限於第5圖中所顯示的結構。 Figure 5 is a block diagram of an exemplary time-frequency 组合 combiner 500 configured in accordance with the present invention. The exemplary time-frequency combiner 500 performs processing in both the time domain and the frequency domain to recover data that is unfolded in the time domain and the frequency domain of the transmitter 100. It should be noted that the time-frequency combiner 500 can also be implemented in different manners. The configuration provided in FIG. 5 is merely an example and is not a limitation, and the present invention is not limited to the structure shown in FIG. .
該時間頻率耙式組合器500包括一解展開器502與一耙式組合器504。對於一特定使用者而言,由第1圖中該子載波解映射單元210為了展開正交分頻多重存取子組件230所分離與收集的資料212,則被遞送至該解展開器502。該解展開器502在該子載波上執行該資料212的頻序域解展開。該解展開器502包含用來多工處理該資料212展開碼共軛508的多數個多工器506、用於加總乘法運算輸出510的加總器512、以及用於正規化該加總輸出514的正規化器516。該解展開輸出518接著由該耙式組合器504處理,以利用時間域組合的方式恢復該使用者的資料。 The time-frequency 组合 combiner 500 includes a de-expander 502 and a 组合-type combiner 504. For a particular user, the subcarrier demapping unit 210 in FIG. 1 is delivered to the despreader 502 for exploiting the separated data 212 collected by the orthogonal frequency division multiple access sub-assembly 230. The despreader 502 performs frequency domain despreading of the data 212 on the subcarriers. The despreader 502 includes a plurality of multiplexers 506 for multiplexing the data 212 expansion code conjugate 508, a summation 512 for summing the multiplication outputs 510, and for normalizing the summed output. The normalizer 516 of 514. The despread output 518 is then processed by the mashup combiner 504 to recover the user's profile using a time domain combination.
再次參考第1圖,該傳輸器100、該接收器200或兩者都可以包含多重天線,並可以在傳輸器側、接收器側或兩者處,利用多重天線執行根據本發明的混合正交分頻多重存取。 Referring again to FIG. 1, the transmitter 100, the receiver 200, or both may include multiple antennas, and may perform hybrid orthogonality in accordance with the present invention using multiple antennas on the transmitter side, the receiver side, or both Divided multiple access.
雖然本發明的特徵與元件已經在較佳實施例中以特定組合方式敘述,每個特徵與元件也可以單獨而不與本發明 的其他特徵及元件一起使用,或是與本發明其他特徵與元件一起或單獨進行不同的組合。 Although the features and elements of the present invention have been described in a particular combination of the preferred embodiments, each of the features and elements may be Other features and elements are used together or in different combinations with other features and elements of the invention.
10‧‧‧混合正交分頻多重存取系統 10‧‧‧Hybrid Orthogonal Frequency Division Multiple Access System
101‧‧‧輸入資料 101‧‧‧ Input data
103、105‧‧‧晶片 103, 105‧‧‧ wafer
111‧‧‧輸入位元 111‧‧‧Input bits
113‧‧‧序列位元 113‧‧‧Sequence bits
115、127、201、203、209、212‧‧‧資料 115, 127, 201, 203, 209, 212‧‧‧ Information
123‧‧‧時間域資料 123‧‧‧Time domain information
125、217‧‧‧串列資料 125, 217‧‧‧Listed data
205‧‧‧序列資料 205‧‧‧Sequence data
207‧‧‧頻率域資料 207‧‧‧ Frequency Domain Information
211‧‧‧使用者資料 211‧‧‧ User data
CP‧‧‧循環前綴 CP‧‧‧ cyclic prefix
IDFT‧‧‧反轉離散複立葉轉換 IDFT‧‧‧Reversible Discrete Fourier Transform
OFDMA‧‧‧正交分頻多重存取 OFDMA‧‧ Orthogonal Frequency Division Multiple Access
P/S‧‧‧序列轉串列 P/S‧‧‧Sequences
S/P‧‧‧串列轉序列 S/P‧‧‧ tandem sequence
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67387205P | 2005-04-22 | 2005-04-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201444312A TW201444312A (en) | 2014-11-16 |
TWI532337B true TWI532337B (en) | 2016-05-01 |
Family
ID=37402324
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098109628A TWI416894B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
TW103127086A TWI527437B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
TW103127085A TWI532337B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
TW095206662U TWM298282U (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system |
TW095114007A TWI455510B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
TW104144680A TWI590626B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098109628A TWI416894B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
TW103127086A TWI527437B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095206662U TWM298282U (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system |
TW095114007A TWI455510B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
TW104144680A TWI590626B (en) | 2005-04-22 | 2006-04-19 | Hybrid orthogonal frequency division multiple access system and method |
Country Status (6)
Country | Link |
---|---|
KR (4) | KR101236865B1 (en) |
CN (2) | CN101164243A (en) |
AR (3) | AR053857A1 (en) |
DE (1) | DE202006006460U1 (en) |
MY (1) | MY151888A (en) |
TW (6) | TWI416894B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100816032B1 (en) | 2007-02-13 | 2008-03-24 | 삼성전자주식회사 | Method of data transmission with iterative multi-user detection, and aparatus using the same |
KR100857907B1 (en) * | 2007-04-16 | 2008-09-10 | 한국전자통신연구원 | Apparatus and method for receive diversity for detecting random access preambles in communications system |
KR100866984B1 (en) * | 2007-04-16 | 2008-11-05 | 한국전자통신연구원 | Apparatus and method for receive diversity for detecting random access preambles in communictions system |
CN101562838B (en) * | 2008-04-15 | 2011-06-29 | 创新音速有限公司 | Method and apparatus for improving transmission time interval bundling |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08237170A (en) * | 1995-02-27 | 1996-09-13 | Kokusai Electric Co Ltd | Transmission system for spread spectrum signal and its inverse spread synchronous reception system |
JPH10107683A (en) * | 1996-09-26 | 1998-04-24 | Murata Mfg Co Ltd | Spread spectrum communication device |
US6795424B1 (en) * | 1998-06-30 | 2004-09-21 | Tellabs Operations, Inc. | Method and apparatus for interference suppression in orthogonal frequency division multiplexed (OFDM) wireless communication systems |
FR2784821B1 (en) | 1998-10-16 | 2000-12-15 | Cit Alcatel | SPECTRUM SPREAD TRANSMISSION SYSTEM WITH FILTERED MULTI-CARRIER MODULATION |
JP4119696B2 (en) * | 2001-08-10 | 2008-07-16 | 松下電器産業株式会社 | Transmitting apparatus, receiving apparatus, and wireless communication method |
US6754169B2 (en) * | 2001-12-13 | 2004-06-22 | Motorola, Inc. | Method and system of operation for a variable transmission mode multi-carrier communication system |
JP2003309533A (en) * | 2002-04-17 | 2003-10-31 | Matsushita Electric Ind Co Ltd | Wireless transmitter, wireless receiver, and method thereof |
JP3987858B2 (en) * | 2004-01-27 | 2007-10-10 | 株式会社エヌ・ティ・ティ・ドコモ | Wireless communication system, wireless transmission device, wireless reception device, and wireless communication method |
-
2006
- 2006-04-19 TW TW098109628A patent/TWI416894B/en active
- 2006-04-19 TW TW103127086A patent/TWI527437B/en active
- 2006-04-19 TW TW103127085A patent/TWI532337B/en active
- 2006-04-19 TW TW095206662U patent/TWM298282U/en not_active IP Right Cessation
- 2006-04-19 TW TW095114007A patent/TWI455510B/en active
- 2006-04-19 TW TW104144680A patent/TWI590626B/en active
- 2006-04-19 MY MYPI20061786 patent/MY151888A/en unknown
- 2006-04-20 CN CNA2006800133562A patent/CN101164243A/en active Pending
- 2006-04-21 DE DE202006006460U patent/DE202006006460U1/en not_active Expired - Lifetime
- 2006-04-21 AR ARP060101583A patent/AR053857A1/en not_active Application Discontinuation
- 2006-04-21 CN CNU2006200061222U patent/CN2935645Y/en not_active Expired - Lifetime
- 2006-04-24 KR KR1020060036910A patent/KR101236865B1/en active IP Right Grant
-
2009
- 2009-07-15 AR ARP090102673A patent/AR073183A2/en not_active Application Discontinuation
-
2010
- 2010-01-11 AR ARP100100052A patent/AR075129A2/en not_active Application Discontinuation
-
2011
- 2011-04-29 KR KR1020110041100A patent/KR101302411B1/en active IP Right Grant
-
2012
- 2012-03-28 KR KR1020120031950A patent/KR101304228B1/en active IP Right Grant
- 2012-08-22 KR KR1020120092015A patent/KR101304227B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101236865B1 (en) | 2013-03-21 |
TW201444312A (en) | 2014-11-16 |
TWM298282U (en) | 2006-09-21 |
TWI590626B (en) | 2017-07-01 |
KR101302411B1 (en) | 2013-09-02 |
TW201445915A (en) | 2014-12-01 |
TWI416894B (en) | 2013-11-21 |
KR101304227B1 (en) | 2013-09-05 |
MY151888A (en) | 2014-07-14 |
KR20060111416A (en) | 2006-10-27 |
DE202006006460U1 (en) | 2006-11-02 |
CN101164243A (en) | 2008-04-16 |
AR073183A2 (en) | 2010-10-20 |
TWI455510B (en) | 2014-10-01 |
CN2935645Y (en) | 2007-08-15 |
KR101304228B1 (en) | 2013-09-05 |
TWI527437B (en) | 2016-03-21 |
KR20120052912A (en) | 2012-05-24 |
KR20120112288A (en) | 2012-10-11 |
AR053857A1 (en) | 2007-05-23 |
TW200642341A (en) | 2006-12-01 |
AR075129A2 (en) | 2011-03-09 |
KR20110056263A (en) | 2011-05-26 |
TW201004192A (en) | 2010-01-16 |
TW201637410A (en) | 2016-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5855076B2 (en) | Hybrid orthogonal frequency division multiple access system and method | |
TWI532337B (en) | Hybrid orthogonal frequency division multiple access system and method | |
KR200421631Y1 (en) | Hybrid orthogonal frequency division multiple access system |