TWI530972B - Embedded capacitor structure and the forming method thereof - Google Patents
Embedded capacitor structure and the forming method thereof Download PDFInfo
- Publication number
- TWI530972B TWI530972B TW100125534A TW100125534A TWI530972B TW I530972 B TWI530972 B TW I530972B TW 100125534 A TW100125534 A TW 100125534A TW 100125534 A TW100125534 A TW 100125534A TW I530972 B TWI530972 B TW I530972B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- metal layer
- capacitor structure
- trench
- forming
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
本發明是有關於一種嵌入式電容結構,且特別是有關於一種以一次氮化矽層之沉積步驟來形成嵌入式電容結構。 The present invention relates to an embedded capacitor structure, and more particularly to a method of depositing a tantalum nitride layer to form an embedded capacitor structure.
積體電路就是將各式電子元件以小型化的方式來整合至半導體基板上,因此必然有將電容器完成於積體電路中的需求。但是,習知的嵌入式電容之製程過於繁複,例如,需要於不同階段進行多次的氮化矽沉積製程以完成習知電容器之各個必要結構,造成產品的製造成本過高,而如何改善習知嵌入式電容的缺失,係為發展本案之主要目的。 The integrated circuit integrates various electronic components into a semiconductor substrate in a miniaturized manner, and thus there is a demand for completing the capacitor in the integrated circuit. However, the conventional embedded capacitor process is too complicated. For example, it is necessary to perform multiple tantalum nitride deposition processes at different stages to complete the necessary structures of the conventional capacitors, resulting in excessive manufacturing cost of the product, and how to improve the practice. Knowing the lack of embedded capacitors is the main purpose of developing this case.
本發明的目的就是在提供一種嵌入式電容結構形成方法,係在製程中減少氮化矽層沉積的次數以降低製程成本。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an embedded capacitor structure forming method which reduces the number of times of tantalum nitride layer deposition in a process to reduce process cost.
本發明提出一種嵌入式電容結構形成方法,包含下列步驟:提供具有第一介電層之基板,且第一介電層內具有溝渠;在溝渠之底層表面上形成電容結構,電容結構包括第一金屬層、電容絕緣層及第二金屬層,且曝露出在溝渠之底層表面上之第一金屬層之部份表面;在溝渠之上表面、內側表面及電容結構上形成覆蓋層;在覆蓋層上形成第二介電層;以及移除在溝渠內之部份第二介電層以及部份覆蓋層以形成複數個接觸窗結構,複數個接觸窗結構曝露出第一金屬層之部份表面及第二金屬層之部份表面。 The present invention provides a method for forming an embedded capacitor structure, comprising the steps of: providing a substrate having a first dielectric layer, and having a trench in the first dielectric layer; forming a capacitor structure on the bottom surface of the trench, the capacitor structure including the first a metal layer, a capacitor insulating layer and a second metal layer exposed on a surface of the first metal layer on the bottom surface of the trench; a cover layer formed on the upper surface, the inner surface and the capacitor structure of the trench; Forming a second dielectric layer thereon; and removing a portion of the second dielectric layer and a portion of the cap layer in the trench to form a plurality of contact window structures, the plurality of contact window structures exposing a portion of the surface of the first metal layer And a portion of the surface of the second metal layer.
在本發明之一實施例中,上述之第一介電層為二氧化矽或 是氟矽玻璃(Fluorinated Silica Glass,簡稱FSG)。 In an embodiment of the invention, the first dielectric layer is cerium oxide or It is Fluorinated Silica Glass (FSG).
在本發明之一實施例中,上述之形成電容結構包括下列步驟:在溝渠之上表面、內側表面及底層表面上形成第一金屬層;在第一金屬層之表面上形成電容絕緣層;在電容絕緣層之表面上形成第二金屬層;在第二金屬層上形成底層抗反射塗佈層,底層抗反射塗佈層係填滿溝渠;於底層抗反射塗佈層上方形成具有電容結構圖案之光阻層;以及蝕刻以移除底層抗反射塗佈層、部份第二金屬層、部份電容絕緣層以及部份第一金屬層,是以在溝渠之底層表面上形成電容結構,且曝露出位於溝渠之底層表面上之第一金屬層之部份表面及第二金屬層之部份表面。 In an embodiment of the invention, the forming the capacitor structure comprises the steps of: forming a first metal layer on the upper surface, the inner surface and the bottom surface of the trench; forming a capacitive insulating layer on the surface of the first metal layer; Forming a second metal layer on the surface of the capacitor insulating layer; forming an underlying anti-reflective coating layer on the second metal layer; the bottom anti-reflective coating layer fills the trench; forming a capacitive structure pattern over the bottom anti-reflective coating layer a photoresist layer; and etching to remove the underlying anti-reflective coating layer, a portion of the second metal layer, a portion of the capacitor insulating layer, and a portion of the first metal layer to form a capacitor structure on the underlying surface of the trench, and A portion of the surface of the first metal layer and a portion of the surface of the second metal layer on the underlying surface of the trench are exposed.
在本發明之一實施例中,上述底層抗反射塗佈層之材料可以是氮化矽、二氧化矽或是氮氧化矽。 In an embodiment of the invention, the material of the underlying anti-reflective coating layer may be tantalum nitride, hafnium oxide or hafnium oxynitride.
在本發明之一實施例中,上述位於溝渠之底層表面上之第一金屬層與溝渠之部份內側表面接觸。 In an embodiment of the invention, the first metal layer on the bottom surface of the trench is in contact with a portion of the inner side surface of the trench.
在本發明之一實施例中,上述之第一金屬層之形成厚度約為1000埃左右。 In an embodiment of the invention, the first metal layer is formed to a thickness of about 1000 angstroms.
在本發明之一實施例中,上述之電容絕緣層之形成厚度範圍為300埃至600埃。 In an embodiment of the invention, the capacitor insulating layer is formed to have a thickness ranging from 300 angstroms to 600 angstroms.
在本發明之一實施例中,上述之第二金屬層之形成厚度範圍為600埃至1000埃。 In an embodiment of the invention, the second metal layer is formed to a thickness ranging from 600 angstroms to 1000 angstroms.
在本發明之一實施例中,上述之覆蓋層之形成厚度範圍為350埃至700埃。 In one embodiment of the invention, the cover layer is formed to a thickness in the range of from 350 angstroms to 700 angstroms.
在本發明之一實施例中,上述之接觸窗結構為單鑲嵌結構(single damascene structure)或雙鑲嵌結構(dual damascene structure)。 In an embodiment of the invention, the contact window structure is a single damascene structure or a dual damascene structure.
在本發明之一實施例中,上述之更包含一金屬層形成在複數個接觸窗結構內以形成複數個導電連接結構。 In an embodiment of the invention, the method further includes forming a metal layer formed in the plurality of contact window structures to form a plurality of conductive connection structures.
根據上述之嵌入式電容結構形成方法,本發明另提出一種嵌入式電容結構,包含:在基板上具有第一介電層,且第一介電層內具有溝渠;電容結構設置在溝渠之底層表面上,電容結構包含第一金屬層,設置在溝渠之底層表面上、電容絕緣層,設置在第一金屬層上以及第二金屬層,設置在電容絕緣層上,且電容絕緣層及第二金屬層係曝露出在第一金屬層之部份表面且與溝渠之內側表面之間具有一距離;覆蓋層,設置在溝渠之內側表面上及覆蓋於電容結構上;第二介電層,設置在覆蓋層上;以及複數個導電連接結構,設置在第二介電層及覆蓋層內,其中部份導電連接結構與電容結構之第一金屬層所曝露之部份表面電性連接以及另一部份導電連接結構與第二金屬層所曝露之部份表面電性連接。 According to the above method for forming an embedded capacitor structure, the present invention further provides an embedded capacitor structure comprising: a first dielectric layer on the substrate, and a trench in the first dielectric layer; the capacitor structure is disposed on the bottom surface of the trench The capacitor structure comprises a first metal layer disposed on the bottom surface of the trench, a capacitor insulating layer disposed on the first metal layer and the second metal layer, disposed on the capacitor insulating layer, and the capacitor insulating layer and the second metal The layer is exposed on a portion of the surface of the first metal layer and has a distance from the inner surface of the trench; the cover layer is disposed on the inner surface of the trench and overlies the capacitor structure; the second dielectric layer is disposed on And a plurality of conductive connection structures disposed in the second dielectric layer and the cover layer, wherein a portion of the conductive connection structure is electrically connected to a portion of the exposed surface of the first metal layer of the capacitor structure and the other portion The conductive connection structure is electrically connected to a portion of the surface exposed by the second metal layer.
在本發明之一實施例中,上述之第一介電層之材料為二氧化矽或是氟矽玻璃(Fluorinated Silica Glass,簡稱FSG)。 In an embodiment of the invention, the material of the first dielectric layer is cerium oxide or Fluorinated Silica Glass (FSG).
在本發明之一實施例中,上述之第一金屬層所曝露出的部份表面鄰近於溝渠之一側邊或是兩側之內側表面。 In an embodiment of the invention, the surface of the first metal layer exposed is adjacent to one side of the trench or the inner side of the two sides.
在本發明之一實施例中,上述之電容絕緣層及第二金屬層與溝渠之內側表面之間之距離範圍為0.9um至1um。 In an embodiment of the invention, the distance between the capacitive insulating layer and the second metal layer and the inner surface of the trench ranges from 0.9 um to 1 um.
在本發明之一實施例中,上述之電容絕緣層之材料為二氧化矽、氮化矽、五氧化二鉭(Ta2O5)、氧化鋁(aluminum oxide)或是其它的絕緣材料。 In an embodiment of the invention, the material of the capacitor insulating layer is ceria, tantalum nitride, tantalum pentoxide (Ta 2 O 5 ), aluminum oxide or other insulating material.
在本發明之一實施例中,上述之覆蓋層之材料為氮化矽或是碳化矽。 In an embodiment of the invention, the material of the cover layer is tantalum nitride or tantalum carbide.
在本發明之一實施例中,上述之第二介電層之材料為五氧 化二鉭(Ta2O5)或是三氧化二鋁(Al2O3)。 In an embodiment of the invention, the material of the second dielectric layer is tantalum pentoxide (Ta 2 O 5 ) or aluminum oxide (Al 2 O 3 ).
在本發明之一實施例中,上述之導電連接結構為單鑲嵌結構或是雙鑲嵌結構。 In an embodiment of the invention, the conductive connection structure is a single damascene structure or a dual damascene structure.
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;
本發明的一些實施例會詳細描述如下。然而,除了詳細描述之外,本發明還可以廣泛地在其他的實施例施行,且本發明的範圍不受限定,其以之後的專利範圍為準。 Some embodiments of the invention are described in detail below. However, the present invention may be widely practiced in other embodiments, and the scope of the present invention is not limited, and the scope of the invention will be limited.
請先參考圖1至圖6,其係本案發展出來之嵌入式電容結構之形成方法。首先參見圖1,在基板10上先形成第一介電層12,接著利用光學微影製程,在第一介電層12上形成具有溝渠圖案(未在圖中表示)之光阻層,接著進行蝕刻步驟,根據該光阻層之圖案以移除部份的第一介電層12,使得在基板10上且在第一介電層12內形成一溝渠122。在此實施例中,基板10可為矽基板,而第一介電層12可為二氧化矽或是氟矽玻璃(Fluorinated silica Glass,簡稱FSG)。 Please refer to FIG. 1 to FIG. 6 first, which is a method for forming an embedded capacitor structure developed in the present case. Referring first to FIG. 1, a first dielectric layer 12 is formed on a substrate 10, and then a photoresist layer having a trench pattern (not shown) is formed on the first dielectric layer 12 by an optical lithography process. An etching step is performed to remove a portion of the first dielectric layer 12 according to the pattern of the photoresist layer such that a trench 122 is formed on the substrate 10 and within the first dielectric layer 12. In this embodiment, the substrate 10 can be a germanium substrate, and the first dielectric layer 12 can be germanium dioxide or Fluorinated silica glass (FSG).
接著,請參考圖2。在圖2中,在溝渠122之上表面、內側表面及底層表面上共形地形成第一金屬層22;接著電容絕緣層24共形地形成在第一金屬層22之表面上;以及第二金屬層26共形地形成在電容絕緣層24之表面上。在此實施例中,第一金屬層22與第二金屬層26的材料相同,其可以是鎢(W)、鈦(Ti)、鈦化鎢(TiW)、鉭(Ta)、氮化鉭(TaN)、鋁(Al)、銅(Cu)或是上述金屬之合金。第一金屬層22及第二金屬層26之形成方法包含化學氣相沉積(CVD)、物理氣相沉積(PVD)、蒸鍍 (evaporation)、電鍍(plating)或是結合上述之方法,且第一金屬層22形成在溝渠122之底層表面上之厚度約為1000埃左右(或可視應用而定)。第二金屬層26形成在電容絕緣層24的厚度範圍為600埃至1000埃(或可視應用而定)。另外,形成在第一金屬層22及第二金屬層26之間的電容絕緣層24的材料包含二氧化矽、氮化矽、五氧化二鉭(Ta2O5)、氧化鋁(aluminum oxide)或是其他的絕緣材料。電容絕緣層24的形成方式可以是化學氣相沉積法、物理氣相沉積或是其他沉積方式,且電容絕緣層24形成在第一金屬層22及第二金屬層26之間的厚度範圍為300埃至600埃(或可視應用而定)。 Next, please refer to Figure 2. In FIG. 2, a first metal layer 22 is conformally formed on the upper surface, the inner surface, and the bottom surface of the trench 122; then the capacitive insulating layer 24 is conformally formed on the surface of the first metal layer 22; The metal layer 26 is conformally formed on the surface of the capacitive insulating layer 24. In this embodiment, the first metal layer 22 is the same material as the second metal layer 26, which may be tungsten (W), titanium (Ti), titanium tungsten (TiW), tantalum (Ta), tantalum nitride ( TaN), aluminum (Al), copper (Cu) or an alloy of the above metals. The method for forming the first metal layer 22 and the second metal layer 26 includes chemical vapor deposition (CVD), physical vapor deposition (PVD), evaporation, plating, or the combination of the above methods, and A metal layer 22 is formed on the bottom surface of the trench 122 to a thickness of about 1000 angstroms (depending on the application). The second metal layer 26 is formed over the thickness of the capacitive insulating layer 24 in the range of 600 angstroms to 1000 angstroms (depending on the application). In addition, the material of the capacitive insulating layer 24 formed between the first metal layer 22 and the second metal layer 26 includes cerium oxide, tantalum nitride, tantalum pentoxide (Ta 2 O 5 ), aluminum oxide (aluminum oxide). Or other insulation materials. The capacitor insulating layer 24 may be formed by chemical vapor deposition, physical vapor deposition or other deposition methods, and the capacitor insulating layer 24 is formed between the first metal layer 22 and the second metal layer 26 in a thickness range of 300. An angstrom to 600 angstroms (or depending on the application).
接著,同樣參考圖2,為了避免在後續的光學微影製程中,由於入射光與反射光的干涉作用,導致光阻層的駐波效應(standing wave effect)及凹缺效應(notching effect),造成在進行微影製程時的圖案轉移準確度大幅降低的問題。因此,在本發明中,將底層抗反射塗佈層(bottom anti-reflection coating,簡稱BARC)30形成在第二金屬層26上且填滿溝渠122。在此,底層抗反射塗佈層30的形成方式可以是化學氣相沉積法或是其他沉積方法(請發明人提供),且其材料為氮化矽、二氧化矽或是氮氧化矽。 Next, referring also to FIG. 2, in order to avoid interference between the incident light and the reflected light in the subsequent optical lithography process, the standing wave effect and the notching effect of the photoresist layer are caused. This causes a problem that the accuracy of pattern transfer during the lithography process is greatly reduced. Therefore, in the present invention, a bottom anti-reflection coating (BARC) 30 is formed on the second metal layer 26 and fills the trench 122. Here, the underlying anti-reflective coating layer 30 may be formed by chemical vapor deposition or other deposition methods (recommended by the inventors), and the material thereof is tantalum nitride, hafnium oxide or hafnium oxynitride.
接著,在底層抗反射塗佈層30上方形成具有電容結構圖案之光阻層(未在圖中表示),然後進行蝕刻步驟,依序移除部份底層抗反射塗佈層30、部份第二金屬層26、部份電容絕緣層26及部份第一金屬層22。之後,將底層抗反射塗佈層30全部移除,只保留在溝渠122之底層表面上之第一金屬層222、電容絕緣層242及第二金屬層262,並且曝露出第一金屬層222的部份表面,且第一金屬層222與溝渠122之部份內側表面接 觸,如圖3所示。在此,第一金屬層222所曝露出的部份表面係鄰近於溝渠122之一側或是兩側之內側表面。另外,在溝渠122之底層表面上之第一金屬層222所曝露出的部份表面的寬度係為電容絕緣層242及第二金屬層262與溝渠122之內側表面之間的距離,其距離範圍為0.9um至1um。另外,在溝渠122之底層表面上之第一金屬層222、電容絕緣層242及第二金屬層262係構成一金屬/絕緣層/金屬電容結構20。 Next, a photoresist layer having a pattern of a capacitor structure (not shown) is formed over the underlying anti-reflective coating layer 30, and then an etching step is performed to sequentially remove a portion of the underlying anti-reflective coating layer 30, a portion of the portion The second metal layer 26, the partial capacitor insulating layer 26 and a portion of the first metal layer 22. Thereafter, the underlying anti-reflective coating layer 30 is completely removed, leaving only the first metal layer 222, the capacitive insulating layer 242, and the second metal layer 262 on the bottom surface of the trench 122, and exposing the first metal layer 222. Part of the surface, and the first metal layer 222 is connected to a portion of the inner surface of the trench 122 Touch, as shown in Figure 3. Here, a portion of the surface exposed by the first metal layer 222 is adjacent to one side of the trench 122 or an inner side surface of both sides. In addition, the width of a portion of the surface exposed by the first metal layer 222 on the bottom surface of the trench 122 is the distance between the capacitive insulating layer 242 and the inner surface of the second metal layer 262 and the trench 122. It is from 0.9um to 1um. In addition, the first metal layer 222, the capacitor insulating layer 242 and the second metal layer 262 on the bottom surface of the trench 122 constitute a metal/insulating layer/metal capacitor structure 20.
接著,請參考圖4。在圖4中,於溝渠(未在圖中表示)之上表面及內側表面以及電容結構20上形成一覆蓋層40,此覆蓋層40係做為在後續形成接觸窗結構(未在圖中表示)的蝕刻終止層,在此實施例中,覆蓋層40可以藉由化學氣相沉積法形成,其形成厚度範圍為350埃至700埃(或可視製程能力而定),且其材料為氮化矽或碳化矽。接著,同樣是參考圖4,在覆蓋層40上形成第二介電層50並且填滿整個溝渠。 Next, please refer to Figure 4. In FIG. 4, a cover layer 40 is formed on the upper surface and the inner surface of the trench (not shown) and the capacitor structure 20, and the cover layer 40 is formed as a contact window structure (not shown in the figure). The etch stop layer, in this embodiment, the cap layer 40 can be formed by chemical vapor deposition, which is formed to a thickness ranging from 350 angstroms to 700 angstroms (or depending on process capability), and the material is nitrided.矽 or tantalum carbide. Next, referring also to FIG. 4, a second dielectric layer 50 is formed over the cap layer 40 and fills the entire trench.
接下來,係先對圖4之結構執行平坦化步驟,例如化學機械研磨製程(chemical mechanical polishing,簡稱CMP),將溝渠之上表面多餘的第二介電層50以及覆蓋層40以研磨的方式移除,並且停止在第二介電層50上,以曝露出溝渠之上表面、第二介電層50與及覆蓋層40之部份表面,其中第二介電層50的材料可以是具有高介電常數之介電材料例如五氧化二鉭(Ta2O5)或是三氧化二鋁(Al2O3),利用高介電常數之介電材料具有高耦合率,以提高電容結構的電容密度。 Next, a planarization step, such as a chemical mechanical polishing (CMP), is performed on the structure of FIG. 4, and the second dielectric layer 50 and the overlying layer 40 on the upper surface of the trench are polished. Removing, and stopping on the second dielectric layer 50 to expose a surface of the upper surface of the trench, a portion of the second dielectric layer 50 and the cover layer 40, wherein the material of the second dielectric layer 50 may have High dielectric constant dielectric materials such as tantalum pentoxide (Ta 2 O 5 ) or aluminum oxide (Al 2 O 3 ), which have a high coupling ratio using a high dielectric constant dielectric material to improve the capacitance structure Capacitance density.
接著,請參考圖5,在基板10上方形成具有接觸窗結構圖案之光阻層(未在圖中表示),然後,執行光學微影製程,係根據光阻層之圖案,蝕刻以移除部份第二介電層50及部份覆蓋層40,在第二介電層50內及覆蓋層40內形成第一接觸窗 (contact window)結構72及第二接觸窗結構74,其中第一接觸窗結構72形成在第一金屬層222上且將第一金屬層222之部份表面曝露出來,第二接觸窗結構74形成在第二金屬層262上且將第二金屬層262之部份表面曝露出來。在此實施例中,第一接觸窗結構72及/或第二接觸窗結構74可以是單鑲嵌結構(single damascene structure)或是雙鑲嵌結構(dual damascene structure)。之後,如圖6所示,將一金屬層,例如銅,形成在第一接觸窗結構72及第二接觸窗結構74內以分別形成第一導電連接結構721以及第二導電連接結構741。緊接著,再執行另一次平坦化步驟,例如化學機械研磨製程,將多餘的金屬層移除,以得到一平坦之金屬層表面。在此結構中可以得到,第一導電連接結構721的一端與第一金屬層222彼此電性連接,第二導電連接結構741的一端與第二金屬層262彼此電性連接,而完成嵌入式電容結構。因此,第一金屬層222可做為嵌入式電容結構的一個平面電極,而第二金屬層262則可做為另一個平面電極,並且電容絕緣層242為一字型結構介於兩平面電極之間。 Next, referring to FIG. 5, a photoresist layer having a contact window structure pattern (not shown) is formed over the substrate 10. Then, an optical lithography process is performed, which is etched to remove the portion according to the pattern of the photoresist layer. a second dielectric layer 50 and a portion of the cover layer 40, forming a first contact window in the second dielectric layer 50 and in the cover layer 40 The contact window structure 72 and the second contact window structure 74, wherein the first contact window structure 72 is formed on the first metal layer 222 and exposes a portion of the surface of the first metal layer 222, and the second contact window structure 74 is formed. A portion of the surface of the second metal layer 262 is exposed on the second metal layer 262. In this embodiment, the first contact structure 72 and/or the second contact structure 74 may be a single damascene structure or a dual damascene structure. Thereafter, as shown in FIG. 6, a metal layer, such as copper, is formed in the first contact structure 72 and the second contact structure 74 to form a first conductive connection 721 and a second conductive connection 741, respectively. Next, another planarization step, such as a chemical mechanical polishing process, is performed to remove the excess metal layer to obtain a flat metal layer surface. In this structure, one end of the first conductive connection structure 721 and the first metal layer 222 are electrically connected to each other, and one end of the second conductive connection structure 741 and the second metal layer 262 are electrically connected to each other, and the embedded capacitor is completed. structure. Therefore, the first metal layer 222 can be used as a planar electrode of the embedded capacitor structure, and the second metal layer 262 can be used as another planar electrode, and the capacitive insulating layer 242 has a font structure interposed between the two planar electrodes. between.
根據以上所述可以得到以下幾個優點:本發明所揭露之嵌入式電容結構係形成在一溝渠內,可以縮小在晶粒上的空間結構,並且提高電容結構的電容量。 According to the above, the following advantages can be obtained: the embedded capacitor structure disclosed in the present invention is formed in a trench, which can reduce the spatial structure on the die and improve the capacitance of the capacitor structure.
另外,根據本發明所揭露之嵌入式電容結構,只需要一次的氮化矽層之沉積步驟,可同時定義出嵌入式電容結構圖案,因此可以簡化形成電容結構時所需要的氮化矽之沉積步驟;此外,本案所述之嵌入式電容結構之製程步驟均與目前成熟的技術相容,因此可以簡化製程步驟、並且降低製程成本。另外,由於本案的金屬層(第一金屬層或第二金屬層)所曝露之區域 足以讓接觸窗結構對準且直接形成在金屬層之表面,因此不會有接觸窗結構與金屬層之間錯位而無法對準的問題導致於結構不完整的情形發生。 In addition, according to the embedded capacitor structure disclosed in the present invention, only one deposition step of the tantalum nitride layer is required, and the embedded capacitor structure pattern can be defined at the same time, thereby simplifying the deposition of tantalum nitride required for forming the capacitor structure. In addition, the process steps of the embedded capacitor structure described in the present invention are all compatible with the currently mature technology, thereby simplifying the process steps and reducing the process cost. In addition, due to the exposed area of the metal layer (the first metal layer or the second metal layer) of the present case It is sufficient for the contact window structure to be aligned and formed directly on the surface of the metal layer, so that there is no problem that the contact window structure and the metal layer are misaligned and cannot be aligned, resulting in an incomplete structure.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
10‧‧‧基板 10‧‧‧Substrate
12‧‧‧第一介電層 12‧‧‧First dielectric layer
122‧‧‧溝渠 122‧‧‧ Ditch
20‧‧‧電容結構 20‧‧‧Capacitor structure
22、222‧‧‧第一金屬層 22, 222‧‧‧ first metal layer
24、242‧‧‧電容絕緣層 24, 242‧‧‧capacitor insulation
26、262‧‧‧第二金屬層 26, 262‧‧‧ second metal layer
30‧‧‧底層抗塗佈反射層 30‧‧‧Bottom anti-coated reflective layer
40‧‧‧覆蓋層 40‧‧‧ Coverage
50‧‧‧第二介電層 50‧‧‧Second dielectric layer
72‧‧‧第一接觸窗 72‧‧‧ first contact window
74‧‧‧第二接觸窗 74‧‧‧second contact window
721‧‧‧第一導電連接結構 721‧‧‧First conductive connection structure
741‧‧‧第二導電連接結構 741‧‧‧Second conductive connection structure
圖1係表示在基板上方形成具有溝渠之介電層之截面示意圖;圖2係表示在溝渠內依序形成由第一金屬層、電容絕緣層、第二金屬層及底層抗反射塗佈層之截面示意圖;圖3係表示在溝渠之底層表面上形成電容結構之截面示意圖;圖4係在溝渠之內側表面以及電容結構上依序形成覆蓋層及第二介電層之截面示意圖;圖5係表示在溝渠內及電容結構之上形成接觸窗結構之截面示意圖;以及圖6係表示在接觸窗結構內形成金屬層以形成導電連接結構之截面示意圖。 1 is a schematic cross-sectional view showing a dielectric layer having a trench formed above a substrate; and FIG. 2 is a view showing a first metal layer, a capacitor insulating layer, a second metal layer, and an underlying anti-reflective coating layer sequentially formed in the trench. 3 is a schematic cross-sectional view showing the formation of a capacitor structure on the bottom surface of the trench; FIG. 4 is a schematic cross-sectional view showing the cover layer and the second dielectric layer sequentially formed on the inner surface of the trench and the capacitor structure; A schematic cross-sectional view showing the formation of a contact window structure in the trench and above the capacitor structure; and FIG. 6 is a schematic cross-sectional view showing the formation of a metal layer in the contact window structure to form a conductive connection structure.
10‧‧‧基板 10‧‧‧Substrate
12‧‧‧第一介電層 12‧‧‧First dielectric layer
20‧‧‧電容結構 20‧‧‧Capacitor structure
222‧‧‧第一金屬層 222‧‧‧First metal layer
242‧‧‧電容絕緣層 242‧‧‧Capacitive insulation
262‧‧‧第二金屬層 262‧‧‧Second metal layer
40‧‧‧覆蓋層 40‧‧‧ Coverage
50‧‧‧第三介電層 50‧‧‧ third dielectric layer
72‧‧‧第一接觸窗結構 72‧‧‧First contact window structure
74‧‧‧第二接觸窗結構 74‧‧‧Second contact window structure
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100125534A TWI530972B (en) | 2011-07-19 | 2011-07-19 | Embedded capacitor structure and the forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100125534A TWI530972B (en) | 2011-07-19 | 2011-07-19 | Embedded capacitor structure and the forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201306063A TW201306063A (en) | 2013-02-01 |
TWI530972B true TWI530972B (en) | 2016-04-21 |
Family
ID=48169250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100125534A TWI530972B (en) | 2011-07-19 | 2011-07-19 | Embedded capacitor structure and the forming method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI530972B (en) |
-
2011
- 2011-07-19 TW TW100125534A patent/TWI530972B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201306063A (en) | 2013-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100904611B1 (en) | Metal-insulator-metalmim capacitor structure and methods of fabricating same | |
US6245669B1 (en) | High selectivity Si-rich SiON etch-stop layer | |
US20010000034A1 (en) | Damascene process with anti-reflection coating | |
EP1758372A1 (en) | Method and apparatus for reducing optical crosstalk in cmos image sensors | |
US20160086887A1 (en) | Method of Fine Line Space Resolution Lithography for Integrated Circuit Features Using Double Patterning Technology | |
US20160079115A1 (en) | Methods for Fabricating Semiconductor Devices Using Liner Layers to Avoid Damage to Underlying Patterns | |
US6448658B2 (en) | Semiconductor device having improved interconnection-wiring structures | |
US20170018500A1 (en) | Structure with conductive plug and metod of forming the same | |
US8546914B2 (en) | Embedded capacitor structure and the forming method thereof | |
US8748323B2 (en) | Patterning method | |
TWI618195B (en) | Memory structure and manufacturing method thereof | |
US20150140778A1 (en) | Method for manufacturing metal-insulator-metal capacitor structure | |
US7541254B2 (en) | Method of manufacturing thin film capacitor | |
CN103730412A (en) | Metal interconnecting wire formation method | |
US7855434B2 (en) | Semiconductor device capable of decreasing variations in size of metal resistance element | |
TWI578440B (en) | Conductive plug and method of forming the same | |
KR20100036706A (en) | Method for manufacturing metal line of semiconductor device | |
TWI530972B (en) | Embedded capacitor structure and the forming method thereof | |
CN101192513A (en) | Metal-insulator-metal capacitor and its manufacture process | |
US8741676B2 (en) | Method of manufacturing OLED-on-silicon | |
TWI717173B (en) | Memory devices and methods for forming the same | |
US20090160070A1 (en) | Metal line in a semiconductor device | |
JP2008159651A (en) | Multilayer wiring, laminated aluminum wiring, semiconductor device, and method for manufacturing the same | |
US6815337B1 (en) | Method to improve borderless metal line process window for sub-micron designs | |
US6399482B1 (en) | Method and structure for a conductive and a dielectric layer |