TWI531189B - 功率放大器單元、功率放大器模組、通訊單元、射頻發射器架構以及數位預失真校正方法 - Google Patents
功率放大器單元、功率放大器模組、通訊單元、射頻發射器架構以及數位預失真校正方法 Download PDFInfo
- Publication number
- TWI531189B TWI531189B TW103117786A TW103117786A TWI531189B TW I531189 B TWI531189 B TW I531189B TW 103117786 A TW103117786 A TW 103117786A TW 103117786 A TW103117786 A TW 103117786A TW I531189 B TWI531189 B TW I531189B
- Authority
- TW
- Taiwan
- Prior art keywords
- power amplifier
- signal
- digital
- input
- output
- Prior art date
Links
Landscapes
- Amplifiers (AREA)
- Transmitters (AREA)
Description
本發明所揭露的實施例係相關於功率放大器單元、功率放大器模組、通訊單元、射頻發射器架構以及在一射頻架構中執行數位預失真校正的方法。
隨著深亞微米CMOS(互補金屬氧化物半導體)工藝的不斷進步,數位電路變得更小且更省電。然而,深亞微米CMOS工藝對改變類比電路的大小並不是特別有效。因此,在很多設備(如射頻(RF))發射器中,為了能夠獲得更多使用深亞微米CMOS工藝之好處,總是希望能盡可能多地(例如在數位訊號處理算法的協助下)移除類比元件或類比電路。
此外,很多傳統的射頻發射器使用線性功率放大器(PA)。由於線性功率放大器的效率通常較低,導致此類傳統的射頻發射器的效率也較低。因此,與具有較高效率的開關模式功率放大器相比,在射頻發射器中使用開關模式功率放大器替代傳統的線性功率放大器更具有吸引力。
因此,需要提供一種射頻發射器,其能夠藉由數位處理算法的援助,利用開關模式功率放大器,來減少功率放大器的尺寸以及提高功率放大器的效率。然而,開關模式功率放大器通常表現出高度非線性的輸入輸出關
係,而且往往需要採用雜訊整形技術,以滿足各種無線標準並存的嚴格要求。
數位極發射器係採用開關模式功率放大器的一種習知發射器設計,其能夠汲取深亞微米CMOS工藝技術的優勢。因此,這種數位極發射器能夠實現高效率,同時僅需要一個小的矽片面積。然而,伴隨這些習知的發射器設計的問題是,由於AM(幅度調制)和PM(相位調制)訊號在極發射器中固有的帶寬膨脹特性,它們只適用於窄帶調制訊號。
混合極發射器設計採用二維(同相/正交)調制的優勢,從而實現寬帶相位調制。然而,這種混合極性發射器的一個問題是,他們受到幅度和相位量化雜訊的不利影響,因此需要有效的雜訊整形。
另外,基於同相/正交(In-phase/Quadrature,簡稱I/Q)射頻數位-類比轉換器(Digital-Analog converter,簡稱DAC)的發射器也是習知。當該I/Q射頻DAC的輸出被組合在類比(射頻)域時,該I/Q射頻DAC將DAC的功能和混頻器的功能相結合。然而,這種發射器設計需要一個線性功率放大器,且直接的(direct)I/Q射頻DAC的功效比數位極發射器設計更低。
另一種習知的射頻發射器(主要是窄帶)設計採用自適應預失真,該自適應預失真使用了增量總和(delta-sigma)調制器,以實現功率放大器非線性自動反函數。此類設計相對簡單且可供給低精度的DAC使用。然而,這種設計仍然包括一般常規架構,使得功率放大器的效率仍然較低。
據預計,對數位輔助/數位密集的射頻發射器的需求將越來越多。然而,數位算法受到電路速度可用性的侷限,因此,從可實現的角度來看,尋找簡單而有效的數位算法是至關重要的。目前可用的已出版文獻中,有時
會討論到在高時鐘頻率(如載波頻率的四倍)中運行的數位算法。然而,這種時鐘頻率在實際的CMOS和/或使用者通訊單元中是無法實現的。
因此,此領域亟需一種新穎的射頻發射器架構以及相關操作方法以解決上述問題。
本發明旨在減輕或是消除上述問題。
依據本發明的第一實施例,提出一種功率放大器單元,包含有:一第一輸入,用來接收一同相控制訊號;一第二輸入,用來接收一正交控制訊號;一輸入級,用來基於至少部份所接收之該同相控制訊號以及該正交控制訊號來輸出一驅動訊號;以及一輸出級,用來從一輸入接收該輸入級所輸出之該驅動訊號,並產生該功率放大器單元的一輸出訊號以響應該接收驅動訊號。
如此一來,此一功率放大器單元可以在同相和正交控制訊號之間共用,進而實現一單一陣列功率放大器單元以取代習知數位功率放大器拓樸設計中兩個分開的同相和正交陣列。因此在晶片上實現功率放大器的時候可以顯著地減少的面積。
依據一可選實施例,該輸入級包含有:
一同相子級,包含有一輸入以及一輸出,該輸入係用來接收代表該同相控制訊號的一輸入訊號,該輸出係耦接至該輸出級之該輸入,該同相子級係用來驅動在其輸出處的一電流以響應該同相控制訊號的一邏輯狀態;以及
一正交子級,包含有一輸入以及一輸出,該輸入係用來接收代表該正交控制訊號的一輸入訊號,該輸出係耦接至該輸出級之該輸入,該正交
子級係用來驅動在其輸出處的一電流以響應該正交控制訊號的一邏輯狀態。
依據一可選實施例,該輸出級可用來產生該功率放大器單元之該輸出訊號以響應其輸入處的一合併電流。
依據一可選實施例,該輸入級可包含有至少一或閘,用來接收一第一輸入中之該同相控制訊號以及一第二輸入中之該正交控制訊號,以及該輸入級係用來輸出一電流訊號以響應該或閘所輸出的一邏輯狀態。
依據一可選實施例,該輸入級以及該輸出級可包含有一疊接電晶體拓撲結構。
依據一可選實施例,該輸入級可包含有一雙疊接結構。
依據一可選實施例,該輸入級可用來基於至少部份該同相控制訊號以及該正交控制訊號來輸出一差動驅動訊號;以及該輸出級可用來接收一差動輸入中該輸入級所輸出之該差動驅動訊號,以產生該功率放大器單元的一差動輸出訊號以響應該接收差動驅動訊號。
依據一可選實施例,該功率放大器單元包含有一切換模式功率單元。
依據本發明的第二實施例,提出一種功率放大器模組,包含有複
數個如申請專利範圍第1項所數的功率放大器單元。
依據一可選實施例,該種功率放大器模組係用來以一互補控制字協作機制來控制該些功率放大器單元,其中一同相控制字中每一位元都和一
正交控制字中的一互補位元成對。
依據本發明的第三實施例,提出一種通訊單元,包含有如申請專利範圍第9項所數的功率放大器模組。
依據本發明的第四實施例,提出一種射頻發射器架構,包含有至少一數位訊號處理模組用以操作在一發射模式,其中該至少一數位訊號處理模組係用來:接收一數位輸入訊號;從數位功率放大器控制值的一截割段基於至少部份所該數位輸入訊號來選擇一數位功率放大器控制值;以及將代表該接收數位輸入訊號的所選擇的截割數位功率放大器控制值輸出至如申請專利範圍第9項所述的至少一功率放大器模組。
依據一可選實施例,該種數位功率放大器控制值的截割段可用以避免依據一互補控制字協作機制的同相和正交重疊。
依據一可選實施例,可藉由將欲禁止的碼字映射至至少一被允許的碼字來截割該種數位功率放大器控制值的截割段。
依據一可選實施例,該至少一數位訊號處理模組係操作在一訓練/校正模式,其中該至少一數位訊號處理模組係用來:接收一數位訓練訊號;將代表接收之該數位訓練訊號的一數位功率放大器控制值輸出至該至少一功率放大器模組;從該至少一數位功率放大器模組的一輸出接收一回授訊號;以及對該數位功率放大器控制值之該截割段進行校正,使該數位功率放大器控制值保持在截割限制範圍內以避免依據一互補控制字協作機制的同
相和正交重疊。
依據本發明的第五實施例,提出一種在一射頻架構中執行數位預失真校正的方法,包含有:接收一數位訓練訊號;將代表接收之該數位訓練訊號的一數位功率放大器控制值輸出至該至少一功率放大器模組;從該至少一數位功率放大器模組的一輸出接收一回授訊號;以及對該數位功率放大器控制值之該截割段進行校正,使該數位功率放大器控制值保持在截割限制範圍內以避免依據一互補控制字協作機制的同相和正交重疊。
有關本發明的上述及其他方面的實施例將在以下說明中詳細描述。
本發明的優點之一係在於校正過程中的截割可降低容許的碼字數,因此可簡化校正過程。
100‧‧‧電子設備
102‧‧‧天線
104‧‧‧天線開關
106‧‧‧接收器鏈
107‧‧‧發射器鏈
108‧‧‧訊號處理邏輯單元
110‧‧‧使用者界面
116‧‧‧存儲器單元
118‧‧‧計時器
130‧‧‧振盪器
200‧‧‧射頻發射器
210、410‧‧‧數位訊號處理模組
212、214‧‧‧數位控制字符
222、224‧‧‧輸入訊號
230‧‧‧功率放大器模組
231‧‧‧輸出端口
240‧‧‧上取樣/過濾元件
242、244‧‧‧上取樣同相和正交分量
250‧‧‧數位預失真元件
310‧‧‧時脈訊號
350‧‧‧預失真配置態樣
400‧‧‧射頻發射器
420‧‧‧雜訊整形元件
442、444‧‧‧輸入訊號分量
450‧‧‧增量總和調制器
510‧‧‧第一開關模式功率放大器單元組
512、514‧‧‧幅度控制字符
520‧‧‧第二開關模式功率放大器單元組
530‧‧‧類比射頻訊號
532‧‧‧第一(同相)分量
534‧‧‧第二(正交)分量
540‧‧‧同相載波頻率訊號
545‧‧‧正交載波頻率訊號
550‧‧‧第一(同相)相位選擇器
552‧‧‧第一載波頻率訊號
554‧‧‧同相相位標誌訊號
555‧‧‧第二(正交)相位選擇器
557‧‧‧第二載波頻率訊號
559‧‧‧正交相位標誌訊號
560‧‧‧幅度以及標誌發生器模組
570、700、1000‧‧‧功率放大器單元
574‧‧‧電流訊號
575‧‧‧控制位元
600‧‧‧流程
605~650‧‧‧步驟
710‧‧‧輸入級
712‧‧‧第一輸入
713、715‧‧‧控制位元
714‧‧‧第二輸入
716、1016‧‧‧驅動訊號
720、1020‧‧‧輸出級
722、1022‧‧‧輸入
726、1026‧‧‧輸出訊號
730、1030‧‧‧同相子級
732、742、1032、1042‧‧‧輸出
734、744、1034、1044‧‧‧及閘
740、1040‧‧‧正交子級
800‧‧‧功率放大器單元組
1300‧‧‧截割二維自適應性演算法
1310‧‧‧訓練訊號
1320‧‧‧數位功率放大器控制值
1330‧‧‧回授訊號
1340‧‧‧訊號輸出
1352‧‧‧衰減器
1354‧‧‧混頻器
1356‧‧‧類比濾波器
1358‧‧‧類比數位轉換器
1360‧‧‧資料點輸出
1365‧‧‧二維查找表(記憶體)
1400‧‧‧象限
1410、1420、1430、1440‧‧‧區域
1710‧‧‧碼字截割
第1圖係本發明一實施例提供的電子設備的部分功能模組圖。
第2圖係第1圖的電子設備的射頻發射器的簡化示意圖。
第3圖係第2圖的射頻發射器的數位訊號處理模組的簡化示意圖。
第4圖係本發明另一實施例提供的射頻發射器的簡化示意圖。
第5圖係第2圖和/或第4圖的射頻發射器的功率放大器模組的功能模組圖。
第6圖係本發明一實施例提供的用於產生射頻類比射頻訊號以在射頻介面傳輸的方法的簡化流程圖。
第7圖係另一功率放大器單元的簡化電路示意圖。
第8圖係功率放大器單元的一功率放大器單元組的一簡化功能區塊的示意圖。
第9圖係一控制字協作機制的範例。
第10圖係又另一功率放大器單元的簡化電路示意圖。
第11圖係一截割後二維碼字配置態樣的範例。
第12圖係一截割後二維碼字配置態樣的輸出電壓配置態樣的範例。
第13圖係一預失真校正實施的範例的一簡化區塊示意圖。
第14圖係截割該二維控制字符值的實作範例。
第15圖係針對在射頻介面進行發射來執行訊號的數位預失真的部分簡化流程圖。
第16圖係針對在射頻介面進行發射來執行訊號的數位預失真的另一部分簡化流程圖。
第17圖係預失真校正的另一實作範例的簡化區塊圖。
在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的「包含」係為一開放式的用語,故應解釋成「包含但不限定於」。此外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段,因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或者透過其他裝置或連接手段間接地電氣連接至該第二裝置。
本發明提供與本發明的一些實施例相匹配的射頻(RF)發射器,該射頻發射器用於無線通訊手持設備。然,本發明並不限於本實施方式,其還可以在其他可代替的實施例中實現。
請參閱第1圖,其為本發明實施例提供的電子設備100的簡化圖。
本實施例中,該電子設備100為一個無線通訊手機。該電子設備100包括天線102以及可與該天線102耦合的許多常見的射頻收發器元件或電路。本實施例中,天線102可耦接於一個雙工濾波器或天線開關104,用以隔離一接收器鏈106與一發射器鏈107。在先前技術中,該接收器鏈106通常包括射頻接收電路以提供接收、濾波和中頻(intermediate)或基帶頻率轉換功能。相反,該發射器鏈107通常包括射頻發射電路,以提供調制和功率放大功能。
完整的來看,該電子設備100還可進一步包括訊號處理邏輯單元108。該訊號處理邏輯單元108的一個輸出可提供至一個合適的使用者界面(UI)110,該使用者界面110可由顯示器、鍵盤、麥克風、揚聲器等組成。該訊號處理邏輯單元108還可耦合到一個存儲有操作條件(如藉由多種技術實現的解碼/編碼功能等等)的存儲器單元116,例如,(易失性)隨機存取存儲器(RAM)、(非易失性)只讀存儲器(ROM)、閃存或其他任意組合的記憶體技術。該訊號處理邏輯單元108通常耦接於一計時器118,以控制電子設備100內的操作時鐘。
這種無線通訊手機的發射器鏈107包括用於接收輸入訊號的發射電路。在本實施方式中,該發射電路為該訊號處理邏輯單元108,該輸入訊號包括將要藉由RF介面進行傳輸的訊息。該發射器鏈107進一步用於輸出一個包含將要被傳輸的訊息的射頻訊號。本實施例中,該將要被傳輸的訊息經由該天線開關傳輸到該天線102。如此,發射器鏈107通常需要進行數模轉換、混頻、雜訊整形和輸入訊號放大等操作,以產生該射頻訊號輸出。
請參閱第2圖,其為本發明一實施例的射頻發射器200。在本實
施例中,該射頻發射器200可用於第1圖所示的發射器鏈107中。第2圖所示的射頻發射器200包括一個數位訊號處理模組210,用於接收一個或複數個複雜的輸入訊號,該複雜的輸入訊號包括即將藉由一射頻介面(例如,第1圖的天線102)進行傳輸的訊息。在本實施例中,該數位訊號處理模組210用於接收來自一數位基帶(DBB)元件(如第1圖的訊號處理邏輯單元108)的I/Q(同相/正交)的輸入訊號,該I/Q輸入訊號包括第一(同相)訊號分量(即I)222和第二(正交)訊號分量(即Q)224。該數位訊號處理模組210進一步用於將接收到的複雜輸入訊號222、224映射到一第一同相數位控制字符(IDPA_W)212以及一第二正交數位控制字符(QDPA_W)214,並用於輸出該同相和正交數位控制字符至一功率放大器模組230。
本實施例中,該功率放大器模組230至少包括一開關模式功率放大器單元組(下面結合第5圖詳細描述)。該功率放大器模組230用於基於至少一部份所接收到的同相和正交數位控制字符,接收由該數位訊號處理模組210輸出的該數位控制字符,並產生一個類比射頻訊號,以能夠藉由該射頻介面(例如該天線102)進行傳輸。
在這種方式下,射頻發射器200包括一個基於複雜訊號的架構,例如,一個基於I/Q的架構,以此適用於窄帶和寬帶調制輸入訊號。於此相反的是,例如,一個數位極性架構,其因為極性架構的AM(幅度調制)和PM(相位調制)輸入訊號的固有帶寬膨脹特性而僅適用於窄帶調制訊號。此外,這種基於I/Q的架構避免了執行複雜算法的需求,如通常為數位極性架構所需要的CORDIC(坐標旋轉數位計算機)算法。而且,該射頻發射器200還將數位域延伸到該功率放大器模組230,從而比傳統的射頻架構更能夠利用數位元件的可擴展性和高效性。另外,第2圖中的射頻發射器200還可利用開關模式功率放大器單元組的高效性。
開關模式功率放大器單元組通常表現出高度非線性的輸入輸出關係,尤其是當輸出功率較高時。因此,該數位訊號處理模組210用於將輸入訊號222、224(在下文作更詳細的說明)二維非均勻映射到該數位控制字符212、214。在這種方式中,輸入訊號222、224的二維非均勻映射提供了輸入訊號222、224的預失真,從而能夠使開關模式功率放大器單元組的非線性特性在數位域範圍內得到補償。
在本發明的一些實施例中,數位預失真要求具有大於所接收到的複雜輸入訊號的取樣率(例如,在輸入訊號取樣率的三倍的範圍內),以在二維數位預失真(2D DPD)元件250的輸出保持一定的頻譜。因此,第2圖的射頻發射器200的該數位訊號處理模組210包括一個上取樣/過濾元件240,該上取樣/過濾元件240用於對接收到的複雜輸入訊號222、224執行上取樣操作,以增加取樣率至該功率放大器模組230的輸入數據速率。此外,對於其他實施例,該功率放大器輸入模組230的輸入可包括”取樣以及保持”的操作。
如此,可在功率放大器模組230的輸出觀察到所謂的DAC圖像,該DAC圖像被產生在功率放大器模組230輸入處所產生的取樣頻率分割。因此,輸入訊號222、224的上取樣率可增加此類圖像的間距。
第2圖的射頻發射器200的數位訊號處理模組210進一步包括數位預失真元件250,該數位預失真元件250用於將該(上取樣)輸入訊號222、224非均勻映射到數位控制字符212、214上。該數位控制字符212、214被輸出到一個或複數個輸出端口,以耦合到功率放大器模組230的一個或複數個輸入端口。
雖然第2圖所示的一個獨立的集成電路包括可耦接至一個不同的
功率放大器模組230的至少一個該訊號處理模組210,在其他方式中,該集成電路也可替換為至少包括訊號處理模組210和功率放大器模組230的功能的其他集成電路。
如第3圖所示,該數位訊號處理模組210可包括一個數位預失真元件250,該數位預失真元件250用於接收該複雜輸入訊號的上取樣同相和正交分量222、224,且在預失真配置態樣(profile)350內,為接收到的複雜輸入訊號識別出一個最匹配的預定向量,以及將所找到的預定向量映射到一組將要輸出的數位控制字符。因此,該數位預失真元件250可使用該預失真配置態樣350進行量化,並同時將預失真應用到所接收到的複雜輸入訊號的上取樣同相和正交分量222、224中。在一些實施例中,該預失真配置態樣350至少部分基於該功率放大器模組230的輸入/輸出關係,尤其是基於功率放大器模組230的開關模式功率放大器單元組的輸入/輸出關係。藉由這種方式,預失真可應用到補償了功率放大器模組特性(特別是非線性的開關模式功率放大器單元特點)的上取樣輸入訊號242、244中。
如第2圖和第3圖所示的實施例,該數位預失真元件250係在一個前饋路徑(feed-forward path,與反饋路徑相反)中實現。在這種方式中,該數位預失真元件250能夠為每個輸入樣本直接補償功率放大器模組230的非線性特性。這種依據樣本的數位預失真比在反饋路徑中平均跨越複數個輸入樣本的數位預失真更準確,且反應更靈敏。
如第3圖所示,藉由上取樣該接收到的複雜輸入訊號222、224,而將其中的取樣率增加至功率放大器模組230的輸入數據率,使得數位預失真模組元件250和功率放大器模組230能夠使用同一個時脈訊號310。
因此,在第3圖的實施例中,該數位訊號處理模組210用於接收該複雜的(I/Q)輸入訊號222、224,且將該接收到的訊號上取樣和非均勻映射到數位控制字符212、214,使得預失真可應用於補償功率放大器模組230的非線性特點,並且能夠輸出數位控制字符212、214至所述功率放大器模組230。其中,該數位控制字符212、214用於驅動功率放大器模組230輸出類比射頻訊號,該類比射頻訊號代表該上取樣複雜(I/Q)輸入訊號222、224。特別的,用於將該上取樣輸入訊號分量222、224映射至數位控制字符212、214的該預失真配置態樣350,可至少部分基於功率放大器模組開關模式功率放大器單元組230的輸入/輸出關係,來自適應補償開關模式功率放大器單元組的非線性特性。為此,本實施例的數位訊號處理模組210在射頻發射器200的前饋路徑中提供二維(I/Q)數位預失真功能。
請參閱第4圖,本發明另一實施例的射頻發射器400包括一個數位訊號處理模組410,該數位訊號處理模組410用於接收來自數位基帶元件(如第1圖訊號處理邏輯單元108)的一個複雜(I/Q)輸入訊號222、224,並將接收到的複雜輸入訊號222、224映射到數位控制字符212、214,以輸出數位控制字符212、214到功率放大器模組230。在本實施例中,該數位訊號處理模組410包括一個上取樣元件240,該上取樣元件240用於對接收到的複雜輸入訊號222、224進行上取樣,以將其中的上取樣率增加到功率放大器模組230的輸入數據速率。該數位處理模組410還包括一個數位預失真元件250,其用於將上取樣輸入訊號222、224非均勻映射到該數位控制字符212、214。
第4圖的該數位訊號處理模組第4圖10進一步包括一個雜訊整形元件420,該雜訊整形元件420用於接收該複雜輸入訊號。本實施例中,該複雜輸入訊號包括第一(同相)和第二(正交)上取樣訊號分量242、244,以及包括來自數位預失真元件250的一個或複數個反饋訊號422、424。該雜訊整形
元件420進一步基於所接收到的至少部分反饋訊號422、424,將雜訊整形應用到所接收到的上取樣訊號分量242、244中,並將經過雜訊整形後的輸入訊號分量442、444輸出至所述數位預失真元件250。在這種方式中,該數位預失真元件250用於將該經過上取樣以及雜訊整形的輸入訊號分量442、444非均勻映射到該數位控制字符212、214。
藉由這種方式,複雜輸入訊號222、224的噪音整形過程可在數位域以及前饋路徑內進行,而且先於非均勻映射到數位控制字符212、214的過程,使得在遠離載波區域的雜訊整形能夠被保持,從而改善了所需的遠頻段的頻譜。特別的,可以想到這種雜訊整形還可藉由可配置和/或可編程的雜訊傳遞函數來實現。由此,該射頻發射器可進行配置和/或編程,以執行所需的雜訊整形來滿足嚴格的複數個不同的無線標準共存的要求。
如第4圖所示,雜訊整形元件420和數位預失真元件250可用於形成一個增量總和(delta-sigma)調制器450。藉由這種方式,該增量總和調制器450可用於接收該上取樣複雜(I/Q)輸入訊號242、244,且能夠將接收到的訊號非均勻映射到數位控制字符212、214,使得雜訊整形和預失真可應用於補償該功率放大器模組230的非線性特性,並輸出數位控制字符212、214至所述功率放大器模組230。其中,該數位控制字符212、214用於驅動該功率放大器模組230輸出類比射頻訊號,該類比射頻訊號代表該上取樣複雜(I/Q)輸入訊號242、244。特別是,上述的用於將該上取樣輸入訊號分量242、244映射至數位控制字符212、214的預失真配置態樣350,可至少部分基於功率放大器模組開關模式功率放大器單元組230的輸入/輸出關係,來適當補償開關模式功率放大器單元組的非線性特性。
優選的,在增量總和調制器450中,藉由這種方式執行量化和二
維數位預失真,可產生相應於所述預失真文件的量化雜訊,從而能夠實現雜訊整形。相比之下,如果二維數位預失真於增量總和調制器450後執行,則該雜訊整形效果將由於該功率放大器模組230的非線性特性,而至少在某一程度上顯得不佳,使得在功率放大器模組230的輸出見不到這種噪音整形,這是由於數位預失真只能夠在頻率接近訊號時減輕非線性特性,而雜訊整形往往在遠離訊號頻帶的頻段。
請參閱第5圖,其為功率放大器模組230的一個實施例的簡化圖。該功率放大器模組230用於至少部分基於接收到的數位控制字符212、214,接收數位訊號處理模組210輸出的數位控制字符212、214,並輸出類比射頻訊號530以藉由射頻介面傳輸。本實施例中,藉由第1圖的天線102傳輸。該功率放大器模組230包括第一開關模式功率放大器單元組(I-PA)510以及第二開關模式功率放大器單元組(Q-PA)520。該第一開關模式功率放大器單元組510用於接收至少一部分該第一(例如,同相)數位控制字符212,並基於接收到的至少部分數位控制字符212生成該類比射頻訊號530的第一(同相)分量532。相反,該第二開關模式功率放大器單元組520用於接收至少部分第二(正交)數位控制字符214,並基於接收到的至少部分數位控制字符214產生類比射頻訊號530的第二(正交)分量534。分別獨立的所述分量532、534隨後被結合起來以產生該複雜的類比射頻訊號530。
在這種方式中,藉由提供第一、第二開關模式功率放大器單元組510、520,為複數個對應的多維度分量分別接收各自的數位控制字符(例如,複雜(I/Q)訊號),並為此分別產生放大後的分量532、534(隨後可能被結合),可獲得一個能夠數位控制生成一個多維(如I/Q)放大的訊號的功率放大器模組230。
在一些實施例中,每個開關模式功率放大器單元組510、520可用於接收至少部分對應的包含N比特的數位控制字符212、214。此外,每個開關模式功率放大器單元組510、520可包括N個開關模式功率放大器單元570,每個功率放大器單元570用於接收對應的數位控制字符212、214的控制位元。
本實施例的開關模式功率放大器單元570包括一個高效的D類反向結構。每個開關模式功率放大器單元570用於接收一個對應的控制位元575,並基於接收到的控制位元575的值,選擇性地輸出一個電流訊號(Iout)574。每個功率放大器單元組510、520的該開關模式功率放大器單元570的輸出耦合在一起,從而使得單個的功率放大器單元570的輸出電流訊號(Iout)574被結合起來,以提供類比射頻訊號530的各個分量532、534。功率放大器單元組510、520中的每一個的單個開關模式功率放大器單元570的輸出電流訊號(Iout)574可按照各自的控制位元的意義(significance)進行加權。在這種方式中,每個功率放大器單元組510、520的組合後的輸出電流訊號574可代表所接收到的數位控制字符212、214的值。
第5圖所示的功率放大器模組230可實現將數位-類比轉換功能結合功率放大器功能來簡化射頻發射器400的設計。此外,提供獨立的開關模式功率放大器單元組510、520以支持複雜I/Q輸入訊號的分離的I和Q分量,使得該功率放大器模組230適用於窄帶和寬帶調制輸入訊號。
進一步的,第5圖所示的該功率放大器模組230的第一、第二開關模式功率放大器單元組510、520用於接收各自的載波頻率訊號540、545(下面將詳述),並進一步根據至少一部分接收到的載波頻率訊號540、545,來產生類比射頻訊號530的分量532、534。例如,載波頻率訊號540、545可分別提供至每一個單獨的開關模式功率放大器單元(在功率放大器單元570內)。在這種方式中,第5圖所示的功率放大器模組230可將混合功能實現至功率
放大器功能以及數位-類比轉換功能中。
本實施例中,該功率放大器模組230還包括第一(同相)相位選擇器550,該第一相位選擇器550用於接收一個第一載波頻率訊號(LO_I)552和一個同相相位標誌訊號554,並基於接收到的至少部分同相相位標誌訊號554,輸出一個同相載波頻率訊號540至包括極性的第一(同相)開關模式功率放大器單元組510。該功率放大器模組230進一步包括一個第二(正交)相位選擇器555,該第二相位選擇器555用於接收一個第二載波頻率訊號557和一個正交相位標誌訊號559,並基於接收到的至少部分正交相位標誌訊號559,輸出一個正交載波頻率訊號545至所述包括極性的第二(正交)開關模式功率放大器單元組520。
本實施例的功率放大器模組230更包括一個幅度以及標誌發生器模組560。該幅度以及標誌發生器模組560用於接收該數位訊號處理模組210輸出的數位控制字符212、214,並從每一個數位控制字符212、214產生對應的幅度控制字符512、514以及標誌訊號554、559,該幅度控制字符512、514分別包括數位控制字符212、214各自的幅度分量,該標誌訊號554、559分別包括數位控制字符212、214各自的標誌分量。然後,提供該幅度控制字符512、514至各自的開關模式功率放大器單元組510、520,且提供該訊號標誌554、559至各自的相位選擇器550、555。在這種方式中,該同相和正交訊號分量的標誌和幅度可分離,從而有利於開關模式功率放大器單元組的使用。
優選的,因為數位域延伸到功率放大器模組230,因此沒有必要使用線性預驅動放大器或基帶濾波器。此外,使用數位控制的功率放大器單元,使得功率放大器模組230的功耗隨大致上瞬時的射頻輸出功率變化。
該功率放大器模組230的輸出阻抗係關於訊號功率電平(signal power level)的函數(即壓縮函數)。因此,每個開關模式功率放大器單元組510、520的有效載荷將包括一個組合,該組合包括作用於輸出訊號530的負載以及一個相反的(opposing)開關模式功率放大器單元組510、520的輸出阻抗。
例如,第一(同相)功率放大器單元組510的有效載荷包括一個由作用於該輸出訊號530的負載和第二(正交)功率放大器單元組520的輸出阻抗所組成的組合。
因此,第一(同相)開關模式功率放大器單元組510的有效負載係Q訊道功率電平的函數,第二(正交)開關模式功率放大器單元組520的有效載荷係I訊道功率電平的函數。因此,本實施例的功率放大器模組230的非線性特性並不完全是一個複雜訊號功率(|I|2+|Q|2)的函數,同時也取決於提供至該功率放大器模組230的同相和正交數位控制字符212、214。因此,雖然AM-AM和/或AM-PM校正對於傳統的具有短時內存(short memory)的功率放大器裝置通常已經足夠,然,二維預失真還是需要用來補償這種數位功率放大器模組230的非線性特性,例如第2圖和第4圖所示的藉由數位訊號處理模組所提供的預失真。
請參閱第6圖,其為本發明實施例提供的方法的簡化流程第6圖00,該方法用於產生射頻類比訊號以在射頻介面傳輸。該方法以步驟605開始。然後,轉到步驟610,接收包含有將要藉由射頻介面傳輸的訊息的數位同相和正交輸入訊號。接下來,在步驟615中,將所接收到的輸入訊號上取樣至一功率放大器模組的一個輸入數據速率。步驟620中,根據後續的(步驟625)數位預失真階段的反饋,將上取樣後的輸入訊號進行雜訊整形。步驟625中,基於功率放大器模組的非均勻預失真配置態樣,對經過雜訊整形以及上取樣操作後的輸入訊號執行二維數位預失真操作,以產生同相和正交數位控制字符。接下來,在步驟630中,分離同相和正交控制字符的幅度和標誌分
量。步驟635中,基於(至少部分)同相和正交控制字符各自的標誌分量,產生標誌過的同相和正交載波頻率訊號。步驟640中,提供同相和正交控制字符的幅度分量以及標誌過的同相和正交載波頻率訊號給各自的同相和正交開關模式功率放大器單元組,以產生同相和正交類比射頻分量訊號。步驟645中,將同相和正交類比射頻分量訊號組合,以生成一個複雜的類比射頻訊號,該類比射頻訊號包括將要在射頻介面傳輸的訊息。該方法以步驟650結束。
在第5圖的數位功率放大器拓撲結構範例中,每一同相以及正交開關模式功率放大器單元組510、520需要能夠傳達所需的最大輸出功率至功率放大器模組230。然而,當功率放大器模組230係操作在最大輸出功率時,同相以及正交開關模式功率放大器單元組510、520中任一時刻都只有一半的功率放大器單元組被使用到。具體而言,即時當功率放大器模組230係操作在最大輸出功率時,有一半的功率放大器單元組沒有被使用到,造成晶片面積的浪費。
第7圖係另一功率放大器單元700的簡化電路示意圖,例如可實現在功率放大器模組230來取代第5圖中的功率放大器單元570。功率放大器單元700包含有一輸入級710。輸入級710包含有一第一輸入712,用來接收一同相控制訊號,例如包含同相數位控制字符212的一量級部分的同相量級控制字512中的一控制位元713。輸入級710另包含有一第二輸入714,用來接收一正交控制訊號,例如包含正交數位控制字符212的一量級部分的正交量級控制字514中的一控制位元715。功率放大器單元700的輸入級710係用來基於所接收的同相和正交控制訊號來輸出一驅動訊號716。功率放大器單元700另包含有一輸出級720,用以在一輸入722接收輸入級710所輸出的驅動訊號716,並產生功率放大器單元700的一輸出訊號726以響應所接收的驅動訊號716。
在第7圖的範例中,功率放大器單元700的輸入級710包含有一同相子級730,包含一輸入用以構成輸入級710中的第一輸入712,用來接收代表同相控制字512的對應位元713的一輸入訊號。同相子級730另包含有一輸出732,耦接至輸出級720的輸入722。同相子級730係用來依據同相控制字512的對應位元713的邏輯狀態來驅動其輸出732的一電流。舉例來說,如第7圖所示,功率放大器單元700可包含有一不同放大器單元,用來輸出一不同輸出訊號726。功率放大器單元700的一同相輸入可包含有(針對每一差動訊號路徑)一及閘734,用來接收同相控制字512的各位元713以及同相載波頻率540的各差動部分。這樣一來,每一及閘的輸出包含有同相控制字512的各位元713的邏輯狀態的一調變表示形式。同相子級730包含有一共源極放大器電晶體架構,用來在閘極輸入節點接收調變控制訊號。如此一來,調變控制訊號便會控制電流流經該共源極放大器電晶體架構,因此控制同相子級730的輸出所驅動的電流。
相似地,第7圖所示的功率放大器單元700的輸入級710另包含有一正交子級740,包含一輸入用以構成輸入級710中的第二輸入714,用來接收代表正交控制字514的各位元715的一輸入訊號。正交子級740另包含有一輸出742,耦接至輸出級720的輸入722。正交子級740係用來驅動其輸出742的一電流以響應正交控制字514的各位元715的邏輯狀態。功率放大器單元700的一正交輸入可包含有(針對每一差動訊號路徑)一及閘744,用來接收正交控制字514的各位元715以及正交載波頻率545的各差動部分。
這樣一來,每一及閘的輸出包含有正交控制字514的各位元715的邏輯狀態的一調變表示形式。正交子級740包含有一共源極放大器電晶體架構,用來在閘極輸入節點接收調變控制訊號。如此一來,調變控制訊號便會控制電流流經該共源極放大器電晶體架構,因此控制正交子級740的輸出所驅動的電
流。
功率放大器單元700的輸出級720係用來依據由輸入級710的同相和正交子級730、740所輸入的一合併電流以產生輸出訊號726。尤其是在本範例中,輸入級710和輸出級720共同包含一疊接電晶體拓撲結構,更具體地說,係一雙疊接架構。此雙疊接架構在高功率操作下較單疊接架構更為可靠。
第8圖係第7圖的功率放大器單元700的一功率放大器單元組800的一簡化功能區塊的示意圖。功率放大器單元組800包含有N個功率放大器單元700,用來接收一N位元同相控制字512以及一N位元正交控制字514。
功率放大器單元700會依據N位元同相控制字512以及N位元正交控制字514中的對應位元來產生一輸出訊號。功率放大器單元700的輸出訊號726接著會被合併以形成類比射頻訊號530,並透過射頻介面發射,舉例來說,經由第1圖所示的天線102來發射出去。好處是N位元同相控制字512以及N位元正交控制字514可共用功率放大器單元700,因此在N個功率放大器單元700中,可以使用單一功率放大器單元組800來取代第5圖中的兩個分開的同相、正交功率放大器單元組510、520。因此,可顯著地節省晶片的面積。
在第8圖所示的功率放大器單元700的功率放大器單元組800中,由於每一功率放大器單元700係被N位元同相控制字512以及N位元正交控制字514所共用,因此針對N位元同相控制字512以及N位元正交控制字514來開啟功率放大器單元組的程序便不再是彼此獨立的事件。第9圖係一互補控制字協作機制的範例。在此範例中,同相控制字512中的每一位元都和正交控制字514中的互補位元成對。例如同相控制字512中的位元‘0’和正交控制字514中的位元‘N-1’為成對;同相控制字512中的位元‘1’和正交控制字514
中的位元‘N-2’為成對,依此類推。功率放大器單元組800中每一功率放大器單元700因而可依據第9圖所示的互補控制字協作機制,來從N位元同相控制字512以及N位元正交控制字514接收成對的控制位元。
這樣一來,同相控制字512和正交控制字514便可用來以彼此相反的順序開啟功率放大器單元700。舉例來說,同相控制字512可以從功率放大器單元組800的一第一‘結束’開始,往一第一方向來開啟功率放大器單元700,而正交控制字514可以從功率放大器單元組800的一第二‘結束’開始,往一第二方向來開啟功率放大器單元700。
因此,當使用控制字512、514來僅開啟功率放大器單元700中的一小部分時(即合併數字N),將不會有重疊的情況,且同相以及正交控制字512、514之間的影響會和第5圖所示的傳統數位功率放大器拓樸相類似。然而,當同相以及正交控制字512、514之間發生重疊的情況,由於共用了一個以上的功率放大器單元,故該些控制自之間相互的影響便會不同於第5圖所示的傳統數位功率放大器拓樸。
請參考第10圖,第10圖係又另一功率放大器單元100的簡化電路示意圖。例如可實現在功率放大器模組230來取代第5圖中的功率放大器單元570。和第7圖中的功率放大器單元700類似,第10圖中的功率放大器單元1000包含有一輸入級1010。輸入級1010包含有一第一輸入1012,用來接收一同相控制訊號,例如包含同相量級控制字512中的一控制位元1013。輸入級1010另包含有一第二輸入1014,用來接收一正交控制訊號,例如包含正交量級控制字514中的一控制位元1015。功率放大器單元1000的輸入級1010係用來基於所接收的同相和正交控制訊號來輸出一驅動訊號1016。功率放大器單元1000另包含有一輸出級1020,用以在一輸入1022接收輸入
級1010所輸出的驅動訊號1016,並產生功率放大器單元1000的一輸出訊號1026以響應所接收的驅動訊號1016。
功率放大器單元1000的一同相輸入可包含有(針對每一差動訊號路徑)一及閘1034,用來接收同相控制字512的各位元1013以及同相載波頻率540的各差動部分。這樣一來,每一及閘的輸出包含有同相控制字512的各位元1013的邏輯狀態的一調變表示形式。相似地,一正交輸入可包含有(針對每一差動訊號路徑)一及閘1044,用來接收正交控制字514的各位元1015以及正交載波頻率545的各差動部分。這樣一來,每一及閘的輸出包含有正交控制字514的各位元1015的邏輯狀態的一調變表示形式。
在第10圖所示的範例中,輸入級1010包含有一對或閘1052、1054,第一或閘1052係用來在輸入接收控制字512、514的各位元1013、1015的邏輯狀態的每一差動表示的一第一差動部分(例如一正差動部分);而第二或閘1054係用來在輸入接收控制字512、514的各位元1013、1015的邏輯狀態的每一差動表示的一第二差動部分(例如一負差動部分)。輸入級1010另包含有一單一,共用的共源極放大器電晶體架構1030,包含有閘極輸入節點,耦接至或閘1052、1054的輸出。如此一來,若控制字512、514的對應位元1013、1015中任一個包含有一高邏輯值時(例如‘1’),共源極放大器電晶體架構1030便會輸出一驅動電流。
這樣一來的好處是,第10圖中所示的範例中,可以使用單一且共用的共源極放大器電晶體架構1030來取代第7圖中的兩個輸入子級730、740。
因此,可顯著地節省晶片的面積。儘管第7圖和第10圖中所示的範例為差動功率放大器單元組,本發明亦可適用於單端(即非差動)訊號功率放大器單元組。
在第7圖所示的範例中,僅有輸出級720被共用且能夠針對I和Q輸入級電流訊號在一定程度上進行相加。然而,在第10圖中的整個共用拓樸架構中,功率放大器單元1000的輸入級1010和輸出及1020都可共用。由於功率放大器單元不是被開啟就是關閉,無論I和Q訊號中的一個或是兩個試圖開啟功率放大器單元,結果都是相同的。如此一來,第10圖中的整體共用拓樸架構中應儘可能的避免I/Q重疊,例如可透過碼字截割。
第11圖為一截割後2D碼字配置態樣的範例。其中避免了第9圖中的互補控制字協作機制產生I/Q重疊。顯著地,在功率放大器的非線性情況下,功率放大器的輸出電壓配置態樣仍會保持圓形,如第12圖所示,代表輸出範圍沒有損失。
在某些實施例中,可以在碼字饋入數位功率放大器之前進行截割,例如在數位預失真校正期間。第13圖係一預失真校正實施的範例的一簡化區塊示意圖,其中一二維碼字配置態樣受到截割以避免I/Q重疊。例如可以實現在第2圖中的射頻發射器架構。在此範例中,數位預失真元件250係實現在數位訊號處理模組210中,包含有一自適應性演算法部分1300。自適應性演算法部分1300係用來在當射頻發射器架構操作在一訓練/校正模式下,執行數位預失真元件250的校正,尤其是第13圖中的範例,以執行截割後的數位預失真元件250的校正。
舉例來說,如第13圖所示,當該射頻發射器架構係操作在一傳發射模式下(‘A’),數位預失真元件250係用來接收二維(即I/Q)上取樣輸入訊號242、244(第2圖),針對所接收之該輸入訊號執行預失真,並且輸出一二維數位控制值,包含有數位控制字符212、214,至功率放大器模組230。
不過,當該射頻發射器架構操作在一訓練/校正模式下(‘B’),數位預失真元件250係用來接收一數位參考訊號,包含有一訓練訊號1310,並將代表訓練訊號1310的一數位功率放大器控制值1320輸出至功率放大器模組230。數位預失真元件250另用來從功率放大器模組230的一輸出1340接收一回授訊號1330,並且基於至少部分回授訊號1330來執行校正。可動態地設定數位預失真元件250,例如透過軟體,來在發射模式‘A’和訓練/校正模式‘B’之間切換。
當數位預失真元件250操作在訓練/校正模式‘B’時,數位預失真元件250的自適應性演算法1300係用來接收訓練訊號1310,並將從代表訓練訊號1310的一組數位功率放大器配置態樣資料點輸出一資料點輸出1360至一二維查找表1365。一旦自適應性演算法1300接收到資料點輸出1360,二維查找表1354會將對應數位功率放大器控制值1320輸出至數位功率放大器模組230。
在範例中,係藉由一回授路徑來提供回授訊號1330,該回授路徑包含有一內部衰減器1352,用來接收以及藉由數位功率放大器模組230來對訊號輸出1340執行衰減,以確保混頻器沒有過度驅動。混頻器1354會從衰減器1352接收衰減後的回授訊號,並且將其從載波頻率訊號取下成為如基頻訊號般的訊號。回授訊號接下來會經由類比濾波器1356來濾波,之後再藉由類比數位轉換器1358轉換為數位回授訊號1330,並傳送到數位預失真元件250。這樣一來,提供至數位功率放大器模組230的數位回授訊號1330得格式便會對應數位訓練訊號1310的格式。
在接收數位回授訊號1330時,自適應性演算法1300會藉由更新映射至二維查找表1365中之該數位訓練訊號之該數位功率放大器值來對數
位預失真元件250執行校正,例如利用一疊代程序使數位回授訊號1330的值實質收斂。舉例來說,自適應性演算法1300可用來執行數位訊號訊號(一已知參考訊號)1310和回授訊號1330的一比較,並基於該比較來更新對應的映射至二維查找表1360之內的訓練訊號資料點值的數位功率放大器控制值。
較詳細的說明可參考專利申請人的另一件申請案(US20120269293),其可於此概括參考。
尤其第13圖的範例中,自適應性演算法1300包含有一截割的二維自適應性演算法,用來藉由更新該數位功率放大器控制值來執行數位預失真元件250的校正,使其受限於截割值以避免如第9圖的互補控制字協作機制造成的I/Q重疊。
第14圖係截割該二維控制字符值的實作範例。第14圖所示的區域代表該二維數位功率放大器控制字配置態樣的一象限圖1400,其中I和Q的碼字均為正值。左下角三角形部分1410代表所允許的碼字區域,在此範圍中,第9圖的互補控制字協作機制不會發生I/Q重疊。象限圖1400的其它部分則為不被允許的碼字區域。象限圖1400中不被允許的區域中每一碼字都可映射至左下角部分1410中一單獨的碼字。舉例來說,區域1420中的碼字可以一垂直方向來被映射至左下角部分1410,即保持其I碼字值,但使其Q碼字值映射至第一允許Q碼字值。相似地,區域1430中的碼字可以一水平方向來被映射至左下角部分1410,即保持其Q碼字值,但使其I碼字值映射至第一允許I碼字值。所有區域1440中的碼字可被映射至一單一允許碼字,如箭號所示。
當將第14圖所示的碼字截割應用在該數位功率放大器控制字符配置態樣的所有四個象限時,會導致一鑽石型截割機制。然此僅為一範例,
本發明不以此限。本發明亦可變化為例如圓形截割機制、多邊型(例如八角型)截割機制等等。在其它的範例中,I+Q小於或是等於一臨界值(例如所有單元數)的碼字可不被截割,而需對I+Q大於該臨界值的碼字進行截割。
本發明的優點在於校正過程中的截割可降低容許的碼字數,因此可簡化校正過程。
請參考第15圖和第16圖,第15圖係針對在射頻介面進行發射來執行訊號的數位預失真的一部分簡化流程圖1500。第16圖係針對在射頻介面進行發射來執行訊號的數位預失真的另一部分簡化流程圖1600。該方法的一第一部份,即一第一模式(該發射模式),開始在步驟1510並接收一數位輸入訊號,例如第2圖~第4圖中所示的上取樣輸入訊號242、244。接著,在步驟1520中,會在一數位功率放大器配置態樣中判斷最接近該輸入訊號的一資料點群集。在步驟1530中,會從一查找表中得出映射至該群集資料點的數位功率放大器控制值。如此一來,便可從該數位功率放大器控制值中的一第一群組中選出複數個數位功率放大器控制值。在步驟1540中,會針對所得到的數位功率放大器控制值進行內插以從該數位功率放大器控制值中的一第二組中決定出一數位功率放大器控制值。在某些範例中,該第二組數位功率放大器控制值包含有一控制值截割群組用以避免I/Q重疊,例如根據第9圖的一互補控制字協作機制。在步驟1550中,會將從代表所接收之該數位輸入訊號之該第二組數位功率放大器控制值所決定出來之該數位功率放大器控制值輸出至一數位功率放大器模組。並結束於步驟1560。
該方法的一第二部份,即一第二模式(該訓練模式),在步驟1610針對一二維查找表中的每一點開始進行一更新機制。接著,在步驟1620,發送一訓練訊號,包含一數位IQ訊號。在步驟1630中,得到映射至二維查找表中之該訓練訊號值的一相對應數位功率放大器控制字符,並在步驟1640中
輸出至該數位功率放大器模組。在步驟1650中,從該數位功率放大器模組的一輸出得到一回授訊號。接著在步驟1660判斷具有一線性增益G之該訓練訊號和該回授訊號實質相等(即收斂)。若沒有收斂,則流程會進入步驟1670,其中映射至該訓練訊號值之該數位功率放大器控制值會被更新,以使該回授訊號等於具有線性增益G之該訓練訊號值。具體而言,本方法係更新該數位功率放大器控制字以保持在截割限制範圍內,進而避免同相和正交重疊。接著流程會回到步驟1640。請再度回到步驟1660,若是當具有線性增益G之該訓練訊號和該回授訊號實質相等(即收斂),則流程會回到步驟1680並停止。
請參考第17圖,第17圖係一預失真校正的另一實作範例的簡化區塊圖。其中一二維碼字配置態樣會被截割以避免I/Q重疊,並且此設計被應用在第2圖的射頻發射器架構中。在第17圖的範例中,係在數位預失真之後進行碼字截割(步驟1710)。
本發明所說明的示例性實施例中的大部份已經由本領域技術人員所熟習的電子元件和電路來實現。因此,為了加強對本發明基本概念的了解,並且避免混淆或誤導本發明的教示,以上之說明並未就更進一步的細節作更深入的解釋。
在上述說明書中,本發明已參照本發明的實施例的具體例子。不明而諭的是,只要不脫離所附權利要求中所闡述的本發明的更寬廣精神和範圍的各種修改和變化都可被允許。
在通篇說明書中所指的連接,如本文中所討論的可以是任何類型的連接以傳輸訊號,可以係來自/到達各個節點、單元或裝置,例如通過中介
裝置。因此,除非隱含或另有說明,連接可以例如是直接連接或間接連接。
該連接可被解釋或描述為一個單一的連接、複數個連接的、單向的連接或雙向連接。然而,不同實施例亦可以改變連接的實現方式。例如,可採用單獨的單向連接而非雙向連接,反之亦然。另外,可以採用串行地傳輸多路訊號或以多工的方式的單一連接來代替複數個連接。同樣的,承載複數個訊號的單一的連接可以被分開為攜帶這些訊號的子集的各種不同的連接。因此,傳輸訊號的方式存在許多可用的選項。
本文中所描述的每個訊號可以被設計為正或負邏輯。在負邏輯訊號的情況下,訊號是其中,邏輯真狀態對應於邏輯電平零低電平有效。在正邏輯訊號的情況下,係指低態有效,也就是邏輯為真的狀態係對應於邏輯位準l。請注意,本文描述的任何訊號都可以被設計成負或正邏輯訊號。因此,在替代實施例中,描述為正邏輯訊號的該等訊號可以被實現為負邏輯訊號,並且描述為負邏輯訊號的該等訊號可以被實現為正邏輯訊號。
此外,「宣告」、「設定」或「取消」(或「區消宣告」或「清除」)等詞彙在此指的是將訊號、狀態位元或類似裝置設定為其邏輯的真或假的狀態。如果邏輯真狀態是邏輯位準1,則邏輯假狀態是邏輯位準0。而如果邏輯真狀態是邏輯位準0,則邏輯假狀態是邏輯位準1。
本領域技術人員應能理解邏輯區塊之間的邊界僅僅是說明性的,且在替代實施例中,邏輯區塊或電路元件可以被合併,或者對各種邏輯區塊或電路元件加以分解。因此,應當理解的是此處所描述的架構僅僅是示例性的,事實上,許多其他體系結構都可用來實現相同的功能。
任何可實現相同功能的元件安排都屬於有效的「相關」,以實現所
需的功能。因此,在此任何兩個元件被加以結合以實現特定功能都可以被看作是彼此「關聯」,以實現所需的功能,無論是架構性或中間元件。同樣地,如此關聯的任兩個元件也可以看作是彼此「可操作地連接」或「可操作地耦合」以實現所需的功能。
此外,本領域的技術人員應能認知上述操作之間的邊界僅是說明性的。所述多個操作可被組合成一個單一的操作,單個操作可以分配在額外的若干操作中,且可以在至少有部分時間重疊的情況下執行若干操作。此外,替代實施例可以包括特定操作的多個情況,並且操作的順序可以在其它實施例中被改變。
不過,亦可加入其它修改、變化和替換。因此本說明書和附圖應被認定為說明性而非限制性。
在權利要求中,置於括號之間的任何標號不應被解釋為限制權利要求。詞彙「包含」係代表相較於權利要求中列出的部分之外,並不排除其他元件或步驟。此外,本文所使用的詞彙「一個」或「一種」,應定義為一個或多於一個。此外,使用引言,如「至少一個」和「一個或多個」在權利要求中不應該被解釋為隱含有不定冠詞「一」或「一個」的另一權利要求元件,以限制任何含有如此導入的權利要求元件的任何特定權利要求為僅有一個此元件的發明,即使當同一權利要求包括引言「一個或多個」或「至少一個」和不定冠詞例如「一」或「一個」。對於定冠詞的使用同樣如此。除非另有說明,詞彙如「第一」和「第二」係用於元件之間的任意區分。因此,這些術語並不一定意圖指示此類元件的時間或其它優先級。某些手段被記載在相互不同的權利要求中並不意味這些技術手段的組合不能被有利地加以使用。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
710‧‧‧輸入級
712‧‧‧第一輸入
713、715‧‧‧控制位元
714‧‧‧第二輸入
716‧‧‧驅動訊號
720‧‧‧輸出級
722‧‧‧輸入
726‧‧‧輸出訊號
730‧‧‧同相子級
732、742‧‧‧輸出
734、744‧‧‧及閘
740‧‧‧正交子級
Claims (16)
- 一種功率放大器單元,包含有:一第一輸入,用來接收一同相控制訊號;一第二輸入,用來接收一正交控制訊號;一輸入級,用來基於至少部份所接收之該同相控制訊號以及該正交控制訊號來輸出一驅動訊號;以及一輸出級,用來從一輸入接收該輸入級所輸出之該驅動訊號,並產生該功率放大器單元的一輸出訊號以響應該接收驅動訊號;其中該輸入級包含有至少一或閘,用來接收一第一輸入中之該同相控制訊號以及一第二輸入中之該正交控制訊號,以及該輸入級係用來輸出一電流訊號以響應該或閘所輸出的一邏輯狀態。
- 如申請專利範圍第1項所述的功率放大器單元,其中該輸入級以及該輸出級包含有一疊接電晶體拓撲結構。
- 如申請專利範圍第2項所述的功率放大器單元,其中該輸入級包含有一雙疊接結構。
- 如申請專利範圍第1項所述的功率放大器單元,其中:該輸入級係用來基於至少部份該同相控制訊號以及該正交控制訊號來輸出一差動驅動訊號;以及該輸出級,用來接收一差動輸入中該輸入級所輸出之該差動驅動訊號,以產生該功率放大器單元的一差動輸出訊號以響應該接收差動驅動訊號。
- 如申請專利範圍第1項所述的功率放大器單元,其中該功率放大器單元包 含有一切換模式功率單元。
- 一種功率放大器模組,包含有複數個功率放大器單元,每個該功率放大器單元包含有:一第一輸入,用來接收一同相控制訊號;一第二輸入,用來接收一正交控制訊號;一輸入級,用來基於至少部份所接收之該同相控制訊號以及該正交控制訊號來輸出一驅動訊號;以及一輸出級,用來從一輸入接收該輸入級所輸出之該驅動訊號,並產生該功率放大器單元的一輸出訊號以響應該接收驅動訊號;其中一同相控制字中每一位元都和一正交控制字中的一位元互補成對,該功率放大器單元係由來自該同相控制字和正交控制字的一對互補控制位元來予以控制,以及該同相控制訊號依據該同相控制字與一同相載波頻率訊號得到,該正交控制訊號依據該正交控制字與一正交載波頻率訊號得到。
- 如申請專利範圍第6項所述的功率放大器模組,其中該輸入級包含有:一同相子級,包含有一輸入以及一輸出,該輸入係用來接收代表該同相控制訊號的一輸入訊號,該輸出係耦接至該輸出級之該輸入,該同相子級係用來驅動在其輸出處的一電流以響應該同相控制訊號的一邏輯狀態;以及一正交子級,包含有一輸入以及一輸出,該輸入係用來接收代表該正交控制訊號的一輸入訊號,該輸出係耦接至該輸出汲之該輸入,該正交子級係用來驅動在其輸出處的一電流以響應該正交控制訊號的一邏輯狀態。
- 如申請專利範圍第7項所述的功率放大器模組,其中該輸出級係用來產生該功率放大器單元之該輸出訊號以響應其輸入處的一合併電流。
- 如申請專利範圍第7項所述的功率放大器模組,其中該同相控制字的N位元中的第‘i’位元与该正交控制字的N位元中的第‘N-1-i’位元成对。
- 如申請專利範圍第9項所述的功率放大器模組,其中該当一对互補控制位元中的一位元为0时,另一位元为1。
- 一種通訊單元,包含有如申請專利範圍第6項所述的功率放大器模組。
- 一種射頻發射器架構,包含有至少一數位訊號處理模組用以操作在一發射模式,其中該至少一數位訊號處理模組係用來:接收一數位輸入訊號;從數位功率放大器控制值的一截割段基於至少部份所該數位輸入訊號來選擇一數位功率放大器控制值;以及將代表該接收數位輸入訊號的所選擇的截割數位功率放大器控制值輸出至如申請專利範圍第6項所述的至少一功率放大器模組。
- 如申請專利範圍第12項所述的射頻發射器架構,其中該種數位功率放大器控制值的截割段係用以避免依據一互補控制字協作機制的同相和正交重疊。
- 如申請專利範圍第13項所述的射頻發射器架構,其中係藉由將欲禁止的碼字映射至至少一被允許的碼字來截割該種數位功率放大器控制值的截割段。
- 如申請專利範圍第12項所述的射頻發射器架構,其中該至少一數位訊號處理模組係操作在一訓練/校正模式,其中該至少一數位訊號處理模組係用來:接收一數位訓練訊號;將代表接收之該數位訓練訊號的一數位功率放大器控制值輸出至該至少一功率放大器模組;從該至少一數位功率放大器模組的一輸出接收一回授訊號;以及對該數位功率放大器控制值之該截割段進行校正,使該數位功率放大器控制值保持在截割限制範圍內以避免依據一互補控制字協作機制的同相和正交重疊。
- 一種在一射頻架構中執行數位預失真校正的方法,包含有:接收一數位訓練訊號;將代表接收之該數位訓練訊號的一數位功率放大器控制值輸出至該至少一功率放大器模組;從該至少一數位功率放大器模組的一輸出接收一回授訊號;以及對該數位功率放大器控制值之該截割段進行校正,使該數位功率放大器控制值保持在截割限制範圍內以避免依據一互補控制字協作機制的同相和正交重疊,其中該數位功率放大器控制值並非一時脈訊號。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361825628P | 2013-05-21 | 2013-05-21 | |
US14/280,672 US9559879B2 (en) | 2011-04-21 | 2014-05-19 | PA cell, PA module, wireless communication unit, RF transmitter architecture and method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201513614A TW201513614A (zh) | 2015-04-01 |
TWI531189B true TWI531189B (zh) | 2016-04-21 |
Family
ID=51965221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103117786A TWI531189B (zh) | 2013-05-21 | 2014-05-21 | 功率放大器單元、功率放大器模組、通訊單元、射頻發射器架構以及數位預失真校正方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104184420B (zh) |
TW (1) | TWI531189B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7007809B2 (ja) * | 2017-03-24 | 2022-02-10 | シナプティクス・ジャパン合同会社 | デジタル信号伝送装置、クロック信号伝送装置、及び、受信回路 |
CN109361362A (zh) * | 2018-12-18 | 2019-02-19 | 中国电子科技集团公司第五十四研究所 | 一种固态高功率放大器 |
TWI806054B (zh) * | 2021-05-19 | 2023-06-21 | 瑞昱半導體股份有限公司 | 發射器及其校正方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7421037B2 (en) * | 2003-11-20 | 2008-09-02 | Nokia Corporation | Reconfigurable transmitter with direct digital to RF modulator |
US7460612B2 (en) * | 2004-08-12 | 2008-12-02 | Texas Instruments Incorporated | Method and apparatus for a fully digital quadrature modulator |
US8195103B2 (en) * | 2006-02-15 | 2012-06-05 | Texas Instruments Incorporated | Linearization of a transmit amplifier |
US20110129037A1 (en) * | 2009-11-30 | 2011-06-02 | Bogdan Staszewski | Digital power amplifier with i/q combination |
-
2014
- 2014-05-21 CN CN201410216196.8A patent/CN104184420B/zh not_active Expired - Fee Related
- 2014-05-21 TW TW103117786A patent/TWI531189B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201513614A (zh) | 2015-04-01 |
CN104184420B (zh) | 2018-03-16 |
CN104184420A (zh) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI469538B (zh) | Rf傳送器架構、積體電路設備、無線通訊單元及其方法 | |
TWI502899B (zh) | 射頻發射器、集成電路設備、無線通訊單元及方法 | |
US9559879B2 (en) | PA cell, PA module, wireless communication unit, RF transmitter architecture and method therefor | |
US10129055B2 (en) | PA cell, PA module, wireless communication unit, RF transmitter architecture and method therefor | |
US9647866B2 (en) | RF transmitter, integrated circuit device, wireless communication unit and method therefor | |
US8665018B2 (en) | Integrated circuit, wireless communication unit and method for a differential interface for an envelope tracking signal | |
EP2497188B1 (en) | Digital affine transformation modulated power amplifier for wireless communications | |
US7151913B2 (en) | Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture | |
EP3219063B1 (en) | System and method for generating a multi-band signal | |
KR102616755B1 (ko) | 에너지 효율적인 스펙트럼 필터링을 갖는 초고속 데이터 레이트의 디지털 밀리미터파 송신기 | |
TWI531189B (zh) | 功率放大器單元、功率放大器模組、通訊單元、射頻發射器架構以及數位預失真校正方法 | |
CN104218968B (zh) | 射频传输器以及射频传输方法 | |
Luo et al. | Empowering multifunction: Digital power amplifiers, the last RF frontier of the analog and digital kingdoms | |
US20240146503A1 (en) | Digital transmitter featuring a 50%-lo signed phase mapper | |
Chironi et al. | Direct digital-RF amplitude modulator in CMOS 90nm | |
WO2004034658A2 (en) | Method of digital modulation and corresponding transmitter | |
WO2004034566A1 (en) | Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |