TWI526703B - 共振型磁力計 - Google Patents

共振型磁力計 Download PDF

Info

Publication number
TWI526703B
TWI526703B TW103132218A TW103132218A TWI526703B TW I526703 B TWI526703 B TW I526703B TW 103132218 A TW103132218 A TW 103132218A TW 103132218 A TW103132218 A TW 103132218A TW I526703 B TWI526703 B TW I526703B
Authority
TW
Taiwan
Prior art keywords
mass
resonance type
vibration
detector structure
type magnetometer
Prior art date
Application number
TW103132218A
Other languages
English (en)
Other versions
TW201612541A (en
Inventor
溫瓌岸
張嘉夆
Original Assignee
碩英股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 碩英股份有限公司 filed Critical 碩英股份有限公司
Priority to TW103132218A priority Critical patent/TWI526703B/zh
Priority to US14/662,786 priority patent/US9664749B2/en
Priority to EP15171496.1A priority patent/EP3001211B1/en
Application granted granted Critical
Publication of TWI526703B publication Critical patent/TWI526703B/zh
Publication of TW201612541A publication Critical patent/TW201612541A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0286Electrodynamic magnetometers comprising microelectromechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/038Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Gyroscopes (AREA)

Description

共振型磁力計
本發明是關於一種共振型磁力計,特別是關於一種不須外接震盪器的共振型磁力計。
微型磁力計是一種廣泛應用在例如智慧型手機、穿戴型裝置及物聯網裝置(Internet of Things-IOT-devices)的元件。微型磁力計也可以應用在其他工程、科學及工業應用領域。為能在現代的應用上提供磁力量測的功能,微型磁力計必須高度集積化,低耗電且能提供正確的磁力/磁場量測。
在各種微型磁力計中,應用羅倫茲力(the Lorentz forces)原理製作的磁力計,較合於實用。因為這種微型磁力計可以標準的CMOS製程製作。此外,共振型磁力計,亦即在共振頻率下工作的磁力計,可以提供相對較高的敏感度,且偵測器所產生的反應可以利用依照其品質因數(quality factor-Q-factor或Q值)所設計的放大器放大,故可提供較強的輸出信號與較佳的訊號雜訊比。在此條件下,新型的微型磁力計結構,都是應用羅倫茲力原理,在其共振頻率下工作。
應用羅倫茲力的磁力計基本上包括一質量塊,以彈簧懸吊在結構上或基板上。對該質量塊提供一定電流,該電流與存在地球的磁場或其他磁性物體發出的磁場(magnetic field)發生交互作用,會產生羅倫茲力, 將該質量塊向垂直於該電流方向及該磁力方向的方向移動。偵測用電極通常形成梳形或指狀,與該質量塊邊緣形成的梳形或指狀交錯,並維持一距離;兩者間等同一電容。該偵測用電極可偵測到因質量塊移動,導致質量塊與偵測用電極間的相對位置變化,產生的電容值變化,而產生偵測信號。該偵測信號經過轉變成電壓形式並放大後,作為輸出信號。所產生的輸出信號代表該質量塊在磁力影響下的位移方向與位移量,可據以計算出該磁力值。
共振型磁力計的架構與工作原理基本上上述羅倫茲力磁力計相同,但在操作時,使用一驅動電路將一固定值的電流信號提供到該磁力塊。該電流信號之頻率與該質量塊之機械共振頻率相同,用以驅動該質量塊以其共振頻率振動。當該質量塊在其共振頻率下振動時,擷取該質量塊因羅倫茲力而產生的位移以及位移量,可以據以計算該質量塊所受到的磁場。其信號強度高於非共振型羅倫茲力磁力計數個數量級。
已知的共振型磁力計大多需使用一外接震盪器,以驅動該微機電磁力計的質量塊在其共振頻率下振動。在這種先前技術中,是使用一外接震盪器,產生一固定頻率的震盪信號,以驅動該磁力計的質量塊振動,並將其振動頻率鎖定在其共振頻率。關於這種外接式震盪器的應用以及該質量塊在其共振頻率下振動,用以偵測當地磁場的技術,可參考Dominguez-Nicolas所發表的「Signal Conditioning System With a 4-20mA Output for a Resonant Magnetic Field Sensor Based on MEMS Technology」一文,刊登在Sensors Journal,IEEE,Vol.12,No.5,pp.935-942,May 2012。
已知的共振型磁力計使用外接震盪器雖可驅動該微機電磁 力計的質量塊在其共振頻率下振動,但該外接震盪器的設置不但會提高磁力計的製作成本與體積,更會造成該共振結構校正上的困難。主要原因是元件製程本身的不穩定性會使各震盪器的共振結構的共振頻率發生變化,無法達成一致。因此,磁力計在使用之前,必須經過調校,才能使各個磁力計都能在其共振頻率下振動,並鎖定到該頻率。此外,微機電偵測器的高Q值同時也代表該偵測器作為震盪器的頻率響應頻寬相當狹窄。例如,如果微機電偵測器的共振頻率為1kHz,其Q值為10,000,則其頻率響應的頻寬只有1000/10000=0.1Hz。這種特性使得該外接震盪器必須具備高度的頻率穩定性,使其能夠提供數百ppm級的穩定性。不但如此,該共振驅動用頻率穩定性也會直接影響其振幅,進而影響所得信號的解析度。
因此,目前業界亟須提供一種共振型磁力計的新穎結構,以提供穩定的共振頻率。
同時也需要提供一種新穎的共振型磁力計結構,以將其共振結構鎖定在其共振頻率。
同時也需要提供一種不需使用外接震盪器的共振型磁力計。
本發明提供一種不需使用外接震盪器的共振型磁力計。根據本發明的共振型磁力計,乃是包括:一偵測器結構體,一轉換器電路及一振動驅動電路。其中,該偵測器結構體具有一質量塊,懸浮於該偵測器結構體;兩組位移偵測電極,配置在該偵測器結構體上,該質量塊所在平面上的第一方向X兩側。
該轉換器電路連接該偵測器結構體的位移偵測電極,用以將 由該位移偵測電極所輸出之偵測結果,轉變成電壓信號。該轉換器電路可包括一放大器,連接於該電容電壓轉換器之後級,用以將該電容電壓轉換器輸出之電壓信號放大,輸出放大後之偵測信號,提供後級計算電路計算該位移偵測電極所偵測到的磁場磁力值。該振動驅動電路連接該放大器之輸出,將該輸出以電流型態提供予該偵測器結構體內之質量塊,用以驅動該質量塊產生振動。該振動驅動電路提供之電流以一第二方向Y流經該質量塊;該第二方向Y為在該質量塊所在平面上,與該第一方向X直交的方向。該振動驅動電路並可提供放大功能,以放大該放大器之輸出信號。
在本發明之較佳實例中,該振動驅動電路可包括一比較器電路,輸入為連接該放大器之輸出,以及一參考電位,用以輸出該放大器輸出信號與該參考電位之比較結果,作為該質量塊的振動驅動信號。該振動驅動電路的輸出提供至該偵測器結構體之質量塊,用以驅動該質量塊振動。該振動之頻率即為該質量塊之共振頻率。該質量塊的振幅隨時間加大,經過短暫的時間後達成穩定。該在本發明之較佳實例中,該參考電位為接地電位。
10‧‧‧偵測器結構體
11‧‧‧質量塊
11a、11b‧‧‧指狀或梳形突出
12、13‧‧‧位移偵測電極
12a、13a‧‧‧指狀或梳形突出
14a、14b‧‧‧電極
16、17、18、19‧‧‧彈簧
15‧‧‧時鐘信號產生器
20‧‧‧轉換器電路
30‧‧‧振動驅動電路
21‧‧‧電容電壓轉換器
22‧‧‧放大器
第1圖顯示本發明共振型磁力計一種實施例之系統圖。
第2圖顯示適用在本發明共振型磁力計之一種偵測器結構體10之平面圖。
第3圖顯示對第1圖之電路中輸出Vout(上圖)與Vdrive(下圖)進行暫態模擬分析結果。
第4圖為第3圖之放大圖。
第5圖為第3圖另一放大圖。
以下將利用數種實施例,說明本發明共振型磁力計之結構。該等實施例乃是用來例示本發明共振型磁力計的可能結構及應用,並非用來窮盡列舉本發明所有可能的實施方式。本發明的專利範圍,仍應以申請專利範圍記載為準。
第1圖顯示本發明共振型磁力計一種實施例之系統圖。如圖所示,本實施例之共振型磁力計包括:一偵測器結構體10,一轉換器電路20,及一振動驅動電路30。該偵測器結構體10是由任何適用之製程製作的微型磁力計結構體,用以提供代表該結構體所受磁力及磁力方向的偵測信號。該轉換器電路20包括一電容電壓轉換器21,用以將該偵測信號轉變成電壓型態後,以放大器22放大,成為輸出偵測信號。該振動驅動電路30則是用以驅動該偵測器結構體10內的質量塊振動,並將其振動頻率鎖定在其共振頻率。
第2圖顯示適用在本發明共振型磁力計之一種偵測器結構體10之平面圖。如圖所示,該偵測器結構體10具有一質量塊11,以彈簧16、17、18、19懸吊在該偵測器結構體10上,呈懸浮狀態。該彈簧16、17、18、19懸吊在該偵測器結構體10之處,形成兩電極14a與14b。
該偵測器結構體10另包括兩組位移偵測電極12、13,配置在該偵測器結構體10上,該質量塊11所在平面上的第一方向X兩側。在圖中所是的實施例中,該質量塊11在X方向兩側伸出多數的指狀或梳形突出11a、 11b。該位移偵測電極12、13在相對於該指狀突出11a、11b之一側,也各延伸出指狀或梳形突出12a、13a。該位移偵測電極12、13的指狀突出12a、13a,分別與對應的質量塊11指狀突出11a、11b沿該平面上與該X方向垂直的Y方向,交錯配置。使得任兩支位移偵測電極12、13的指狀突出12a、13a,分別夾置一支質量塊11指狀突出11a、11b。當然,這種交錯配置的形式,只是本發明一種較佳實例。在微型磁力計,乃至於微型加速度計的技術領域中,早已發展出各種質量塊指狀電極與偵測方指狀電極的配置方式,各有其優缺點。均可應用在本發明。再者,該質量塊與該位移偵測電極也未必須要使用指狀或梳狀電極。凡是可以用來偵測該質量塊任一方向移動及其移動量的偵測方式,都可應用在本發明。該質量塊11與位移偵測電極12、13的形狀,結構並非本發明之重點,且屬習知技術之範疇,其技術細節即不須在此多加贅述。
該質量塊11與位移偵測電極12、13須具備電導體,以供偵測質量塊11在磁力影響下之位移與位移方向。通常而言,使用任何微機電技術製作的含導體質量塊與位移偵測電極,都可應用在本發明。不過,在本發明的較佳實例中,該該質量塊11與位移偵測電極12、13是使用標準CMOS製程製作。在這種實例中,該質量塊11與位移偵測電極12、13均會包括一層或數層金屬層,以及包覆該金屬層或界接兩金屬層的介電層。此外,該質量塊11的懸浮結構與該彈簧16、17、18、19、電極14a與14b等的製作,都可以應用標準的CMOS製程完成製作。詳細技術也不須在此贅述。
電流供應器在本實施例中為該振動驅動電路30,經由該電極14a與14b連接該質量塊11。以對該質量塊11供應一第二方向Y的電流 Idrive(jω)。該第二方向Y是指在該質量塊11所在平面上,與該第一方向X直交的方向。
該轉換器電路20連接該偵測器結構體10的輸出V-與V+,亦即該位移偵測電極12、13的輸出,用以將該位移偵測電極12、13輸出之偵測信號,轉變成電壓信號並放大,輸出放大後之偵測信號Vout,提供後級計算電路(未圖示)計算該偵測器結構體10所偵測到的磁場磁力值。該放大後之輸出信號Vout即為本發明共振型磁力計的偵測結果。根據洛倫茲力原理,該輸出信號Vout與該質量塊11在Z方向所受的磁力成正比。
該轉換器電路20之放大器22可包括一濾波器,用以濾出該電容電壓轉換器21的輸出信號中,代表該質量塊在羅倫茲力影響下之位移量及位移方向的成分。該濾波器22可為一低通濾波器,其截止頻率大於結構共振頻5.3kHz且小於取樣頻率500kHz。
該振動驅動電路30為本發明的重點之一。振動驅動電路30連接該轉換器電路20之輸出Vout,將該輸出信號以電流型態提供予該偵測器結構體10內之質量塊11,用以驅動該質量塊11產生振動。該振動驅動電路30並提供放大功能,以放大該轉換器電路20之輸出信號。
在本發明之較佳實例中,該振動驅動電路30包括一比較器電路,其一輸入為該轉換器電路20之輸出Vout,另一輸入為一參考電位Vref,輸出該轉換器電路20輸出信號Vout與該參考電位Vref之比較結果,作為共振驅動信號Vdrive,以電流Idrive之形式,經由該質量塊11之電極14a與14b提供給該質量塊11。該振動驅動電路30的輸出連接該偵測器結構體10上之驅動信號輸入Vdrive/Idrive,用以驅動該偵測器結構體10內之質量塊11,產生 振動。該振動之頻率即為該質量塊11之共振頻率。經過短暫時間後,即可使該質量塊11以其共振頻率,穩定的振動。
該共振型磁力計另可包括一時鐘信號產生器15,連接至該偵測器結構體10,用以提供取樣所需的頻率信號Vm。
根據先前技術已知的原理,當對該質量塊11供給第二方向Y(Y方向或負Y方向)的電流時,若該質量塊11所受磁力方向為向圖面接近的方向(負Z方向),受到羅倫茲力的牽引,該質量塊11及會發生向第一方向(負X方向或X方向)的位移。如果該交流電流的頻率與該質量塊11之共振頻率相同,則該質量塊11將會產生同於其共振頻率的振動。
雖不欲為任何理論所拘束,然而經本發明人發現,在上述電路架構下,該偵測器結構體10輸出之偵測信號,轉換成電流後,可用以驅動該質量塊振動。該質量塊11起振後,振動頻率即會達到該質量塊11之共振頻率。該頻率信號與一參考電位Vref比較後的結果,所輸出的信號振幅會隨著時間經過而放大,達到穩定。該質量塊11即可在其共振頻率下以穩定的振幅振動。
在本發明的較佳實例中,該參考電位Vref為接地電位。但該參考電位可以根據應用上的需求,做適當的設定。在該參考電位Vref為接地電位之情況下,只要該比較器30的輸出不是0電位,該輸出將以電流形式驅動該質量塊11起振。其振動頻率即為共振頻率。而在本發明的電路設計下,該比較器30的輸出信號會逐漸放大,直到達到穩定為止。第3圖即顯示對第1圖之電路中輸出Vout(上圖)與Vdrive(下圖)的進行暫態模擬分析結果。在第3圖的模擬分析中,該參考電位Vref設為接地電位。該暫態模擬分析結果 顯示約在開始振動後250ms範圍內之結果,顯示系統在短暫的初始階段後,振動即達到穩定。其中,114mV的振幅與Vout的頻率,與模擬條件即輸入磁場10μT與共振頻率5.3kHz相符。雖然該回饋驅動信號Vdrive為方波型態,但偵測器的電容變化為正弦波信號。該微型偵測器為一高Q值的共振器,可提供窄頻段帶通濾波器的功能。
第4圖為第3圖之放大圖。圖中顯示該質量塊11在該比較器30的輸出不是0電位時,即可發振。其振幅隨時間增大,但頻率則為該質量塊11之共振頻率。第5圖為第3圖另一放大圖。圖中顯示在輸入磁力於1ms內由10μT改變成70μT,並維持3ms後,變回10μT的過程中所測得的波形變化。此時,Vout發生良好的響應,但Vdrive的頻率並無變化。證明本發明共振型磁力計確能用來驅動質量塊起振,並將其振動頻率鎖定在其共振頻率。該共振型磁力計並能立即響應所受磁力變化,並呈現正確的量測結果。
如上所述,本發明提供一種不須外接震盪器的共振型磁力計。該磁力計在發振之後可以將質量塊的振動頻率鎖定在其共振頻率,並不需使用一外接震盪器。確屬一種新穎結構的共振型磁力計。
10‧‧‧偵測器結構體
15‧‧‧時鐘信號產生器
20‧‧‧轉換器電路
21‧‧‧電容電壓轉換器
22‧‧‧放大器
30‧‧‧振動驅動電路

Claims (9)

  1. 一種共振型磁力計,包括:一偵測器結構體,具有一質量塊,懸浮於該偵測器結構體;兩組位移偵測電極,配置在該偵測器結構體上,該質量塊所在平面上的第一方向X兩側;一轉換器電路,連接該偵測器結構體的位移偵測電極,用以將由該位移偵測電極所輸出之偵測結果,轉變成電壓信號;及一振動驅動電路,連接該轉換器電路之輸出,以將該輸出以電流型態提供予該偵測器結構體內之質量塊,作為振動驅動信號,用以驅動該質量塊產生振動;其中,該振動驅動電路提供之電流以一第二方向Y流經該質量塊;該第二方向Y為在該質量塊所在平面上,與該第一方向X直交的方向。
  2. 如申請專利範圍第1項之共振型磁力計,其中,該振動驅動電路包括一比較器電路,其輸入為該轉換器電路之輸出,以及一參考電位,用以輸出該放大器輸出信號與該參考電位之比較結果,作為該質量塊的振動驅動信號。
  3. 如申請專利範圍第2項之共振型磁力計,其中,該參考電位為接地電位。
  4. 如申請專利範圍第1、2或3項之共振型磁力計,其中,該偵測器結構體之質量塊是以彈簧懸吊在該偵測器結構體上,該彈簧懸吊之處形成兩電極;該振動驅動電路經由該電極對該質量塊供應該第二方向Y的電流。
  5. 如申請專利範圍第1、2或3項之共振型磁力計,其中,該質量塊兩側伸出多數的指狀突出,該位移偵測電極在相對於該指狀突之一側,也各延 伸出多數指狀突出,且該位移偵測電極的指狀突出分別與對應的質量塊的指狀突出沿該Y方向交錯配置。
  6. 如申請專利範圍第1、2或3項之共振型磁力計,其中,該質量塊與位移偵測電極均包括一層或數層金屬層,以及包覆該金屬層或界接兩金屬層的介電層。
  7. 如申請專利範圍第1、2或3項之共振型磁力計,其中,該轉換器電路另包括一放大器,用以將該電壓信號放大。
  8. 如申請專利範圍第7項之共振型磁力計,其中,該放大器包括一濾波器,用以濾出該位移偵測電極偵測信號中,代表磁場強度之成分。
  9. 如申請專利範圍第8項之共振型磁力計,其中,濾波器包括一低通濾波器。
TW103132218A 2014-09-18 2014-09-18 共振型磁力計 TWI526703B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103132218A TWI526703B (zh) 2014-09-18 2014-09-18 共振型磁力計
US14/662,786 US9664749B2 (en) 2014-09-18 2015-03-19 Resonant magnetic field sensor
EP15171496.1A EP3001211B1 (en) 2014-09-18 2015-06-10 Resonant magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103132218A TWI526703B (zh) 2014-09-18 2014-09-18 共振型磁力計

Publications (2)

Publication Number Publication Date
TWI526703B true TWI526703B (zh) 2016-03-21
TW201612541A TW201612541A (en) 2016-04-01

Family

ID=53373343

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103132218A TWI526703B (zh) 2014-09-18 2014-09-18 共振型磁力計

Country Status (3)

Country Link
US (1) US9664749B2 (zh)
EP (1) EP3001211B1 (zh)
TW (1) TWI526703B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11577140B2 (en) * 2019-05-24 2023-02-14 Lucas Chen Determining fencing blade quality using dynamic magnetic field measurements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19827056A1 (de) * 1998-06-18 1999-12-23 Bosch Gmbh Robert Mikromechanischer Magnetfeldsensor
US9222867B2 (en) * 2011-01-05 2015-12-29 Brian L. Norling Resonant micromachined biochemical sensor
US8860409B2 (en) * 2011-01-11 2014-10-14 Invensense, Inc. Micromachined resonant magnetic field sensors
US8878528B2 (en) * 2011-06-30 2014-11-04 Silicon Laboratories Inc. MEMS-based magnetic sensor with a Lorentz force actuator used as force feedback
US9588190B2 (en) * 2012-07-25 2017-03-07 Silicon Laboratories Inc. Resonant MEMS lorentz-force magnetometer using force-feedback and frequency-locked coil excitation
FR2995086B1 (fr) * 2012-08-29 2014-09-12 Commissariat Energie Atomique Dispositif de mesure d'un champ magnetique a force de laplace

Also Published As

Publication number Publication date
US9664749B2 (en) 2017-05-30
EP3001211B1 (en) 2017-03-01
TW201612541A (en) 2016-04-01
US20160084921A1 (en) 2016-03-24
EP3001211A1 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
TWI531806B (zh) 兩用共振型磁力計
US10309782B2 (en) Quality factor estimation for resonators
Comi et al. A resonant microaccelerometer with high sensitivity operating in an oscillating circuit
US10254355B2 (en) Magnetic sensor including a Lorentz force transducer driven at a frequency different from the resonance frequency, and method for driving a Lorentz force transducer
CN100498343C (zh) 电调谐谐振式差频加速度计
Liewald et al. 100 kHz MEMS vibratory gyroscope
US7696749B2 (en) Resonator-based magnetic field sensor
CN107532902A (zh) 利用非线性模态相互作用的振动陀螺仪
JP2013156252A (ja) 共振センサー測定装置
Li et al. A micro-machined differential resonance accelerometer based on silicon on quartz method
Ding et al. A high-resolution silicon-on-glass $ Z $ axis gyroscope operating at atmospheric pressure
US10578661B2 (en) Method for determining the quality factor of an oscillator
Frangi et al. Optimization of sensing stators in capacitive MEMS operating at resonance
TWI526703B (zh) 共振型磁力計
Moore et al. Simultaneous actuation and sensing for electrostatic drives in MEMS using frequency modulated capacitive sensing
Oropeza-Ramos et al. Inherently robust micro gyroscope actuated by parametric resonance
Stifter et al. Mems micro-wire magnetic field detection method at cern
CN107979351A (zh) 一种基于高阶同步的耦合压阻mems振荡器
US12289092B2 (en) Clock device
Bounouh et al. Resonant frequency characterization of MEMS based energy harvesters by harmonic sampling analysis method
Trusov et al. Parallel plate capacitive detection of large amplitude motion in MEMS
TWI529404B (zh) 磁力計
Wen et al. A characterization of the performance of MEMS vibratory gyroscope in different fields
Kumar et al. Design and simulation of mems based gyroscope
Wang et al. Ultrasensitive charge detection utilizing coupled nonlinear micromechanical resonators

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees