TWI527357B - Inverter and power supply method thereof and application using the same - Google Patents

Inverter and power supply method thereof and application using the same Download PDF

Info

Publication number
TWI527357B
TWI527357B TW102141930A TW102141930A TWI527357B TW I527357 B TWI527357 B TW I527357B TW 102141930 A TW102141930 A TW 102141930A TW 102141930 A TW102141930 A TW 102141930A TW I527357 B TWI527357 B TW I527357B
Authority
TW
Taiwan
Prior art keywords
circuit
inverter
auxiliary
auxiliary power
power supply
Prior art date
Application number
TW102141930A
Other languages
Chinese (zh)
Other versions
TW201521348A (en
Inventor
穆建國
季峰
方雄
王川云
徐�明
Original Assignee
南京博蘭得電子科技有限公司
全漢企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京博蘭得電子科技有限公司, 全漢企業股份有限公司 filed Critical 南京博蘭得電子科技有限公司
Priority to TW102141930A priority Critical patent/TWI527357B/en
Publication of TW201521348A publication Critical patent/TW201521348A/en
Application granted granted Critical
Publication of TWI527357B publication Critical patent/TWI527357B/en

Links

Description

逆變器及其供電方法與應用 Inverter and its power supply method and application

本發明是有關於一種電源轉換技術,且特別是有關於一種逆變器及其供電方法與應用。 The invention relates to a power conversion technology, and in particular to an inverter and a power supply method and application thereof.

在逆變器的設計中,其輔助電路(例如:控制部分、驅動部分或通信部分)通常需要不同的隔離電壓(例如12V、5V)做為電源供應,因此設計一個性能可靠且結構簡單的輔助電源來提供輔助電路所需的輔助電源對於保證逆變器高效率穩定的運行具有重要意義。 In the design of the inverter, its auxiliary circuit (such as control part, drive part or communication part) usually needs different isolation voltage (such as 12V, 5V) as the power supply, so design a reliable and simple structure. The power supply to provide the auxiliary power required for the auxiliary circuit is important to ensure the high efficiency and stable operation of the inverter.

在現有技術中,一般常會使用返馳式轉換器(flyback converter)做為提供輔助電源的供電電路。然而,在一些逆變器的應用情境下,利用反馳式轉換器來為逆變器提供輔助電源反而會產生非預期的功率浪費。舉例來說,當逆變器應用於光伏並網系統(photovoltaic grid-connected system)時(於此稱之為光伏逆變器),由於光伏逆變器的直流輸入電壓即係光伏組件(photovoltaic module)的輸出,而光伏組件的輸出又會跟太陽光 的強度有所關聯。因此,光伏逆變器實際上所接收到的直流輸入電壓的大小會隨時間而有所變動,使得光伏逆變器不會維持操作在額定功率下。更具體地說,此時光伏逆變器大部分時間是操作在輕載的工作狀態,所以光伏逆變器的轉換效率不能完全以額定功率下的轉換效率來衡量,還需滿足歐洲效率(即,按照不同權重累計不同負載情況下的轉換效率)的要求。 In the prior art, a flyback converter is often used as a power supply circuit for providing an auxiliary power source. However, in some inverter applications, the use of a flyback converter to provide auxiliary power to the inverter can in turn generate unintended power waste. For example, when the inverter is applied to a photovoltaic grid-connected system (referred to herein as a photovoltaic inverter), since the DC input voltage of the photovoltaic inverter is a photovoltaic module (photovoltaic module) ), and the output of the photovoltaic module will be followed by sunlight The strength of the relationship is related. Therefore, the magnitude of the DC input voltage actually received by the PV inverter will vary over time, so that the PV inverter will not remain operating at rated power. More specifically, at this time, the photovoltaic inverter is operated at a light load for most of the time, so the conversion efficiency of the photovoltaic inverter cannot be fully measured by the conversion efficiency at the rated power, and the European efficiency is also required (ie, , according to different weights to accumulate the conversion efficiency under different load conditions).

但是,返馳式轉換器因為自身的高電壓應力,以及硬開關切換(hard switching)特性導致操作於輕載時轉換效率低落,使得採用返馳式轉換器做為輔助電源電路的光伏逆變器的歐洲效率無法得到提升。 However, due to its high voltage stress and hard switching characteristics, the flyback converter has low conversion efficiency when operating at light loads, making the photovoltaic inverter using the flyback converter as the auxiliary power supply circuit. European efficiency cannot be improved.

本發明提供一種逆變器,其可提升操作於輕載時的轉換效率。 The present invention provides an inverter that can improve conversion efficiency when operating at light loads.

本發明的逆變器包括直流對直流轉換電路、逆變電路以及輔助電源電路。直流對直流轉換電路從直流輸入側接收直流輸入電壓,並據以將直流輸入電壓轉換為直流母線電壓。逆變電路耦接直流對直流轉換電路,用以將直流母線電壓轉換為交流輸出電壓。輔助電源電路耦接直流對直流轉換電路,並且從直流輸入側接收直流輸入電壓。其中,輔助電源電路反應於直流輸入電壓而啟動,並且輔助電源電路於啟動後產生用以控制直流對直流轉換電路之運作所需的第一輔助電源。其中,直流對直流轉換電路 反應於第一輔助電源而啟動,並且直流對直流轉換電路於啟動後產生用以控制逆變電路之運作所需的第二輔助電源,以使逆變電路反應於第二輔助電源而啟動並產生交流輸出電壓。 The inverter of the present invention includes a DC-to-DC conversion circuit, an inverter circuit, and an auxiliary power supply circuit. The DC-to-DC converter circuit receives the DC input voltage from the DC input side and converts the DC input voltage to a DC bus voltage. The inverter circuit is coupled to a DC-to-DC converter circuit for converting the DC bus voltage into an AC output voltage. The auxiliary power supply circuit is coupled to the DC to DC conversion circuit and receives the DC input voltage from the DC input side. Wherein, the auxiliary power supply circuit is activated in response to the DC input voltage, and the auxiliary power supply circuit generates a first auxiliary power source required for controlling the operation of the DC-to-DC conversion circuit after startup. Among them, DC to DC conversion circuit Reacting in response to the first auxiliary power source, and generating a second auxiliary power source for controlling the operation of the inverter circuit after the DC-to-DC conversion circuit is started, so that the inverter circuit is activated and generated in response to the second auxiliary power source AC output voltage.

在本發明一實施例中,直流對直流轉換電路包括第一開關電路、隔離變壓器、整流濾波電路以及第一輔助電路。第一開關電路從直流輸入側接收直流輸入電壓。隔離變壓器具有一次側繞組、第一二次側繞組以及第二二次側繞組,其中一次側繞組耦接第一開關電路。整流濾波電路耦接於隔離變壓器與逆變電路之間,用以對第一與第二二次側繞組的輸出進行整流濾波,其中整流濾波電路根據第一二次側繞組的輸出產生直流母線電壓,並且根據第二二次側繞組的輸出產生第二輔助電源。第一輔助電路耦接輔助電源電路,其中第一輔助電路運作於第一輔助電源下以提供直流對直流轉換電路第一輔助功能。 In an embodiment of the invention, the DC-to-DC conversion circuit includes a first switching circuit, an isolation transformer, a rectifying and filtering circuit, and a first auxiliary circuit. The first switching circuit receives a DC input voltage from a DC input side. The isolation transformer has a primary side winding, a first secondary side winding, and a second secondary side winding, wherein the primary side winding is coupled to the first switching circuit. The rectifying and filtering circuit is coupled between the isolation transformer and the inverter circuit for rectifying and filtering the output of the first and second secondary windings, wherein the rectifying and filtering circuit generates the DC bus voltage according to the output of the first secondary winding And generating a second auxiliary power source according to the output of the second secondary winding. The first auxiliary circuit is coupled to the auxiliary power supply circuit, wherein the first auxiliary circuit operates under the first auxiliary power supply to provide a first auxiliary function of the DC-to-DC conversion circuit.

在本發明一實施例中,逆變電路包括第二開關電路以及第二輔助電路。第二開關電路經由整流濾波電路耦接第一二次側繞組以接收直流母線電壓。第二輔助電路經由整流濾波電路耦接第二二次側繞組,其中第二輔助電路運作於第二輔助電源下以提供逆變電路第二輔助功能。 In an embodiment of the invention, the inverter circuit includes a second switching circuit and a second auxiliary circuit. The second switching circuit is coupled to the first secondary winding via a rectifying and filtering circuit to receive the DC bus voltage. The second auxiliary circuit is coupled to the second secondary winding via the rectifying filter circuit, wherein the second auxiliary circuit operates under the second auxiliary power supply to provide the second auxiliary function of the inverter circuit.

在本發明一實施例中,第一輔助電路包括用以控制第一開關電路之運作的第一控制電路,且第二輔助電路包括用以控制第二開關電路之運作的第二控制電路。 In an embodiment of the invention, the first auxiliary circuit includes a first control circuit for controlling the operation of the first switching circuit, and the second auxiliary circuit includes a second control circuit for controlling the operation of the second switching circuit.

在本發明一實施例中,第一輔助電路與第二輔助電路至 少其中之一包括過壓保護電路、過載保護電路以及過流保護電路至少其中之一。 In an embodiment of the invention, the first auxiliary circuit and the second auxiliary circuit are One of the less includes at least one of an overvoltage protection circuit, an overload protection circuit, and an overcurrent protection circuit.

在本發明一實施例中,直流對直流轉換電路為隔離型直流對直流轉換器。 In an embodiment of the invention, the DC-to-DC conversion circuit is an isolated DC-to-DC converter.

在本發明一實施例中,輔助電源電路為非隔離型直流對直流轉換器。 In an embodiment of the invention, the auxiliary power supply circuit is a non-isolated DC-to-DC converter.

本發明的光伏並網系統具有如前所述的逆變器。 The photovoltaic grid-connected system of the present invention has an inverter as described above.

本發明的逆變器的供電方法包括以下步驟:從直流對直流轉換電路的一直流輸入側接收一直流輸入電壓,以啟動輔助電源電路;藉啟動後的輔助電源電路產生用以控制直流對直流轉換電路之運作所需的一第輔助電源以啟動直流對直流轉換電路;藉啟動後的直流對直流轉換電路將直流輸入電壓轉換為一直流母線電壓,並且產生用以控制逆變電路之運作所需的一第二輔助電源以啟動逆變電路;以及藉啟動後的逆變電路將直流母線電壓轉換為一交流輸出電壓。 The power supply method of the inverter of the present invention comprises the steps of: receiving a DC input voltage from a DC input side of a DC-to-DC converter circuit to activate an auxiliary power circuit; and generating an auxiliary power supply circuit for controlling DC-DC An auxiliary power source required for the operation of the conversion circuit to start the DC-to-DC conversion circuit; the DC-to-DC conversion circuit after the startup converts the DC input voltage into a DC bus voltage, and generates an operation for controlling the inverter circuit A second auxiliary power source is required to start the inverter circuit; and the DC bus voltage is converted into an AC output voltage by the inverter circuit after startup.

基於上述,本發明實施例提出一種逆變器及其供電方法與應用。所述逆變器可利用前級的直流對直流轉換電路來產生後級的逆變電路所需的輔助電源,使得輔助電源電路僅需提供直流對直流轉換電路所需的輔助電源。基此,由於輔助電源電路無需為逆變電路供電,因此輔助電源電路可利用非隔離型的直流對直流轉換器來實現,從而降低輔助電源電路的功率損耗。 Based on the above, an embodiment of the present invention provides an inverter and a power supply method and application thereof. The inverter can utilize the DC-to-DC conversion circuit of the preceding stage to generate the auxiliary power required by the inverter circuit of the latter stage, so that the auxiliary power supply circuit only needs to provide the auxiliary power required by the DC-to-DC conversion circuit. Therefore, since the auxiliary power supply circuit does not need to supply power to the inverter circuit, the auxiliary power supply circuit can be realized by using a non-isolated DC-to-DC converter, thereby reducing the power loss of the auxiliary power supply circuit.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more apparent, the following is a special The embodiments are described in detail below in conjunction with the drawings.

10‧‧‧光伏並網系統 10‧‧‧Photovoltaic grid-connected system

100、300、400‧‧‧逆變器 100, 300, 400‧‧‧ inverter

110、310、410‧‧‧直流對直流轉換電路 110, 310, 410‧‧‧DC to DC conversion circuit

120、320、420‧‧‧逆變電路 120, 320, 420‧‧‧ inverter circuit

130、330、430‧‧‧輔助電源電路 130, 330, 430‧‧‧Auxiliary power circuit

312、412‧‧‧第一開關電路 312, 412‧‧‧ first switch circuit

314、414‧‧‧隔離變壓器 314, 414‧‧‧Isolation transformer

316、416‧‧‧整流濾波電路 316, 416‧‧ ‧ Rectifier filter circuit

318‧‧‧第一輔助電路 318‧‧‧First auxiliary circuit

322、422‧‧‧第二開關電路 322, 422‧‧‧ second switch circuit

324‧‧‧第二輔助電路 324‧‧‧Second auxiliary circuit

418‧‧‧第一控制電路 418‧‧‧First control circuit

424‧‧‧第二控制電路 424‧‧‧Second control circuit

C1、C2‧‧‧濾波電容 C1, C2‧‧‧ filter capacitor

C3~C6、Cr‧‧‧諧振電容 C3~C6, Cr‧‧‧ resonant capacitor

Ci‧‧‧輸入電容 Ci‧‧‧ input capacitor

Cout‧‧‧輸出電容 Cout‧‧‧ output capacitor

EG‧‧‧電網 EG‧‧‧ grid

GND‧‧‧接地端 GND‧‧‧ ground terminal

Lr、Lm、Lin‧‧‧諧振電感 Lr, Lm, Lin‧‧‧ resonant inductor

NP‧‧‧一次側繞組 NP‧‧‧ primary winding

NS1、NS2‧‧‧二次側繞組 NS1, NS2‧‧‧ secondary winding

PVm‧‧‧光伏組件 PVm‧‧‧PV modules

Q1~Q8‧‧‧開關電晶體 Q1~Q8‧‧‧Switching transistor

S1~S8‧‧‧控制訊號 S1~S8‧‧‧ control signal

S610~S640‧‧‧步驟 S610~S640‧‧‧Steps

Tin‧‧‧直流輸入側 Tin‧‧‧DC input side

t1、t2、t3‧‧‧時間 T1, t2, t3‧‧‧ time

Vbus‧‧‧直流母線電壓 Vbus‧‧‧ DC bus voltage

VCC1、VCC2‧‧‧輔助電源 VCC1, VCC2‧‧‧Auxiliary power supply

Vin‧‧‧直流輸入電壓 Vin‧‧‧DC input voltage

Vout‧‧‧交流輸出電壓 Vout‧‧‧AC output voltage

圖1為本發明一實施例的逆變器的示意圖。 FIG. 1 is a schematic diagram of an inverter according to an embodiment of the present invention.

圖2為依照圖1實施例的逆變器的啟動時序示意圖。 FIG. 2 is a schematic diagram showing the startup sequence of the inverter according to the embodiment of FIG. 1. FIG.

圖3為本發明另一實施例的逆變器的示意圖。 FIG. 3 is a schematic diagram of an inverter according to another embodiment of the present invention.

圖4為本發明一實施例的逆變器的電路架構示意圖。 FIG. 4 is a schematic diagram of a circuit structure of an inverter according to an embodiment of the present invention.

圖5為本發明應用本發明實施例的逆變器的光伏並網系統的示意圖。 FIG. 5 is a schematic diagram of a photovoltaic grid-connected system of an inverter to which an embodiment of the present invention is applied.

圖6為本發明一實施例的逆變器的供電方法的步驟流程圖。 FIG. 6 is a flow chart showing the steps of a power supply method of an inverter according to an embodiment of the present invention.

本發明實施例提出一種逆變器及其供電方法與應用。在本發明實施例中,所述逆變器可利用前級電路來產生後級電路所需的輔助電源,使得逆變器中的輔助電源電路僅需提供前級電路所需的輔助電源。基此,由於輔助電源電路無需為後級電路供電,因此輔助電源電路可利用非隔離型的直流對直流轉換器來實現,從而降低輔助電源電路的功率損耗。為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。 The embodiment of the invention provides an inverter and a power supply method and application thereof. In the embodiment of the present invention, the inverter can utilize the pre-stage circuit to generate the auxiliary power required by the subsequent stage circuit, so that the auxiliary power supply circuit in the inverter only needs to provide the auxiliary power required by the pre-stage circuit. Accordingly, since the auxiliary power supply circuit does not need to supply power to the subsequent stage circuit, the auxiliary power supply circuit can be implemented by using a non-isolated DC-to-DC converter, thereby reducing the power loss of the auxiliary power supply circuit. In order to make the disclosure of the present disclosure easier to understand, the following specific embodiments are examples of the disclosure that can be implemented. In addition, wherever possible, the same elements, components, and steps in the drawings and embodiments are used to represent the same or similar components.

圖1為本發明一實施例的逆變器的示意圖。請參照圖1,逆變器100包括直流對直流轉換電路110、逆變電路120以及輔助電源電路130。 FIG. 1 is a schematic diagram of an inverter according to an embodiment of the present invention. Referring to FIG. 1 , the inverter 100 includes a DC-DC conversion circuit 110 , an inverter circuit 120 , and an auxiliary power supply circuit 130 .

直流對直流轉換電路110從直流輸入側Tin接收直流輸入電壓Vin,並據以將直流輸入電壓Vin轉換為直流母線電壓Vbus。逆變電路120耦接直流對直流轉換電路110以接收直流母線電壓Vbus,並具以將直流母線電壓轉換為交流輸出電壓Vout。其中,直流對直流轉換電路110與逆變電路120組成一個兩級式的逆變器電路架構。輔助電源電路130耦接直流對直流轉換電路110,並且從直流輸入側Tin接收直流輸入電壓Vin以對前級的直流對直流轉換電路110供電,而後級的逆變電路120所需的電源供應則是由直流對直流轉換電路110所提供。 The DC-to-DC conversion circuit 110 receives the DC input voltage Vin from the DC input side Tin, and accordingly converts the DC input voltage Vin into the DC bus voltage Vbus. The inverter circuit 120 is coupled to the DC-to-DC converter circuit 110 to receive the DC bus voltage Vbus and converts the DC bus voltage into an AC output voltage Vout. The DC-DC conversion circuit 110 and the inverter circuit 120 form a two-stage inverter circuit architecture. The auxiliary power supply circuit 130 is coupled to the DC-DC conversion circuit 110, and receives the DC input voltage Vin from the DC input side Tin to supply power to the DC-DC conversion circuit 110 of the preceding stage, and the power supply required by the inverter circuit 120 of the subsequent stage. It is provided by the DC-to-DC converter circuit 110.

更具體地說,在本實施例中,當直流輸入側Tin接收到直流輸入電壓Vin時,輔助電源電路130會反應於接收到的直流輸入電壓Vin而啟動,並且於啟動後產生用以控制直流對直流轉換電路110之運作所需的輔助電源VCC1以供直流對直流轉換電路110使用。 More specifically, in the embodiment, when the DC input side Tin receives the DC input voltage Vin, the auxiliary power supply circuit 130 is activated in response to the received DC input voltage Vin, and is generated to control the DC after startup. The auxiliary power source VCC1 required for the operation of the DC converter circuit 110 is used by the DC-to-DC converter circuit 110.

在直流對直流轉換電路110反應於輔助電源VCC1而啟動後,其會開始對直流輸入電壓Vin進行升壓或降壓的電源轉換動作,藉以分別產生直流母線電壓Vbus以及用以控制逆變電路120之運作所需的輔助電源VCC2以供逆變電路120使用,使得逆變電路120可將直流母線電壓Vbus轉換為交流輸出電壓Vout。 After the DC-DC conversion circuit 110 is activated in response to the auxiliary power supply VCC1, it starts a power conversion operation of boosting or stepping down the DC input voltage Vin, thereby generating a DC bus voltage Vbus and controlling the inverter circuit 120, respectively. The auxiliary power source VCC2 required for operation is used by the inverter circuit 120, so that the inverter circuit 120 can convert the DC bus voltage Vbus into the AC output voltage Vout.

基於上述的電路運作方式下,逆變器100會具有如圖2所示的啟動時序。其中,圖2為依照圖1實施例的逆變器的啟動時序示意圖。 Based on the circuit operation described above, the inverter 100 will have a startup sequence as shown in FIG. 2 is a schematic diagram of the startup sequence of the inverter according to the embodiment of FIG. 1.

請同時參照圖1與圖2,首先,當直流輸入側Tin於時間t1接收到直流輸入電壓Vin時,輔助電源電路130會從直流輸入側Tin取電而啟動,並且在輔助電源電路130進入穩定的工作狀態的時間t2後開始提供輔助電源VCC1予直流對直流轉換電路110。接著,直流對直流轉換電路110會於得到輔助電源VCC1時啟動,並且在直流對直流轉換電路110進入穩定的工作狀態的時間t3後開始提供輔助電源VCC2予逆變電路120。 Referring to FIG. 1 and FIG. 2 simultaneously, first, when the DC input side Tin receives the DC input voltage Vin at time t1, the auxiliary power supply circuit 130 is powered on from the DC input side Tin, and is activated in the auxiliary power supply circuit 130. After the time t2 of the operating state, the auxiliary power source VCC1 is supplied to the DC-to-DC converter circuit 110. Next, the DC-DC conversion circuit 110 is started when the auxiliary power supply VCC1 is obtained, and the auxiliary power supply VCC2 is supplied to the inverter circuit 120 after the time t3 when the DC-DC conversion circuit 110 enters the stable operation state.

詳細而言,於逆變器100的架構下,由於後級的逆變電路120所需的輔助電源VCC2是由直流對直流轉換電路110來提供,因此輔助電源電路130僅需對直流對直流轉換電路110供電即可。更進一步地說,由於輔助電源電路130的設計無需進一步考量對後級的逆變電路120的電源供應,因此輔助電源電路130不需如傳統的輔助電源電路般必須採用隔離型直流對直流轉換器(例如:返馳式變換器)來實現,而是僅需採用非隔離型的直流對直流轉換器即可實現。 In detail, under the architecture of the inverter 100, since the auxiliary power supply VCC2 required by the inverter circuit 120 of the subsequent stage is provided by the DC-DC conversion circuit 110, the auxiliary power supply circuit 130 only needs to convert DC-to-DC. The circuit 110 can be powered. Furthermore, since the design of the auxiliary power supply circuit 130 does not require further consideration of the power supply to the inverter circuit 120 of the subsequent stage, the auxiliary power supply circuit 130 does not need to use an isolated DC-to-DC converter as in the conventional auxiliary power supply circuit. This can be achieved, for example, by a flyback converter, but only with a non-isolated DC-to-DC converter.

更具體地說,由於本發明實施例的輔助電源電路130具有非隔離型的架構,因此相較於傳統的輔助電源電路而言,輔助電源電路130可具有較高的轉換效率,並且電路設計的複雜度亦較低。另一方面,由於輔助電源電路130僅需對前級電路供電, 因此所需功率亦較傳統的輔助電源電路來得小。上述特性皆可大大降低本發明實施例的輔助電源電路130的功率損耗,從而提高整體逆變器100的轉換效率,特別是操作在輕載下的轉換效率。 More specifically, since the auxiliary power supply circuit 130 of the embodiment of the present invention has a non-isolated type of architecture, the auxiliary power supply circuit 130 can have higher conversion efficiency than the conventional auxiliary power supply circuit, and the circuit design The complexity is also low. On the other hand, since the auxiliary power supply circuit 130 only needs to supply power to the front stage circuit, Therefore, the required power is also smaller than the conventional auxiliary power supply circuit. All of the above characteristics can greatly reduce the power loss of the auxiliary power supply circuit 130 of the embodiment of the present invention, thereby improving the conversion efficiency of the overall inverter 100, particularly the conversion efficiency under light load.

值得一提的是,本發明並不限定逆變器100所應用之直流對直流轉換電路110與逆變電路120的具體電路組態。換言之,直流對直流轉換電路110可具有半橋非對稱式、半橋對稱式、全橋式或其他可行的電路組態,且逆變電路120亦同,本發明皆不對此加以限制。 It is worth mentioning that the present invention does not limit the specific circuit configuration of the DC-DC conversion circuit 110 and the inverter circuit 120 to which the inverter 100 is applied. In other words, the DC-DC conversion circuit 110 can have a half-bridge asymmetry, a half-bridge symmetry, a full-bridge or other feasible circuit configuration, and the inverter circuit 120 is the same, and the present invention does not limit this.

為了更清楚說明本發明實施例,圖3為本發明另一實施例的逆變器的示意圖。請參照圖3,逆變器300包括直流對直流轉換電路310、逆變電路320以及輔助電源電路330。 In order to more clearly illustrate an embodiment of the present invention, FIG. 3 is a schematic diagram of an inverter according to another embodiment of the present invention. Referring to FIG. 3, the inverter 300 includes a DC-to-DC conversion circuit 310, an inverter circuit 320, and an auxiliary power supply circuit 330.

在本實施例中,直流對直流轉換電路310包括第一開關電路312、隔離變壓器314、整流濾波電路316以及第一輔助電路318。第一開關電路312從直流輸入側Tin接收直流輸入電壓Vin。隔離變壓器314具有一次側繞組NP以及二次側繞組NS1與NS2,其中一次側繞組NP耦接第一開關電路312。整流濾波電路316耦接於隔離變壓器314與逆變電路320之間,用以對二次側繞組NS1與NS2的輸出進行整流濾波,其中整流濾波電路316根據二次側繞組NS1的輸出產生直流母線電壓Vbus,並且根據二次側繞組NS2的輸出產生輔助電源VCC2。第一輔助電路318耦接輔助電源電路330,其中第一輔助電路318運作於輔助電源VCC1下以提供特定的輔助功能。 In the present embodiment, the DC-DC conversion circuit 310 includes a first switch circuit 312, an isolation transformer 314, a rectification filter circuit 316, and a first auxiliary circuit 318. The first switching circuit 312 receives the DC input voltage Vin from the DC input side Tin. The isolation transformer 314 has a primary side winding NP and secondary side windings NS1 and NS2, wherein the primary side winding NP is coupled to the first switching circuit 312. The rectifying and filtering circuit 316 is coupled between the isolation transformer 314 and the inverter circuit 320 for rectifying and filtering the output of the secondary windings NS1 and NS2, wherein the rectifying and filtering circuit 316 generates a DC bus according to the output of the secondary winding NS1. The voltage Vbus, and the auxiliary power source VCC2 is generated according to the output of the secondary side winding NS2. The first auxiliary circuit 318 is coupled to the auxiliary power circuit 330, wherein the first auxiliary circuit 318 operates under the auxiliary power source VCC1 to provide a specific auxiliary function.

逆變電路320包括第二開關電路322以及第二輔助電路324。第二開關電路322經由整流濾波電路310耦接二次側繞組NS1以接收直流母線電壓Vbus。第二輔助電路324經由整流濾波電路310耦接二次側繞組NS2,其中第二輔助電路324運作於輔助電源VCC2下以提供逆變電路320特定的輔助功能。 The inverter circuit 320 includes a second switching circuit 322 and a second auxiliary circuit 324. The second switching circuit 322 is coupled to the secondary side winding NS1 via the rectifying and filtering circuit 310 to receive the DC bus voltage Vbus. The second auxiliary circuit 324 is coupled to the secondary side winding NS2 via the rectifying and filtering circuit 310, wherein the second auxiliary circuit 324 operates under the auxiliary power source VCC2 to provide an auxiliary function specific to the inverter circuit 320.

在本實施例中,直流對直流轉換電路310是採用隔離型直流對直流轉換器來實現,並且輔助電源電路330是採用非隔離型直流對直流轉換器來實現。更具體地說,本實施例的直流對直流轉換電路310是利用具有多個二次側繞組NS1與NS2的隔離變壓器314架構來實現輔助電源VCC2的提供。其中,輔助電源VCC2的大小可基於一次側繞組NP與二次側繞組NS2的匝數比來調整。 In the present embodiment, the DC-DC conversion circuit 310 is implemented using an isolated DC-to-DC converter, and the auxiliary power supply circuit 330 is implemented using a non-isolated DC-DC converter. More specifically, the DC-DC conversion circuit 310 of the present embodiment utilizes an isolation transformer 314 architecture having a plurality of secondary side windings NS1 and NS2 to provide the auxiliary power supply VCC2. The size of the auxiliary power source VCC2 can be adjusted based on the turns ratio of the primary side winding NP and the secondary side winding NS2.

本實施例所述的第一輔助電路318可包括用以控制第一開關電路312的第一控制電路(未繪示),且第二輔助電路324可包括用以控制第二開關電路322的第二控制電路(未繪示)。所述第一與第二控制電路會在接收到對應的輔助電源VCC1與VCC2後開始運作,並據以分別產生控制訊號來控制對應的開關電路312與322的切換,從而調節直流對直流轉換電路310以及逆變電路320的電源轉換。 The first auxiliary circuit 318 described in this embodiment may include a first control circuit (not shown) for controlling the first switch circuit 312, and the second auxiliary circuit 324 may include a second control circuit 322 for controlling the second switch circuit 322. Two control circuits (not shown). The first and second control circuits start to operate after receiving the corresponding auxiliary power sources VCC1 and VCC2, and respectively generate control signals to control switching of the corresponding switch circuits 312 and 322, thereby adjusting the DC-to-DC conversion circuit. 310 and power conversion of the inverter circuit 320.

另一方面,根據設計者的電路設計需求,第一輔助電路310與第二輔助電路320還可包括不同類型的保護電路,例如過壓保護(over voltage protection,OVP)電路、過載保護(over load protection,OLP)電路或過流保護電路(over current protection, OCP)等。其中,第一輔助電路318中的控制電路及/或保護電路的電源供應皆是由輔助電源電路330輸出的輔助電源VCC1所提供,而第二輔助電路324中的控制電路及/或保護電路的電源供應則是由直流對直流轉換電路310輸出的輔助電源VCC2所提供。 On the other hand, according to the designer's circuit design requirements, the first auxiliary circuit 310 and the second auxiliary circuit 320 may further include different types of protection circuits, such as over voltage protection (OVP) circuits, overload protection (over load) Protection, OLP) circuit or over current protection (over current protection, OCP) and so on. The power supply of the control circuit and/or the protection circuit in the first auxiliary circuit 318 is provided by the auxiliary power supply VCC1 outputted by the auxiliary power supply circuit 330, and the control circuit and/or the protection circuit of the second auxiliary circuit 324 are provided. The power supply is provided by the auxiliary power source VCC2 output from the DC-to-DC converter circuit 310.

此外,本實施例雖是以具有兩個二次側繞組NS1與NS2的隔離變壓器314做為實施範例,但本發明不僅限於此。在其他實施例中,根據後級的逆變電路320的設計,隔離變壓器314亦可利用為具有三個以上的二次側繞組的隔離變壓器來實現,藉以提供具有不同電壓等級的輔助電源VCC2以供逆變電路320使用。 Further, although the present embodiment is an embodiment in which the isolation transformer 314 having the two secondary side windings NS1 and NS2 is taken as an example, the present invention is not limited thereto. In other embodiments, the isolation transformer 314 can also be implemented by using an isolation transformer having three or more secondary windings according to the design of the inverter circuit 320 of the subsequent stage, thereby providing the auxiliary power supply VCC2 having different voltage levels. Used by the inverter circuit 320.

底下以一個具體的逆變器電路架構來說明本發明實施例的逆變器的供電與運作機制,如圖4所示。其中,圖4為本發明一實施例的逆變器的電路架構示意圖。 The power supply and operation mechanism of the inverter of the embodiment of the present invention is illustrated by a specific inverter circuit architecture, as shown in FIG. 4 . 4 is a schematic diagram of a circuit structure of an inverter according to an embodiment of the present invention.

請參照圖4,逆變器400包括直流對直流轉換電路410、逆變電路420以及輔助電源電路430。在本實施例中,前級的直流對直流轉換電路410是以全橋串聯型諧振轉換器(隔離型直流對直流電源轉換器的一種)為例,且後級的逆變電路420是以全橋逆變器為例,但本發明不僅限於此。此外,輔助電源電路430於本實施例中可利用降壓轉換晶片(BUCK IC)來實現,其中所述降壓轉換晶片是一種將降壓轉換器及其控制電路積體化在一起的晶片,但本發明亦不僅限於此。 Referring to FIG. 4, the inverter 400 includes a DC-to-DC conversion circuit 410, an inverter circuit 420, and an auxiliary power supply circuit 430. In the present embodiment, the DC-DC conversion circuit 410 of the front stage is a full-bridge series-type resonant converter (one type of isolated DC-to-DC power converter), and the inverter circuit 420 of the latter stage is The bridge inverter is taken as an example, but the present invention is not limited to this. In addition, the auxiliary power supply circuit 430 can be implemented in the present embodiment by using a buck conversion chip (BUCK IC), which is a wafer in which a buck converter and its control circuit are integrated together. However, the present invention is not limited to this.

具體而言,直流輸入電壓Vin與輸入電容Ci並接,並且耦接至直流對直流轉換電路410。直流對直流轉換電路410包括第 一開關電路412、隔離變壓器414、整流濾波電路416以及第一控制電路418。第一開關電路412是由開關電晶體Q1~Q4、諧振電容Cr以及諧振電感Lr與Lm所組成。開關電晶體Q1~Q4耦接於直流輸入電壓Vin與接地端GND之間。開關電晶體Q1與Q2相互串接以組成一橋臂,且開關電晶體Q3與Q4相互串接以組成另一橋臂。 Specifically, the DC input voltage Vin is coupled to the input capacitor Ci and coupled to the DC-DC conversion circuit 410. The DC-to-DC conversion circuit 410 includes a A switch circuit 412, an isolation transformer 414, a rectification filter circuit 416, and a first control circuit 418. The first switching circuit 412 is composed of switching transistors Q1 to Q4, a resonant capacitor Cr, and resonant inductors Lr and Lm. The switching transistors Q1~Q4 are coupled between the DC input voltage Vin and the ground GND. The switching transistors Q1 and Q2 are connected in series to form a bridge arm, and the switching transistors Q3 and Q4 are connected in series to form another bridge arm.

在本實施例中,輔助電源電路430會先反應於直流輸入電壓Vin而啟動並且產生輔助電源VCC1(例如5V、12V的電壓)。在輔助電源電路430啟動後,第一控制電路418會反應於輔助電源電路430所提供的輔助電源VCC1而產生用以控制開關電晶體Q1~Q4的控制訊號S1~S4。開關電晶體Q1~Q4分別受控於控制訊號S1~S4而以互補/切換的方式交替導通或截止,從而將直流輸入電壓Vin輸出至由諧振電容Cr及諧振電感Lr與Lm所組成的一諧振電路。 In the present embodiment, the auxiliary power supply circuit 430 is activated in response to the DC input voltage Vin and generates an auxiliary power source VCC1 (for example, a voltage of 5V, 12V). After the auxiliary power supply circuit 430 is activated, the first control circuit 418 generates control signals S1 to S4 for controlling the switching transistors Q1 to Q4 in response to the auxiliary power supply VCC1 provided by the auxiliary power supply circuit 430. The switching transistors Q1~Q4 are respectively controlled by the control signals S1~S4 and alternately turned on or off in a complementary/switching manner, thereby outputting the DC input voltage Vin to a resonance composed of the resonant capacitor Cr and the resonant inductors Lr and Lm. Circuit.

所述諧振電路會反應於開關電晶體Q1~Q4的開關切換而充/放能,使得隔離變壓器414反應於其一次側繞組NP上的電壓變化而分別在二次側繞組NS1與NS2上產生相應的輸出電壓。 The resonant circuit reacts to the switching of the switching transistors Q1~Q4 to charge/discharge, so that the isolation transformer 414 reacts with the voltage change on the primary winding NP and respectively generates corresponding values on the secondary windings NS1 and NS2. Output voltage.

整流濾波電路416是以包括二極體D1~D4與濾波電容C1與C2的電路架構為例。其中,二極體D1與D2構成一半橋整流器(half-bridge rectifier)並且對二次側繞組NS1的輸出進行整流動作以產生直流母線電壓Vbus。二極體D3與D4構成另一半橋整流器並且對二次側繞組NS2的輸出進行整流動作以產生輔助電源 VCC2。濾波電容C1與C2分別並接於二次側繞組NS1與NS2的同名端(common-polarity terminal,即打點端)與抽頭端(center-tapped terminal)之間,以分別濾除直流母線電壓Vbus與輔助電源VCC2的非直流成分,並且分別將直流母線電壓Vbus與輔助電源VCC2提供給逆變電路420。 The rectifying and filtering circuit 416 is exemplified by a circuit architecture including diodes D1 to D4 and filter capacitors C1 and C2. Among them, the diodes D1 and D2 constitute a half-bridge rectifier and rectify the output of the secondary winding NS1 to generate a DC bus voltage Vbus. The diodes D3 and D4 form another half bridge rectifier and rectify the output of the secondary winding NS2 to generate an auxiliary power supply. VCC2. The filter capacitors C1 and C2 are respectively connected between the common-polarity terminal (the hit-end end) and the center-tapped terminal of the secondary windings NS1 and NS2 to respectively filter the DC bus voltage Vbus and The non-DC component of the auxiliary power source VCC2 is supplied to the inverter circuit 420 with the DC bus voltage Vbus and the auxiliary power source VCC2, respectively.

逆變電路420包括第二開關電路422以及第二控制電路424。第二開關電路422是由開關電晶體Q5~Q8、諧振電容C3~C6以及諧振電感Lin所組成。開關電晶體Q5~Q8耦接於直流母線電壓Vbus與接地端GND之間。開關電晶體Q5與Q6相互串接以組成一橋臂,且開關電晶體Q7與Q8相互串接以組成另一橋臂。 The inverter circuit 420 includes a second switch circuit 422 and a second control circuit 424. The second switching circuit 422 is composed of switching transistors Q5~Q8, resonant capacitors C3~C6 and resonant inductor Lin. The switching transistors Q5~Q8 are coupled between the DC bus voltage Vbus and the ground GND. The switching transistors Q5 and Q6 are connected in series to form a bridge arm, and the switching transistors Q7 and Q8 are connected in series to form another bridge arm.

在直流對直流轉換電路410反應於輔助電源VCC1而啟動並且產生輔助電源VCC2後,第二控制電路424會反應於直流對直流轉換電路410所提供的輔助電源VCC2而產生用以控制開關電晶體Q5~Q8的控制訊號S5~S8。開關電晶體Q5~Q8分別受控於控制訊號S5~S8而以互補/切換的方式交替導通或截止,從而將直流母線電壓Vbus轉換為交流輸出電壓Vout。 After the DC-DC conversion circuit 410 is activated in response to the auxiliary power supply VCC1 and the auxiliary power supply VCC2 is generated, the second control circuit 424 is generated in response to the auxiliary power supply VCC2 provided by the DC-DC conversion circuit 410 to control the switching transistor Q5. ~Q8 control signal S5~S8. The switching transistors Q5~Q8 are respectively controlled to be alternately turned on or off in a complementary/switching manner by the control signals S5~S8, thereby converting the DC bus voltage Vbus into an AC output voltage Vout.

與前述實施例類似,由於本實施例的逆變電路420所需的輔助電源VCC2是由前級的直流對直流轉換電路410所提供,因此輔助電源電路430亦僅需為前級的直流對直流轉換電路410提供輔助電源VCC1,故所需功率較小,因而相應的功率損耗也會較小。因此,逆變器400即使操作在輕載時亦可具有較高的轉換效率。 Similar to the foregoing embodiment, since the auxiliary power supply VCC2 required by the inverter circuit 420 of the present embodiment is provided by the DC-DC conversion circuit 410 of the preceding stage, the auxiliary power supply circuit 430 only needs to be the DC-DC of the front stage. The conversion circuit 410 supplies the auxiliary power source VCC1, so the required power is small, and the corresponding power loss is also small. Therefore, the inverter 400 can have a high conversion efficiency even when operating at a light load.

圖5為應用前述實施例之逆變器100的光伏並網系統的示意圖。請參照圖5,在本實施例的架構下,逆變器100會以光伏組件PVm的輸出做為直流輸入電壓Vin,且逆變器100所產生的交流輸出電壓Vout是提供給後端的電網EG使用。於此,由於逆變器100可有效的改善操作於輕載狀態下的轉換效率,因此即使在太陽光強度因天候影響而減弱時,整體光伏並網系統10的系統效率亦不會受到太大的影響。 FIG. 5 is a schematic diagram of a photovoltaic grid-connected system to which the inverter 100 of the foregoing embodiment is applied. Referring to FIG. 5, in the architecture of the embodiment, the inverter 100 uses the output of the PV module PVm as the DC input voltage Vin, and the AC output voltage Vout generated by the inverter 100 is provided to the back end of the grid EG. use. In this case, since the inverter 100 can effectively improve the conversion efficiency under light load conditions, the system efficiency of the overall photovoltaic grid-connected system 10 is not greatly increased even when the sunlight intensity is weakened by the influence of weather. Impact.

圖6為本發明一實施例的逆變器的供電方法的步驟流程圖。本實施例所述之供電方法可適用於如前述實施例的逆變器100、300或400。請參照圖6,所述供電方法包括以下步驟:從直流對直流轉換電路(如110、310、410)的直流輸入側接收直流輸入電壓,以啟動輔助電源電路(如130、330、430)(步驟S610);藉啟動後的輔助電源電路產生直流對直流轉換電路運作所需的第一輔助電源以啟動直流對直流轉換電路(步驟S620);藉啟動後的直流對直流轉換電路將直流輸入電壓轉換為直流母線電壓,並且產生逆變電路(如120、320、420)運作所需的第二輔助電源以啟動逆變電路(步驟S630);以及藉啟動後的逆變電路將直流母線電壓轉換為交流輸出電壓(步驟S640)。 FIG. 6 is a flow chart showing the steps of a power supply method of an inverter according to an embodiment of the present invention. The power supply method described in this embodiment can be applied to the inverter 100, 300 or 400 as in the foregoing embodiment. Referring to FIG. 6, the power supply method includes the steps of: receiving a DC input voltage from a DC input side of a DC-to-DC conversion circuit (eg, 110, 310, 410) to activate an auxiliary power circuit (eg, 130, 330, 430) ( Step S610): The auxiliary power supply circuit after the startup generates the first auxiliary power required for the operation of the DC-DC conversion circuit to start the DC-DC conversion circuit (step S620); and the DC-to-DC conversion circuit after the startup is the DC input voltage Converting to a DC bus voltage, and generating a second auxiliary power required for operation of the inverter circuit (eg, 120, 320, 420) to start the inverter circuit (step S630); and converting the DC bus voltage by the inverter circuit after startup The output voltage is AC (step S640).

其中,圖6實施例所述之供電方法可根據前述圖1至圖5的說明而獲得充足的支持與教示,故相似或重複之處於此不再贅述。 The power supply method described in the embodiment of FIG. 6 can obtain sufficient support and teaching according to the foregoing description of FIG. 1 to FIG. 5, and thus similarities or repetitions are not described herein again.

綜上所述,本發明實施例提出一種逆變器及其供電方法 與應用。所述逆變器可利用前級的直流對直流轉換電路來產生後級的逆變電路所需的輔助電源,使得輔助電源電路僅需提供直流對直流轉換電路所需的輔助電源。基此,由於輔助電源電路無需為逆變電路供電,因此輔助電源電路可利用非隔離型的直流對直流轉換器來實現,從而降低輔助電源電路的功率損耗。 In summary, the embodiment of the present invention provides an inverter and a power supply method thereof. And application. The inverter can utilize the DC-to-DC conversion circuit of the preceding stage to generate the auxiliary power required by the inverter circuit of the latter stage, so that the auxiliary power supply circuit only needs to provide the auxiliary power required by the DC-to-DC conversion circuit. Therefore, since the auxiliary power supply circuit does not need to supply power to the inverter circuit, the auxiliary power supply circuit can be realized by using a non-isolated DC-to-DC converter, thereby reducing the power loss of the auxiliary power supply circuit.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧逆變器 100‧‧‧Inverter

110‧‧‧直流對直流轉換電路 110‧‧‧DC to DC converter circuit

120‧‧‧逆變電路 120‧‧‧Inverter circuit

130‧‧‧輔助電源電路 130‧‧‧Auxiliary power circuit

Tin‧‧‧直流輸入側 Tin‧‧‧DC input side

Vbus‧‧‧直流母線電壓 Vbus‧‧‧ DC bus voltage

VCC1、VCC2‧‧‧輔助電源 VCC1, VCC2‧‧‧Auxiliary power supply

Vin‧‧‧直流輸入電壓 Vin‧‧‧DC input voltage

Vout‧‧‧交流輸出電壓 Vout‧‧‧AC output voltage

Claims (13)

一種逆變器,包括:一直流對直流轉換電路,從一直流輸入側接收一直流輸入電壓,並據以將該直流輸入電壓轉換為一直流母線電壓;一逆變電路,耦接該直流對直流轉換電路,用以將該直流母線電壓轉換為一交流輸出電壓;以及一輔助電源電路,耦接該直流對直流轉換電路,並且從該直流輸入側接收該直流輸入電壓,其中,該輔助電源電路反應於該直流輸入電壓而啟動,並且該輔助電源電路於啟動後產生用以控制該直流對直流轉換電路之運作所需的一第一輔助電源,其中該第一輔助電源只用以對該直流對直流轉換電路供電,其中,該直流對直流轉換電路反應於該第一輔助電源而啟動,並且該直流對直流轉換電路於啟動後產生用以控制該逆變電路之運作所需的一第二輔助電源,以使該逆變電路反應於該第二輔助電源而啟動並產生該交流輸出電壓。 An inverter includes: a DC-to-DC conversion circuit that receives a DC input voltage from a DC input side, and converts the DC input voltage into a DC bus voltage; an inverter circuit coupled to the DC pair a DC conversion circuit for converting the DC bus voltage into an AC output voltage; and an auxiliary power supply circuit coupled to the DC to DC conversion circuit and receiving the DC input voltage from the DC input side, wherein the auxiliary power supply The circuit is activated in response to the DC input voltage, and the auxiliary power supply circuit generates a first auxiliary power source for controlling operation of the DC-to-DC conversion circuit after startup, wherein the first auxiliary power source is only used to The DC-to-DC conversion circuit supplies power, wherein the DC-to-DC conversion circuit is activated in response to the first auxiliary power supply, and the DC-to-DC conversion circuit generates a first required to control the operation of the inverter circuit after startup And an auxiliary power source for causing the inverter circuit to start and generate the AC output voltage in response to the second auxiliary power source. 如申請專利範圍第1項所述的逆變器,其中該直流對直流轉換電路包括:一第一開關電路,從該直流輸入側接收該直流輸入電壓;一隔離變壓器,具有一一次側繞組、一第一二次側繞組以及一第二二次側繞組,其中該一次側繞組耦接該第一開關電路; 一整流濾波電路,耦接於該隔離變壓器與該逆變電路之間,用以對該第一與第二二次側繞組的輸出進行整流濾波,其中該整流濾波電路根據該第一二次側繞組的輸出產生該直流母線電壓,並且根據該第二二次側繞組的輸出產生該第二輔助電源;以及一第一輔助電路,耦接該輔助電源電路,其中該第一輔助電路運作於該第一輔助電源下以提供該直流對直流轉換電路一第一輔助功能。 The inverter of claim 1, wherein the DC-to-DC conversion circuit comprises: a first switching circuit receiving the DC input voltage from the DC input side; and an isolation transformer having a primary winding a first secondary winding and a second secondary winding, wherein the primary winding is coupled to the first switching circuit; a rectifying and filtering circuit coupled between the isolation transformer and the inverter circuit for rectifying and filtering the output of the first and second secondary windings, wherein the rectifying and filtering circuit is based on the first secondary side The output of the winding generates the DC bus voltage, and generates the second auxiliary power according to the output of the second secondary winding; and a first auxiliary circuit coupled to the auxiliary power circuit, wherein the first auxiliary circuit operates A first auxiliary function is provided under the first auxiliary power supply to provide the DC-to-DC conversion circuit. 如申請專利範圍第2項所述的逆變器,其中該逆變電路包括:一第二開關電路,經由該整流濾波電路耦接該第一二次側繞組以接收該直流母線電壓;以及一第二輔助電路,經由該整流濾波電路耦接該第二二次側繞組,其中該第二輔助電路運作於該第二輔助電源下以提供該逆變電路一第二輔助功能。 The inverter of claim 2, wherein the inverter circuit comprises: a second switch circuit, coupled to the first secondary winding via the rectifying filter circuit to receive the DC bus voltage; and a The second auxiliary circuit is coupled to the second secondary winding via the rectifying and filtering circuit, wherein the second auxiliary circuit operates under the second auxiliary power to provide a second auxiliary function of the inverter circuit. 如申請專利範圍第3項所述的逆變器,其中該第一輔助電路包括用以控制該第一開關電路之運作的一第一控制電路,且該第二輔助電路包括用以控制該第二開關電路之運作的一第二控制電路。 The inverter of claim 3, wherein the first auxiliary circuit includes a first control circuit for controlling operation of the first switching circuit, and the second auxiliary circuit includes A second control circuit for the operation of the two switching circuits. 如申請專利範圍第3項所述的逆變器,其中該第一輔助電路與該第二輔助電路至少其中之一包括一過壓保護電路、一過載保護電路以及一過流保護電路至少其中之一。 The inverter of claim 3, wherein at least one of the first auxiliary circuit and the second auxiliary circuit comprises an overvoltage protection circuit, an overload protection circuit, and an overcurrent protection circuit. One. 如申請專利範圍第1項所述的逆變器,其中該直流對直流轉換電路為一隔離型直流對直流轉換器。 The inverter of claim 1, wherein the DC-to-DC conversion circuit is an isolated DC-to-DC converter. 如申請專利範圍第1項所述的逆變器,其中該輔助電源電路為一非隔離型直流對直流轉換器。 The inverter of claim 1, wherein the auxiliary power supply circuit is a non-isolated DC-to-DC converter. 一種光伏並網系統(photovoltaic grid-connected system),包括:如申請專利範圍第1項所述的逆變器;一光伏組件(photovoltaic module),耦接到該直流輸入側,且用以反應於一光源的強度而產生該直流輸入電壓;以及一電網,耦接到該逆變器以接收並使用該交流輸出電壓。 A photovoltaic grid-connected system, comprising: the inverter according to claim 1; a photovoltaic module coupled to the DC input side and configured to react to The DC input voltage is generated by the intensity of a light source; and a power grid coupled to the inverter to receive and use the AC output voltage. 如申請專利範圍第8項所述的光伏並網系統,其中該直流對直流轉換電路包括:一第一開關電路,從該直流輸入側接收該直流輸入電壓;一隔離變壓器,具有一一次側繞組、一第一二次側繞組以及一第二二次側繞組,其中該一次側繞組耦接該第一開關電路,且該第一二次側繞組耦接該逆變電路以提供該直流母線電壓;一整流濾波電路,耦接該第二二次側繞組與該逆變電路,用以對該二次側繞組的輸出進行整流濾波,並據以產生該第二輔助電源;以及一第一輔助電路,耦接該輔助電源電路,其中該第一輔助電路運作於該第一輔助電源下以提供該直流對直流轉換電路一第一 輔助功能。 The photovoltaic grid-connected system of claim 8, wherein the DC-to-DC converter circuit comprises: a first switch circuit, receiving the DC input voltage from the DC input side; and an isolation transformer having a primary side a winding, a first secondary winding, and a second secondary winding, wherein the primary winding is coupled to the first switching circuit, and the first secondary winding is coupled to the inverter circuit to provide the DC bus a voltage rectifying circuit coupled to the second secondary winding and the inverter circuit for rectifying and filtering the output of the secondary winding, and generating the second auxiliary power source; and a first An auxiliary circuit coupled to the auxiliary power supply circuit, wherein the first auxiliary circuit operates under the first auxiliary power supply to provide the first DC-to-DC conversion circuit Accessibility. 如申請專利範圍第9項所述的光伏並網系統,其中該逆變電路包括:一第二開關電路,經由該整流濾波電路耦接該第一二次側繞組,以接收該直流母線電壓;以及一第二輔助電路,經由該整流濾波電路耦接該第二二次側繞組,其中該第二輔助電路運作於該第二輔助電源下以提供該逆變電路一第二輔助功能。 The photovoltaic grid-connected system of claim 9, wherein the inverter circuit comprises: a second switch circuit coupled to the first secondary winding via the rectifier filter circuit to receive the DC bus voltage; And a second auxiliary circuit coupled to the second secondary winding via the rectifying and filtering circuit, wherein the second auxiliary circuit operates under the second auxiliary power to provide a second auxiliary function of the inverter circuit. 如申請專利範圍第10項所述的光伏並網系統,其中該第一輔助電路包括用以控制該第一開關電路之運作的一第一控制電路,且該第二輔助電路包括用以控制該第二開關電路之運作的一第二控制電路。 The photovoltaic grid-connected system of claim 10, wherein the first auxiliary circuit includes a first control circuit for controlling operation of the first switch circuit, and the second auxiliary circuit includes A second control circuit that operates the second switching circuit. 如申請專利範圍第10項所述的光伏並網系統,其中該第一輔助電路與該第二輔助電路至少其中之一包括一過壓保護電路、一過載保護電路以及一過流保護電路至少其中之一。 The photovoltaic grid-connected system of claim 10, wherein at least one of the first auxiliary circuit and the second auxiliary circuit comprises an overvoltage protection circuit, an overload protection circuit, and an overcurrent protection circuit. one. 一種逆變器的供電方法,其中該逆變器包括一直流對直流轉換電路、一逆變電路以及一輔助電源電路,該供電方法包括:從該直流對直流轉換電路的一直流輸入側接收一直流輸入電壓,以啟動該輔助電源電路;藉啟動後的該輔助電源電路產生用以控制該直流對直流轉換電路之運作所需的一第一輔助電源以啟動該直流對直流轉換電 路,其中該第一輔助電源只用以對該直流對直流轉換電路供電;藉啟動後的該直流對直流轉換電路將該直流輸入電壓轉換為一直流母線電壓,並且產生用以控制該逆變電路之運作所需的一第二輔助電源以啟動該逆變電路;以及藉啟動後的逆變電路將該直流母線電壓轉換為一交流輸出電壓。 A power supply method for an inverter, wherein the inverter includes a DC-to-DC conversion circuit, an inverter circuit, and an auxiliary power supply circuit, the power supply method includes: receiving from the DC input side of the DC-DC conversion circuit Flowing an input voltage to activate the auxiliary power supply circuit; and the auxiliary power supply circuit after startup generates a first auxiliary power source for controlling operation of the DC-to-DC conversion circuit to start the DC-to-DC conversion power The first auxiliary power source is only used to supply the DC-to-DC conversion circuit; the DC-to-DC conversion circuit after the startup converts the DC input voltage into a DC bus voltage, and is generated to control the inverter. A second auxiliary power source required for operation of the circuit to activate the inverter circuit; and the DC bus voltage converted to an AC output voltage by the activated inverter circuit.
TW102141930A 2013-11-18 2013-11-18 Inverter and power supply method thereof and application using the same TWI527357B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102141930A TWI527357B (en) 2013-11-18 2013-11-18 Inverter and power supply method thereof and application using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102141930A TWI527357B (en) 2013-11-18 2013-11-18 Inverter and power supply method thereof and application using the same

Publications (2)

Publication Number Publication Date
TW201521348A TW201521348A (en) 2015-06-01
TWI527357B true TWI527357B (en) 2016-03-21

Family

ID=53935163

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102141930A TWI527357B (en) 2013-11-18 2013-11-18 Inverter and power supply method thereof and application using the same

Country Status (1)

Country Link
TW (1) TWI527357B (en)

Also Published As

Publication number Publication date
TW201521348A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
US9484838B2 (en) Inverter and power supplying method thereof and application using the same
US7239530B1 (en) Apparatus for isolated switching power supply with coupled output inductors
TWI393337B (en) Two stage switching power conversion circuit
US9318960B2 (en) High efficiency and low loss AC-DC power supply circuit and control method
US20140140105A1 (en) High efficiency and fast response ac-dc voltage converters
US9030049B2 (en) Alternating current (AC) to direct current (DC) converter device
US20120159202A1 (en) Power supply apparatus suitable for computer
KR102136564B1 (en) Power supply apparatus and driving method thereof
TWI489762B (en) High efficiency AC - DC voltage conversion circuit
WO2022121890A1 (en) Power supply system and solar photovoltaic inverter
KR20130020397A (en) Dc/dc converter with wide input voltage range
JP6551340B2 (en) Voltage converter
TWI772016B (en) Voltage transforming device
TWI474594B (en) Forward-based power conversion apparatus
JP5554591B2 (en) Power supply
TWI527357B (en) Inverter and power supply method thereof and application using the same
US20150092463A1 (en) Power supply apparatus
KR101886053B1 (en) Buck boost converter
CN212726860U (en) Power supply circuit based on isolation transformer
JP4516983B2 (en) Self-oscillating power converter
TW201517485A (en) Resonant converter and controlling method thereof
JP2010246183A (en) Power unit
TWI568163B (en) Isolated converter and isolated converter? control method
TWI809670B (en) Conversion circuit
CN215120576U (en) Switching power supply circuit and control chip thereof