TWI525998B - Clock reproducing and timing method, device and apparatus in a system having a plurality of devices and memory controller with flexible data alignment - Google Patents

Clock reproducing and timing method, device and apparatus in a system having a plurality of devices and memory controller with flexible data alignment Download PDF

Info

Publication number
TWI525998B
TWI525998B TW097147841A TW97147841A TWI525998B TW I525998 B TWI525998 B TW I525998B TW 097147841 A TW097147841 A TW 097147841A TW 97147841 A TW97147841 A TW 97147841A TW I525998 B TWI525998 B TW I525998B
Authority
TW
Taiwan
Prior art keywords
clock
data
signal
pll
clock signal
Prior art date
Application number
TW097147841A
Other languages
Chinese (zh)
Other versions
TW200941945A (en
Inventor
潘弘柏
彼得 吉林翰
Original Assignee
諾瓦晶片加拿大公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/168,091 external-priority patent/US8781053B2/en
Priority claimed from JP2008193871A external-priority patent/JP5255359B2/en
Priority claimed from US12/325,074 external-priority patent/US8467486B2/en
Application filed by 諾瓦晶片加拿大公司 filed Critical 諾瓦晶片加拿大公司
Publication of TW200941945A publication Critical patent/TW200941945A/en
Application granted granted Critical
Publication of TWI525998B publication Critical patent/TWI525998B/en

Links

Description

於包含複數裝置及具有撓性資料對準之記憶體控制器的系統中之時脈再生及計時裝置、設備及其方法 Clock regeneration and timing device, device and method thereof in system comprising a plurality of devices and a memory controller with flexible data alignment [相關申請案之對照參考][Reference reference for related applications]

此申請案主張來自2007年12月4日之美國臨時專利申請案61/013,784、2008年1月9日之美國臨時專利申請案61/019,907、2008年3月26日之美國臨時專利申請案61/039,605、2008年7月4日之美國專利申請案12/168,091及2008年11月28日之美國專利申請案12/325,074的優先權。This application claims US Provisional Patent Application No. 61/013,784, issued December 4, 2007, U.S. Provisional Patent Application No. 61/019,907, issued Jan. 9, 2008, and U.S. Provisional Patent Application No. 61, Priority is given to U.S. Patent Application Serial No. 12/168,091, issued Jul. 4, 2008, and U.S. Patent Application Serial No. 12/325,074, issued Nov. 28, 2008.

本發明有關於裝置。詳言之,其有關於具有複數裝置之系統及再生此種系統所用之時脈的方法。並且,本發明有關於半導體裝置。詳言之,其有關於具有複數半導體裝置之系統及此種系統所用之計時及控時方法。The invention relates to devices. In particular, it relates to a system having a plurality of devices and a method of regenerating a clock used in such a system. Further, the present invention relates to a semiconductor device. In particular, it relates to systems having a plurality of semiconductor devices and timing and timekeeping methods for such systems.

電子設備使用半導體裝置,如記憶體裝置。記憶體裝置可包括隨機存取記憶體(RAM)、快閃記憶體(如NAND快閃裝置、NOR快閃裝置)及儲存資料或資訊之其他種類的記憶體。Electronic devices use semiconductor devices, such as memory devices. Memory devices may include random access memory (RAM), flash memory (such as NAND flash devices, NOR flash devices), and other types of memory that store data or information.

在電路板上之記憶體系統設計成達成高密度及高速度操作兩者以滿足各種應用的需求。可用來實現電路板上之高密度記憶體系統的兩種設計技術包括序列級聯互連組態及多點匯流排互連組態。這些設計技術藉由允許許多的記憶體裝置連接到單一記憶體控制裝置來解決密度的問題。一種設計技術為多點匯流排互連組態,其中複數記憶體裝置並聯式連接至一記憶體控制器。另一種設計技術為複數記憶體裝置之串聯的連結。The memory system on the board is designed to achieve both high density and high speed operation to meet the needs of various applications. Two design techniques that can be used to implement high-density memory systems on a board include serial cascade interconnect configurations and multi-drop bus interconnect configurations. These design techniques address density issues by allowing many memory devices to be connected to a single memory control device. One design technique is a multi-drop bus interconnect configuration in which a plurality of memory devices are connected in parallel to a memory controller. Another design technique is a series connection of a plurality of memory devices.

在包括記憶體之系統中可使用各種控時方法。使用共同來源時脈,時脈信號可能會因此種配置之並聯本質而變扭曲。並且,其具有數個偏斜因子、當許多裝置以多點方式連接時操作頻率範圍有限且無法用於高速應用中。來源同步時控系統,使用時脈重新塑型及重新傳送,提供較高的頻率範圍且避免共同同步時脈偏斜因子之一些,但引進不會嚴重影響系統性能之其他偏斜因子。Various timing methods can be used in systems that include memory. Using a common source clock, the clock signal may be distorted by the parallel nature of the configuration. Also, it has several skew factors, and when many devices are connected in a multi-point manner, the operating frequency range is limited and cannot be used in high speed applications. The source synchronous time control system uses clock remodeling and retransmission to provide a higher frequency range and avoids some of the common synchronizing clock skew factors, but introduces other skew factors that do not seriously affect system performance.

根據本發明之一態樣,提供一種用於傳輸具有由輸入時脈信號的過渡所界定之週期的資料之裝置。該裝置包含時脈裝置及同步化電路。時脈電路組態成回應於該輸入時脈信號而提供複數再生時脈信號。該複數再生時脈信號的相位與該資料互相不同地位移。時脈電路亦組態成回應於該複數再生時脈信號的至少一者而產生輸出時脈信號。同步化電路同步化該資料與該些再生時脈信號的至少一者之傳輸。該輸出時脈信號之過渡發生在該資料的該週期間。In accordance with an aspect of the present invention, an apparatus for transmitting data having a period defined by a transition of an input clock signal is provided. The device includes a clock device and a synchronization circuit. The clock circuit is configured to provide a plurality of regenerative clock signals in response to the input clock signal. The phase of the complex reproduced clock signal is shifted from the data differently. The clock circuit is also configured to generate an output clock signal in response to at least one of the plurality of reproduced clock signals. The synchronization circuit synchronizes the transmission of the data with at least one of the regenerated clock signals. The transition of the output clock signal occurs during the period of the data.

例如,複數再生時脈信號之相位的每一個係互相相位位移。回應於具有不同相位位移之再生時脈信號,時脈電路可產生具有撓性相位位移之輸出時脈信號。For example, each of the phases of the complex regenerative clock signals are phase shifted from each other. In response to a regenerative clock signal having a different phase shift, the clock circuit can produce an output clock signal having a flexible phase shift.

時脈電路可包含:用於回應於該輸入時脈信號而提供該複數再生時脈信號之鎖相迴路(PLL),以及用於回應於該複數再生時脈信號的至少一者而提供該輸出時脈信號之時脈輸出電路。 The clock circuit can include: a phase locked loop (PLL) for providing the complex reproduced clock signal in response to the input clock signal, and providing the output in response to at least one of the plurality of reproduced clock signals Clock output circuit of the clock signal.

例如,該PLL係組態成回應於具有第一及第二邏輯狀態以分別導致該PLL被致能或禁能之控制信號而被選擇性致能或禁能。在該PLL被致能的情況中,該PLL回應於該輸入時脈信號而產生該複數再生時脈信號。該時脈輸出電路組態成回應於該複數再生時脈信號的至少一者而產生該輸出時脈信號。該同步化電路組態成同步化該資料與該些再生時脈信號的至少一者之傳輸。在該PLL被禁能的情況中,該同步化電路組態成同步化該資料與該輸入時脈信號之傳輸。 For example, the PLL is configured to be selectively enabled or disabled in response to a control signal having first and second logic states to cause the PLL to be enabled or disabled, respectively. In the case where the PLL is enabled, the PLL generates the complex regenerated clock signal in response to the input clock signal. The clock output circuit is configured to generate the output clock signal in response to at least one of the plurality of reproduced clock signals. The synchronization circuit is configured to synchronize transmission of the data with at least one of the regenerated clock signals. In the event that the PLL is disabled, the synchronization circuit is configured to synchronize the transmission of the data with the input clock signal.

有利地,該PLL進一步組態成輸出具有與該資料90°倍數相位位移之該些再生時脈信號。 Advantageously, the PLL is further configured to output the regenerated clock signals having a phase shift of a multiple of 90° from the data.

例如,該裝置接收包含一時脈信號及其互補時脈信號之該輸入時脈信號。回應於該輸入時脈信號,該時脈電路提供內部時脈信號。當該PLL為致能時該PLL回應於該內部時脈信號而產生該複數再生時脈信號。當該PLL為禁能時該PLL同步化該資料與該內部時脈信號之傳輸。 For example, the apparatus receives the input clock signal including a clock signal and its complementary clock signal. In response to the input clock signal, the clock circuit provides an internal clock signal. The PLL generates the complex regenerative clock signal in response to the internal clock signal when the PLL is enabled. The PLL synchronizes the transmission of the data with the internal clock signal when the PLL is disabled.

該裝置可進一步包含用於保持與該裝置關聯之識別資訊之保持器,該識別資訊用來識別該裝置。回應於保持在該保持器中之該識別資訊而提供該控制信號。該控制信號為分別導致該PLL被致能及禁能之邏輯高及低之一。 The apparatus can further include a keeper for maintaining identification information associated with the apparatus, the identification information being used to identify the apparatus. The control signal is provided in response to the identification information held in the holder. The control signal is one of the logic high and low that respectively causes the PLL to be enabled and disabled.

該裝置可進一步包含回應於根據該識別資訊之該裝置的識別而存取該記憶體之存取電路。 The apparatus can further include an access circuit responsive to the identification of the device based on the identification information to access the memory.

根據本發明之另一態樣,提供一種用於從第一裝置傳輸資料至第二裝置之設備,該資料具有由時脈信號的過渡所界定之週期。該第一裝置包含:第一時脈電路及第一同步化電路。第一時脈電路組態成:回應於第一輸入時脈信號而提供複數第一再生時脈信號,該複數第一再生時脈信號的相位與該資料互相不同地位移,以及回應於該複數第一再生時脈信號的至少一者而產生第一輸出時脈信號。第一同步化電路同步化該資料與該複數第一再生時脈信號的至少一者之傳輸,該第一輸出時脈信號之過渡發生在該資料的該週期間。該第二裝置包含:組態成回應於衍生自該第一輸出時脈信號之第二輸入時脈信號而提供第二輸入時脈信號之第二時脈電路,該複數第二再生時脈信號的相位與該資料互相不同地位移,以及用於回應於該第二輸入時脈而接收從該第一裝置所傳輸之該資料之第一資料輸入電路。 In accordance with another aspect of the present invention, an apparatus for transmitting data from a first device to a second device is provided having a period defined by a transition of a clock signal. The first device includes: a first clock circuit and a first synchronization circuit. The first clock circuit is configured to: provide a plurality of first reproduced clock signals in response to the first input clock signal, the phases of the plurality of first reproduced clock signals are differently shifted from the data, and are responsive to the plurality A first output clock signal is generated by at least one of the first regenerated clock signals. The first synchronization circuit synchronizes transmission of the data with at least one of the plurality of first reproduced clock signals, the transition of the first output clock signal occurring during the period of the data. The second device includes: a second clock circuit configured to provide a second input clock signal in response to a second input clock signal derived from the first output clock signal, the second second reproduced clock signal The phase is shifted from the data differently from each other, and a first data input circuit for receiving the data transmitted from the first device in response to the second input clock.

例如,該第一時脈電路包含:用於回應於該第一輸入時脈信號而提供該複數第一再生時脈信號之第一鎖相迴路(PLL)、用於回應於該複數第一再生時脈信號的至少一者而產生該第一輸出時脈信號之第一時脈輸出電路以及用於回應於該第二輸入時脈信號而提供該複數第二再生時脈信號之第二PLL。 For example, the first clock circuit includes: a first phase-locked loop (PLL) for providing the plurality of first regenerated clock signals in response to the first input clock signal, for responding to the plurality of first regenerations A first clock output circuit of the first output clock signal is generated by at least one of the clock signals and a second PLL for providing the plurality of second reproduced clock signals in response to the second input clock signal.

該第一及第二PLL組態成回應於該第一及第二控制信號而分別選擇性被致能或禁能。當該第一PLL被致能時,該第一PLL回應於該第一輸入時脈信號而產生該複數第一再生時脈信號。當該第二PLL被致能時,該第二PLL回應於該第二輸入時脈信號而產生該複數第二再生時脈信號。The first and second PLLs are configured to be selectively enabled or disabled in response to the first and second control signals, respectively. When the first PLL is enabled, the first PLL generates the plurality of first regenerated clock signals in response to the first input clock signal. When the second PLL is enabled, the second PLL generates the plurality of second regenerated clock signals in response to the second input clock signal.

根據本發明之另一態樣,提供一種系統,包含:控制器以及複數串聯連接之裝置,其之操作與時脈信號同步化。該些裝置之每一個包含:組態成被選擇性致能之鎖相迴路(PLL),當致能時,該PLL回應於輸入時脈信號提供複數再生時脈信號,該些再生時脈信號為該輸入時脈信號之不同相位位移的型式,以及用於同步化資料與該些再生時脈信號的至少一者之傳輸之同步化電路。In accordance with another aspect of the present invention, a system is provided comprising: a controller and a plurality of serially connected devices whose operation is synchronized with a clock signal. Each of the devices includes: a phase locked loop (PLL) configured to be selectively enabled, the PLL, when enabled, provides a plurality of regenerated clock signals in response to the input clock signal, the regenerated clock signals A pattern of different phase shifts of the input clock signal, and a synchronization circuit for synchronizing the transmission of at least one of the data and the reproduced clock signals.

根據本發明之另一態樣,提供一種用於複數裝置之方法,該複數裝置的每一個包含鎖相迴路(PLL),回應於輸入時脈信號一裝置傳輸資料至另一裝置。該方法包含:回應於控制信號選擇性致能該PLL,該致能的PLL回應於該輸入時脈信號而輸出複數再生時脈信號,該些再生時脈信號為該輸入時脈信號的不同相位位移型式。In accordance with another aspect of the present invention, a method for a plurality of devices is provided, each of the plurality of devices including a phase locked loop (PLL) that transmits data to another device in response to an input clock signal. The method includes selectively enabling the PLL in response to a control signal, the enabled PLL outputting a plurality of regenerated clock signals in response to the input clock signal, the regenerated clock signals being different phases of the input clock signal Displacement pattern.

根據本發明之另一態樣,提供一種用於傳輸根據時脈信號時控之資料的方法,該資料具有由該時脈信號之過渡所界定之週期,該方法包含:選擇性致能或禁能鎖相迴路(PLL)、當該PLL被致能時回應於該輸入時脈信號提供複數再生時脈信號,該些再生時脈信號為該輸入時脈信號之不同相位位移之型式以及同步化該資料與該再生時脈信號的傳輸,該再生時脈信號的時脈過渡係在資料的週期間。According to another aspect of the present invention, there is provided a method for transmitting time-controlled data according to a clock signal having a period defined by a transition of the clock signal, the method comprising: selectively enabling or disabling a phase-locked loop (PLL) capable of providing a plurality of regenerated clock signals in response to the input clock signal when the PLL is enabled, the regenerative clock signals being of a different phase shift of the input clock signal and synchronizing The data is transmitted with the regenerative clock signal, and the clock transition of the regenerated clock signal is between the periods of the data.

根據本發明之另一態樣,提供一種用於從第一裝置傳輸資料至第二裝置之方法,根據時脈信號時控該資料,該資料具有由該時脈信號的過渡所界定之週期,該方法包含:回應於第一輸入時脈信號而提供複數再生時脈信號,該些再生時脈信號為該第一輸入時脈信號之不同相位位移之型式、同步化該資料與該些再生時脈信號的至少一者之傳輸,該再生時脈信號的時脈過渡係在該資料的該週期間,該再生時脈信號係提供作為輸出時脈信號、回應於來自該第一裝置的該輸出時脈信號提供複數再生時脈信號,該些再生時脈信號為來自該第一裝置之該輸出時脈信號之不同相位位移之型式以及接收從該第一裝置傳輸之該資料。According to another aspect of the present invention, a method for transmitting data from a first device to a second device is provided, wherein the data is time-controlled according to a clock signal having a period defined by a transition of the clock signal, The method includes: providing a plurality of regenerated clock signals in response to the first input clock signal, wherein the regenerated clock signals are of a different phase shift pattern of the first input clock signal, synchronizing the data with the regenerative time a transmission of at least one of the pulse signals, the clock transition of the regenerated clock signal being during the period of the data, the regenerative clock signal being provided as an output clock signal in response to the output from the first device The clock signal provides a plurality of regenerative clock signals that are of a different phase shift from the output clock signal of the first device and that receive the data transmitted from the first device.

根據本發明之另一態樣,提供一種用於傳輸根據時脈信號時控之資料的方法,該資料具有由該時脈信號之過渡所界定之週期。該方法包含:選擇性致能或禁能鎖相迴路(PLL)、當該PLL被致能時回應於該輸入時脈信號而提供複數再生時脈信號,該些再生時脈信號為該輸入時脈信號之不同相位位移之型式以及同步化該資料與該些再生時脈信號之至少一者的傳輸。According to another aspect of the present invention, a method for transmitting data according to a time-of-day signal of a clock having a period defined by a transition of the clock signal is provided. The method includes selectively enabling or disabling a phase-locked loop (PLL), providing a plurality of regenerative clock signals in response to the input clock signal when the PLL is enabled, the regenerative clock signals being the input A pattern of different phase shifts of the pulse signal and synchronization of transmission of the data with at least one of the regenerated clock signals.

根據本發明之另一態樣,提供一種用於從第一裝置傳輸資料至第二裝置之方法,根據時脈信號時控該資料,該資料具有由該時脈信號的過渡所界定之週期。在第一裝置,該方法包含:回應於第一輸入時脈信號而提供複數再生時脈信號,該些再生時脈信號為該第一輸入時脈信號之不同相位位移之型式,以及同步化該資料與該些再生時脈信號的至少一者之傳輸,該再生時脈信號的時脈過渡係在該資料的該週期間,該再生時脈信號係提供作為輸出時脈信號。在第二裝置,該方法包含:回應於來自該第一裝置的該輸出時脈信號提供複數再生時脈信號,該些再生時脈信號為來自該第一裝置之該輸出時脈信號之不同相位位移之型式以及接收從該第一裝置傳輸之該資料。In accordance with another aspect of the present invention, a method for transmitting data from a first device to a second device is provided, the data being timed based on a clock signal having a period defined by a transition of the clock signal. In the first apparatus, the method includes: providing a plurality of regenerated clock signals in response to the first input clock signal, the regenerated clock signals being of a different phase shift of the first input clock signal, and synchronizing the The data is transmitted to at least one of the regenerated clock signals, the clock transition of the regenerated clock signal being during the period of the data, the regenerative clock signal being provided as an output clock signal. In a second apparatus, the method includes: providing a plurality of regenerated clock signals in response to the output clock signal from the first device, the regenerated clock signals being different phases of the output clock signal from the first device The pattern of displacement and receiving the data transmitted from the first device.

根據本發明之另一態樣,提供一種與利用來源同步時控的串聯連接之複數裝置通訊的設備,該設備包含:用於偵測與該些串聯連接之裝置的數量相關之數量資訊之資訊偵測器,以及用於回應於該偵測的數量資訊而產生時脈信號之時脈產生器,該產生的時脈信號用於同步化該設備及該些裝置間的通訊。According to another aspect of the present invention, there is provided an apparatus for communicating with a serially connected plurality of devices utilizing a source synchronous time control, the apparatus comprising: information for detecting quantity information related to the number of the series connected devices a detector, and a clock generator for generating a clock signal in response to the detected quantity information, the generated clock signal for synchronizing the device and communication between the devices.

例如,該資訊偵測器包含識別符偵測器,用於偵測與該些串聯連接裝置之一關聯的裝置識別符(ID),並提供該偵測的裝置ID作為該偵測的數量資訊至該時脈產生器。該識別符偵測器可包含位元資訊偵測器,用於偵測包括在該裝置ID中之位元之一上的資訊。For example, the information detector includes an identifier detector for detecting a device identifier (ID) associated with one of the series connected devices, and providing the detected device ID as the detected quantity information. To the clock generator. The identifier detector may include a bit information detector for detecting information included in one of the bits in the device ID.

該位元資訊偵測器可包含位元數字判斷器,用於判斷該裝置ID之最小有效位元(LSB)為「1」或「0」,且提供判斷結果作為該偵測的數量資訊,回應於該判斷結果而產生該對準的時脈信號。The bit information detector may include a bit number determiner for determining that the least significant bit (LSB) of the device ID is "1" or "0", and providing the judgment result as the quantity information of the detection. The aligned clock signal is generated in response to the result of the determination.

該設備可進一步包含模式偵測器,用於接收呈現ID分配完成之該狀態的信號、判斷該ID分配是否完成並提供該ID分配完成之該狀態至該位元判斷器以判斷該暫存之裝置ID的該LSB。The device may further include a mode detector for receiving a signal indicating the status of the ID assignment completion, determining whether the ID assignment is completed, and providing the status of the ID assignment completion to the bit determiner to determine the temporary storage. The LSB of the device ID.

例如,該時脈產生器回應於裝置識別符分配完成或正在進行中之偵測而產生與資料邊緣對準或中央對準時脈信號,該設備提供用於控制輸入至該裝置並自該裝置輸出之資料的選通信號,該資料與該時脈信號同步傳送。For example, the clock generator generates a clock signal aligned or centrally aligned with the edge of the data in response to the device identifier assignment being completed or in progress, the device providing control input to and output from the device The strobe signal of the data, which is transmitted synchronously with the clock signal.

根據本發明之另一態樣,提供一種用於通訊利用來源同步時控的串聯連接之複數裝置的方法,該方法包含:偵測與該些串聯連接之裝置的數量相關之數量資訊,以及回應於該偵測的數量資訊而產生時脈信號,該產生的時脈信號用於同步化與該些裝置的通訊。According to another aspect of the present invention, a method for communicating a serially connected plurality of devices utilizing source synchronous time control is provided, the method comprising: detecting quantity information related to the number of devices connected in series, and responding A clock signal is generated for the detected quantity information, and the generated clock signal is used to synchronize communication with the devices.

該方法可進一步包含:分配與該些串聯連接裝置的每一個關聯之獨特的裝置識別符(ID),該些裝置之該些分配的ID為接續性、偵測與該些串聯連接裝置之一關聯的裝置ID以及提供該偵測的裝置ID作為該偵測的數量資訊。該偵測裝置ID之步驟可包含回應於該些裝置ID之分配完成的偵測而偵測包括在該裝置ID中之位元之一上的資訊。The method can further include: assigning a unique device identifier (ID) associated with each of the series connected devices, the assigned IDs of the devices being continuity, detection, and one of the series connected devices The associated device ID and the device ID providing the detection are used as the quantity information of the detection. The step of detecting the device ID may include detecting information included in one of the bits included in the device ID in response to the detection of the assignment of the device IDs.

根據本發明之另一態樣,提供一種系統,包含:利用來源同步時控之複數串聯連接裝置,以及組態成與該些串聯連接裝置通訊之控制器,該控制器包括:用於偵測與該些串聯連接之裝置的數量相關之數量資訊之資訊偵測器,以及用於回應於該偵測的數量資訊而產生時脈信號之時脈產生器,該產生的時脈信號用於同步化該設備及該些裝置間的通訊。According to another aspect of the present invention, a system is provided comprising: a plurality of series connection devices utilizing source synchronization time control, and a controller configured to communicate with the series connection devices, the controller comprising: for detecting a information detector for quantity information related to the number of devices connected in series, and a clock generator for generating a clock signal in response to the detected quantity information, the generated clock signal being used for synchronization The device and the communication between the devices.

根據本發明之另一態樣,提供一種包括記憶體控制器及至少一半導體裝置之系統。According to another aspect of the present invention, a system including a memory controller and at least one semiconductor device is provided.

根據本發明之另一態樣,提供一種包括被選擇性致能或禁能之PLL的裝置。當被致能時,該PLL提供與輸入信號及其互補信號所界定之參考時脈信號90°、180°、270°及360°相位位移之複數再生時脈信號。選擇性致能或禁能該PLL。回應於複數再生時脈信號之一或組合,傳輸資料。當被禁能時,該PLL不再生時脈,且回應於參考時脈而傳輸資料。In accordance with another aspect of the present invention, an apparatus is provided that includes a PLL that is selectively enabled or disabled. When enabled, the PLL provides a complex regenerated clock signal with phase shifts of the reference clock signals defined by the input signal and its complementary signals by 90°, 180°, 270°, and 360°. Selectively enable or disable the PLL. Data is transmitted in response to one or a combination of complex regenerative clock signals. When disabled, the PLL does not regenerate the clock and transmits data in response to the reference clock.

根據本發明之另一態樣,提供一種包括記憶體控制器及串聯連接至記憶體控制器之複數記憶體裝置。該複數記憶體裝置分群。記憶體控制器提供用於同步化裝置之操作的時脈信號。由來源同步及共同同步時脈結構所提供之時脈信號來時控一群之裝置。裝置之每一個包括由致能信號選擇性致能之PLL。當PLL被致能時,其輸出與資料90°倍數相位位移的複數再生時脈信號。具有致能的PLL之裝置的每一個以該再生時脈信號操作。當PLL被禁能時,以輸入時脈信號操作。禁能的PLL之裝置導致較少耗電量。回應於由致能的PLL所提供之再生時脈信號,針對來源同步時控,提供輸出時脈信號之串聯連結的下一裝置。可以多晶片封裝來構造裝置群。時脈相位位移提供與待傳送之資料中央或邊緣時脈,結果為某些偏斜不構成衰減因子。In accordance with another aspect of the present invention, a memory device including a memory controller and a plurality of memory devices connected in series to a memory controller is provided. The plurality of memory devices are grouped. The memory controller provides a clock signal for synchronizing the operation of the device. A group of devices are timed by the clock signals provided by the source synchronization and the common synchronization clock structure. Each of the devices includes a PLL that is selectively enabled by an enable signal. When the PLL is enabled, it outputs a complex regenerated clock signal that is phase shifted by a multiple of 90°. Each of the devices having the enabled PLL operates with the regenerative clock signal. When the PLL is disabled, it operates with the input clock signal. The disabled PLL device results in less power consumption. In response to the regenerative clock signal provided by the enabled PLL, for the source synchronous time control, the next device for the series connection of the output clock signals is provided. The device group can be constructed in a multi-chip package. The clock phase shift provides the center or edge clock of the data to be transmitted, with the result that some skew does not constitute an attenuation factor.

根據另一實施例,提供一種具有快閃記憶體(例如NAND快閃裝置)之撓性操作之半導體記憶體裝置。In accordance with another embodiment, a semiconductor memory device having flexible operation of a flash memory (eg, a NAND flash device) is provided.

根據另一實施例,提供一種一種包括記憶體控制器及串聯連接至記憶體控制器之複數記憶體裝置。系統以來源同步時脈結構操作。記憶體控制器包括產生自輸入振盪信號90°、180°、270°及360°之相位位移的PLL(鎖相迴路)。這些相位位移信號的一些用於時脈對準。裝置分配有獨特且接續之識別符(ID)數字。最後裝置之ID數字的最小有效位元係用來判斷時脈對準之判斷:由記憶體控制器產生之與資料邊緣或中央對準的時脈。In accordance with another embodiment, a memory device including a memory controller and a plurality of memory devices connected in series to a memory controller is provided. The system operates with a source synchronous clock structure. The memory controller includes a PLL (phase-locked loop) that produces phase shifts from the input oscillating signals of 90°, 180°, 270°, and 360°. Some of these phase shift signals are used for clock alignment. The device is assigned a unique and consecutive identifier (ID) number. The least significant bit of the last device's ID number is used to determine the timing of the clock alignment: the clock generated by the memory controller that is aligned with the edge or center of the data.

根據一實施例,控制器提供與資料中央對準或邊緣對準的時脈。串聯連接之裝置的每一個可提供與資料中央對準或邊緣對準的時脈。所提供之時脈係傳輸至下一裝置。According to an embodiment, the controller provides a clock aligned with the center of the material or aligned with the edge. Each of the devices connected in series can provide a clock aligned with the center or edge of the data. The provided clock system is transmitted to the next device.

例如,記憶體裝置包括用於儲存資料之記憶體或資料儲存元件。記憶體包括隨機存取記憶體(RAM)、快閃記憶體(如NAND快閃裝置、NOR快閃裝置)及儲存資料及資訊用之其他類型的記憶體。For example, the memory device includes a memory or data storage element for storing data. Memory includes random access memory (RAM), flash memory (such as NAND flash devices, NOR flash devices) and other types of memory for storing data and information.

此技藝中具通常知識者在閱讀下列本發明之特定實施例後將更明瞭本發明之其他態樣及特徵。Other aspects and features of the present invention will become apparent to those skilled in the <RTIgt;

在下列本發明之範例實施例的詳細說明中,參照形成本發明一部分之附圖,且其中例示性顯示可施行本發明之特定範例實施例。以足夠細節說明這些實施例,使熟悉此技藝人士得據以施行本發明,且應了解到可利用其他實施例,且可做出邏輯、電性及其他改變而不背離本發明之範疇。下列詳細說明因此不應視為限制性,且本發明之範疇由所附之申請專利範圍所界定。In the following detailed description of the exemplary embodiments of the invention, reference to the claims The embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized, and may be made without departing from the scope of the invention. The following detailed description is not to be considered as limiting, and the scope of the invention is defined by the scope of the appended claims.

如上述,多點及串聯連結組態為解決密度問題之已知的設計技術。As mentioned above, multipoint and tandem connections are configured to address known density design techniques.

第1圖顯示具有以多點方式連接之複數記憶體裝置的系統。系統實施共同同步時脈結構以符合並聯時脈分佈。在所示的系統中,記憶體控制器110與複數(N)個記憶體裝置120-1、120-2…及120-N通訊,N為大於一的整數。記憶體控制器110及N個記憶體裝置經由n位元資料線131及m位元控制線133連接。資料傳輸與控制信號與連接至記憶體控制器110及N個記憶體裝置120-1至120-N之共同時脈線135上的共同時脈同步化。由時脈來源140提供同步時脈至共同時脈線135。由於匯流排之並聯本質,時脈信號負載成沉重且扭曲。Figure 1 shows a system with a plurality of memory devices connected in a multipoint manner. The system implements a common synchronous clock structure to conform to the parallel clock distribution. In the illustrated system, memory controller 110 communicates with a plurality (N) of memory devices 120-1, 120-2, ..., and 120-N, N being an integer greater than one. The memory controller 110 and the N memory devices are connected via an n-bit data line 131 and an m-bit control line 133. The data transfer and control signals are synchronized with a common clock connected to the memory controller 110 and the common clock lines 135 of the N memory devices 120-1 through 120-N. The synchronized clock is provided by the clock source 140 to the common clock line 135. Due to the parallel nature of the busbars, the clock signal load is heavy and distorted.

多記憶體裝置之串聯連結之一範例為「RamLink」,其在1996年變成IEEE標準。RamLink實際上指明兩種替代互連方法。一種方法為RingLink,其係由串聯式連接之裝置所構成,裝置之間有點對點的連結,提供高度擴大性,但長潛伏。另一種方法為SyncLink,其係由小數量裝置之多點互連所構成。An example of a series connection of multi-memory devices is "RamLink", which became an IEEE standard in 1996. RamLink actually specifies two alternative interconnection methods. One method is RingLink, which consists of a series connected device that provides a point-to-point connection between the devices, providing a high degree of scalability but long latency. Another method is SyncLink, which consists of a multipoint interconnection of a small number of devices.

混合式的RamLink組態亦為IEEE標準的一部分。基於RamLink的記憶體系統係由一處理器或記憶體控制器及一或更多記憶體模組所構成。記憶體控制器典型上包括在處理器本身之內或製造為處理器之伴隨晶片組的一部分。各記憶體模組有含有一鏈結輸入及一鏈結輸出之從屬介面。記憶體模組配置成一種RamLink發信拓樸,其稱為於構件間具有單向鏈結之RingLink。每一模組介面上的控制介面將從屬介面與記憶體裝置(RAM)接介。在此系統中,在從屬介面與記憶體裝置之間使用另一種稱為SyncLink的RamLink發信拓樸。在處理器與模組間以沿著RingLink循環的封包來傳輸資料。處理器及記憶體控制器負責產生所有請求封包並排程從屬回應封包的返回。The hybrid RamLink configuration is also part of the IEEE standard. The RamLink-based memory system consists of a processor or memory controller and one or more memory modules. The memory controller is typically included within the processor itself or as part of a companion wafer set of the processor. Each memory module has a slave interface that includes a link input and a link output. The memory module is configured as a RamLink signaling topology, which is called a RingLink with a unidirectional link between components. The control interface slave interface on each module interface is connected to a memory device (RAM). In this system, another RamLink signaling topology called SyncLink is used between the slave interface and the memory device. Data is transmitted between the processor and the module along a packet circulating along the RingLink. The processor and memory controller are responsible for generating all request packets and scheduling the return of the dependent response packets.

混合式RamLink組態僅可如模組級之構件連結般地快地操作。其因多點匯流排而在頻率上受限於單一模組內之SyncLink連結,如第1圖中所示之相同方法。在RingLink從屬介面電路中,使用來源同步閃控(strobing)來時控進入資料信號。亦即,伴隨著進入資料信號的選通信號「strobein」係用來取樣進入資料。電路使用鎖相迴路(PLL)來從參考時脈信號產生穩定的本地時脈信號。The hybrid RamLink configuration can only be operated as fast as a module-level component link. It is limited in frequency by the SyncLink link within a single module due to the multi-point bus, as shown in Figure 1. In the RingLink slave interface circuit, source sync strobing is used to control the incoming data signal. That is, the strobe signal "strobein" accompanying the entry of the data signal is used to sample the incoming data. The circuit uses a phase-locked loop (PLL) to generate a stable local clock signal from the reference clock signal.

根據本發明之一實施例,提供具有控制器及連接的複數裝置之系統,裝置為同步時控。將討論具有串聯式連接之半導體裝置的範例系統。In accordance with an embodiment of the present invention, a system is provided having a controller and a plurality of connected devices, the devices being synchronous timed. An example system with a serially connected semiconductor device will be discussed.

第2圖顯示具有快閃記憶體之總體系統。參照第2圖,記憶體系統140經由記憶體控制器144與主系統或處理器(主機系統)142通訊。記憶體系統140包括串聯或並聯的複數記憶體裝置。記憶體裝置之範例為快閃裝置。Figure 2 shows the overall system with flash memory. Referring to FIG. 2, memory system 140 communicates with a host system or processor (host system) 142 via memory controller 144. Memory system 140 includes a plurality of memory devices in series or in parallel. An example of a memory device is a flash device.

第3圖顯示串聯式連接之複數記憶體裝置的配置。參照第3圖,此配置包括串聯式連接的N個記憶體裝置145-1、145-2、145-3…及145-N,N為整數。串聯式連接的N個記憶體裝置145-1至145-N對應至第2圖的記憶體系統140。對應至第2圖之記憶體控制器144的記憶體控制器(未圖示)發送一群資料或資訊信號至配置的記憶體裝置。將待處理的資料或資訊發送至第一裝置145-1的資料輸入Dn並傳播經過串聯式連接的配置之裝置。在一實行例中,最後一裝置145-N的資料輸出Qn係連接至另一裝置或系統(未圖示)以在其中使用經傳播的資料或資訊。在另一實行例中,最後一裝置145-N的資料輸出Qn係連接至記憶體控制器,使記憶體控制器可使用從最後一裝置145-N返回的資料。Figure 3 shows the configuration of a serially connected complex memory device. Referring to Fig. 3, this configuration includes N memory devices 145-1, 145-2, 145-3, ..., and 145-N connected in series, N being an integer. The N memory devices 145-1 to 145-N connected in series correspond to the memory system 140 of FIG. A memory controller (not shown) corresponding to the memory controller 144 of FIG. 2 transmits a group of data or information signals to the configured memory device. The data or information to be processed is sent to the data input Dn of the first device 145-1 and propagated through the configuration of the serially connected configuration. In one embodiment, the data output Qn of the last device 145-N is coupled to another device or system (not shown) to use the propagated material or information therein. In another embodiment, the data output Qn of the last device 145-N is coupled to the memory controller such that the memory controller can use the data returned from the last device 145-N.

配置之裝置145-1至145-N的操作顯示於第4圖中。第4圖中所示之配置的裝置以第4圖中所示的初始模式及正常模式操作。在初始模式中,分配裝置位址(DA)或裝置識別符(ID)給裝置。之後,在正常模式中,由ID數字指定之裝置執行命令所指明之操作(如資料寫入、資料讀取)。The operation of the configured devices 145-1 through 145-N is shown in FIG. The device configured as shown in Fig. 4 operates in the initial mode and the normal mode shown in Fig. 4. In the initial mode, a device address (DA) or device identifier (ID) is assigned to the device. Thereafter, in the normal mode, the device specified by the ID number performs the operations specified by the command (such as data writing, data reading).

第5A圖顯示第3圖之配置,顯示ID配置。參照第3、4及5A圖,在初始模式中,記憶體控制器提供初始ID(=0)至第一裝置145-1。配置之記憶體裝置145-1、145-2、145-3…及145-N的每一個儲存輸入ID,IDi,到其ID暫存器中並執行加法(亦即IDi+1)以產生給下一裝置的輸出ID,IDo。在所示的範例中,記憶體裝置145-1、145-2、145-3…及145-N分配有接續數字「0」、「1」、「2」…「N」的ID,分別由二元數字「000」、「0001」、「0010」…及「…」代表。各裝置具有其最高有效位元(MSB)在最前面及其最低有效位元(LSB)在最後。在另一實行例中,ID可變成LSB在最前且MSB在最後。並且,ID可為從另一值起算之接續數字(如「1」)。此外,可從最大值遞減的數字。在串聯式連接之複數記憶體裝置中的ID分配範例提供在國際專利公開案WO/2007/0109886(2007年10月4日)及國際專利公開案WO/2007/0134444(2007年11月29日)中。Figure 5A shows the configuration of Figure 3, showing the ID configuration. Referring to Figures 3, 4 and 5A, in the initial mode, the memory controller provides an initial ID (=0) to the first device 145-1. Each of the configured memory devices 145-1, 145-2, 145-3, ..., and 145-N stores the input ID, IDi, into its ID register and performs addition (ie, IDi+1) to generate The output ID of the next device, IDo. In the example shown, the memory devices 145-1, 145-2, 145-3, ..., and 145-N are assigned IDs of consecutive numbers "0", "1", "2", ... "N", respectively The binary numbers "000", "0001", "0010"... and "..." are represented. Each device has its most significant bit (MSB) at the top and its least significant bit (LSB) at the end. In another embodiment, the ID may become the LSB at the top and the MSB at the end. Also, the ID may be a consecutive number (such as "1") from another value. In addition, the number can be decremented from the maximum value. An example of ID assignment in a tandem-connected complex memory device is provided in International Patent Publication No. WO/2007/0109886 (October 4, 2007) and International Patent Publication No. WO/2007/0134444 (November 29, 2007) )in.

第5B圖顯示第3圖之配置,顯示正常模式操作。參照第3、4及5A圖,在正常模式中,記憶體控制器發出控制資訊(CI)作為命令,包括特定裝置ID數字、操作指令及其他。包括在各記憶體裝置中的裝置控制器執行ID匹配判斷,比較輸入IDi與ID暫存器中的分配到的ID。在ID互相匹配的情況中,裝置控制器執行包括在CI中的命令以存取該裝置之記憶體。命令之操作範例為記憶體存取及資料處理。各命令包括ID數字(亦即裝置位址)及命令操作碼(此後簡稱為「OP碼」),且亦可包括位址資訊及/或資料。若輸入ID與暫存的ID不互相匹配,則裝置將傳送CI至下一裝置作為輸入命令CO。在回應於接收到經傳輸之CO為CI,下一裝置執行如前一裝置類似的操作。Figure 5B shows the configuration of Figure 3, showing normal mode operation. Referring to Figures 3, 4 and 5A, in the normal mode, the memory controller issues control information (CI) as a command, including specific device ID numbers, operating instructions, and others. The device controller included in each of the memory devices performs ID matching determination, and compares the input IDi with the assigned ID in the ID register. In the case where the IDs match each other, the device controller executes a command included in the CI to access the memory of the device. The operation examples of the command are memory access and data processing. Each command includes an ID number (ie, a device address) and a command operation code (hereinafter simply referred to as "OP code"), and may also include address information and/or data. If the input ID and the temporary ID do not match each other, the device will transmit the CI to the next device as the input command CO. In response to receiving the transmitted CO as CI, the next device performs a similar operation as the previous device.

第6圖為用於如第3圖中所示般串聯式連接之記憶體裝置中的範例命令格式的示意圖。參照第6圖,第一命令格式147-1包括ID數字及OP碼。ID數字用來辨別選定之記憶體裝置,而OP碼欄位含有將由選定裝置執行的OP碼。具有第一命令格式147-1的命令可例如用作含有讀取暫存器值的OP碼之命令。第二命令格式147-2包括ID數字、OP碼及資料。具有第二命令格式147-2的命令可例如用作含有寫入資料至暫存器中之OP碼的命令。第三命令格式147-3包括ID數字、OP碼及額外位址。此額外位址可例如包括用來定址記憶體單元中之位置的列及/或行位址。具有第三命令格式147-3的命令可例如用作含有從選定的記憶體裝置之記憶體單元讀取資料之OP碼的命令。第四命令格式147-4包括ID數字、OP碼、額外位址及資料。具有第四命令格式147-4的命令可例如用作含有寫入資料至選定的記憶體裝置之記憶體單元之OP碼的命令。注意到所有四種範例命令格式147-1、147-2、147-3及147-4以ID數字作為起頭以供定址。從前述應了解到在此所用之詞「命令」不僅參照命令OP碼,因命令可包括ID數字、OP碼、額外位址、資料或與控制串聯式連接之記憶體裝置配置有關的任何其他資訊。命令格式之範例揭露於國際專利公開案WO/2008/098342(2008年8月21日)中。命令及操作之範例揭露於國際專利公開案WO/2007/036048(2007年4月5日)及在2008年2月21日申請之名稱為「多獨立序列埠中之序列資料流控制(Serial Data Flow Control in Multiple Independent Serial Port)」的美國專利申請案12/034,686中。Fig. 6 is a diagram showing an example command format in a memory device for serial connection as shown in Fig. 3. Referring to Figure 6, the first command format 147-1 includes an ID number and an OP code. The ID number is used to identify the selected memory device, and the OP code field contains the OP code to be executed by the selected device. The command having the first command format 147-1 can be used, for example, as a command containing an OP code that reads a scratchpad value. The second command format 147-2 includes an ID number, an OP code, and data. The command having the second command format 147-2 can be used, for example, as a command containing an OP code that writes data to the scratchpad. The third command format 147-3 includes an ID number, an OP code, and an extra address. This extra address may, for example, include a column and/or row address used to address the location in the memory unit. The command having the third command format 147-3 can be used, for example, as a command containing an OP code for reading data from a memory unit of the selected memory device. The fourth command format 147-4 includes an ID number, an OP code, an extra address, and data. The command having the fourth command format 147-4 can be used, for example, as a command containing an OP code that writes data to a memory unit of the selected memory device. Note that all four example command formats 147-1, 147-2, 147-3, and 147-4 begin with an ID number for addressing. It should be understood from the foregoing that the term "command" as used herein refers not only to the command OP code, but the command may include an ID number, an OP code, an extra address, data, or any other information related to the configuration of the memory device that controls the serial connection. . An example of a command format is disclosed in International Patent Publication WO/2008/098342 (August 21, 2008). Examples of commands and operations are disclosed in International Patent Publication No. WO/2007/036048 (April 5, 2007) and on February 21, 2008, entitled "Sequence Data Flow Control in Multiple Independent Sequences" (Serial Data) Flow Control in Multiple Independent Serial Port) is disclosed in U.S. Patent Application Serial No. 12/034,686.

針對需要大記憶體空間的應用(或大量儲存系統),可實行使用複數快閃記憶體裝置之快閃記憶體系統。記憶體控制器可存取每一快閃記憶體裝置且一次僅可選擇一個快閃記憶體。For applications requiring large memory spaces (or mass storage systems), a flash memory system using a plurality of flash memory devices can be implemented. The memory controller has access to each flash memory device and can select only one flash memory at a time.

為了增進實行在快閃記憶體系統(如USB快閃裝置、快閃記憶卡及HDD替換的固態裝置(SSD))中之大量快閃裝置上的信號完整性,可實行NAND快閃記憶體。串聯式連接的NAND快閃記憶體為先進且提供使用點對點序列裝置連結的高性能快閃裝置。To enhance signal integrity on a large number of flash devices in flash memory systems such as USB flash drives, flash memory cards, and HDD-replaced solid state devices (SSDs), NAND flash memory can be implemented. Tandem-connected NAND flash memory is advanced and provides high performance flash devices that are connected using point-to-point serial devices.

回應於時脈信號可傳輸或捕捉資料。回應於時脈信號的上升邊緣或下降邊緣而可執行操作。記憶體裝置可執行單資料率(SDR)操作或雙資料率(DDR)操作,分別顯示在第7A及7B圖中。並可在時脈週期中操作記憶體裝置超過兩次。Data can be transmitted or captured in response to a clock signal. The operation can be performed in response to the rising edge or the falling edge of the clock signal. The memory device can perform single data rate (SDR) operations or double data rate (DDR) operations, which are shown in Figures 7A and 7B, respectively. The memory device can be operated more than twice during the clock cycle.

第8A圖顯示具有串聯式連接之複數記憶體裝置的系統,具有符合並聯時脈分佈拓樸之共同同步時脈結構。參照第8A圖,記憶體控制器150與複數(N)個記憶體裝置152-1、152-2…及152-N通訊,N為大於一的整數。記憶體控制器150連接至第一記憶體裝置152-1,以發送控制及/或資料資訊,回應於記憶體控制器150所提供的共同同步時脈信號CLKcsyc1而傳播其經過其餘的記憶體裝置152-2至152-N。經傳播的資訊從最後裝置152-N提供到另一裝置或設備(未圖示)以在其做進一步處理。Figure 8A shows a system with a series connected multi-memory device having a common synchronous clock structure that conforms to the parallel clock distribution topology. Referring to Fig. 8A, the memory controller 150 communicates with a plurality (N) of memory devices 152-1, 152-2, ..., and 152-N, and N is an integer greater than one. The memory controller 150 is coupled to the first memory device 152-1 to transmit control and/or data information, and propagates through the remaining memory devices in response to the common synchronization clock signal CLKcsyc1 provided by the memory controller 150. 152-2 to 152-N. The propagated information is provided from the last device 152-N to another device or device (not shown) for further processing there.

第8B圖顯示具有串聯式連接之複數記憶體裝置的系統,有共同同步時脈結構,此系統形成環形結構。在所示範例中,記憶體控制器160與複數(N)個記憶體裝置162-1、162-2…及162-N通訊,N為大於一的整數。記憶體控制器160連接至第一記憶體裝置162-1,以發送控制及/或資料資訊,回應於記憶體控制器150所提供的共同同步時脈信號CLKcsyc2而傳播其經過其餘的記憶體裝置162-2至162-N。在系統中,最後(第N個)記憶體裝置162-N將經傳播的資訊反饋到記憶體控制器160,使系統形成環形連結。若有必要,將經傳播的控制信號返還到記億體控制器160。Figure 8B shows a system with a plurality of memory devices connected in series having a common synchronizing clock structure that forms a ring structure. In the illustrated example, memory controller 160 communicates with a plurality (N) of memory devices 162-1, 162-2, ..., and 162-N, N being an integer greater than one. The memory controller 160 is coupled to the first memory device 162-1 to transmit control and/or data information, and propagates through the remaining memory devices in response to the common synchronous clock signal CLKcsyc2 provided by the memory controller 150. 162-2 to 162-N. In the system, the last (Nth) memory device 162-N feeds the propagated information back to the memory controller 160, causing the system to form a circular link. If necessary, the propagated control signal is returned to the Billion Controller 160.

第9圖顯示第8A及8B圖中所示的記憶體裝置之一的細節。第8A及8B圖中所示的每一記憶體裝置具有相同結構。參照第9圖,裝置i,其代表第8A及8B圖中所示的裝置之任一者,具有用於從前一裝置,裝置(i-1),接收輸入信號173的輸入電路172、用於將輸出信號175提供至下一裝置,裝置(i+1)的輸出電路174、時脈電路176及記憶體核心電路178。回應於輸入共同同步時脈信號CLKcsyc 177,時脈電路176傳遞時脈至輸入電路172、記憶體核心電路178及輸出電路174以供其操作。輸入電路172及輸出電路174回應於時脈信號CLKcsyc而執行介面操作。Figure 9 shows details of one of the memory devices shown in Figures 8A and 8B. Each of the memory devices shown in Figs. 8A and 8B has the same structure. Referring to Figure 9, device i, which represents any of the devices shown in Figures 8A and 8B, has an input circuit 172 for receiving an input signal 173 from a previous device, device (i-1), for The output signal 175 is provided to the next device, the output circuit 174 of the device (i+1), the clock circuit 176, and the memory core circuit 178. In response to the input common sync clock signal CLKcsyc 177, the clock circuit 176 passes the clock to the input circuit 172, the memory core circuit 178, and the output circuit 174 for operation thereof. The input circuit 172 and the output circuit 174 perform interface operations in response to the clock signal CLKcsyc.

第10A圖顯示第8A圖之系統的細節。此特定範例包括記憶體控制器210及串聯式連接的複數記憶體裝置212-1至212-4。此範例系統具有串聯式連接的記憶體裝置,實施共同同步時脈結構。所示的範例顯示四個裝置,但可串聯式連接任何數量的裝置。Figure 10A shows the details of the system of Figure 8A. This particular example includes a memory controller 210 and serially connected complex memory devices 212-1 through 212-4. This example system has a serially connected memory device that implements a common synchronous clock structure. The example shown shows four devices, but any number of devices can be connected in series.

參照第10A圖,各記憶體裝置212-1至212-4具有硬接線或預先分配的ID數字,使得在正常模式操作中根據ID匹配判斷可一次選擇一個裝置。記憶體裝置具有點對點連結。記憶體控制器210具有連接至裝置的複數輸出,以傳送各種資訊。各裝置具有複數輸入及輸出,以接收及傳送各種資訊。Referring to Fig. 10A, each of the memory devices 212-1 to 212-4 has hard-wired or pre-assigned ID numbers so that one device can be selected at a time in accordance with the ID matching judgment in the normal mode operation. The memory device has a point-to-point connection. The memory controller 210 has a plurality of outputs connected to the device to carry various information. Each device has a plurality of inputs and outputs for receiving and transmitting various information.

記憶體控制器210具有資料輸出DOC[0:3]、命令選通輸出CSOC、資料選通輸出DSOC、晶片選擇輸出/CEC及重設輸出/RSTC。並且,記憶體控制器210具有一對時脈輸出CKOC及/CKOC。各裝置具有資料輸入D[0:3]、命令選通輸入CSI、資料選通輸入DSI、重設輸入/RST、晶片致能輸入/CE及一對時脈輸入CK及/CK。且,各裝置具有資料輸出Q[0:3]、命令選通輸出CSO及資料選通輸出DSO。一裝置的資料輸出Q[0:3]、命令選通輸出CSO及資料選通輸出DSO分別耦合至下一裝置的資料輸入D[0:3]、命令選通輸入CSI及資料選通輸入DSI。The memory controller 210 has data output DOC[0:3], command strobe output CSOC, data strobe output DSOC, chip select output/CEC, and reset output/RSTC. Further, the memory controller 210 has a pair of clock outputs CKOC and /CKOC. Each device has data input D[0:3], command strobe input CSI, data strobe input DSI, reset input / RST, chip enable input / CE and a pair of clock inputs CK and / CK. Moreover, each device has a data output Q[0:3], a command strobe output CSO, and a data strobe output DSO. The data output Q[0:3], the command strobe output CSO, and the data strobe output DSO of one device are respectively coupled to the data input D[0:3] of the next device, the command strobe input CSI, and the data strobe input DSI. .

裝置接收晶片致能信號/SCE(此後稱為「/SCE信號」)及重設信號/SRST(此後稱為「/SRT信號」)。並且,裝置接收一對時脈信號SCLKI(此後稱為「SCLKI信號」)及互補時脈信號/SCLKI(此後稱為「/SCLKI信號」)。通常由記憶體控制器210提供/SCE、/SRST、SCLKI及/SCLKI給記憶體裝置212-12至12-4。The device receives a wafer enable signal /SCE (hereinafter referred to as "/SCE signal") and a reset signal /SRST (hereinafter referred to as "/SRT signal"). Further, the device receives a pair of clock signals SCLKI (hereinafter referred to as "SCLKI signal") and a complementary clock signal /SCLKI (hereinafter referred to as "/SCLKI signal"). /SCE, /SRST, SCLKI, and /SCLKI are typically provided by memory controller 210 to memory devices 212-12 through 12-4.

記憶體控制器210的資料輸出DOC[0:3]提供輸入資料DI1[0:3]至第一裝置212-1(裝置1)的資料輸入D[0:3]。第一裝置212-1傳輸輸出資料DQ[0:3]至下一裝置。第二裝置212-2(裝置2)從前一裝置(裝置1)所傳送之輸出資料DQ[0:3]作為輸入資料DI2[0:3]。一裝置之命令選通輸入CSI及資料選通輸入DSI分別接收命令選通輸入信號SCSI及資料選通輸入信號SDSI。並且,一裝置的命令選通輸入CSO及資料選通輸出DSO分別傳送命令選通輸出信號SCSO及資料選通輸出信號SDSO至下一裝置。由每一裝置之命令選通輸入及資料選通輸入信號控制資料傳輸。The data output DOC[0:3] of the memory controller 210 provides input data DI1[0:3] to the data input D[0:3] of the first device 212-1 (device 1). The first device 212-1 transmits the output data DQ[0:3] to the next device. The second device 212-2 (device 2) outputs the output data DQ[0:3] from the previous device (device 1) as input data DI2[0:3]. The command strobe input CSI and the data strobe input DSI of a device respectively receive the command strobe input signal SCSI and the data strobe input signal SDSI. Moreover, the command strobe input CSO and the data strobe output DSO of one device respectively transmit the command strobe output signal SCSO and the data strobe output signal SDSO to the next device. The data transmission is controlled by the command strobe input and data strobe input signal of each device.

每一裝置提供命令選通輸入信號SCSI(此後稱為「SCSI信號」)及資料選通輸入信號SDSI(此後稱為「SDSI信號」)之延遲型式,即命令選通輸出信號SCSO(此後稱為「SCSO信號」)及資料選通輸出信號SDSO(此後稱為「SDSO信號」),至下一裝置。回應於SCLKI及/SCLKI信號,執行資料及SCSI及SDSI的傳輸。Each device provides a delay type of a command strobe input signal SCSI (hereinafter referred to as "SCSI signal") and a data strobe input signal SDSI (hereinafter referred to as "SDSI signal"), that is, a command strobe output signal SCSO (hereinafter referred to as "SCSO signal") and data strobe output signal SDSO (hereinafter referred to as "SDSO signal"), to the next device. The data and SCSI and SDSI transmissions are performed in response to the SCLKI and /SCLKI signals.

在美國專利公開案2007/0076502 A1(2007年4月5日)及國際專利公開案WO/2007/036048中提供具有串聯式連接之裝置的架構之範例細節。亦在國際專利公開案WO/2008/067652(2008年6月12日)及國際專利公開案WO/2008/022454(2008年2月28日)中提供具有串聯式連接之裝置的架構之其他範例細節。Exemplary details of an architecture having a series connected device are provided in U.S. Patent Publication No. 2007/0076502 A1 (Aug. 5, 2007) and International Patent Publication No. WO/2007/036048. Other examples of architectures with devices connected in series are also provided in International Patent Publication No. WO/2008/067652 (June 12, 2008) and International Patent Publication No. WO/2008/022454 (February 28, 2008). detail.

第10B圖顯示第8B圖之系統的細節。第10B圖中所示之系統的連結與結構幾乎與第10A圖中所示的相同。差別僅在於串聯連結之最後裝置(亦即裝置4)的輸出資料DQ4(0:3]及SCSO4與SDSO4信號係饋送至記憶體控制器220。SCSO4與SDSO4信號可隨意提供至記憶體控制器220以偵測有效資料位置。Figure 10B shows the details of the system of Figure 8B. The connection and structure of the system shown in Fig. 10B is almost the same as that shown in Fig. 10A. The only difference is that the output data DQ4 (0:3) of the last device connected in series (ie, device 4) and the SCSO4 and SDSO4 signal systems are fed to the memory controller 220. The SCSO4 and SDSO4 signals are optionally provided to the memory controller 220. To detect valid data locations.

在特定範例中,以多點方式由記憶體控制器提供SCK及/SCK信號至各記憶體裝置。因此,即使以點對點介面傳送進入資料至單一構件(亦即,串聯式連接之記憶體裝置或任何其他串聯式連接的記憶體),由多記憶體構件載入時脈信號。結果為此技術之實際實行可具有如200MHz或更少之操作頻率限制。In a particular example, the SCK and /SCK signals are provided by the memory controller to the respective memory devices in a multipoint manner. Thus, even if the incoming data is transferred to a single component (ie, a serially connected memory device or any other serially connected memory) in a point-to-point interface, the clock signal is loaded by the multi-memory component. As a result, the actual implementation of this technique can have an operating frequency limit of, for example, 200 MHz or less.

第11圖顯示第10A及10B圖中所示之裝置的細節。第11圖顯示裝置之一般性實行。輸入及輸出資料為n位元的並聯資料。Figure 11 shows the details of the device shown in Figures 10A and 10B. Figure 11 shows the general implementation of the device. The input and output data are n-bit parallel data.

參照第11圖,顯示第10A或8B中所示之系統的裝置的兩個。參照第11圖,第I個裝置212-i(裝置i)及下一裝置212-(i+1)(裝置i+1)共同接收重設信號/SRST、晶片致能信號/SCE及一對時脈信號SCLKI及/SCLKI。裝置i的資料輸入D[0:(n-1)]從前一裝置(裝置(i-1),未圖示)接收輸入資料DIi[0:(n-1)],並從其資料輸出Q[0:(n-1)]輸出輸出資料DQi[0:(n-1)]。來自裝置i的輸出資料DQi[0:(n-1)]係饋送作為輸入資料DI(i+1)[0:(n-1)]至裝置(i+1)的資料輸入D。裝置(i+1)從其資料輸出Q輸出輸出資料DQ(i+1)(0:(n-1)],其傳送至下一裝置,裝置(i+2)(未圖示)。裝置i的命令選通輸入CSI及資料選通輸入DSI分別從前一裝置(裝置(i-1))接收命令選通輸入信號SCSIi及資料選通輸入信號SDSIi。裝置i分別從其命令選通輸出CSO及資料選通輸出DSO輸出命令選通輸出信號SCSOi及資料選通輸出信號SDSOi。來自裝置i的命令選通輸出信號SCSOi及資料選通輸出信號SDSOi係分別饋送至裝置(i+1)的命令選通輸入CSI及資料選通輸入DSI,作為命令選通輸入信號SCSI(i+1)及資料選通輸入SDSI(i+1)。裝置(i+1)分別輸出命令選通輸出信號SCSO(i+1)及資料選通輸出信號SDSO(i+1)至下一裝置,裝置(i+2)(未圖示)。Referring to Fig. 11, two of the devices of the system shown in 10A or 8B are shown. Referring to FIG. 11, the first device 212-i (device i) and the next device 212-(i+1) (device i+1) collectively receive the reset signal /SRST, the chip enable signal /SCE, and a pair Clock signals SCLKI and /SCLKI. The data input D[0:(n-1)] of the device i receives the input data DIi[0:(n-1)] from the previous device (device (i-1), not shown), and outputs Q from its data. [0: (n-1)] Output output data DQi[0:(n-1)]. The output data DQi[0:(n-1)] from the device i is fed as the data input D of the input data DI(i+1)[0:(n-1)] to the device (i+1). The device (i+1) outputs the output data DQ(i+1)(0:(n-1)] from its data output Q, which is transmitted to the next device, device (i+2) (not shown). The command strobe input CSI and the data strobe input DSI of i receive the command strobe input signal SCSIi and the data strobe input signal SDSIi from the previous device (device (i-1)) respectively. The device i outputs the CSO from its command strobe respectively. And the data strobe output DSO output command strobe output signal SCSOi and the data strobe output signal SDSOi. The command strobe output signal SCSOi and the data strobe output signal SDSOi from the device i are respectively fed to the device (i+1) The strobe input CSI and the data strobe input DSI are used as the command strobe input signal SCSI(i+1) and the data strobe input SDSI(i+1). The device (i+1) outputs the command strobe output signal SCSO ( i+1) and data strobe output signal SDSO(i+1) to the next device, device (i+2) (not shown).

第12圖描繪共同同步時脈結構。所示之範例包括互連的兩個結構。各裝置具有如第9圖中所示的結構。在所示範例中,裝置具有相同結構。裝置之一詳細顯示其輸出介面電路而另一者詳細顯示其輸入介面。參照第12圖,一裝置(裝置i)具有複數多工器(Muxs)。類似地,另一裝置(裝置(i+1))具有複數解多工器(DeMuxs)。在所示範例中,裝置i作為「傳送器」。類似地,裝置(i+1)作為「接收器」。時脈來源230提供共同同步時脈信號CLKcsyc至這兩個裝置,裝置i及裝置(i+1)。由時脈信號CLKcsyc同步化來自裝置i的資料傳輸以及由裝置(i+1)所接收之資料。Figure 12 depicts the common synchronization clock structure. The examples shown include two structures of interconnection. Each device has a structure as shown in Fig. 9. In the example shown, the devices have the same structure. One of the devices displays its output interface circuit in detail while the other displays its input interface in detail. Referring to Fig. 12, a device (device i) has a plurality of multiplexers (Muxs). Similarly, another device (device (i+1)) has a complex demultiplexer (DeMuxs). In the example shown, device i acts as a "transmitter." Similarly, the device (i+1) acts as a "receiver". The clock source 230 provides a common synchronous clock signal CLKcsyc to the two devices, device i and device (i+1). The data transmission from device i and the data received by device (i+1) are synchronized by clock signal CLKcsyc.

在裝置i中,時脈信號CLKcsyc係饋送至緩衝器,其則共同地提供經緩衝的輸出時脈信號CLKb0至多工器,以進行多工操作。由多工器多工資料(n位元)並且經由各差動輸出緩衝器輸出各多工器輸出之多工的資料。由與裝置(i+1)之一對接腳連接的裝置i之一對接腳輸出各差動輸出資料。In device i, the clock signal CLKcsyc is fed to a buffer, which in turn provides a buffered output clock signal CLKb0 to the multiplexer for multiplex operation. The multiplexed data output by each multiplexer is output from the multiplexer multiplexed data (n bits) and via the differential output buffers. One of the differential output data is output from one of the devices i connected to one of the devices (i+1).

在裝置(i+1)中,時脈信號CLKcsyc係饋送至緩衝器中,其則共同地提供經緩衝的輸出時脈信號CLKb1至解多工器,以進行解多工操作。在該對接腳所接收之資料係提供至對應的輸入差動緩衝器,其提供經緩衝的輸出資料至對應的解多工器。從各解多工器提供經解多工的資料(n位元)。由共同同步時脈信號CLKcsyc同步化裝置i之多工器及裝置(i+1)之解多工器之操作。In device (i+1), the clock signal CLKcsyc is fed into the buffer, which in turn provides the buffered output clock signal CLKb1 to the demultiplexer for demultiplexing. The data received at the docking pin is provided to a corresponding input differential buffer that provides buffered output data to the corresponding demultiplexer. The multiplexed data (n bits) is provided from each solution multiplexer. The operation of the multiplexer of the multiplexer and device (i+1) of the device i is synchronized by the common synchronization clock signal CLKcsyc.

共同同步時脈結構具有如第12圖中所示般的一些偏斜因素,例如:The common sync clock structure has some skew factors as shown in Fig. 12, for example:

(i)傳送與接收裝置中之tBUFF(從時脈輸入墊至設置於同步電路中之最終時脈驅動器之時脈插入時間)間之差異,(i) the difference between the tBUFF in the transmitting and receiving device (the clock insertion time from the clock input pad to the final clock driver set in the synchronization circuit),

(ii)包括tTs(傳送器輸出延遲)之信號傳播路徑中之延遲,(ii) the delay in the signal propagation path including tTs (transmitter output delay),

(iii)tRS(接收器輸入延遲),(iii) tRS (receiver input delay),

(iv)tFL(傳送器與接收器之間的傳播時間(flight time))及多個信號中這些延遲間的差異,以及(iv) tFL (flight time between transmitter and receiver) and the difference between these delays in multiple signals, and

(v)tJITTER(由於許多因素造成之時脈抖動,包括電源位準波動、時脈信號線上之瞬間電器特徵改變及來自存在於系統中之其他信號的雜訊)。(v) tJITTER (clock jitter due to many factors, including power level fluctuations, transient electrical characteristics changes on the clock signal line, and noise from other signals present in the system).

因此,當許多裝置以多點方式連接時,其具有有限的操作頻率範圍。Therefore, when many devices are connected in a multi-point manner, they have a limited operating frequency range.

共同同步時脈結構具有許多缺點,源自於信號完整性的問題,如來自傳輸線效應及記憶體裝置負載之緩慢過渡、低抗雜訊能力、時脈相位位移即時脈波形扭曲。因此,若由共同時脈驅動許多裝置,具有如第1圖中所示般之單一時脈來源的共同同步時脈結構並不適用於高速應用。The common synchronizing clock structure has many disadvantages stemming from signal integrity issues such as slow transition from transmission line effects and memory device loading, low noise immunity, and clock phase shifting. Thus, if many devices are driven by a common clock, a common synchronous clock structure having a single clock source as shown in Figure 1 is not suitable for high speed applications.

為了增進性能,使用差動時脈。已提出利用差動脈之DDR動態隨機存取記憶體(DRAM)產品。藉由嚴格計時條件及對於裝置與模組間之距離的限制,可利用並聯(多點)時脈分佈方法。然而,多點時脈係用來捕捉以SDR傳輸之位址與控制資訊。在讀取及寫入操作兩者中,使用由提供資料之裝置所驅動的來源同步時脈捕捉DDR資料。To improve performance, use a differential clock. A DDR dynamic random access memory (DRAM) product using a poor artery has been proposed. The parallel (multi-point) clock distribution method can be utilized by strict timing conditions and limitations on the distance between the device and the module. However, the multi-point clock is used to capture the address and control information transmitted by the SDR. In both read and write operations, the DDR data is captured using the source sync clock driven by the device providing the data.

為了解決並聯分佈時脈結構的問題,另一種方式為來源同步時脈分佈方法。來源同步時脈分佈方法提供更多時序餘裕,因為排除掉多點時脈結構中之許多偏斜來源。在來源同步時脈結構中,可由時脈重新產生器調整時脈,如鎖相迴路(PLL)或鎖延遲迴路(DLL)。在具有來源同步時脈結構之串聯連接裝置的情況中,PLL較有利,因其無短期抖動累積且事實上可在輸入時脈上提供抖動過濾功能。然而,PLL比DLL更複雜且必須考量迴路之穩定性。In order to solve the problem of parallel distribution of clock structures, another way is the source synchronous clock distribution method. The source synchronous clock distribution method provides more timing margins because many skew sources in the multipoint clock structure are excluded. In the source synchronous clock structure, the clock can be adjusted by the clock regenerator, such as a phase locked loop (PLL) or a lock delay loop (DLL). In the case of a series connection device with a source synchronous clock structure, the PLL is advantageous because it has no short-term jitter accumulation and can in fact provide a jitter filtering function on the input clock. However, PLLs are more complex than DLLs and must consider the stability of the loop.

第13圖顯示具有串聯連接之複數記憶體裝置的系統,具有符合序列時脈分佈拓樸之來源同步時脈結構,系統形成環形結構。在所示範例系統中,記憶體控制器260與複數(N)個記憶體裝置262-1、262-2…及262-N通訊。記憶體控制器260連接至第一記憶體裝置262-1,以發送控制及/或資料資訊,回應於來源同步時脈信號CLKssyc而傳播其經過其餘的記憶體裝置262-2至262-N。由記憶體控制器260提供初始來源同步時脈信號CLKssyc,並由裝置提供同步化時脈信號至下一裝置。在系統中,最後(第N個)記憶體裝置262-N將經傳播的資訊反饋到記憶體控制器260,使系統形成環形連結。若有必要,將經傳播的控制信號返還到記憶體控制器260。Figure 13 shows a system with a plurality of memory devices connected in series having a source synchronous clock structure conforming to the sequence of clock distributions, the system forming a ring structure. In the illustrated example system, memory controller 260 is in communication with a plurality (N) of memory devices 262-1, 262-2, ..., and 262-N. The memory controller 260 is coupled to the first memory device 262-1 to transmit control and/or profile information that propagates through the remaining memory devices 262-2 through 262-N in response to the source synchronous clock signal CLKssyc. The initial source sync clock signal CLKssyc is provided by the memory controller 260 and the device provides a synchronized clock signal to the next device. In the system, the last (Nth) memory device 262-N feeds the propagated information back to the memory controller 260, causing the system to form a circular link. The propagated control signal is returned to the memory controller 260 if necessary.

第14圖顯示第13圖中所示之記憶體裝置之一的細節。參照第14圖,裝置i具有用於接收輸入信號283的輸入電路282、用於提供輸出信號285輸出電路284、時脈電路286及記憶體核心電路288。時脈電路286包括時脈再生器,用於調整進入時脈信號之延遲並產生適當同步化的時脈信號。針對此目的,有各種時脈再生器之可能的實行例,例如使用PLL或DLL來調整或同步化時脈。回應於輸入來源同步時脈信號CLKssyci 287,時脈電路286傳遞時脈至輸入電路282、記憶體核心電路288及輸出電路284以供其個別之操作。時脈電路286之時脈再生器提供與輸入來源同步時脈信號CLKssyci 287同步的輸出來源同步時脈信號CLKssyco 289至下一裝置。輸出時脈信號CLKssyco 289為輸入時脈信號CLKssyci 287之再生的型式。輸入電路282及輸出電路284回應於由時脈電路286所提供之時脈而執行介面操作。Fig. 14 shows details of one of the memory devices shown in Fig. 13. Referring to Fig. 14, device i has an input circuit 282 for receiving an input signal 283, an output circuit 284 for providing an output signal 285, a clock circuit 286, and a memory core circuit 288. The clock circuit 286 includes a clock regenerator for adjusting the delay of the incoming clock signal and generating a properly synchronized clock signal. For this purpose, there are possible implementations of various clock regenerators, such as using a PLL or DLL to adjust or synchronize the clock. In response to the input source sync clock signal CLKssyci 287, the clock circuit 286 passes the clock to the input circuit 282, the memory core circuit 288, and the output circuit 284 for their individual operation. The clock regenerator of clock circuit 286 provides an output source synchronous clock signal CLKssyco 289 synchronized with the input source synchronous clock signal CLKssyci 287 to the next device. The output clock signal CLKssyco 289 is a pattern of the regeneration of the input clock signal CLKssyci 287. Input circuit 282 and output circuit 284 perform interface operations in response to the clock provided by clock circuit 286.

第15圖顯示具有如第13圖所示般串聯連接之記憶體控制器及複數記憶體裝置的系統。系統具有來源同步時脈結構。在系統中,最後裝置連接至控制器。參照第15圖,系統包括記憶體控制器310及串聯連接複數記憶體裝置312-1至312-4,具有來源同步時脈結構。各裝置與第10A圖的類似,但時控與第10A圖不同。各裝置從前一構件(記憶體裝置,或針對第一記憶體裝置或裝置1為記憶體控制器)接收時脈信號。各裝置具有產生內部時脈之PLL(未圖示)。於國際專利公開案WO/2008/067636(2008年6月12日)中提供有具有時脈同步化用之PLL的裝置之架構的範例細節。Fig. 15 shows a system having a memory controller and a plurality of memory devices connected in series as shown in Fig. 13. The system has a source synchronous clock structure. In the system, the last device is connected to the controller. Referring to Fig. 15, the system includes a memory controller 310 and serially connected complex memory devices 312-1 to 312-4 having a source synchronous clock structure. Each device is similar to that of Figure 10A, but the timing is different from that of Figure 10A. Each device receives a clock signal from a previous component (a memory device, or for a first memory device or device 1 is a memory controller). Each device has a PLL (not shown) that generates an internal clock. Exemplary details of the architecture of a device having a PLL for clock synchronization are provided in International Patent Publication No. WO/2008/067636 (June 12, 2008).

在第15圖中所示的範例中,來源同步時脈結構要求在各構件(如裝置)中有PLL,以提供相位位移的內部時脈以捕捉進入資料或提供相位位移之輸出時脈。若例如接收到的時脈邊緣與接收到的資料過渡重疊,PLL需要產生90°時脈相位位移,以將接收到的輸入時脈SCLKI及/SCLKI信號置中於資料輸入信號D[0:3]的資料有效窗內。另一方面,若SCLKI及/SCLKI信號的接收到之時脈邊緣置中於接收到的資料有效窗內,需要90°位移之時脈以產生輸出時脈信號SCLKO及互補輸出時脈信號/SCLKO(此後分別稱為「SCLKO信號」及「/SCLKO信號」)。於下列說明中假設記憶體裝置在後者的模式中操作。In the example shown in Figure 15, the source synchronous clock structure requires a PLL in each component (such as a device) to provide an internal clock of the phase shift to capture the output clock or the output clock that provides the phase shift. If, for example, the received clock edge overlaps with the received data transition, the PLL needs to generate a 90° clock phase shift to center the received input clock SCLKI and /SCLKI signals on the data input signal D[0:3 ] The data is valid in the window. On the other hand, if the received clock edge of the SCLKI and /SCLKI signals is centered in the received data valid window, a 90° shift clock is required to generate the output clock signal SCLKO and the complementary output clock signal/SCLKO. (This will be referred to as "SCLKO signal" and "/SCLKO signal" respectively). It is assumed in the following description that the memory device operates in the latter mode.

在寫入操作中,記憶體控制器310傳送寫入命令及寫入資料(Q[0:3])至裝置串聯連結中的第一裝置(裝置1,312-1)。第一裝置312-1捕捉以輸入時脈捕捉進入資料D[0:3],輸入時脈與來自控制器310之進入資料中央對準。若第一裝置312-1為寫入操作之「目標」或「指定」裝置,其係經由裝置ID匹配判斷根據記憶體控制器310發出作為寫入命令之一部分的ID裝置來做判斷,捕捉的資料將寫入那個裝置的記憶體陣列(未圖示)中。在此情況中,可隨意地防止再傳送寫入命令及寫入資料至裝置串聯連結中的下一裝置。指定特定裝置之ID數字係顯示於第6圖中,如「147-2」所參照,且輸入資料DI1[0:3]為命令格式147-2的「資料」。In the write operation, the memory controller 310 transfers the write command and the write data (Q[0:3]) to the first device (device 1, 312-1) in the device serial connection. The first device 312-1 captures the input data D[0:3] with the input clock, and the input clock is aligned with the center of the incoming data from the controller 310. If the first device 312-1 is a "target" or "designation" device of the write operation, it is determined by the device ID matching to judge according to the ID device that the memory controller 310 issues as a part of the write command, and the captured The data will be written to the memory array (not shown) of that device. In this case, the retransmission of the write command and the writing of the data to the next device in the series connection of the device can be arbitrarily prevented. The ID number of the specified specific device is shown in Fig. 6, as referenced by "147-2", and the input data DI1[0:3] is the "data" of the command format 147-2.

若根據記憶體控制器310發出作為寫入命令之一部分的ID裝置而判斷第一裝置312-2並非寫入操作的「目標」或「指定」裝置,則必須連同90。位移之時脈輸出CKO及/CKO再傳送進入資料至第二構件(裝置2,312-2)。第二構件(裝置2,312-2)從第一構件(裝置1,312-1)接收再傳送之資料及與進入資料中央對準的時脈。藉由此方法,從第一構件裝置1,312-1)遞送資料至最後構件(最後裝置312-3)。If it is determined that the first device 312-2 is not a "target" or "designation" device of the write operation based on the ID controller that the memory controller 310 issues as part of the write command, it must be accompanied by 90. The displacement clock outputs CKO and /CKO are then transferred into the second component (device 2, 312-2). The second member (device 2, 312-2) receives the retransmitted material from the first member (device 1, 312-1) and the clock aligned with the center of the incoming data. By this method, data is delivered from the first member device 1, 312-1) to the last member (final device 312-3).

來自裝置串聯運結之最後裝置(亦即裝置4)的輸出資料DQ[0:3]、SCLKO、/SCLKO、SCSO及SDSO信號係饋送回到記憶體控制器310。提供SCSO及SDSO信號至記憶體控制器310以偵測有效資料點。不像並聯分佈時脈,控制器310並不知道串聯連接之裝置的確實潛伏,因此需要SCSO及SDSO信號連同SCLKO及/SCLKO作為輸入。The output data DQ[0:3], SCLKO, /SCLKO, SCSO, and SDSO signals from the last device (ie, device 4) in series with the device are fed back to the memory controller 310. The SCSO and SDSO signals are provided to the memory controller 310 to detect valid data points. Unlike the parallel distribution of clocks, controller 310 does not know the true latency of the devices connected in series, so SCSO and SDSO signals are required along with SCLKO and /SCLKO as inputs.

在讀取操作中,記憶體控制器310發出具有指定裝置的ID數字之讀取命令至裝置串聯連結之第一裝置。同樣地,若經過裝置ID匹配判斷判斷出指定裝置為裝置1,則裝置1將處理此命令(亦即讀取)以存取那個裝置之記憶體陣列。將第一裝置之讀取結果連同90°位移之時脈傳送至第二構件(裝置2,312-2)。接著,第二構件(裝置2,312-2)連同連同與輸入資料中央對準的時脈接收第一構件的讀取結果。藉由此流程,經過其餘的裝置遞送讀取資料至記憶體控制器310。第6圖中所示的格式147-3提供ID數字。根據包括在命令格式中之位址執行存取。In the read operation, the memory controller 310 issues a read command having the ID number of the designated device to the first device in series with the device. Similarly, if it is determined by the device ID match that the designated device is device 1, device 1 will process the command (ie, read) to access the memory array of that device. The reading result of the first device is transmitted to the second member (device 2, 312-2) together with the 90° displacement clock. Next, the second member (device 2, 312-2) receives the reading of the first member along with the clock aligned with the center of the input material. By this process, the read data is delivered to the memory controller 310 via the remaining devices. The format 147-3 shown in Fig. 6 provides an ID number. The access is performed according to the address included in the command format.

第16圖顯示第15圖中所示之兩個裝置。參照第16圖,一裝置(裝置i)及下一裝置(裝置i+1)共同接收重設信號/SRST、晶片致能信號/SCE及一對時脈信號SCLKI及/SCKLI。Figure 16 shows the two devices shown in Figure 15. Referring to Fig. 16, a device (device i) and a next device (device i+1) collectively receive a reset signal /SRST, a chip enable signal /SCE, and a pair of clock signals SCLKI and /SCKLI.

裝置i之時脈輸入CK及/CK分別從前一裝置(裝置(i-1)未圖示)接收輸入時脈信號SCLKIi及/SCLKIi,並分別從其之時脈輸出CKO及/CKO輸出對應的輸出時脈信號SCLKOi及/SCLKOi。裝置(i+1)分別從裝置i接收輸出時脈信號SCLKOi及/SCLKOi作為輸入時脈信號SCLKI(i+1)及/SCLKI(i+1),並且分別從其之時脈輸出CKO及/CKO輸出對應的輸出時脈信號SCLKO(i+1)及/SCLKO(i+1),其傳輸至下一裝置,裝置(i+2)(未圖示)。The clock inputs CK and /CK of the device i receive the input clock signals SCLKIi and /SCLKIi from the previous device (device (i-1) not shown), and respectively output the corresponding CKO and /CKO outputs from their clock outputs. Output clock signals SCLKOi and /SCLKOi. The device (i+1) receives the output clock signals SCLKOi and /SCLKOi from the device i as the input clock signals SCLKI(i+1) and /SCLKI(i+1), respectively, and outputs CKO and/or respectively from the clock thereof. The CKO outputs the corresponding output clock signals SCLKO(i+1) and /SCLKO(i+1), which are transmitted to the next device, device (i+2) (not shown).

裝置i的資料輸入D從前一裝置(裝置(i-1))接收輸入資料DIi[0:(n-1)],並從其資料輸出Q輸出輸出資料DQi[0:(n-1)]。來自裝置i的輸出資料DQi(0:(n-1)]係饋送作為輸入資料DI(i+1)[0:(n-1)]至裝置(i+1)的資料輸入D。裝置(i+1)從其資料輸出Q輸出輸出資料DQ(i+1)[0:(n-1)],其被傳送至下一裝置,裝置(i+2)。裝置i的命令選通輸入CSI及資料選通輸入DSI分別從前一裝置(裝置(i-1))接收命令選通輸入信號SCSIi及資料選通輸入SDSIi。裝置i分別從其命令選通輸出CSO及資料選通輸出DSO輸出命令選通輸出信號SCSOi及資料選通輸出信號SDSOi。來自裝置i的命令選通輸出信號SCSOi及資料選通輸出信號SDSOi係分別饋送至裝置(i+1)的命令選通輸入CSI及資料選通輸入DSI,作為命令選通輸入信號SCSI(i+1)及資料選通輸入信號SDSI(i+1)。裝置(i+1)分別輸出命令選通輸出信號SCSO(i+1)及資料選通輸出信號SDSO(i+1)至下一裝置,裝置(i+2)(未圖示)。The data input D of the device i receives the input data DIi[0:(n-1)] from the previous device (device (i-1)), and outputs the output data DQi[0:(n-1)] from its data output Q. . The output data DQi(0:(n-1)] from the device i is fed as the data input D of the input data DI(i+1)[0:(n-1)] to the device (i+1). i+1) output Q output output data DQ(i+1)[0:(n-1)] from its data output, which is transmitted to the next device, device (i+2). Command strobe input of device i The CSI and data strobe input DSI respectively receive the command strobe input signal SCSIi and the data strobe input SDSIi from the previous device (device (i-1)). The device i respectively outputs the CSO and the data strobe output DSO output from its command strobe output. The command strobe output signal SCSOi and the data strobe output signal SDSOi. The command strobe output signal SCSOi and the data strobe output signal SDSOi from the device i are respectively fed to the command strobe input CSI and data selection of the device (i+1) Input DSI as the command strobe input signal SCSI(i+1) and data strobe input signal SDSI(i+1). The device (i+1) outputs the command strobe output signal SCSO(i+1) and data respectively. The output signal SDSO(i+1) is gated to the next device, device (i+2) (not shown).

第17圖顯示具有PLL之來源同步時脈結構。所示之範例包括互連的兩個裝置。其之一作為傳送器且另一作為接收器。各裝置具有如第14圖中所示般的結構。在所示的範例中,裝置具有相同的結構。裝置之一詳細顯示其輸出介面電路,且另一詳細顯示其輸入介面電路。參照第17圖,一裝置312-i,裝置1(傳送器),具有複數多工器(Muxs)、PLL 316、時脈多工器、差動輸入緩衝器及複數差動輸出緩衝器。Figure 17 shows the source clocked structure with the PLL. The example shown includes two devices that are interconnected. One of them acts as a transmitter and the other acts as a receiver. Each device has a structure as shown in Fig. 14. In the example shown, the devices have the same structure. One of the devices shows its output interface circuit in detail, and the other shows its input interface circuit in detail. Referring to Fig. 17, a device 312-i, device 1 (transmitter), has a complex multiplexer (Muxs), a PLL 316, a clock multiplexer, a differential input buffer, and a complex differential output buffer.

另一裝置312-(i+1)(接收器),裝置(i+1),包括複數解多工器(DeMux)及複數差動輸入緩衝器。Another device 312-(i+1) (receiver), device (i+1), includes a complex demultiplexer (DeMux) and a complex differential input buffer.

輸入差動時脈信號CLKi(CK及/CK)287經過差動輸入緩衝器至裝置i的PLL,其則提供重新產生的內部時脈給多工器以同步化多工器的操作。重新產生的內部時脈亦饋送至時脈多工器,其以與產生輸出資料完全相同方式產生輸出時脈,以匹配資料與時脈路徑間的延遲。提供輸出時脈以驅動傳輸至裝置(i+1)之輸出時脈信號。裝置(i+1)接收時脈並提供其至解多工器以同步化解多工器之操作。The input differential clock signal CLKi (CK and /CK) 287 passes through the differential input buffer to the PLL of device i, which provides a regenerated internal clock to the multiplexer to synchronize the operation of the multiplexer. The regenerated internal clock is also fed to the clock multiplexer, which produces the output clock in exactly the same way as the output data is generated to match the delay between the data and the clock path. An output clock is provided to drive the output clock signal transmitted to the device (i+1). The device (i+1) receives the clock and provides its solution to the multiplexer to synchronize the operation of the multiplexer.

與多點時脈結構相比,具有PLL之來源同步時脈結構有較少偏斜成分。其無顯著的時脈插入延遲問題(tBUFF偏斜),因內部重新產生的時脈相位上鎖定至輸入時脈。兩個裝置i及(i+1)之間的傳播時間偏斜(tFL)不再是問題,因輸出時脈及輸出資料跟隨相同的路徑。此外,因為PLL的過濾動作可減少tJITTER。Compared to multi-point clock structures, source-synchronized clock structures with PLLs have less skewing components. It has no significant clock insertion delay problem (tBUFF skew) because the internally regenerated clock phase is locked to the input clock. The propagation time skew (tFL) between the two devices i and (i+1) is no longer an issue since the output clock and output data follow the same path. In addition, because the filtering action of the PLL can reduce tJITTER.

來源同步時脈結構比多點時脈結構提供較高頻率操作範圍。例如,若可良好控制PLL抖動及相位誤差,可達成在超過800MHz之頻率的操作。有鑑於此,來源同步時脈結構適合用在具有串聯式連接的記憶體之系統中以提供較高資料讀取頻寬。The source synchronous clock structure provides a higher frequency operating range than the multi-point clock structure. For example, if the PLL jitter and phase error are well controlled, operation at frequencies exceeding 800 MHz can be achieved. In view of this, the source synchronous clock structure is suitable for use in systems with serially connected memories to provide higher data read bandwidth.

在2004年6月16日的IEEE 2004 VLSI電路研討會中的「設計高資料率介面(Designing High Data Rate Interfaces)」中揭露來源同步時脈結構的範例。An example of a source synchronous clock structure is disclosed in "Designing High Data Rate Interfaces" in the IEEE 2004 VLSI Circuits Symposium on June 16, 2004.

第18A圖顯示第15圖中所示的串聯連接裝置之一。參照第18A圖,提供各種輸入信號(如SCLKIi、/SCLKIi、SCSIi及SDSIi信號)及輸入資料DIi[0:3]至串聯連接之裝置中的第i個裝置「裝置i」312-i,且那個裝置提供各種輸出信號(如SCLKOi、/SCLKOi、SCSOi及SDSOi信號)及輸入資料DOi[0:3]。在特定範例中,資料具有四個位元[0:3]。資料可具有另一位元數量。Fig. 18A shows one of the series connection devices shown in Fig. 15. Referring to FIG. 18A, various input signals (such as SCLKIi, /SCLKIi, SCSIi, and SDSIi signals) and input data DIi[0:3] are provided to the i-th device "device i" 312-i in the device connected in series, and That device provides various output signals (such as SCLKOi, /SCLKOi, SCSOi, and SDSOi signals) and input data DOi[0:3]. In a particular example, the data has four bits [0:3]. The data can have another bit number.

裝置312-i包括具有鎖相迴路(PLL)的時脈I/O電路401、資料I/O電路403、選通I/O電路405及具有記憶體核心電路之控制電路407。時脈I/O電路401在時脈輸入CK及/CK接收SCLKIi及/SCLKIi信號,並且經由時脈輸出CKO及/CKO輸出SCLKOi及/SCLKOi信號。時脈I/O電路401提供參考時脈信號Ref_clk至資料I/O電路403及選通I/O電路405。提供參考時脈信號Ref_clk作為內部時脈信號。時脈I/O電路401產生複數時脈信號。在特定範例中,時脈I/O電路401輸出180°、270°及360°相位位移的時脈信號至資料I/O電路403及選通I/O電路405。The device 312-i includes a clock I/O circuit 401 having a phase locked loop (PLL), a data I/O circuit 403, a strobe I/O circuit 405, and a control circuit 407 having a memory core circuit. The clock I/O circuit 401 receives the SCLKIi and /SCLKIi signals at the clock inputs CK and /CK, and outputs the SCLKOi and /SCLKOi signals via the clock outputs CKO and /CKO. The clock I/O circuit 401 provides a reference clock signal Ref_clk to the data I/O circuit 403 and the strobe I/O circuit 405. The reference clock signal Ref_clk is provided as an internal clock signal. The clock I/O circuit 401 generates a complex clock signal. In a particular example, the clock I/O circuit 401 outputs clock signals of 180°, 270°, and 360° phase shifts to the data I/O circuit 403 and the strobe I/O circuit 405.

從記憶體控制器(如第15圖中所示的記憶體控制器310)提供參考電壓Vref之信號SVREF至資料I/O電路403及選通I/O電路405。資料I/O電路403接收輸入資料DIi[0:3]並輸出輸出資料DQi[0:3]。選通I/O電路405接收SCSIi及SDSIi信號並輸出SCSOi及SDSOi信號。控制電路407從選通I/O電路405接收內部命令選通輸入信號iCSI及內部資料選通輸入信號iDSI,並從資料I/O電路403接收待寫入之資料「寫入資料」。控制電路407提供從其記憶體(未圖示)讀取之「讀取資料」至資料I/O電路403。A signal SVREF of the reference voltage Vref is supplied from the memory controller (such as the memory controller 310 shown in FIG. 15) to the data I/O circuit 403 and the strobe I/O circuit 405. The data I/O circuit 403 receives the input data DIi[0:3] and outputs the output data DQi[0:3]. The strobe I/O circuit 405 receives the SCSIi and SDSIi signals and outputs the SCSOi and SDSOi signals. The control circuit 407 receives the internal command strobe input signal iCSI and the internal data strobe input signal iDSI from the strobe I/O circuit 405, and receives the data "write data" to be written from the data I/O circuit 403. The control circuit 407 provides "read data" read from its memory (not shown) to the data I/O circuit 403.

第18B圖顯示第18A圖中所示之具有記憶體核心電路之控制電路的範例。控制電路407在第4及5A圖中的初始模式中執行ID分配操作,並在第4及5B圖中的正常模式中執行記憶體存取操作。Fig. 18B shows an example of a control circuit having a memory core circuit shown in Fig. 18A. The control circuit 407 performs an ID assignment operation in the initial mode in FIGS. 4 and 5A, and performs a memory access operation in the normal mode in FIGS. 4 and 5B.

參照第18A及18B圖,ID分配電路491在初始模式中執行ID分配及ID數字計算。在ID暫存器492中暫存輸入ID之數字,IDi。由裝置i提供計算結果(亦即IDi+1)的數字至下一裝置。ID暫存器492保持分配的ID。之後,在正常模式中,具有如第6圖中所示般的格式之命令係饋送至ID匹配判斷器493及命令解譯器495。ID匹配判斷器493判斷輸入的ID數字是否匹配保持在ID暫存器491中的分配的ID,且若匹配,則提供邏輯「高」之ID匹配信號,ID匹配。若不匹配,則ID匹配信號為邏輯「低」。在與IDi做ID匹配判斷的情況中,裝置i為指定或目標裝置。在無ID匹配的情況中,裝置i非指定的裝置。包括OP碼解碼器之命令解譯器495回應於「高」ID匹配信號而解碼含在輸入命令中之OP碼,並提供經解譯之命令(如寫入、讀取)。回應於解譯命令及ID匹配信號,模式信號產生器497提供「準備(primed)」信號。在特定範例中,當無ID匹配時,準備信號為邏輯「低」。當有ID匹配時,針對OP碼為「讀取」(亦即命令為資料讀取命令)及「寫入」(亦即命令為資料寫入命令),準備信號分別為邏輯「高」及「低」。回應於解譯之命令,例如,寫入資料至接收內部命令選通輸入信號iCSI及內部資料選通輸入信號iDSI之記憶體核心電路498或從其讀取資料。在國際專利公開案WO/2008/067659(2008年6月12日)中揭露命令解譯器之範例。在美國專利公開案12/034,686中揭露ID匹配判斷器之範例。Referring to Figures 18A and 18B, the ID assignment circuit 491 performs ID assignment and ID number calculation in the initial mode. The ID of the input ID, IDi, is temporarily stored in the ID register 492. The number of calculation results (i.e., IDi+1) is provided by the device i to the next device. The ID register 492 holds the assigned ID. Thereafter, in the normal mode, the command having the format as shown in FIG. 6 is fed to the ID matching determiner 493 and the command interpreter 495. The ID matching determiner 493 determines whether the input ID number matches the assigned ID held in the ID register 491, and if it matches, provides a logical "high" ID matching signal, and the ID matches. If there is no match, the ID match signal is logic "low". In the case where the ID matching judgment is made with IDi, the device i is a designated or target device. In the case of no ID matching, device i is not a designated device. The command interpreter 495, including the OP code decoder, decodes the OP code contained in the input command in response to the "high" ID match signal and provides an interpreted command (such as write, read). In response to the interpreting command and the ID matching signal, the mode signal generator 497 provides a "primed" signal. In a particular example, the prepare signal is logic "low" when there is no ID match. When there is an ID match, the OP code is "read" (that is, the command is a data read command) and "write" (that is, the command is a data write command), and the preparation signals are logical "high" and "" respectively. low". In response to the interpreted command, for example, writing data to or receiving data from the memory core circuit 498 receiving the internal command strobe input signal iCSI and the internal data strobe input signal iDSI. An example of a command interpreter is disclosed in International Patent Publication No. WO/2008/067659 (June 12, 2008). An example of an ID match determinator is disclosed in U.S. Patent Publication No. 12/034,686.

第18C圖顯示第18A圖中所示之時脈I/O電路401的細節。參照第18A及18C圖,SCLKIi及/SCLKIi信號係饋送至輸入緩衝器411的「+」及「-」輸入,其則提供參考時脈信號Ref_clk至PLL 413的參考時脈輸入「Ref_clk輸入」。參考時脈信號Ref_clk在SCLKIi信號過渡(如從「高」至「低」)且/SCLKIi信號以相反方向過渡(如從「低」至「高」)的時候過渡。PLL 413與參考時脈信號Ref_clk之過渡同步操作。Fig. 18C shows the details of the clock I/O circuit 401 shown in Fig. 18A. Referring to Figures 18A and 18C, the SCLKIi and /SCLKIi signals are fed to the "+" and "-" inputs of input buffer 411, which provides a reference clock input "Ref_clk input" from reference clock signal Ref_clk to PLL 413. The reference clock signal Ref_clk transitions during the SCLKIi signal transition (eg, from "high" to "low") and the /SCLKIi signal transitions in the opposite direction (eg, from "low" to "high"). The PLL 413 operates in synchronization with the transition of the reference clock signal Ref_clk.

PLL 413包括振盪器,並分別經由緩衝器414-1、414-2、414-3及414-4產生相關於輸入參考時脈信號Ref_cLk相位位移90°、180°、270°及360°四個時脈信號。由Clk90、Clk180、Clk270、Clk360參照的這四個90°、180°、270°及360°相位位移時脈信號此後分別稱為「Clk90信號」、「Clk180信號」、「Clk270信號」及「Clk360信號」。Clk360信號係饋送至PLL 413的振盪輸入「Osc_loop輸入」。Clk360及Clk180信號分別饋送至選擇器417及419之選擇輸入。各選擇器417及419分別在其「0」及「1」輸入接收邏輯「0」及「1」信號。在選擇器417中,回應於Clk360信號而選擇其「0」或「1」輸入,其之輸出信號經由輸出緩衝器421提供作為SCLKOi信號。類似地,在選擇器419中,回應於Clk180信號而選擇其「0」或「1」輸入,其之輸出信號經由輸出緩衝器423提供作為/SCLKOi信號。SCKO 及/SCKO信號因此為180。異相之互補差動時脈信號。選擇器417及419要匹配時脈與資料路徑間的延遲。The PLL 413 includes an oscillator and generates four phase shifts of 90°, 180°, 270°, and 360° with respect to the input reference clock signal Ref_cLk via buffers 414-1, 414-2, 414-3, and 414-4, respectively. Clock signal. The four 90°, 180°, 270°, and 360° phase shift clock signals referenced by Clk90, Clk180, Clk270, and Clk360 are hereinafter referred to as “Clk90 signal”, “Clk180 signal”, “Clk270 signal”, and “Clk360, respectively. signal". The Clk360 signal is fed to the oscillation input "Osc_loop input" of the PLL 413. The Clk360 and Clk180 signals are fed to select inputs of selectors 417 and 419, respectively. Each of the selectors 417 and 419 inputs a logic "0" and "1" signals at "0" and "1", respectively. In the selector 417, a "0" or "1" input is selected in response to the Clk360 signal, and an output signal thereof is supplied as an SCLKOi signal via the output buffer 421. Similarly, in the selector 419, a "0" or "1" input is selected in response to the Clk180 signal, and an output signal thereof is supplied as an /SCLKOi signal via the output buffer 423. The SCKO and /SCKO signals are therefore 180. Complementary differential clock signals out of phase. Selectors 417 and 419 are required to match the delay between the clock and the data path.

第18D圖顯示第18A圖中所示之資料I/O電路403的細節。參照第18A及18D圖,參考電壓信號SVREF係提供至輸入緩衝器425的「-」輸入。輸入資料DIi[0:3]係饋送至輸入緩衝器425的「+」輸入,其之輸出<0:3>係饋送至D型正反器(D-FF)461及463之資料輸入「D」,其由參考時脈信號Ref_cLk之正與負邊緣加以時控以捕捉DDR資料。雖裝置具有四位元資料路徑,僅顯示針對單一位元之電路。在真實裝置中電路元件處理資料重複四次。D-FF 463的四位元輸出Din1[0:3]包含位元4、5、6及7,並饋送至選擇器465的「0」輸入。類似地,D-FF 463的四位元輸出Din2[0:3]包含位元0、1、2及3,並饋送至選擇器467的「0」輸入。選擇器465及467的「1」輸入分別接收讀取資料為Rout1[0:3](位元4、5、6及7)及Rout2[0:3](位元0、1、2及3)。選擇器465及467根據「準備」信號執行選擇操作。當由/SCE信號選擇裝置的同時,根據ID匹配判斷而選擇裝置時,準備信號變「高」,且當不選擇時為「低」。來自選擇器465及467之選擇的輸出信號係饋送至D-FF 469及471的資料輸入,其分別由Clk180及Clk 360信號時控以供資料閂鎖操作。D-FF 469之內部閂鎖的輸出資料Do1[0:3]及D-FF 471之內部閂鎖的輸出資料Do0[0:3]分別饋送至選擇器473的「1」及「0」輸入,其回應於Clk270信號而執行選擇操作。來自選擇器473之選擇的輸出經由輸出緩衝器475提供作為輸出資料DQi[0:3]。Fig. 18D shows the details of the data I/O circuit 403 shown in Fig. 18A. Referring to Figures 18A and 18D, the reference voltage signal SVREF is provided to the "-" input of the input buffer 425. The input data DIi[0:3] is fed to the "+" input of the input buffer 425, and the output <0:3> is fed to the data input "D of the D-type flip-flops (D-FF) 461 and 463. It is time-controlled by the positive and negative edges of the reference clock signal Ref_cLk to capture DDR data. Although the device has a four-bit data path, only the circuit for a single bit is displayed. The circuit component processing data is repeated four times in the real device. The four-bit output Din1[0:3] of the D-FF 463 contains bits 4, 5, 6, and 7 and is fed to the "0" input of the selector 465. Similarly, the four-bit output Din2[0:3] of D-FF 463 contains bits 0, 1, 2, and 3 and is fed to the "0" input of selector 467. The "1" inputs of selectors 465 and 467 receive read data as Rout1[0:3] (bits 4, 5, 6, and 7) and Rout2[0:3] (bits 0, 1, 2, and 3, respectively). ). The selectors 465 and 467 perform a selection operation based on the "prepare" signal. When the device is selected by the /SCE signal and the device is selected based on the ID matching determination, the preparation signal becomes "high" and is "low" when not selected. The selected output signals from selectors 465 and 467 are fed to the data inputs of D-FFs 469 and 471, which are clocked by Clk 180 and Clk 360 signals, respectively, for data latch operation. The output data of the internal latch of the D-FF 469, Do1[0:3] and the internal latch of the D-FF 471, Do0[0:3] are fed to the "1" and "0" inputs of the selector 473, respectively. It performs a selection operation in response to the Clk270 signal. The output from the selection of selector 473 is provided via output buffer 475 as output data DQi[0:3].

第18E圖顯示第18A圖中所示之選通I/O電路405。參照第18A及18E圖,參考電壓信號SVREF係提供至輸入緩衝器(補償器)427及429的「-」輸入。SCSIi及SDSIi係分別饋送至輸入緩衝器427及429的「+」輸入,且其輸出提供至D-FF 431及433的D輸入。D-FF 431及433回應於參考時脈信號Ref_clk而執行閂鎖操作。D-FF 431及433輸出內部命令選通輸入信號iCSI(此後稱為「iCSI信號」)以及內部資料選通輸入信號iDSI(此後稱為「iDSI信號」),其被提供至核心邏輯電路407。Figure 18E shows the strobe I/O circuit 405 shown in Figure 18A. Referring to Figures 18A and 18E, the reference voltage signal SVREF is supplied to the "-" inputs of the input buffers (compensators) 427 and 429. SCSIi and SDSIi are fed to the "+" inputs of input buffers 427 and 429, respectively, and their outputs are provided to the D inputs of D-FFs 431 and 433. The D-FFs 431 and 433 perform a latch operation in response to the reference clock signal Ref_clk. The D-FFs 431 and 433 output an internal command strobe input signal iCSI (hereinafter referred to as "iCSI signal") and an internal data strobe input signal iDSI (hereinafter referred to as "iDSI signal"), which are supplied to the core logic circuit 407.

iCSI信號係饋送至分別被Clk180及Clk360信號所時控之D-FF 437及439的D輸入。D-FF 437及439輸出iCSO1及iCSO0信號,其分別饋送至選擇器441的「1」及「0」輸入。回應於Clk270信號,來自選擇器441之選擇的輸出信號經由輸出緩衝器443提供作為SCSOi信號。iDSI信號係饋送至分別被Clk180及Clk360信號所時控之D-FF 445及447的D輸入。類似地,來自D-FF 445之iDSO1信號及來自D-FF 447之iDSO0信號係饋送至選擇器449的「1」及「0」輸入,選擇器449則回應於Clk270信號而選擇iDSO1及iDSO0之一。來自選擇器449之選擇的輸出信號經由輸出緩衝器451提供作為SDSOi信號。The iCSI signal is fed to the D inputs of D-FFs 437 and 439 that are timed by the Clk180 and Clk360 signals, respectively. The D-FFs 437 and 439 output the iCSO1 and iCSO0 signals, which are fed to the "1" and "0" inputs of the selector 441, respectively. In response to the Clk 270 signal, the selected output signal from selector 441 is provided as an SCSOi signal via output buffer 443. The iDSI signal is fed to the D inputs of D-FFs 445 and 447 that are timed by the Clk180 and Clk360 signals, respectively. Similarly, the iDSO1 signal from D-FF 445 and the iDSO0 signal from D-FF 447 are fed to the "1" and "0" inputs of selector 449, and selector 449 selects iDSO1 and iDSO0 in response to the Clk270 signal. One. The selected output signal from selector 449 is provided as an SDSOi signal via output buffer 451.

第19圖顯示第18A至18E圖中所示之來源同步時脈結構之各種信號及資料。參照第18A至18E圖及19圖,各裝置包括在SCLKOi及/SCLKOi信號與輸出資料DQi[0:3]、SCSOi及SDSOi信號之間建立90°相位差之PLL,以為下一裝置提供置中的時脈。如第19圖中所示,輸出資料DQi[0:3]與在SCLKOi及/SCLKOi信號之間有90°相位差。Fig. 19 shows various signals and data of the source synchronous clock structure shown in Figs. 18A to 18E. Referring to Figures 18A through 18E and 19, each device includes a PLL that establishes a 90° phase difference between the SCLKOi and /SCLKOi signals and the output data DQi[0:3], SCSOi, and SDSOi signals to provide centering for the next device. The clock. As shown in Fig. 19, the output data DQi[0:3] has a phase difference of 90° between the SCLKOi and /SCLKOi signals.

如前述,在正常操作模式中,取決於ID匹配判斷及操作模式,準備信號具有「邏輯」低(亦即0)或「邏輯」高(亦即1)狀態。在無ID匹配判斷中,裝置i僅轉送資料至下一裝置(i+1)。準備信號係在邏輯「0」且因此,由選擇器465及467選擇來自D-FF 461及463(Dinl[0:3](亦即位元4、5、6及7)及Din2[0:3](亦即位元0、1、2及3))之閂鎖資料並提供輸出資料DQi[0:3]至下一記憶體裝置。並且,因為「準備」信號控制(未圖示)的緣故來自D-FF 461及463(Din1[0:3](亦即位元4、5、6及7)及Din2[0:3](亦即位元0、1、2及3))之閂鎖資料並未寫入寫入暫存器481中。在無ID匹配判斷時,8位元的寫入資料(位元0至7)並未提供至核心邏輯電路407。然而,在ID匹配判斷及寫入操作模式中,來自D-FF 461及463(Din1[0:3](亦即位元4、5、6及7)及Din2[0:3](亦即位元0、1、2及3))的閂鎖資料經由寫入暫存器481寫入記憶體核心電路498中。As described above, in the normal operation mode, the preparation signal has a "logic" low (i.e., 0) or a "logic" high (i.e., 1) state depending on the ID matching judgment and the operation mode. In the no-ID matching judgment, the device i transfers only the data to the next device (i+1). The ready signal is at logic "0" and is therefore selected by selectors 465 and 467 from D-FF 461 and 463 (Dinl[0:3] (ie, bits 4, 5, 6, and 7) and Din2 [0:3). ] (ie, bits 0, 1, 2, and 3)) latch data and provide output data DQi[0:3] to the next memory device. Also, because of the "preparation" signal control (not shown), it comes from D-FF 461 and 463 (Din1[0:3] (ie, bits 4, 5, 6, and 7) and Din2[0:3] (also That is, the latch data of bits 0, 1, 2, and 3)) is not written into the write register 481. In the case of no ID matching judgment, 8-bit write data (bits 0 to 7) are not supplied to the core logic circuit 407. However, in the ID match determination and write mode, D-FF 461 and 463 (Din1[0:3] (ie, bits 4, 5, 6, and 7) and Din2 [0:3] (ie, bit) The latch data of 0, 1, 2, and 3)) is written into the memory core circuit 498 via the write register 481.

在ID匹配判斷及讀取操作模式的情況中(準備信號為邏輯「1」),核心邏輯電路407存取其中之資料儲存元件並讀取資料,且寫入讀取資料至讀取暫存器483中。由選擇器465及467分別選擇讀取資料(Rout1[0:3](位元4、5、6及7)及Rout2[0:3](位元0、1、2及3)),並最終提供輸出資料DQi[0:3]至下一裝置。In the case of the ID matching determination and the read operation mode (the preparation signal is logic "1"), the core logic circuit 407 accesses the data storage element therein and reads the data, and writes the read data to the read register. 483. The read data (Rout1[0:3] (bits 4, 5, 6, and 7) and Rout2[0:3] (bits 0, 1, 2, and 3) are respectively selected by the selectors 465 and 467, and Finally, the output data DQi[0:3] is provided to the next device.

當具有串聯連接之記憶體裝置的系統用於一些應用中時,將開啟所有串聯連接之記憶體裝置中的PLL,以傳送輸入資料至下一裝置,因為使用所有的輸入及輸出緩衝器。因此,若系統中有大量的記憶體裝置,會因PLL操作而耗費大量電源。When a system with serially connected memory devices is used in some applications, the PLLs in all serially connected memory devices will be turned on to transfer input data to the next device because all input and output buffers are used. Therefore, if there are a large number of memory devices in the system, a large amount of power is consumed due to the PLL operation.

此範例解決此耗電量問題,例如針對以多堆疊晶片為基礎之記憶體,具有混合式同步時控,例如,非依電性快閃記憶體,其一般與多晶片封裝在一起以減少安裝記憶體於系統板上之面積。連同此,引進具有交替PLL開及關控制特徵之完全來源同步時控。This example addresses this power consumption problem, such as for multi-stacked wafer-based memory with hybrid synchronous time control, such as non-electrical flash memory, which is typically packaged with multi-chip to reduce installation The area of memory on the system board. Along with this, a full source synchronous time control with alternating PLL on and off control features is introduced.

如上述,複數記憶體裝置連接在一起。可將這些裝置分組,每一群以時脈結構而有別於其他群。As described above, the plurality of memory devices are connected together. These devices can be grouped, with each group being distinct from other groups by the clock structure.

包括具有PLL之串聯連接的裝置之系統係揭露在國際專利公開案WO/2008/098367(2008年8月21日)中。在所揭露的系統中,所有裝置中的PLL為開啟,且若有必要,將關閉所有裝置的PLL以節省電源。A system comprising a device having a series connection of PLLs is disclosed in International Patent Publication WO/2008/098367 (August 21, 2008). In the disclosed system, the PLLs in all devices are turned on, and if necessary, the PLLs of all devices are turned off to save power.

第20A圖顯示具有記憶體控制器及串聯連接的複數記憶體裝置之系統。在所示的範例中,裝置分組,各群具有來源同步時脈結構及共同來源時脈結構的結合。最後一群的最後裝置並未連接至來源控制器,但連接至其他控制器或邏輯(未圖示)。參照第20A圖,記憶體控制器510與包括在群組1至N(512-1至512-N)中之複數記憶體裝置通訊。在每一組1至N中,複數裝置(如四個裝置)係如第15圖中般串聯連接。記憶體控制器510發送輸入時脈信號SCLK11至群組1(512-1),連同資料與其他資訊。每一組1至N輸出其之輸出時脈信號至下一組。群組N輸出串聯連結的輸出時脈信號SCLKON。Figure 20A shows a system with a memory controller and a plurality of memory devices connected in series. In the illustrated example, the devices are grouped, with each group having a combination of a source synchronized clock structure and a common source clock structure. The last group of last devices is not connected to the source controller but is connected to other controllers or logic (not shown). Referring to Fig. 20A, the memory controller 510 communicates with a plurality of memory devices included in groups 1 to N (512-1 to 512-N). In each of the groups 1 to N, a plurality of devices (e.g., four devices) are connected in series as in Fig. 15. The memory controller 510 sends the input clock signal SCLK11 to the group 1 (512-1), along with the data and other information. Each set of 1 to N outputs its output clock signal to the next group. Group N outputs the output clock signal SCLKON connected in series.

第20B圖顯示具有記憶體控制器及串聯連接的複數記憶體裝置之系統,裝置分組。在系統中,各組具有來源同步時脈結構及共同來源時脈結構的結合,且最後一組的最後裝置連接至控制器。在所示範例中,記憶體控制器520與包括在群組1、2至N中之複數記憶體裝置通訊。在每一組1至N中,複數裝置係如第15圖中般串聯連接。時脈傳輸路徑與第20A圖的類似。來自群組N之輸出時脈信號係提供至記憶體控制器520。並且,含有資料與其他資訊之傳播信號係從群組N之最後裝置反饋回到記憶體控制器520。Figure 20B shows a system with a memory controller and a plurality of memory devices connected in series, the device grouping. In the system, each group has a combination of a source synchronous clock structure and a common source clock structure, and the last device of the last group is connected to the controller. In the illustrated example, memory controller 520 is in communication with a plurality of memory devices included in groups 1, 2 through N. In each of the groups 1 to N, the plurality of devices are connected in series as in Fig. 15. The clock transmission path is similar to that of Figure 20A. The output clock signal from group N is provided to memory controller 520. Also, the propagation signal containing the data and other information is fed back from the last device of the group N back to the memory controller 520.

在第20A及20B圖中所示的系統中,一群組內的時脈結構可與另一群組的不同。一群組內的個別裝置亦可用與其他群組不同時脈結構加以時控。各記憶體裝置可包含單一晶粒或晶片,或多晶片模組(MCM)或多晶片封裝(MCP)形式之多晶粒或晶片。In the systems shown in Figures 20A and 20B, the clock structure within a group can be different from the other group. Individual devices within a group can also be timed with different clock structures than other groups. Each memory device can comprise a single die or wafer, or a multi-die or wafer in the form of a multi-chip module (MCM) or a multi-chip package (MCP).

第21A圖顯示實施在具有打線接合之多晶片封裝(MCP)中之範例系統。參照第21A圖,系統具有安裝在基底533(其為電線板)上之垂直堆疊中的複數記憶體裝置531-1至531-4。裝置由絕緣體535分隔。裝置531-1至531-4具有多個連結墊537。基底533具有多個連結墊539。裝置531-1至531-4之墊537藉由電線541連接至基底533之墊539以及其他裝置的墊。裝置531-1至531-4、基底533及電線541係設置於MCP封閉體(未圖示)中。MPC封閉體可包含在所有側圍封系統構件之密封媒介或樹脂,藉此提供可將裝置固定於其中之堅固封裝。基底533在與裝置相對的側具有其他連結墊或端子(未圖示)。其他端子連接至記憶體控制器之另一MCP以發送或接收信號。裝置531-1至531-4能夠與其他MCP之裝置或記憶體控制器通訊。在此特定範例中,系統包括四個晶片(亦即四個記憶體裝置),但系統包括任何數量之裝置。Figure 21A shows an example system implemented in a multi-chip package (MCP) with wire bonding. Referring to Figure 21A, the system has a plurality of memory devices 531-1 through 531-4 mounted in a vertical stack on a substrate 533 which is a wire panel. The device is separated by an insulator 535. The devices 531-1 to 531-4 have a plurality of connection pads 537. The base 533 has a plurality of attachment pads 539. Pads 537 of devices 531-1 through 531-4 are connected by wires 541 to pads 539 of substrate 533 and pads of other devices. The devices 531-1 to 531-4, the base 533, and the electric wires 541 are provided in an MCP enclosure (not shown). The MPC enclosure can include a sealing medium or resin that encloses the system components on all sides, thereby providing a robust package in which the device can be secured. The base 533 has other attachment pads or terminals (not shown) on the side opposite the device. The other terminals are connected to another MCP of the memory controller to transmit or receive signals. Devices 531-1 through 531-4 are capable of communicating with other MCP devices or memory controllers. In this particular example, the system includes four wafers (i.e., four memory devices), but the system includes any number of devices.

第21B圖顯示具有矽通孔之MCP結構的另一範例。參照第21B圖,記憶體裝置551-1至551-3在基底553封閉體內(未圖示)互相水平設置。各裝置在矽基底上具有連結線及端子。裝置間的端子藉由矽通孔555連接在一起,使裝置發送並接收信號。Fig. 21B shows another example of an MCP structure having a through hole. Referring to Fig. 21B, the memory devices 551-1 to 551-3 are horizontally disposed to each other in a substrate 553 enclosure (not shown). Each device has a connecting line and a terminal on the crucible base. The terminals between the devices are connected together by a through-hole 555 to cause the device to transmit and receive signals.

在封裝內,從晶片輸入到晶片墊之負載效應及相關之靜電放電(ESD)結構為造成互連電容之主因。然而,與板子上的封裝與封裝間之連結相比,在模組內之連結的負載效應較不嚴重。MCP中之兩晶片間的距離比封裝至封裝連結的短許多。因此,共同來源時脈特徵可為MCP內之適當的解決方法,而來源同步時脈結構可用於高頻操作(如200MHz)之封裝至封裝連結。使用此種方式,不需開啟MCP內的所有PLL。可同時達成高頻操作與相對低耗電量。Within the package, the loading effect from the wafer input to the wafer pad and associated electrostatic discharge (ESD) structures are the primary cause of interconnect capacitance. However, the load effect of the connections within the module is less severe than the connection between the package and the package on the board. The distance between the two wafers in the MCP is much shorter than the package to package connection. Therefore, the common source clock feature can be an appropriate solution within the MCP, while the source synchronous clock structure can be used for high frequency operation (eg, 200 MHz) package-to-package linkage. In this way, it is not necessary to turn on all PLLs in the MCP. High frequency operation and relatively low power consumption can be achieved at the same time.

第22圖顯示具有基於MCP間來源同步時控及MCP內共同同步時控之MCP裝置的混合式同步時脈特徵的系統。參照第22圖,複數(N)MCP1至MCPN(561-1至561-N)為串聯式連接並且與記憶體控制器(未圖示)通訊。在此特定範例中,各MCP具有串聯連接的四個裝置。Figure 22 shows a system with hybrid synchronized clock features based on MCP inter-MCP source synchronization time control and MCP devices within the MCP. Referring to Fig. 22, the complex numbers (N) MCP1 to MCPN (561-1 to 561-N) are connected in series and communicate with a memory controller (not shown). In this particular example, each MCP has four devices connected in series.

各裝置具有接收輸入資料及傳輸輸出資料之資料輸入D及資料輸出Q。各裝置包括用於再生時脈信號之PLL。記憶體控制器發送含有各種資料及指令的資訊之輸入資料DI至MCP1,562-1。並且,記憶體控制器發送一對輸入時脈信號SCLKI及/SCKI至MCP1,輸入時脈信號SCLKI及/SCKI共同饋送至MCP1的所有裝置。資料信號DI係饋送至MCP1之第一裝置的資料輸入D,並回應於時脈信號SCLKI及/SCKI而傳播經過MCP1的裝置。Each device has a data input D and a data output Q for receiving input data and transmitting output data. Each device includes a PLL for regenerating the clock signal. The memory controller sends the input data DI containing information of various data and instructions to MCP1, 562-1. And, the memory controller transmits a pair of input clock signals SCLKI and /SCKI to MCP1, and the input clock signals SCLKI and /SCKI are fed together to all devices of the MCP1. The data signal DI is fed to the data input D of the first device of the MCP1 and propagates through the MCP1 in response to the clock signals SCLKI and /SCKI.

在第22圖中所示的特定範例中,在每一個MCP1至MCPN中,第一至第三裝置的PLL為關閉(亦即禁能)且第四裝置的PLL為開啟(亦即致能)。分別提供邏輯「低」及「高」位準電壓「Vss(如0伏)」及「Vdd(如正電壓)」至待開啟或關閉之PLL。各MCP的最後裝置執行時脈再生的功能並且提供再生的時脈信號至下一MCP。在第22圖中所示的特定範例中,各MCP中的時脈結構為共同同步時控。然而,MCP2至MCPN(562-2至562-N)之第一裝置從前一MCP的最後裝置接收再生時脈信號,因此,以來源同步時脈時控MCP1至MCPN之第一裝置。含有各種資料及指令的資訊之輸入資料DI係傳播經過MCP1至MCPN之裝置,且MCPN之最後裝置輸出輸出資料DQ。並且,從MCPN的最後裝置輸出SCLKO及/SCKLO的輸出時脈信號。In the specific example shown in FIG. 22, in each of MCP1 to MCPN, the PLLs of the first to third devices are turned off (ie, disabled) and the PLL of the fourth device is turned on (ie, enabled). . The logic "low" and "high" level voltages "Vss (such as 0 volts)" and "Vdd (such as positive voltage)" are provided to the PLL to be turned on or off. The last device of each MCP performs the function of clock regeneration and provides a regenerated clock signal to the next MCP. In the particular example shown in Figure 22, the clock structures in each MCP are co-synchronous timed. However, the first device of MCP2 to MCPN (562-2 to 562-N) receives the regenerative clock signal from the last device of the previous MCP, and therefore, the first device of MCP1 to MCPN is time-controlled by the source synchronization clock. The input data DI containing information of various materials and instructions is transmitted through the MCP1 to MCPN device, and the last device of the MCPN outputs the output data DQ. And, the output clock signals of SCLKO and /SCKLO are output from the last device of the MCPN.

在第22圖中所示的系統中,MCP的最後裝置(晶片或構件)具有致能的PLL以傳送資料及與資料中央對準的時脈到下一MCP,以最佳化高頻之操作性能。以邏輯位準「高」的電壓Vdd開啟各MCP之最後裝置的PLL,並致能PLL。以邏輯位準「低」的電壓Vss關閉各MCP中之其他裝置的PLL,並因此禁能PLL。In the system shown in Figure 22, the last device (wafer or component) of the MCP has an enabled PLL to transfer the data and the clock aligned with the center of the data to the next MCP to optimize the high frequency operation. performance. The PLL of the last device of each MCP is turned on with a logic level "high" voltage Vdd, and the PLL is enabled. The PLL of the other devices in each MCP is turned off with a logic level "low" voltage Vss, and thus the PLL is disabled.

在第22圖中所示的系統中,各MCP中之裝置為共同同步時控。所有MCP的輸入及輸出以與資料中央對準之時脈操作。MCP以來源同步時控操作。In the system shown in Fig. 22, the devices in each MCP are in common synchronous time control. The inputs and outputs of all MCPs operate at the clock aligned with the center of the data. The MCP operates in sync with the source.

在第22圖中所示的範例中,僅致能各MCP之一個PLL。相同的時脈結構亦可應用置直接安裝在印刷電路板(PCB)上之個別的裝置。無需在每一裝置或模組中重新產生時脈。共同同步時脈結構可驅動超過單一裝置,允許關閉某些裝置中的PLL以節省電源。In the example shown in Fig. 22, only one PLL of each MCP is enabled. The same clock structure can also be applied to individual devices mounted directly on a printed circuit board (PCB). There is no need to regenerate the clock in each device or module. The common sync clock structure can drive more than a single device, allowing the PLLs in some devices to be turned off to conserve power.

對此技藝中具通常知識人士而言很明顯地一MCP內的裝置的數量不限於四個,且於MCP中可連接超過一裝置。It will be apparent to those of ordinary skill in the art that the number of devices within an MCP is not limited to four and more than one device can be connected in the MCP.

第23A圖顯示具有基於串聯互連之MCP裝置的混合式來源時脈結構之另一系統。參照第23A圖,複數(N)MCP1至MCPN(572-1至572-N)為串聯式連接並且與記憶體控制器(未圖示)通訊。各MCP具有串聯連接的複數裝置(如四個)。各裝置具有接收輸入資料及傳輸輸出資料之資料輸入D及資料輸出Q。各裝置包括再生時脈信號之PLL。Figure 23A shows another system with a hybrid source clock structure based on a series interconnected MCP device. Referring to Fig. 23A, the complex numbers (N) MCP1 to MCPN (572-1 to 572-N) are connected in series and communicate with a memory controller (not shown). Each MCP has a plurality of devices (e.g., four) connected in series. Each device has a data input D and a data output Q for receiving input data and transmitting output data. Each device includes a PLL that regenerates the clock signal.

在第23A圖中所示的範例中,在每一個MCP1至MCPN中,由邏輯「低」電壓Vss關閉(亦即禁能)第一及第三裝置的PLL,並由邏輯「高」電壓Vdd關閉(亦即致能)第二及第四裝置的PLL。在此,關閉每第二個PLL。In the example shown in Fig. 23A, in each of MCP1 to MCPN, the PLL of the first and third devices is turned off (i.e., disabled) by the logic "low" voltage Vss, and the logic "high" voltage Vdd is used. The PLLs of the second and fourth devices are turned off (ie, enabled). Here, every second PLL is turned off.

記憶體控制器發送含有各種資料及指令的資訊之輸入資料DI至MCP1,572-1。並且,記憶體控制器發送一對輸入時脈信號SCLKI及/SCKLI至MCP1,輸入時脈信號SCLKI及/SCKLI係共同饋送至MCP1的第一及第二裝置。第二裝置(致能的PLL)共同提供再生時脈信號SCLKO2及/SCLKO2至第三及第四裝置。第四裝置(致能的PLL)輸出再生時脈信號,將其提供至下一MCP,MCP2。The memory controller sends the input data DI containing information of various data and instructions to MCP1, 572-1. Moreover, the memory controller transmits a pair of input clock signals SCLKI and /SCKLI to MCP1, and the input clock signals SCLKI and /SCKLI are fed together to the first and second devices of the MCP1. The second device (enable PLL) collectively provides regenerative clock signals SCLKO2 and /SCLKO2 to the third and fourth devices. The fourth device (enable PLL) outputs the regenerated clock signal, which is supplied to the next MCP, MCP2.

在MCP1中,以來源同步時脈結構時控第三裝置,並且以共同同步時脈結構時控第二及第四裝置。在每一其他MCP中,以共同同步時脈結構時控第二及第四裝置,並以來源同步時脈結構時控第一及第三裝置。In the MCP1, the third device is time-controlled by the source synchronous clock structure, and the second and fourth devices are time-controlled in a common synchronization clock structure. In each of the other MCPs, the second and fourth devices are time-controlled in a common synchronization clock structure, and the first and third devices are time-controlled by the source synchronization clock structure.

資料信號DI饋送至MCP1的第一裝置之資料輸入D並回應於時脈信號SCKLI及/SCKLI傳播經過MCP1中之裝置。含有各種資料及指令的資訊之輸入資料DI係傳播經過MCP1至MCPN之裝置,且MCPN之最後裝置輸出輸出資料DQ。並且從MCPN的最後裝置輸出SCLKO及/SCKLO。The data signal DI is fed to the data input D of the first device of the MCP1 and propagates through the devices in the MCP1 in response to the clock signals SCKLI and /SCKLI. The input data DI containing information of various materials and instructions is transmitted through the MCP1 to MCPN device, and the last device of the MCPN outputs the output data DQ. And SCLKO and /SCKLO are output from the last device of the MCPN.

第23B圖顯示具有基於串聯互連之MCP裝置的混合式來源時脈結構之另一系統。參照第23B圖,複數(N)MCP1至MCPN(582-1至582-N)為串聯式連接。在特定範例中,各MCP包括八個串聯連接的複數裝置。在每一個MCP中,由邏輯「低」電壓Vss關閉(亦即禁能)第一至第三及第五至第七裝置的PLL。並由邏輯「高」電壓Vdd開啟(亦即致能)第四及第八裝置的PLL。各致能的PLL回應於輸入時脈信號而輸出再生信號至下一裝置。第23B圖之系統為八晶片封裝基座。若最大操作頻率可應用至所示的情況而無信號完整性問題,可連接任何數量的裝置及MCP。 Figure 23B shows another system with a hybrid source clock structure based on a series interconnected MCP device. Referring to Fig. 23B, the complex numbers (N) MCP1 to MCPN (582-1 to 582-N) are connected in series. In a particular example, each MCP includes eight complex devices connected in series. In each MCP, the PLLs of the first to third and fifth to seventh devices are turned off (i.e., disabled) by a logic "low" voltage Vss. The PLLs of the fourth and eighth devices are turned on (i.e., enabled) by a logic "high" voltage Vdd. Each enabled PLL outputs a regenerative signal to the next device in response to the input clock signal. The system of Figure 23B is an eight chip package pedestal. If the maximum operating frequency can be applied to the situation shown without signal integrity issues, any number of devices and MCPs can be connected.

在第23A及23B圖中所示的系統中,各MCP中之兩個裝置(晶片或構件)為開啟,以達成高速操作。 In the system shown in Figures 23A and 23B, two of the devices (wafers or members) of each MCP are turned on to achieve high speed operation.

為了達成上述混合式同步時脈結構,在正常操作開始前需先進行各晶片之PLL是否該開啟的裝置選擇方法。選擇晶片(或構件)之PLL的一範例方法為使用進入MCP之針對每一晶片(或構件)的外部接腳。第22、23A及23B圖顯示如何藉由固定電壓Vss及Vdd進行四選一、二選一及八選二的情況。 In order to achieve the above-described hybrid synchronous clock structure, a device selection method for whether or not the PLL of each wafer should be turned on is required before the start of normal operation. An exemplary method of selecting a PLL for a wafer (or component) is to use an external pin for each wafer (or component) that enters the MCP. Figures 22, 23A and 23B show how four, one, one and eight choices are made by the fixed voltages Vss and Vdd.

在來源同步時脈結構中,假設SCLKI及/SCKLI信號在輸入資料窗的中央對準,且SCLKO及/SCKLO信號亦在給下一串聯連接構件的輸出資料之中央對準。這與資料的對準係藉由PLL以相位位移達成。 In the source synchronous clock structure, it is assumed that the SCLKI and /SCKLI signals are aligned in the center of the input data window, and the SCLKO and /SCKLO signals are also aligned in the center of the output data of the next series connection member. This alignment with the data is achieved by the phase shift of the PLL.

在混合式同步時脈結構中,來源同步時脈結構與前述者相同,傳送與時脈中央對準的輸入與輸出資料。在輸出級進行時脈之90°時脈相位位移,如在第18A至18D及19圖中所示。這對於在MCP外部總體使用來源同步時脈結 構連同在MCP內部,亦即本地使用共同同步時脈結構為必須。 In the hybrid synchronous clock structure, the source synchronous clock structure is the same as the previous one, and the input and output data aligned with the center of the clock are transmitted. The 90° clock phase shift of the clock is performed at the output stage as shown in Figures 18A-18D and 19. This is for the overall use of source synchronization clock junctions outside the MCP It is necessary to use a common synchronous clock structure within the MCP, that is, locally.

藉此方式。在混合同步時脈結構中具有禁能的PLL之晶片(或構件)以共同同步時脈結構取得輸入信號,同時具有致能PLL之裝置重新產生時脈,以在傳送輸出資料至具有禁能PLL的下一裝置之前進行工作週期校正及90°時脈相位位移。 This way. A wafer (or component) having a disabled PLL in a mixed synchronous clock structure takes an input signal in a common synchronous clock structure, and a device having a PLL enabled regenerates a clock to transmit an output data to a disable PLL Work cycle correction and 90° clock phase shift are performed before the next device.

在第22、23A及23B圖中所示的範例系統中,第一MCP從另一裝置(如記憶體控制器)接收中央對準之時脈及資料。範例中央對準時脈及資料的範例揭露於在2008年11月28日申請之美國專利申請案12/325,074中。 In the example system shown in Figures 22, 23A and 23B, the first MCP receives the centrally aligned clock and data from another device, such as a memory controller. An example of a central alignment clock and data is disclosed in U.S. Patent Application Serial No. 12/325,074, filed on Nov. 28, 2008.

第24A圖顯示如第15圖中所示般串聯連接的裝置之一。此裝置用於混合式同步時脈結構中。 Fig. 24A shows one of the devices connected in series as shown in Fig. 15. This device is used in a hybrid synchronous clock structure.

在此特定範例中,時脈為中央對準。在此範例中,當提供PLL致能信號PLL_EN(此後稱為「PLL_EN」信號)以控制選擇性致能或禁能之PLL。當PLL_EN信號為邏輯「高」或「低」時,致能(開啟)或禁能(關閉)PLL。在所示範例中,將各種輸入資料(如SCLKIi、/SCLKIi、SCSIi及/SDSIi信號)及資料DIi〔0:3〕輸入到一裝置,並從一裝置輸出各種輸入資料(如SCLKOi、/SCLKOi、SCSOi及/SDSOi信號)及資料DQi〔0:3〕。 In this particular example, the clock is center aligned. In this example, a PLL enable signal PLL_EN (hereinafter referred to as a "PLL_EN" signal) is provided to control the selectively enabled or disabled PLL. Enables (turns on) or disables (turns off) the PLL when the PLL_EN signal is logic high or low. In the example shown, various input data (such as SCLKIi, /SCLKIi, SCSIi and /SDSIi signals) and data DIi[0:3] are input to a device, and various input data (such as SCLKOi, /SCLKOi) are output from a device. , SCSOi and /SDSOi signals) and data DQi [0:3].

第24圖之裝置的結構與第18A圖的類似。顯示在第24A圖中的裝置之電路進一步回應於PLL_EN信號並執行額外資料與控制信號選擇的功能。因此,以相同參考符號顯示對應至第18A圖之裝置的元件、電路、信號及資訊。The structure of the apparatus of Fig. 24 is similar to that of Fig. 18A. The circuitry of the apparatus shown in Figure 24A further responds to the PLL_EN signal and performs the function of additional data and control signal selection. Accordingly, the components, circuits, signals, and information corresponding to the device of FIG. 18A are shown with the same reference symbols.

參考第24圖,裝置包括具有PLL之時脈I/O電路601、資料I/O電路603、選通I/O電路605及具有記憶體核心電路之控制電路607。時脈I/O電路601接收SCLKI、/SCLKIi信號及PLL_EN信號。時脈I/O電路601輸出SCLKOi及/SCLKOi信號。時脈I/O電路601提供參考時脈信號Ref_clk至資料I/O電路603及選通I/O電路605。包括PLL之時脈I/O電路601輸出180°、270°及360°相位位移的時脈信號。亦提供PLL_EN信號至資料I/O電路603及選通I/O電路605。提供參考電壓SVREF至資料I/O電路603及選通I/O電路605。資料I/O電路603接收輸入資料DIi[0:3]及180°、270°及360°相位位移時脈信號。資料I/O電路603提供輸出資料DQi[0:3]。選通I/O電路605接收SCSIi與SDSIi信號180°、270°及360°相位位移時脈信號。選通I/O電路605輸出SCSOi及SDSOi信號。控制電路607從選通I/O電路605接收內部命令選通輸入信號iCSI及內部資料選通輸入信號iDSI,並從資料I/O電路603接收待寫入之資料「寫入資料」。控制電路607提供讀取資料至資料I/O電路603。Referring to Fig. 24, the apparatus includes a clock I/O circuit 601 having a PLL, a data I/O circuit 603, a strobe I/O circuit 605, and a control circuit 607 having a memory core circuit. The clock I/O circuit 601 receives the SCLKI, /SCLKIi signals, and the PLL_EN signal. The clock I/O circuit 601 outputs the SCLKOi and /SCLKOi signals. The clock I/O circuit 601 provides a reference clock signal Ref_clk to the data I/O circuit 603 and the strobe I/O circuit 605. The clock I/O circuit 601 including the PLL outputs clock signals of 180°, 270°, and 360° phase shifts. A PLL_EN signal is also provided to the data I/O circuit 603 and the strobe I/O circuit 605. A reference voltage SVREF is provided to the data I/O circuit 603 and the strobe I/O circuit 605. The data I/O circuit 603 receives the input data DIi[0:3] and the 180°, 270°, and 360° phase shift clock signals. The data I/O circuit 603 provides an output data DQi[0:3]. The strobe I/O circuit 605 receives 180°, 270°, and 360° phase shift clock signals for the SCSIi and SDSIi signals. The strobe I/O circuit 605 outputs the SCSOi and SDSOi signals. The control circuit 607 receives the internal command strobe input signal iCSI and the internal data strobe input signal iDSI from the strobe I/O circuit 605, and receives the data "write data" to be written from the data I/O circuit 603. Control circuit 607 provides read data to data I/O circuit 603.

具有記憶體核心電路607之控制電路的結構與第18B圖中所示的具有記憶體核心電路407之控制電路的類似。控制電路607提供邏輯「高」或「低」之準備信號。The structure of the control circuit having the memory core circuit 607 is similar to that of the control circuit having the memory core circuit 407 shown in FIG. 18B. Control circuit 607 provides a ready signal for logic "high" or "low".

第24B圖顯示第24A圖中所示之時脈I/O電路601的細節。參照第24A及24B圖,SCLKIi及/SCLKIi信號係饋送至輸入緩衝器611的「+」及「-」輸入,其則提供參考時脈信號Ref_clk。參考時脈信號Ref_clk及PLL_EN信號係饋送至包括振盪器之PLL 613。回應於PLL_EN信號為邏輯「高」及「低」而分別開啟及關閉PLL 613。分別經由緩衝器614-1、614-2、614-3及614-4輸出相關於輸入參考時脈信號Ref_clk相位位移90°、180°、270°及360°的四個時脈信號。PLL_EN信號係分別饋送至插於選擇器617與619及輸出緩衝器625及627之間的選擇器621與623之選擇輸入。分別提供邏輯「0」及「1」電壓至選擇器617與619之每一個的「0」與「1」輸入。選擇器621與623之「1」輸入分別接收來自選擇器617與619之選擇的輸出信號。提供低位準電壓Vss(邏輯「0」)至選擇器621與623之「0」輸入。提供360。相位位移之時脈信號(亦即Clk360信號)至PLL 613的振盪迴路輸入及選擇器617的選擇輸入。經由輸出緩衝器625與627提供來自選擇器621與623之選擇輸出分別作為SCLKOi及/SCLKOi信號。從時脈I/O電路601提供180°、270°及360°三種相位位移的時脈信號(亦即Clk180信號、Clk270信號及Clk360信號)。Fig. 24B shows the details of the clock I/O circuit 601 shown in Fig. 24A. Referring to Figures 24A and 24B, the SCLKIi and /SCLKIi signals are fed to the "+" and "-" inputs of input buffer 611, which provides a reference clock signal Ref_clk. The reference clock signal Ref_clk and PLL_EN signals are fed to the PLL 613 including the oscillator. The PLL 613 is turned on and off in response to the logic "high" and "low" of the PLL_EN signal. Four clock signals related to the input reference clock signal Ref_clk phase shifts of 90°, 180°, 270°, and 360° are output via buffers 614-1, 614-2, 614-3, and 614-4, respectively. The PLL_EN signals are fed to select inputs of selectors 621 and 623 interposed between selectors 617 and 619 and output buffers 625 and 627, respectively. The logic "0" and "1" voltages are respectively supplied to the "0" and "1" inputs of each of the selectors 617 and 619. The "1" inputs of selectors 621 and 623 receive the selected output signals from selectors 617 and 619, respectively. A low level voltage Vss (logic "0") is provided to the "0" inputs of selectors 621 and 623. Provide 360. The phase-shifted clock signal (i.e., the Clk360 signal) is supplied to the oscillating circuit input of the PLL 613 and the selector 617. The selected outputs from selectors 621 and 623 are provided as output SCLKOi and /SCLKOi signals via output buffers 625 and 627, respectively. The clock signals of the three phase shifts of 180°, 270° and 360° are provided from the clock I/O circuit 601 (ie, the Clk180 signal, the Clk270 signal, and the Clk360 signal).

第24C圖顯示第24A圖中所示之資料I/O電路603的細節。參照第24A及24C圖,參考電壓信號SVREF係提供至輸入緩衝器629的「-」輸入。輸入資料DIi[0:3]係饋送至輸入緩衝器629的「+」輸入,其之輸出<0:3>係饋送至D-FF 661及663之資料輸入「D」,其由參考時脈信號Ref_clk之正與負邊緣加以時控以捕捉DDR資料。雖裝置具有四位元資料路徑,僅顯示針對單一位元之電路。在真實裝置中電路元件處理資料重複四次。D-FF 661的四位元輸出Din1[0:3]包含位元4、5、6及7,並饋送至選擇器665的「0」輸入。類似地,D-FF 663的四位元輸出Din2[0:3]包含位元0、1、2及3,並饋送至選擇器667的「0」輸入。選擇器665及667根據「準備」信號執行選擇操作。當根據ID匹配判斷及資料讀取模式而選擇裝置並同時由/SCE信號致能裝置時,準備信號變「高」。來自選擇器665及667之選擇的輸出信號係饋送至D-FF 669及671的資料輸入,其分別由Clk180及Clk 360信號時控以供資料閂鎖操作。D-FF 669之內部閂鎖的輸出資料Do1[0:3]及D-FF 671之內部閂鎖的輸出資料Do0[0:3]分別饋送至選擇器673的「1」及「0」輸入,其回應於Clk270信號而執行選擇操作。來自選擇器673之選擇的輸出<0:3>係饋送至選擇器633之「1」輸入。Figure 24C shows details of the data I/O circuit 603 shown in Figure 24A. Referring to Figures 24A and 24C, the reference voltage signal SVREF is provided to the "-" input of the input buffer 629. The input data DIi[0:3] is fed to the "+" input of the input buffer 629, and the output <0:3> is fed to the data input "D" of the D-FF 661 and 663 by the reference clock. The positive and negative edges of the signal Ref_clk are time-controlled to capture DDR data. Although the device has a four-bit data path, only the circuit for a single bit is displayed. The circuit component processing data is repeated four times in the real device. The four-bit output Din1[0:3] of the D-FF 661 contains bits 4, 5, 6, and 7 and is fed to the "0" input of the selector 665. Similarly, the four-bit output Din2[0:3] of D-FF 663 contains bits 0, 1, 2, and 3 and is fed to the "0" input of selector 667. The selectors 665 and 667 perform a selection operation based on the "prepare" signal. When the device is selected according to the ID matching judgment and the data reading mode and the device is enabled by the /SCE signal at the same time, the preparation signal becomes "high". The selected output signals from selectors 665 and 667 are fed to the data inputs of D-FFs 669 and 671, which are clocked by Clk 180 and Clk 360 signals, respectively, for data latch operation. The output data of the internal latch of the D-FF 669, Do1[0:3] and the internal latch of the D-FF 671, Do0[0:3] are fed to the "1" and "0" inputs of the selector 673, respectively. It performs a selection operation in response to the Clk270 signal. The selected output <0:3> from the selector 673 is fed to the "1" input of the selector 633.

參考時脈信號Ref_clk係饋送至選擇器631之選擇輸入,其之「0」及「1」輸入分別從選擇器665及667之輸出接收內部輸出資料ido[0:3]及ido[4:7]。提供來自選擇器631之選擇的輸出信號至插於選擇器631及輸出緩衝器675之間之選擇器633的「0」輸入。回應於信號PLL_EN,選擇器633選擇來自選擇器631或選擇器673之輸出信號,並且經由輸出緩衝器675輸出選擇的輸出資料<0:3>作為輸出資料DQi[0:3]。The reference clock signal Ref_clk is fed to the selection input of the selector 631, and the "0" and "1" inputs receive the internal output data ido[0:3] and ido[4:7 from the outputs of the selectors 665 and 667, respectively. ]. The output signal from the selector 631 is supplied to the "0" input of the selector 633 inserted between the selector 631 and the output buffer 675. In response to the signal PLL_EN, the selector 633 selects the output signal from the selector 631 or the selector 673, and outputs the selected output data <0:3> as the output data DQi[0:3] via the output buffer 675.

第24D圖顯示第24A圖中所示之選通I/O電路605的細節。參照第24A及24D圖,參考電壓信號SVREF係提供至輸入緩衝器641及643的「-」輸入。SCSIi及 SDSIi係分別饋送至輸入緩衝器641及643的「十」輸入,且其之輸出係提供至D-FF 645及647的D輸入。D-FF 645及647回應於參考時脈信號Ref_clk而執行閂鎖操作。D-FF645及647輸出內部命令選通輸入信號iCSI(此後稱為「iCSI信號」)以及內部資料選通輸入信號iDSI(此後稱為「iDSI信號」),其被提供至核心邏輯電路607。Figure 24D shows details of the gated I/O circuit 605 shown in Figure 24A. Referring to Figures 24A and 24D, the reference voltage signal SVREF is provided to the "-" inputs of input buffers 641 and 643. SCSIi and SDSIi are fed to the "ten" inputs of input buffers 641 and 643, respectively, and their outputs are provided to the D inputs of D-FFs 645 and 647. The D-FFs 645 and 647 perform a latch operation in response to the reference clock signal Ref_clk. The D-FFs 645 and 647 output internal command strobe input signals iCSI (hereinafter referred to as "iCSI signals") and internal data strobe input signals iDSI (hereinafter referred to as "iDSI signals"), which are supplied to the core logic circuit 607.

iCSI信號係饋送至D-FF 649、651及653的D輸入。iDSI信號係饋送D-FF 655、657及659的D輸入。D-FF 649及655受Clk180信號的時控。D-FF 651及657受Clk360信號的時控。D-FF 653及659受參考時脈信號Ref_clk之反向型式的時控。D-FF 649及651輸出iCSO1及iCSO0信號,其分別被饋送至選擇器677的「1」及「0」輸入。回應於Clk270信號,由選擇器677選擇iCSO1或iCSO0,且選擇的輸出信號係提供至選擇器687的「1」輸入,其之「0」輸入接收D-FF 653之輸出信號。The iCSI signal is fed to the D inputs of D-FFs 649, 651 and 653. The iDSI signal is fed to the D inputs of D-FFs 655, 657 and 659. D-FF 649 and 655 are time controlled by the Clk180 signal. D-FF 651 and 657 are time controlled by the Clk360 signal. D-FFs 653 and 659 are time-controlled by the inverse of the reference clock signal Ref_clk. D-FFs 649 and 651 output iCSO1 and iCSO0 signals, which are fed to the "1" and "0" inputs of selector 677, respectively. In response to the Clk 270 signal, iCSO1 or iCSO0 is selected by selector 677, and the selected output signal is provided to the "1" input of selector 687, and the "0" input receives the output signal of D-FF 653.

D-FF 655及657輸出iDSO1及iDSO0信號,其分別被饋送至選擇器679的「1」及「0」輸入。回應於Clk270信號,由選擇器679選擇iDSO1或iDSO0,且選擇的輸出信號係提供至選擇器689的「1」輸入,其之「0」輸入接收D-FF 659之輸出信號。The D-FFs 655 and 657 output iDSO1 and iDSO0 signals, which are fed to the "1" and "0" inputs of the selector 679, respectively. In response to the Clk 270 signal, iDSO1 or iDSO0 is selected by selector 679, and the selected output signal is provided to the "1" input of selector 689, and the "0" input receives the output signal of D-FF 659.

回應於PLL_EN信號,D-FF 687選擇選擇器677或D-FF 653的輸出信號,且選擇的輸出信號係經由輸出緩衝器691提供作為SCSOi信號。類似地,回應於PLL_EN信號,D-FF 689選擇選擇器679或D-FF 653的輸出信號,且選擇的輸出信號係經由輸出緩衝器693提供作為SDSOi信號。In response to the PLL_EN signal, D-FF 687 selects the output signal of selector 677 or D-FF 653, and the selected output signal is provided as an SCSOi signal via output buffer 691. Similarly, in response to the PLL_EN signal, D-FF 689 selects the output signal of selector 679 or D-FF 653, and the selected output signal is provided as an SDSOi signal via output buffer 693.

第25圖顯示第24A至24D圖中所示之裝置的各種信號。在第25圖中的例示性範例中,在PLL_EN信號為「低」的情況中,PLL 613關閉(或被禁能),且不產生Clk90信號、Clk180信號、Clk270信號及Clk360信號。在SCSi信號與參考時脈信號重疊的時期中執行禁能PLL的裝置中之輸入資料捕捉。在禁能PLL的裝置之間,無時脈相位位移,但藉由下列關係確保資料的保持時間tHOLD及設定時間tSETUP。Fig. 25 shows various signals of the devices shown in Figs. 24A to 24D. In the illustrative example of FIG. 25, in the case where the PLL_EN signal is "low", the PLL 613 is turned off (or disabled) and does not generate the Clk90 signal, the Clk180 signal, the Clk270 signal, and the Clk360 signal. Input data capture in a device that disables the PLL is performed during a period in which the SCSi signal overlaps with the reference clock signal. There is no clock phase shift between the devices that disable the PLL, but the data retention time tHOLD and the set time tSETUP are ensured by the following relationship.

tHOLD=tOUT-tINS+tDTD (1)tHOLD=tOUT-tINS+tDTD (1)

tSETUP=tCK×0.5-tHOLD (2)tSETUP=tCK×0.5-tHOLD (2)

其中tOUT為參考時脈至輸出緩衝器的延遲、tINS為時脈插入延遲、tDTD為裝置至裝置延遲以及tCK為時脈週期。Where tOUT is the reference clock to output buffer delay, tINS is the clock insertion delay, tDTD is the device-to-device delay, and tCK is the clock period.

如上述,時間餘裕隨緩衝路徑延遲及裝置至裝置距離而變化,因此僅在MCP或群組內部使用共同同步時脈結構。As mentioned above, the time margin varies with buffer path delay and device-to-device distance, so a common synchronous clock structure is used only within the MCP or group.

第26圖顯示第24A至24D圖中所示之裝置的各種信號。在此特定範例中,時脈為中央對準。在範例中,PLL_EN信號為邏輯「高」,其導致PLL被開啟或致能。Fig. 26 shows various signals of the devices shown in Figs. 24A to 24D. In this particular example, the clock is center aligned. In the example, the PLL_EN signal is logic "high" which causes the PLL to be turned on or enabled.

參照第24A至24D、25及26圖,在PLL_EN信號為邏輯「高」的情況中,PLL 613為開啟並產生C1k 90信號、C1k180信號、C1k270信號及C1k360信號。Referring to Figures 24A through 24D, 25 and 26, in the case where the PLL_EN signal is logic "high", PLL 613 is turned "on" and generates a C1k 90 signal, a C1k180 signal, a C1k270 signal, and a C1k360 signal.

不像共同同步時脈結構,來源同步時脈結構提供有90°相位位移及使用2輸入選擇器(如第24B及24D圖中所示)而匹配時脈與資料路徑間之延遲的重新產生時脈。由於此延遲匹配90°相位位移的時脈,設定及保持時間總與DDR操作中之tCK×0.25相同。Unlike the common sync clock structure, the source sync clock structure provides a 90° phase shift and uses a 2-input selector (as shown in Figures 24B and 24D) to match the re-generation of the delay between the clock and the data path. pulse. Since this delay matches the clock of the 90° phase shift, the set and hold time is always the same as tCK × 0.25 in the DDR operation.

此為混合式同步時脈結構。第一種方式係根據來自記憶體控制器及在兩MPC之間的與資料中央對準的時脈。將在此說明另一種與資料邊緣對準的時脈。在與資料中央對準的時脈之情況中,輸入資料及SCLKI 與/SCKLI之間具有不平衡的負載,如第22、23A及23B圖中所示。由於此不平衡的負載的效果(見CK及/CK連結之「D」),可從記憶體控制器起點變更時脈及資料間的相位差。因此,此替代方式提供解決方法。假設所有輸入資料及輸出係與時脈邊緣對準,除了兩禁能PLL構件之間。This is a hybrid synchronous clock structure. The first method is based on the clock from the memory controller and between the two MPCs aligned with the center of the data. Another clock that is aligned with the edge of the data will be described here. In the case of a clock aligned with the center of the data, there is an unbalanced load between the input data and SCLKI and /SCKLI, as shown in Figures 22, 23A and 23B. Due to the effect of this unbalanced load (see "D" for CK and /CK connections), the phase difference between the clock and the data can be changed from the start of the memory controller. Therefore, this alternative provides a solution. Assume that all input data and output lines are aligned with the edge of the clock, except between the two disabled PLL components.

第27圖顯示根據本發明之另一實施例的另一系統。系統包括複數裝置群組,DGP-1至DGP-N。系統實施具有與資料邊緣對準時脈的混合式同步時脈結構。各裝置群組與第22圖中所示的以MCP為基礎之系統有相同的結構。在第27圖中所示的特定範例中,各裝置群組包括具有PLL之四個裝置。第一裝置的PLL為開啟(致能),且第二至第四裝置的PLL為關閉(禁能)。以來源同步時脈結構時控第一裝置,並藉由第一裝置輸出之再生時脈信號SCLKO及/SCLKO以共同同步時脈結構時控第二至第四裝置。輸入資料DI及輸入時脈信號對SCLKI及/SCLKI在MCP的輸入側具有相同負載效果,可輕易將它們保持相同相位位移,以供從控制器至第一MCP之連結負載。Figure 27 shows another system in accordance with another embodiment of the present invention. The system includes a plurality of device groups, DGP-1 to DGP-N. The system implements a hybrid synchronous clock structure with a clock aligned with the edge of the data. Each device group has the same structure as the MCP-based system shown in FIG. In the particular example shown in Figure 27, each device group includes four devices having a PLL. The PLL of the first device is turned on (enabled), and the PLLs of the second to fourth devices are turned off (disabled). The first device is time-controlled by the source synchronization clock structure, and the second to fourth devices are time-controlled by the synchronous clock structure by the regenerative clock signals SCLKO and /SCLKO outputted by the first device. The input data DI and the input clock signal have the same load effect on the input side of the MCP for SCLKI and /SCLKI, and they can be easily maintained at the same phase shift for the connected load from the controller to the first MCP.

第28圖顯示在控制器與記憶體裝置間通訊之各種信號。Figure 28 shows the various signals that are communicated between the controller and the memory device.

為了製造與資料邊緣對準之時脈,各MCP的最後構件提供時脈至下一MCP。無PLL或DLL,可實施邊緣對準時脈,其中輸出時脈與輸出資料間有延遲路徑匹配。In order to create a clock aligned with the edge of the data, the last component of each MCP provides the clock to the next MCP. Without PLL or DLL, the edge-aligned clock can be implemented with a delay path match between the output clock and the output data.

第29A圖顯示具有混合同步時脈結構之介面的一裝置之另一範例。Figure 29A shows another example of a device having an interface for mixing synchronized clock structures.

在所示範例中,輸出各種輸入信號(如SCLKIi、/SCLKIi、SCSIi及SDSIi信號)及資料DIi至此一裝置,且從此一裝置輸出各種輸出信號(如SCLKOi、/SCLKOi、SCSOi及SDSOi信號)及資料DQi。參照第29A圖,裝置包括包括PLL之時脈I/O電路701、資料I/O電路703、選通I/O電路705及具有記憶體核心電路之控制電路707。時脈I/O電路701接收SCLKIi、/SCLKIi信號及PLL_EN信號。時脈I/O電路701輸出兩內部產生時脈信號Clk_en1及Clk_en2(此後分別稱為「Clk_en1時脈信號及Clk_en2時脈信號」至資料I/O電路703及選通I/O電路705。提供參考時脈信號SVREF至資料I/O電路703及選通I/O電路705。資料I/O電路703接收輸入資料DIi[0:3]並提供輸出資料DQi[0:3]。選通I/O電路705接收SCSIi與SDSIi信號並輸出SCSOi及SDSOi信號。控制電路707從選通I/O電路705接收內部命令選通輸入信號iCSI1及內部資料選通輸入信號iDSI1,並從資料I/O電路703接收待寫入之資料「寫入資料」。控制電路707提供讀取資料至資料I/O電路703。In the illustrated example, various input signals (such as SCLKIi, /SCLKIi, SCSIi, and SDSIi signals) and data DIi are output to the device, and various output signals (such as SCLKOi, /SCLKOi, SCSOi, and SDSOi signals) are output from the device. Information DQi. Referring to Fig. 29A, the apparatus includes a clock I/O circuit 701 including a PLL, a data I/O circuit 703, a gate I/O circuit 705, and a control circuit 707 having a memory core circuit. The clock I/O circuit 701 receives the SCLKIi, /SCLKIi signals, and the PLL_EN signal. The clock I/O circuit 701 outputs two internally generated clock signals Clk_en1 and Clk_en2 (hereinafter referred to as "Clk_en1 clock signal and Clk_en2 clock signal" respectively to the data I/O circuit 703 and the gate I/O circuit 705. Reference clock signal SVREF to data I/O circuit 703 and strobe I/O circuit 705. Data I/O circuit 703 receives input data DIi[0:3] and provides output data DQi[0:3]. The /O circuit 705 receives the SCSIi and SDSIi signals and outputs the SCSOi and SDSOi signals. The control circuit 707 receives the internal command strobe input signal iCSI1 and the internal data strobe input signal iDSI1 from the strobe I/O circuit 705, and from the data I/O The circuit 703 receives the data "write data" to be written. The control circuit 707 provides read data to the data I/O circuit 703.

具有記憶體核心電路707之控制電路的結構與第18B圖中所示的具有記憶體核心電路407之控制電路的類似。控制電路707在有ID匹配及資料讀取命令時提供邏輯「高」之準備信號。The structure of the control circuit having the memory core circuit 707 is similar to that of the control circuit having the memory core circuit 407 shown in FIG. 18B. Control circuit 707 provides a logic "high" ready signal when there is an ID match and a data read command.

第29B圖顯示第29A圖中所示之時脈I/O電路701的細節。參照第29A及29B圖,SCLKOi及/SCLKOi信號係饋送至輸入緩衝器711,其則提供參考時脈信號Ref_clk至包括振盪器之PLL 713的輸入。並且,PLL_EN信號係饋送至PLL 713的致能輸入「PLL_EN輸入」。PLL 713產生對照於參考時脈信號Ref_clk為90°、180°、270°及360°相位位移的四個時脈信號。由PLL 713經由個別的緩衝器714-1、714-2、714-3及714-4提供Clk90信號、Clk180信號、Clk270信號及Clk360信號。360°相位位移時脈信號Clk360係饋送至PLL 713的振盪輸入(Osc_loop輸入)中。Fig. 29B shows the details of the clock I/O circuit 701 shown in Fig. 29A. Referring to Figures 29A and 29B, the SCLKOi and /SCLKOi signals are fed to an input buffer 711 which provides a reference clock signal Ref_clk to the input of the PLL 713 including the oscillator. And, the PLL_EN signal is fed to the enable input "PLL_EN input" of the PLL 713. The PLL 713 produces four clock signals that are phase shifted by 90°, 180°, 270°, and 360° with respect to the reference clock signal Ref_clk. The Clk90 signal, the Clk180 signal, the Clk270 signal, and the Clk360 signal are provided by the PLL 713 via the respective buffers 714-1, 714-2, 714-3, and 714-4. The 360° phase shift clock signal Clk360 is fed into the oscillating input (Osc_loop input) of the PLL 713.

參考時脈信號Ref_clk及90°相位位移時脈信號Clk90信號係分別饋送至選擇器715之「0」及「1」輸入,其之選擇輸入接收PLL_EN信號。來自選擇器715之選擇的信號提供作為Clk_enl時脈信號。參考時脈信號Ref_clk及來自緩衝器755之延遲型式的Clk_dly係分別提供至選擇器725之「0」及「1」輸入,並且由選擇器725回應於PLL_EN信號來選擇。來自選擇器725之選擇的信號提供作為Clk_en2時脈信號。The reference clock signal Ref_clk and the 90° phase shift clock signal Clk90 signal are fed to the "0" and "1" inputs of the selector 715, respectively, and the selected input receives the PLL_EN signal. The signal from the selection of selector 715 is provided as a Clk_enl clock signal. The reference clock signal Ref_clk and the Clk_dly from the delay pattern of the buffer 755 are provided to the "0" and "1" inputs of the selector 725, respectively, and are selected by the selector 725 in response to the PLL_EN signal. The signal from the selection of selector 725 is provided as a Clk_en2 clock signal.

參考時脈信號Ref_clk亦饋送至選擇器717之「0」輸入,選擇器717之「1」輸入及選擇輸入為下拉(邏輯「0」),因此選擇器717總是選擇「0」輸入的信號,結果為從其選擇參考時脈信號Ref_clk。選擇器717之選擇的輸出信號係提供至選擇器719及720之選擇輸入。分別提供邏輯「0」及「1」至選擇器719之「0」及「1」輸入。分別提供邏輯「1」及「0」至選擇器720之「0」及「1」輸入。提供來自選擇器719及720之選擇輸出經過輸出緩衝器721及723,分別作為SCLKOi及/SCLKOi信號。The reference clock signal Ref_clk is also fed to the "0" input of the selector 717, and the "1" input and the selection input of the selector 717 are pulled down (logic "0"), so the selector 717 always selects the signal input by "0". The result is the reference clock signal Ref_clk selected from it. The selected output signal of selector 717 is provided to the select inputs of selectors 719 and 720. Logic "0" and "1" are provided to the "0" and "1" inputs of selector 719, respectively. Logic "1" and "0" are provided to the "0" and "1" inputs of selector 720, respectively. The selected outputs from selectors 719 and 720 are provided through output buffers 721 and 723 as SCLKOi and /SCLKOi signals, respectively.

第29C圖顯示第29A圖中所示之資料I/O電路703的細節。參照第29A及29C圖,參考電壓信號SVREF係提供至輸入緩衝器(比較器)727的「-」輸入。輸入資料DIi[0:3]係饋送至輸入緩衝器727的「+」輸入,輸入緩衝器727之輸出<0:3>係饋送至D-FF 761及763之資料輸入「D」,其分別受到Clk_enl時脈信號及其反向型式之時控。在此範例中,D-FF 763之資料閂鎖操作自D-FF 761相位上位移Clk_enl時脈信號之180°。雖裝置具有四位元資料路徑,僅顯示針對單一位元之電路。在真實裝置中電路元件處理資料重複四次。包含位元4、5、6及7之D-FF 761的四位元輸出Din1[0:3]係饋送至選擇器765的「0」輸入。類似地,包含位元0、1、2及3之D-FF 763的四位元輸出Din2[0:3]係饋送至選擇器767的「0」輸入。選擇器765及767根據饋送到選擇器765及767之選擇輸入的「準備」信號執行選擇操作。在此特定範例中,當無ID匹配時,準備信號為邏輯「低」。當有ID匹配時,在資料讀取及資料寫入的情況中,準備信號分別為「高」及「低」。回應於準備信號,來自選擇器765及767之內部選擇的輸出信號Do1[0:3]及Do0[0:3]係分別饋送至選擇器773之「0」及「1」輸入,選擇器773之選擇輸入接收來自時脈I/O電路701之Clk_en2。來自選擇器773之選擇的輸出資料<0:3>係經由輸出緩衝器775提供作為輸出資料DQi[0:3]。Figure 29C shows details of the data I/O circuit 703 shown in Figure 29A. Referring to Figures 29A and 29C, the reference voltage signal SVREF is provided to the "-" input of the input buffer (comparator) 727. The input data DIi[0:3] is fed to the "+" input of the input buffer 727, and the output <0:3> of the input buffer 727 is fed to the data input "D" of the D-FF 761 and 763, respectively. Time-controlled by the Clk_enl clock signal and its inverse pattern. In this example, the data latching operation of D-FF 763 shifts 180 degrees of the Clk_enl clock signal from the D-FF 761 phase. Although the device has a four-bit data path, only the circuit for a single bit is displayed. The circuit component processing data is repeated four times in the real device. The four-bit output Din1[0:3] of the D-FF 761 including bits 4, 5, 6, and 7 is fed to the "0" input of the selector 765. Similarly, the four-bit output Din2[0:3] of the D-FF 763 containing bits 0, 1, 2, and 3 is fed to the "0" input of the selector 767. The selectors 765 and 767 perform a selection operation based on the "prepare" signal fed to the selection inputs of the selectors 765 and 767. In this particular example, the ready signal is logic "low" when there is no ID match. When there is an ID match, in the case of data reading and data writing, the preparation signals are "high" and "low", respectively. In response to the preparation signal, the internally selected output signals Do1[0:3] and Do0[0:3] from selectors 765 and 767 are fed to the "0" and "1" inputs of selector 773, respectively, selector 773 The select input receives Clk_en2 from the clock I/O circuit 701. The output data <0:3> from the selection of the selector 773 is supplied as an output data DQi[0:3] via the output buffer 775.

第29D圖顯示第29A圖中所示之選通I/O電路705的細節。參照第29A及29D圖,參考電壓信號SVREF係提供至輸入緩衝器(比較器)737及739的「-」輸入,其之「+」輸入分別接收SCSIi及SDSIi信號。輸入緩衝器737及739之輸出係提供至D-FF 741及781與743及783的D輸入。Clk_en1時脈信號係分別提供至D-FF 741及743的時脈輸入與D-FF 781及783之反向時脈輸入。回應於Clk_en1時脈信號,D-FF 741及743分別輸出iCSI1及iDSI1信號,其被提供至控制電路707。iCSI1及iDSI1信號係分別饋送至選擇器791及793的「0」輸入。從D-FF781及783分別提供額外的內部命令選通及資料選通輸入信號iSCSI2及iSDSI2至選擇器791及793的「1」輸入。Clk_en2時脈信號係饋送至選擇器791及793的選擇輸入。選擇器791回應於Clk_en2時脈信號而選擇iCSI1信號或iCSI2信號,並且選擇器791之選擇的輸出信號係經由輸出緩衝器751提供作為SCSOi信號。選擇器793回應於Clk_en2時脈信號而選擇iDSI1信號或iDSI2信號,並且選擇器793之選擇的輸出信號係經由輸出緩衝器753提供作為SDSOi信號。Figure 29D shows details of the gated I/O circuit 705 shown in Figure 29A. Referring to Figures 29A and 29D, the reference voltage signal SVREF is provided to the "-" inputs of the input buffers (comparators) 737 and 739, the "+" inputs of which receive the SCSIi and SDSIi signals, respectively. The outputs of input buffers 737 and 739 are provided to the D inputs of D-FF 741 and 781 and 743 and 783. The Clk_en1 clock signal is supplied to the clock input of D-FF 741 and 743 and the reverse clock input of D-FF 781 and 783, respectively. In response to the Clk_en1 clock signal, D-FFs 741 and 743 respectively output iCSI1 and iDSI1 signals, which are supplied to control circuit 707. The iCSI1 and iDSI1 signals are fed to the "0" inputs of selectors 791 and 793, respectively. Additional internal command strobes and data strobe input signals iSCSI2 and iSDSI2 are provided from D-FF781 and 783 to the "1" inputs of selectors 791 and 793, respectively. The Clk_en2 clock signal is fed to the select inputs of selectors 791 and 793. The selector 791 selects the iCSI1 signal or the iCSI2 signal in response to the Clk_en2 clock signal, and the selected output signal of the selector 791 is supplied as an SCSOi signal via the output buffer 751. The selector 793 selects the iDSI1 signal or the iDSI2 signal in response to the Clk_en2 clock signal, and the selected output signal of the selector 793 is supplied as an SDSOi signal via the output buffer 753.

具有記憶體核心電路707之控制電路與第18B圖的具有相同結構。The control circuit having the memory core circuit 707 has the same structure as that of the 18B.

參照第29A至29D圖,在寫入操作(準備信號為邏輯「0」)中,來自D-FF 761及763的閂鎖資料(Din1[0:3](亦即位元4、5、6及7)及Din2[0:3](亦即位元0、1、2及3))係寫入寫入暫存器795中。在ID匹配後,提供8位元的寫入資料(位元0至7)至控制電路707以將寫入資料儲存在包括於其中之核心單元中。在正常操作的讀取模式中(準備信號為邏輯「1」),在ID匹配後,控制電路707存取其中之資料儲存元件並讀取資料,並將讀取資料寫入讀取暫存器797中。由選擇器765及767分別選擇寫入資料(Rout1[0:3](位元4、5、6及7)及Rout2[0:3](位元0、1、2及3)),並最終提供輸出資料DQi[0:3]至下一記憶體裝置。在讀取操作中,來自D-FF 761及763的閂鎖資料(Din1[0:3](亦即位元4、5、6及7)及Din2[0:3](亦即位元0、1、2及3))並不寫入寫入暫存器795中。因此,並不提供8位元的寫入資料(位元0至7)至控制電路707。Referring to Figures 29A through 29D, in the write operation (the ready signal is logic "0"), the latch data from D-FF 761 and 763 (Din1[0:3] (ie, bits 4, 5, 6 and 7) and Din2[0:3] (i.e., bits 0, 1, 2, and 3) are written to the write register 795. After the ID is matched, 8-bit write data (bits 0 to 7) is supplied to the control circuit 707 to store the write data in the core unit included therein. In the normal operation read mode (the preparation signal is logic "1"), after the ID is matched, the control circuit 707 accesses the data storage element therein and reads the data, and writes the read data to the read register. 797. Selecting data (Rout1[0:3] (bits 4, 5, 6, and 7) and Rout2[0:3] (bits 0, 1, 2, and 3)) are selected by selectors 765 and 767, respectively, and Finally, the output data DQi[0:3] is provided to the next memory device. In the read operation, latch data from D-FF 761 and 763 (Din1[0:3] (ie, bits 4, 5, 6, and 7) and Din2[0:3] (ie, bit 0, 1) , 2, and 3)) are not written to the write register 795. Therefore, 8-bit write data (bits 0 to 7) is not supplied to the control circuit 707.

第30圖顯示第29A至29D之裝置的各種信號。第30圖描繪在混合式同步時脈結構中之邊緣對準時脈的情況中的致能PLL裝置操作。由「高」PLL_EN信號致能PLL。Fig. 30 shows various signals of the devices of the 29A to 29D. Figure 30 depicts the operation of the enabling PLL device in the case of an edge-aligned clock in a hybrid synchronous clock structure. The PLL is enabled by the "high" PLL_EN signal.

參照第29A至29D及30圖,當由邏輯「高」位準電壓Vdd提供PLL_EN信號,PLL 713開始產生內部相位位移之時脈信號,且使用其中之一(90°相位位移時脈信號Clk90)來閂鎖在資料輸入側之輸入資料,其為包括資料I/O電路703之D-FF 761及763的電路。與資料邊緣對準之時脈信號若無時脈相位位移沒有設定時間餘裕,因此需將90°相位位移時脈信號提供給每一輸入閂鎖器,如第29C及29D圖中所示。在此情況中,輸入資料(DQi、SCSOi及SDSOi)及SCLKIi及/SCLKIi信號間的相位差極為重要,因而使用延遲的時脈「Clk_dly」來發送輸出資料,以當時脈與輸入資料抵達下一裝置的輸入閂鎖級時給予下一裝置時間餘裕。各MCP之最後構件(或裝置)之SCLKOi及/SCLKOi信號係饋送至其他MCP,同時相同MCP中之第一構件(或裝置)的輸出時脈以進入相同MCP中之共同時控方式連接至其他構件。Referring to Figures 29A-29D and 30, when the PLL_EN signal is supplied by the logic "high" level voltage Vdd, the PLL 713 starts generating the clock signal of the internal phase shift, and one of them is used (90° phase shift clock signal Clk90) The input data latched on the data input side is a circuit including D-FFs 761 and 763 of the data I/O circuit 703. The clock signal aligned with the edge of the data does not have a time margin if there is no clock phase shift, so a 90° phase shift clock signal is required to be supplied to each input latch, as shown in Figures 29C and 29D. In this case, the phase difference between the input data (DQi, SCSOi, and SDSOi) and the SCLKIi and /SCLKIi signals is extremely important, so the delayed clock "Clk_dly" is used to transmit the output data, and the current pulse and input data arrive at the next step. The input latch level of the device gives the next device time margin. The SCLKOi and /SCLKOi signals of the last component (or device) of each MCP are fed to other MCPs, while the output clocks of the first component (or device) in the same MCP are connected to the other in a common time-controlled manner into the same MCP. member.

在PLL_EN信號為邏輯「低」(Vss)的情況中,禁能PLL 713並使用參考時脈信號Ref_clk來閂鎖輸入資料並傳送輸出資料至具有邊緣對準時控之下一構件。當匹配時脈與輸出資料間的延遲時,獲得時脈與輸出資料的邊緣對準。在下一構件,由SCLKOi及/SCLKOi信號以兩構件間之一週期延遲捕捉輸入資料,如第31圖中所示。第31圖顯示裝置之各種信號。第31圖描繪在混合式同步時脈結構中邊緣對準時脈情況的禁能PLL裝置之操作。由「低」PLL_EN信號禁能PLL。In the case where the PLL_EN signal is logic "low" (Vss), the PLL 713 is disabled and the reference clock signal Ref_clk is used to latch the input data and transmit the output data to a component with edge alignment timing. When the delay between the clock and the output data is matched, the clock is aligned with the edge of the output data. In the next component, the input data is captured by the SCLKOi and /SCLKOi signals with a one-cycle delay between the two components, as shown in FIG. Figure 31 shows the various signals of the device. Figure 31 depicts the operation of the disable PLL device for edge-aligned clock conditions in a hybrid synchronous clock structure. The PLL is disabled by the "low" PLL_EN signal.

使用混合時控,可減少來自PLL之耗電量並以MCP及分組裝置其提供高速操作。Using mixed time control, the power consumption from the PLL can be reduced and high speed operation can be provided by the MCP and the grouping device.

實施完全來源同步時脈結構之第二替代例沒有混合式同步時控。A second alternative to implementing a fully source synchronized clock structure has no hybrid synchronous time control.

由於僅有來源同步時脈結構,有減少來自PLL之耗電量的方法。使用交替PLL開及關(或關及開)操作,可達成資料捕捉及傳送。在此情況中,僅考慮來源同步時脈結構,使得可比其他前兩種情況獲得完全速度性能。並且,另一優點為其可應用至所有分組連結系統,包括環型連結系統,不限於MCP。針對單一構件封裝,可無類似前兩情況之限制下應用此技術。Since only the source synchronizes the clock structure, there is a way to reduce the power consumption from the PLL. Data capture and transmission can be achieved using alternate PLL on and off (or off and on) operations. In this case, only the source synchronization clock structure is considered, so that full speed performance can be obtained compared to the other first two cases. And, another advantage is that it can be applied to all packet-linked systems, including ring-type linking systems, not limited to MCPs. For a single component package, this technique can be applied without the limitations of the first two cases.

第32圖描繪具有完全來源同步時脈結構之系統的範例。在所示範例中,系統包括14個裝置799-1至799-14,各具有-PLL。每一個裝置具有保持二元碼的相關ID之ID暫存器。在此特定範例中,ID為四位元之二元數字。由於無ID分配至裝置799-1至799-14,其之ID暫存器保持初始ID(亦即「0000」)。根據初始ID的LSB(亦即「0」)各裝置之PLL_EN信號為邏輯「高」。因此,所有裝置的PLL皆為致能(「開啟」)。Figure 32 depicts an example of a system with a fully source synchronized clock structure. In the illustrated example, the system includes 14 devices 797-1 through 799-14, each having a -PLL. Each device has an ID register that holds the associated ID of the binary code. In this particular example, the ID is a four-digit binary number. Since no ID is assigned to devices 797-1 to 799-14, its ID register holds the initial ID (i.e., "0000"). The PLL_EN signal of each device according to the LSB (ie, "0") of the initial ID is logic "high". Therefore, the PLLs of all devices are enabled ("on").

第33A圖顯示具有完全來源同步時脈結構之串聯連接之複數裝置的範例,該時脈結構在邊緣對準時脈及中央對準時脈間交替。在此特定範例中,系統使用與資料邊緣對準之時脈。參照第33A圖,在初始模式中,裝置799-1至799-14分別分配有ID數字「0000」至「1101」。根據分配給裝置之ID的LSB,各裝置之PLL_EN信號為邏輯「高」或邏輯「低」。在第33A圖中所示的特定範例中,第一、第三...裝置的LSB為「0」且其PLL_EN信號為邏輯「高」。第二、第四...裝置的LSB為「1」且其PLL_EN信號為邏輯「低」。Figure 33A shows an example of a plurality of devices having a series connection of a fully source synchronized clock structure that alternates between an edge aligned clock and a central aligned clock. In this particular example, the system uses a clock that is aligned with the edge of the data. Referring to Fig. 33A, in the initial mode, devices 790-1 to 799-14 are assigned ID numbers "0000" to "1101", respectively. The PLL_EN signal of each device is either logic "high" or logic "low" depending on the LSB assigned to the ID of the device. In the particular example shown in Figure 33A, the LSBs of the first, third, ... devices are "0" and their PLL_EN signals are logic "high." The second and fourth ... devices have an LSB of "1" and their PLL_EN signal is logic "low".

第33B圖顯示具有完全來源同步時脈結構之串聯連接之複數裝置的另一範例,該時脈結構在中央對準時脈及邊緣對準時脈間交替。在此特定範例中,系統使用與資料中央對準之時脈。參照第33B圖,在初始模式中,裝置799-1至799-14分別分配有ID數字「0000」至「1101」。根據分配給裝置之ID的LSB,各裝置之PLL_EN信號為邏輯「低」或邏輯「高」。在此特定範例中,第一、第三...裝置的PLL_EN信號為邏輯「低」。第二、第四...裝置的PLL_EN信號為邏輯「高」。在第32、33A及33B圖中所示的每一系統中,裝置數量N為14(偶數),但串聯連接之裝置的數量不限於此。亦顯示在第33A及33B圖中,致能(開啟)N/2裝置並禁能(關閉)其他N/2裝置。Figure 33B shows another example of a plurality of devices having a series connection of fully source synchronized clock structures that alternate between center-aligned clock and edge-aligned clocks. In this particular example, the system uses the clock aligned with the center of the data. Referring to Fig. 33B, in the initial mode, devices 797-1 to 799-14 are assigned ID numbers "0000" to "1101", respectively. The PLL_EN signal of each device is either logic "low" or logic "high" depending on the LSB assigned to the ID of the device. In this particular example, the PLL_EN signals of the first, third, ... devices are logic "low." The second, fourth... device's PLL_EN signal is logic "high." In each of the systems shown in Figs. 32, 33A and 33B, the number N of devices is 14 (even), but the number of devices connected in series is not limited thereto. Also shown in Figures 33A and 33B, the N/2 device is enabled (turned on) and the other N/2 devices are disabled (turned off).

第34A圖顯示具有完全來源同步時控介面的裝置之一。參照第34A圖,裝置包括包括PLL之時脈I/O電路801、資料I/O電路803、選通I/O電路805及具有記憶體核心電路之控制電路807。時脈I/O電路801接收SCLKIi、/SCLKIi信號並輸出SCLKOi、/SCLKOi信號。時脈I/O電路801提供兩內部產生時脈信號Clk_in1及Clk_in2(此後分別稱為「Clk-in1時脈信號及Clk_in2時脈信號」至資料1/O電路803及選通I/O電路805。提供參考時脈信號SVREF至資料I/O電路803及選通I/O電路805。資料I/O電路803接收輸入資料DIi(0:3]並提供輸出資料DQi(0:3]。選通I/O電路805接收SCSIi與SDSIi信號並輸出SCSOi及SDSOi信號。控制電路807提供讀取資料至資料I/O電路803。控制電路807從選通I/O電路805接收內部命令選通輸入信號iCSI1及內部資料選通輸入信號iDSI1,並從資料I/O電路803接收待寫入之資料。控制電路807提供讀取資料致資料I/O電路803。控制電路807提供PLL_EN信號至時脈I/O電路801、資料I/O電路803及選通I/O電路805。並且,控制電路807提供ID分配完成信號至時脈I/O電路801。Figure 34A shows one of the devices with a fully source synchronous timed interface. Referring to Figure 34A, the apparatus includes a clock I/O circuit 801 including a PLL, a data I/O circuit 803, a strobe I/O circuit 805, and a control circuit 807 having a memory core circuit. The clock I/O circuit 801 receives the SCLKIi, /SCLKIi signals and outputs the SCLKOi, /SCLKOi signals. The clock I/O circuit 801 provides two internally generated clock signals Clk_in1 and Clk_in2 (hereinafter referred to as "Clk-in1 clock signal and Clk_in2 clock signal" respectively to the data 1/O circuit 803 and the gate I/O circuit 805. The reference clock signal SVREF is supplied to the data I/O circuit 803 and the strobe I/O circuit 805. The data I/O circuit 803 receives the input data DIi (0:3) and provides the output data DQi (0:3). The SCSIi and SDSIi signals are received by the I/O circuit 805 and the SCSOi and SDSOi signals are output. The control circuit 807 provides read data to the data I/O circuit 803. The control circuit 807 receives the internal command strobe input from the strobe I/O circuit 805. Signal iCSI1 and internal data strobe input signal iDSI1, and receive data to be written from data I/O circuit 803. Control circuit 807 provides read data to data I/O circuit 803. Control circuit 807 provides PLL_EN signal to clock The I/O circuit 801, the data I/O circuit 803, and the strobe I/O circuit 805. Further, the control circuit 807 supplies an ID assignment completion signal to the clock I/O circuit 801.

第34B圖顯示顯示在第34A圖中之具有記憶體核心電路之控制電路807。參照第34A及34B圖,在初始模式中ID分配電路371執行ID分配及ID計算。輸入ID的數字(IDi)係暫存於ID暫存器372中。由裝置i提供計算結果之數字(亦即ID+1)作為至下一裝置的輸出IDo。ID暫存器372保持分配到的ID。Figure 34B shows a control circuit 807 having a memory core circuit shown in Figure 34A. Referring to Figures 34A and 34B, the ID assignment circuit 371 performs ID assignment and ID calculation in the initial mode. The number (IDi) of the input ID is temporarily stored in the ID register 372. The number of calculation results (i.e., ID+1) is provided by the device i as the output IDo to the next device. The ID register 372 maintains the assigned ID.

ID暫存器372提供代表分配到之IDi的最小有效位元(LSB)之邏輯狀態的一位元信號374至反向器376,其之反向的輸出信號輸出作為PLL_EN信號。因此,回應於分配IDi之LSB的「0」或「1」,PLL_EN信號具有邏輯狀態「高」或「低」。並且,ID分配電路371在ID分配完成後輸出ID分配完成信號379。在初始模式中,先重設ID暫存器372並且所有ID暫存器372之LSB為「0」。因此,PLL_EN信號為邏輯「高」且所有裝置的PLL為致能(開啟),如第32圖中所示。在暫存ID後,回應於偶數ID的LSB,PLL_EN信號為邏輯「高」且回應於奇數ID的LSB,PLL_EN信號為邏輯「低」。回應於「高」PLL_EN信號,第一、第三、第五...裝置之PLL為致能(開啟),且回應於「低」PLL_EN信號,第二、第四、...裝置之PLL為禁能(關閉),如第33A圖中所示。ID register 372 provides a one-bit signal 374 representing the logic state of the least significant bit (LSB) assigned to IDi to inverter 376 whose inverted output signal is output as a PLL_EN signal. Therefore, in response to the "0" or "1" of the LSB of the assigned IDi, the PLL_EN signal has a logic state of "high" or "low". And, the ID assignment circuit 371 outputs the ID assignment completion signal 379 after the ID assignment is completed. In the initial mode, the ID register 372 is reset first and the LSBs of all ID registers 372 are "0". Therefore, the PLL_EN signal is logic "high" and the PLLs of all devices are enabled (on), as shown in Figure 32. After the temporary ID, in response to the LSB of the even ID, the PLL_EN signal is logic "high" and responds to the LSB of the odd ID, and the PLL_EN signal is logic "low". In response to the "high" PLL_EN signal, the PLLs of the first, third, and fifth devices are enabled (turned on), and in response to the "low" PLL_EN signal, the PLLs of the second, fourth, ... devices To disable (close), as shown in Figure 33A.

之後,在正常模式中,具有如第6圖中所示之格式的命令係饋送至ID匹配判斷器373及命令解譯器375。ID匹配判斷器373判斷輸入ID數字是否匹配ID暫存器372中所保持的分配ID,且若它們匹配,提供邏輯「高」ID匹配信號。若無匹配,ID匹配信號為邏輯「低」。回應於「高」ID匹配信號,包括OP碼解碼器之命令解譯器375解碼包含在輸入命令中之OP碼並提供解譯的命令(如寫入或讀取)。回應於解譯命令及ID匹配信號,模式信號產生器377提供「準備」信號。在此特定範例中,當無ID匹配時準備信號為邏輯「低」,且當有ID匹配及OP碼為「讀取」(亦即命令為資料讀取命令)時邏輯「高」。回應於解譯命令,例如,寫入資料置具有資料貯存或記憶體元件(未圖示)之記憶體核心電路378或從其讀取資料。記憶體核心電路378從選通I/O電路805接收內部命令選通輸入信號iCSI1及內部資料選通輸入信號iDSI1。Thereafter, in the normal mode, the command having the format as shown in FIG. 6 is fed to the ID matching determiner 373 and the command interpreter 375. The ID match determiner 373 determines whether the input ID number matches the allocation ID held in the ID register 372, and if they match, provides a logical "high" ID match signal. If there is no match, the ID match signal is logic "low". In response to the "high" ID match signal, the command interpreter 375, including the OP code decoder, decodes the OP code contained in the input command and provides an interpreted command (such as write or read). In response to the interpretation command and the ID match signal, the mode signal generator 377 provides a "prepare" signal. In this particular example, the ready signal is logic "low" when there is no ID match, and is "high" when there is an ID match and the OP code is "read" (ie, the command is a data read command). In response to the interpreting command, for example, writing data to or reading data from a memory core circuit 378 having a data storage or memory component (not shown). The memory core circuit 378 receives the internal command strobe input signal iCSI1 and the internal data strobe input signal iDSI1 from the strobe I/O circuit 805.

第34C圖顯示顯示在第34A圖中之時脈I/O電路801。參照第34A及34C圖,提供PLL_EN信號至PLL 813。SCLKIi及/SCLKIi信號係饋送至輸入緩衝器811的「+」及「-」輸入,輸入緩衝器811則提供參考時脈信號Ref_clk至PLL 813的參考時脈輸入「Ref_clk輸入」。PLL 813包括振盪器,並經由緩衝器緩衝器814_1、814_2、814_3及814_4分別提供對照於參考時脈信號Ref_clk為90°、180°、270°及360°相位位移的四個時脈信號。由Clk90、Clk180、Clk270及Clk360參照之這四個相位位移的時脈信號此後分別稱為「Clk90信號」、「Clk180信號」、「Clk270信號」及「Clk360信號」。Clk360信號係饋送至PLL 813之振盪輸入「Osc_loop輸入」。Clk360信號、參考時脈信號Ref_clk及PLL_EN信號係分別饋送至選擇器817之「1」、「0」及選擇輸入,選擇器718之輸出信號係饋送至選擇器819及820的選擇輸入。Figure 34C shows the clock I/O circuit 801 shown in Figure 34A. Referring to Figures 34A and 34C, a PLL_EN signal is provided to PLL 813. The SCLKIi and /SCLKIi signals are fed to the "+" and "-" inputs of the input buffer 811, and the input buffer 811 provides the reference clock input Ref_clk to the reference clock input "Ref_clk input" of the PLL 813. The PLL 813 includes an oscillator and provides four clock signals having phase shifts of 90°, 180°, 270°, and 360° with respect to the reference clock signal Ref_clk via the buffer buffers 814_1, 814_2, 814_3, and 814_4, respectively. The four phase-shifted clock signals referred to by Clk90, Clk180, Clk270, and Clk360 are hereinafter referred to as "Clk90 signal", "Clk180 signal", "Clk270 signal", and "Clk360 signal", respectively. The Clk360 signal is fed to the oscillation input "Osc_loop input" of the PLL 813. The Clk360 signal, reference clock signal Ref_clk and PLL_EN signals are fed to "1", "0" and select input of selector 817, respectively, and the output signal of selector 718 is fed to the select inputs of selectors 819 and 820.

選擇器819之「0」及「1」輸入分別接收邏輯「0」及「1」信號。選擇器820的「0」及「1」輸入分別接收邏輯「1」及「0」信號。選擇器819之輸出信號係經由輸出緩衝器821提供作為SCLKOi信號。類似地,選擇器820之輸出信號係經由輸出緩衝器8213供作為/SCLKOi信號。SCLKOi及/SCLKOi信號因此為180°異相之互補差動時脈信號。The "0" and "1" inputs of the selector 819 receive the logic "0" and "1" signals, respectively. The "0" and "1" inputs of the selector 820 receive the logic "1" and "0" signals, respectively. The output signal of the selector 819 is supplied as an SCLKOi signal via the output buffer 821. Similarly, the output signal of selector 820 is provided as an /SCLKOi signal via output buffer 8213. The SCLKOi and /SCLKOi signals are therefore 180° out-of-phase complementary differential clock signals.

ID分配完成信號379及PLL_EN信號係饋送至及(AND)閘853,其之邏輯輸出信號係饋送至選擇器815的選擇輸入。參考時脈信號Ref_clk及Clk80信號係分別饋送至選擇器815的「0」及「1」輸入,其之選擇的輸出信號係提供作為Clk_in1時脈信號。並且,PLL信號係饋送至選擇器824的選擇輸入,「1」及「0」輸入分別接收接收Clk270信號及參考時脈信號Ref_clk。選擇器824的選擇輸出信號係提供作為Clk_in2時脈信號。The ID assignment completion signal 379 and the PLL_EN signal are fed to an AND gate 853, the logic output signal of which is fed to the selection input of the selector 815. The reference clock signals Ref_clk and Clk80 signals are fed to the "0" and "1" inputs of the selector 815, respectively, and the selected output signals are provided as Clk_in1 clock signals. Further, the PLL signal is fed to the selection input of the selector 824, and the "1" and "0" inputs respectively receive and receive the Clk 270 signal and the reference clock signal Ref_clk. The selected output signal of selector 824 is provided as a Clk_in2 clock signal.

第34D圖顯示第34A圖中所示之資料I/O電路803的細節。參照第34A及34D圖,參考電壓信號SVREF係提供至輸入緩衝器825的「-」輸入。輸入資料DIi[0:3]係饋送至輸入緩衝器825的「+」輸入,輸入緩衝器825之輸出資料<0:3>係饋送至D-FF 861及863之資料輸入「D」,其分別受到Clk_in1時脈信號之正及負邊緣的時控,以捕捉DDR資料。雖裝置具有四位元資料路徑,僅顯示針對單一位元之電路。在真實裝置中電路元件處理資料重複四次。包含位元4、5、6及7之D-FF 861的四位元輸出Din1[0:3]係饋送至選擇器865的「0」輸入。類似地,包含位元0、1、2及3之D-FF 863的四位元輸出Din2[0:3]係饋送至選擇器867的「0」輸入。選擇器865及867根據饋送到選擇器865及867之選擇輸入的「準備」信號來執行選擇操作。來自選擇器865及867之選擇的輸出信號係分別饋送至D-FF 881及883之資料輸入,其受到C1k_in1之負及正邊緣時控,以供內部資料閂鎖操作。Figure 34D shows details of the data I/O circuit 803 shown in Figure 34A. Referring to Figures 34A and 34D, the reference voltage signal SVREF is provided to the "-" input of the input buffer 825. The input data DIi[0:3] is fed to the "+" input of the input buffer 825, and the output data <0:3> of the input buffer 825 is fed to the data input "D" of the D-FF 861 and 863. Time-controlled by the positive and negative edges of the Clk_in1 clock signal to capture DDR data. Although the device has a four-bit data path, only the circuit for a single bit is displayed. The circuit component processing data is repeated four times in the real device. The four-bit output Din1[0:3] of the D-FF 861 including bits 4, 5, 6, and 7 is fed to the "0" input of the selector 865. Similarly, the four-bit output Din2[0:3] of the D-FF 863 containing bits 0, 1, 2, and 3 is fed to the "0" input of the selector 867. The selectors 865 and 867 perform a selection operation based on the "prepare" signal fed to the selection inputs of the selectors 865 and 867. The selected output signals from selectors 865 and 867 are fed to the data inputs of D-FFs 881 and 883, respectively, which are subjected to C1k_in1 negative and positive edge timing for internal data latching operations.

來自選擇器865之內部選擇輸出資料Do1[0:3]及D-FF881之內部閂鎖輸出資料Do1_d[0:3]係分別饋送至選擇器885之「1」及「0」輸入。來自選擇器867之內部選擇輸出資料Do0(0:3]及D-FF 883之內部閂鎖輸出資料Do0_d[0:3]係分別饋送至選擇器887之「1」及「0」輸入。選擇器885及887之選擇輸入接收PLL_EN信號。選擇器885之選擇輸出信號<0:3>係饋送到選擇器888之「1」輸入,且選擇器887之選擇輸出信號<0:3>係饋送到選擇器888之「0」輸入,選擇器888之選擇輸入接收內部時脈信號C1k_in2。回應於內部時脈信號C1k_in2,選擇器888之選擇輸出資料<0:3>經由輸出緩衝器802提供作為輸出資料DQi[0:3]。The internal latch output data Do1_d[0:3] from the internal selection output data Do1[0:3] and D-FF881 of the selector 865 are fed to the "1" and "0" inputs of the selector 885, respectively. The internal latch output data Do0_d[0:3] from the internal selection output data Do0 (0:3) and D-FF 883 of the selector 867 are fed to the "1" and "0" inputs of the selector 887, respectively. The select inputs of drivers 885 and 887 receive the PLL_EN signal. The select output signals <0:3> of selector 885 are fed to the "1" input of selector 888, and the select output signal of selector 887 is <0:3> To the "0" input of the selector 888, the select input of the selector 888 receives the internal clock signal C1k_in2. In response to the internal clock signal C1k_in2, the select output data <0:3> of the selector 888 is provided via the output buffer 802. Output data DQi[0:3].

在寫入操作中,來自D-FF861及863的閂鎖資料(Din1[0:3](亦即位元4、5、6及7)及Din2[0:3](亦即位元0、1、2及3))係提供至寫入暫存器795中。在讀取操作中,具有記憶體核心電路之控制電路807存取其中之資料儲存元件並讀取資料,並將讀取資料寫入讀取暫存器897中。由選擇器865及867分別選擇讀取資料(Routl[0:3](位元4、5、6及7)及Rout2[0:3](位元0、1、2及3)),並最終提供輸出資料DQi[0:3]至下一記憶體裝置。In the write operation, latch data from D-FF861 and 863 (Din1[0:3] (ie, bits 4, 5, 6, and 7) and Din2[0:3] (ie, bits 0, 1, 2 and 3)) are provided to the write register 795. In the read operation, the control circuit 807 having the memory core circuit accesses the data storage element therein and reads the data, and writes the read data into the read register 897. Selecting data (Routl[0:3] (bits 4, 5, 6, and 7) and Rout2[0:3] (bits 0, 1, 2, and 3)) are selected by selectors 865 and 867, respectively, and Finally, the output data DQi[0:3] is provided to the next memory device.

第34E圖顯示第34A圖中所示之選通I/O電路805的細節。參照第34A及34E圖,參考電壓信號SVREF係提供至輸入緩衝器(比較器)827及829的「-」輸入。SCSIi及SDSIi信號分別饋送至輸入緩衝器827及829的「十」輸入。緩衝器827之輸出係提供至D-FF 831及835的D輸入。緩衝器829之輸出係提供至D-FF 833及837的D輸入。Clk_inl時脈信號係提供至D-FF 831及833之時脈輸入並且至D-FF 835及837之反向時脈輸入。Figure 34E shows details of the gated I/O circuit 805 shown in Figure 34A. Referring to Figures 34A and 34E, the reference voltage signal SVREF is supplied to the "-" inputs of the input buffers (comparators) 827 and 829. The SCSIi and SDSIi signals are fed to the "ten" inputs of input buffers 827 and 829, respectively. The output of buffer 827 is provided to the D inputs of D-FFs 831 and 835. The output of buffer 829 is provided to the D inputs of D-FFs 833 and 837. The Clk_inl clock signal is supplied to the clock inputs of D-FFs 831 and 833 and to the reverse clock inputs of D-FFs 835 and 837.

回應於Clk_inl時脈信號的正邊緣,D-FF 831及833執行閂鎖操作。回應於Clk_inl時脈信號的負邊緣,D-FF 835及837執行閂鎖操作。因此,D-FF 835及837為Clk_inl時脈信號的180°相位位移。D-FF 831及833輸出內部命令選通輸入信號iCSI1(此後稱為「iCSI1信號」)及內部資料選通輸入信號iDSI1(此後稱為「iDSI1信號」),其被提供至控制電路807。D-FF8 35及837輸出另一內部命令選通輸入信號iCSI2(此後稱為「iCSI2信號」)及內部資料選通輸入信號iDSI2(此後稱為「iDSI2信號」)。In response to the positive edge of the Clk_inl clock signal, D-FFs 831 and 833 perform a latch operation. In response to the negative edge of the Clk_inl clock signal, D-FFs 835 and 837 perform a latch operation. Therefore, D-FFs 835 and 837 are 180° phase shifts of the Clk_inl clock signal. The D-FFs 831 and 833 output an internal command strobe input signal iCSI1 (hereinafter referred to as "iCSI1 signal") and an internal data strobe input signal iDSI1 (hereinafter referred to as "iDSI1 signal"), which are supplied to the control circuit 807. The D-FF8 35 and 837 output another internal command strobe input signal iCSI2 (hereinafter referred to as "iCSI2 signal") and an internal data strobe input signal iDSI2 (hereinafter referred to as "iDSI2 signal").

iCSI1及iDSI1信號係分別饋送至D-FF 862及864的D輸入,其受到Clk_inl時脈信號的負邊緣時控。iCSI2及iDSI2信號係分別饋送至D-FF 866及868的D輸入,其受到Clk_in1時脈信號的正邊緣時控。來自D-FF 862之iCSI1信號及iCSI1_d輸出信號係饋送至選擇器871之「1」及「0」輸入。來自D-FF 866之iCSI2信號及iCSI2_d輸出信號係饋送至選擇器873之「1」及「0」輸入。來自D-FF 864之iDSI1信號及iDSI1_d輸出信號係饋送至選擇器875之「1」及「0」輸入。來自D-FF 868之iDSI2信號及iDSI2_d輸出信號係饋送至選擇器877之「1」及「0」輸入。PLL_EN信號係饋送至選擇器871、873、875及877之選擇輸入。選擇器871及873之選擇輸出信號係分別饋送至選擇器891的「1」及「0」輸入。選擇器875及877之選擇輸出信號係分別饋送至選擇器893的「1」及「0」輸入。Clk_in2時脈信號係饋送至選擇器891及893之選擇輸入。來自選擇器891之選擇的輸出信號經由輸出緩衝器843提供作為SCSOi信號。來自選擇器893之選擇的輸出信號經由輸出緩衝器851提供作為SDSOi信號。The iCSI1 and iDSI1 signals are fed to the D inputs of D-FFs 862 and 864, respectively, which are time-controlled by the negative edge of the Clk_inl clock signal. The iCSI2 and iDSI2 signals are fed to the D inputs of D-FFs 866 and 868, respectively, which are clocked by the positive edge of the Clk_in1 clock signal. The iCSI1 signal and the iCSI1_d output signal from the D-FF 862 are fed to the "1" and "0" inputs of the selector 871. The iCSI2 signal from the D-FF 866 and the iCSI2_d output signal are fed to the "1" and "0" inputs of the selector 873. The iDSI1 signal from the D-FF 864 and the iDSI1_d output signal are fed to the "1" and "0" inputs of the selector 875. The iDSI2 signal from the D-FF 868 and the iDSI2_d output signal are fed to the "1" and "0" inputs of the selector 877. The PLL_EN signal is fed to the select inputs of selectors 871, 873, 875, and 877. The selection output signals of the selectors 871 and 873 are fed to the "1" and "0" inputs of the selector 891, respectively. The selection output signals of selectors 875 and 877 are fed to the "1" and "0" inputs of selector 893, respectively. The Clk_in2 clock signal is fed to the select inputs of selectors 891 and 893. The selected output signal from selector 891 is provided as an SCSOi signal via output buffer 843. The output signal from the selection of selector 893 is provided as an SDSOi signal via output buffer 851.

第35A圖顯示第34A至34E圖中所示之裝置的各種信號。參照第34A至34E及35A圖,在分配ID之LSB為「0」的情況中,來自ID暫存器372之輸出信號374為邏輯「低」且反向器376之輸出信號為「高」,造成PLL_EN信號為邏輯「高」。在分配ID之LSB為「1」的情況中,來自ID暫存器372之輸出信號374為邏輯「高」且PLL_EN信號為邏輯「低」。回應於具有邏輯「高」或「低」之PLL_EN信號,PLL 813為禁能或致能。Figure 35A shows various signals of the device shown in Figures 34A through 34E. Referring to Figures 34A to 34E and 35A, in the case where the LSB of the allocation ID is "0", the output signal 374 from the ID register 372 is logic "low" and the output signal of the inverter 376 is "high". Causes the PLL_EN signal to be logic high. When the LSB of the allocation ID is "1", the output signal 374 from the ID register 372 is logic "high" and the PLL_EN signal is logic "low". In response to a PLL_EN signal having a logic "high" or "low", PLL 813 is disabled or enabled.

在分配裝置ID前,所有記憶體構件具有「0000」ID數字作為預設值。因此,所有構件(或裝置)的所有PLL為致能且其以如第32圖中所示之所有PLL為開啟之情形開始ID分配操作。ID的LSB係用來判斷PLL是否為開啟(致能)或關閉(禁能)。若LSB為「0」,則開啟PLL。否則,在LSB等於「1」的情況中,則開閉PLL。All memory components have a "0000" ID number as a preset value before the device ID is assigned. Thus, all of the PLLs of all components (or devices) are enabled and they begin the ID assignment operation with all PLLs as shown in Figure 32 turned on. The LSB of the ID is used to determine if the PLL is on (enabled) or off (disabled). If the LSB is "0", the PLL is turned on. Otherwise, in the case where the LSB is equal to "1", the PLL is turned on and off.

在中央對準時控及邊緣對準時控間之切換需在電源啟動(power-up)序列操作有數百週期。然而,其不影響構件操作的真實性能。並且,根據最後裝置ID數字(亦即環型連結之總構件(或裝置)數量),最後輸出可為與資料邊緣對準的資料或與資料中央對準的資料。The switching between the central alignment time control and the edge alignment time control requires hundreds of cycles in the power-up sequence operation. However, it does not affect the true performance of the component operation. Also, depending on the last device ID number (i.e., the total number of components (or devices) of the ring type connection), the final output may be data aligned with the edge of the data or data aligned with the center of the data.

在電源啟動序列期間,對具有致能PLL之各裝置自動執行裝置位址(DA)或裝置識別符(ID)分配操作。因此,針對此操作,即使所有構件中的PLL為開啟,各構件之輸入側具有參考時脈信號Ref_clk,而非如第34C圖中所示般因ID分配完成信號379的邏輯零狀態有90°相位位移時脈信號。由於輸入資料已經有來自記憶體控制器之與資料中央對準的時脈且前一構件(或裝置)產生與資料中央對準的時脈。此例外僅發生在ID分配前。這係由ID分配完成信號379所控制。若其為「低」,其將致能連接至「Ref_clk」的「0」輸入。若其為「高」,其將致能連接至90°相位位移時脈的「1」輸入。需控制記憶體控制器中之中央對準時脈及邊緣對準時脈間的時序關係以支援此來源同步方式。比較全部開啟的PLL之情況,此提供50%耗電量的減少,當與全部開啟的PLL之情況相比時。記憶體控制器中之中央對準時脈及邊緣對準時脈間的控制之範例係揭露在2008年11月28日申請之美國專利申請案12/325,074中。During the power-up sequence, device address (DA) or device identifier (ID) assignment operations are automatically performed for each device with the enabled PLL. Therefore, for this operation, even if the PLL in all components is on, the input side of each member has the reference clock signal Ref_clk instead of the logic zero state of the ID assignment completion signal 379 as shown in FIG. 34C. Phase shift clock signal. Since the input data already has a clock from the memory controller aligned with the center of the data and the previous component (or device) produces a clock that is aligned with the center of the data. This exception only occurs before the ID assignment. This is controlled by the ID assignment completion signal 379. If it is "low", it will be connected to the "0" input of "Ref_clk". If it is "high", it will be connected to the "1" input of the 90° phase shift clock. The timing relationship between the center-aligned clock and the edge-aligned clock in the memory controller needs to be controlled to support this source synchronization mode. Comparing the case of all open PLLs, this provides a 50% reduction in power consumption when compared to the case of all open PLLs. An example of a centrally-aligned clock and edge-aligned clock control in a memory controller is disclosed in U.S. Patent Application Serial No. 12/325,074, filed on Nov. 28, 2008.

第36A圖顯示在第34A圖中之具有記憶體核心電路之控制電路807的另一範例。參照第34A及36A圖,在初始模式中ID分配電路391執行ID分配及ID計算。輸入ID的數字(IDi)係暫存於ID暫存器392中。由裝置i提供計算結果之數字(亦即ID+1)作為至下一裝置的輸出IDo。ID暫存器392保持分配到的ID。Figure 36A shows another example of a control circuit 807 having a memory core circuit in Figure 34A. Referring to Figures 34A and 36A, the ID assignment circuit 391 performs ID assignment and ID calculation in the initial mode. The number (IDi) of the input ID is temporarily stored in the ID register 392. The number of calculation results (i.e., ID+1) is provided by the device i as the output IDo to the next device. The ID register 392 maintains the assigned ID.

ID暫存器392提供代表分配到之IDi的最小有效位元(LSB)之邏輯狀態的一位元信號394至反向器396,其之反向的輸出信號係提供至反及(NAND)閘395。ID分配電路391提供ID分配完成信號399至NAND閘395,其之邏輯輸出信號係提供作為PLL_EN信號。PLL_EN信號及ID分配完成信號399係饋送至AND閘853。並且,PLL_EN信號係饋送至PLL 813、AND閘853及選擇器817與824。The ID register 392 provides a one-bit signal 394 representing the logic state of the least significant bit (LSB) assigned to IDi to the inverter 396, the inverted output signal of which is provided to the NAND gate. 395. The ID assignment circuit 391 provides an ID assignment completion signal 399 to the NAND gate 395, the logic output signal of which is provided as a PLL_EN signal. The PLL_EN signal and ID assignment completion signal 399 is fed to the AND gate 853. And, the PLL_EN signal is fed to the PLL 813, the AND gate 853, and the selectors 817 and 824.

之後,在正常操作中,第36A圖中所示的控制電路執行與第34B圖中所示之控制電路807類似的操作。Thereafter, in normal operation, the control circuit shown in Fig. 36A performs an operation similar to that of the control circuit 807 shown in Fig. 34B.

第37A圖為第34A、34C至34E及36圖中所示之裝置的時序圖。第37B圖為具有禁能PLL之第34A、34C至34E及36圖中所示之裝置的時序圖。Figure 37A is a timing diagram of the apparatus shown in Figures 34A, 34C through 34E and 36. Figure 37B is a timing diagram of the apparatus shown in Figures 34A, 34C through 34E and 36 of the disable PLL.

參照第34A、34C至34E、37A及37B圖,當PLL 813為開啟,則藉由輸入級中的90°相位位移時脈閂鎖輸入資料。輸出信號,如SCSOi及 SDSOi信號及DQi[0:3]以90°相位差與中央時脈對準。藉由此位移時脈,下一裝置可捕捉輸入資料而無需自PLL之任何時脈相位改變。這即是為何交替PLL開啟(致能)及關閉(禁能)在完全來源同步時脈結構中為可行之原因。Referring to Figures 34A, 34C through 34E, 37A and 37B, when PLL 813 is on, the data is latched by a 90° phase shift in the input stage. Output signals, such as the SCSOi and SDSOi signals and DQi[0:3], are aligned with the center clock with a 90° phase difference. By shifting the clock, the next device can capture the input data without any clock phase change from the PLL. This is why alternate PLL turn-on (enable) and turn-off (disable) are feasible in a fully source synchronous clock structure.

在具有第34A至34E、36A及36B圖中所示之裝置的系統中,從具有禁能的PLL之裝置提供邊緣對準輸出資料,並將其在與連接至前一裝置的具有致能PLL之下一裝置中重新對準。在所提出的完全來源同步時脈結構中重複兩種時序關係(如第35A及35B與37A及37B圖中所示)。In a system having the apparatus shown in Figures 34A through 34E, 36A and 36B, the edge alignment output data is provided from a device having a disabled PLL and is enabled and connected to the previous device. Realign the next device. The two timing relationships are repeated in the proposed full source synchronous clock structure (as shown in Figures 35A and 35B and 37A and 37B).

例如,在具有控制器及連接的複數裝置之系統中,以同步方法時控裝置,如來源同步方法。來源同步時脈結構可提供比共同來源同步時脈結構更高頻率操作範圍,如超過800MHz,若良好控制PLL抖動及相位誤差。有鑑於此,將在具有串聯連接記憶體之系統中採用來源同步時脈結構以提供較高資料讀取與寫入範圍及頻寬。For example, in a system having a controller and a plurality of connected devices, a time synchronization device such as a source synchronization method is used. The source synchronous clock structure provides a higher frequency operating range than the common source synchronous clock structure, such as over 800 MHz, if good control of PLL jitter and phase error. In view of this, a source synchronous clock structure will be employed in systems with serially connected memories to provide higher data read and write ranges and bandwidths.

若例如良好地設計一時脈系統並良好控制PLL抖動及相位誤差,此時脈系統可允許比共同來源時脈信號之操作範圍更高的頻率操作範圍。If, for example, a clock system is well designed and the PLL jitter and phase error are well controlled, the pulse system can allow a higher frequency operating range than the operating range of the common source clock signal.

第38圖顯示具有記憶體控制器1410及串聯連接的複數裝置之系統的另一範例。在2007年2月16日申請之名稱為「非依電性記憶體系統(Non-Volatile Memory System)」的美國臨時專利申請案60/902,003以及國際專利公開案WO/2008/109981(2008年9月18日)中更詳細說明來源同步時脈方法的範例。系統包括串聯運接之複數(N)裝置1420-1、1420-1...1420-N,N為大於一之整數。Figure 38 shows another example of a system having a memory controller 1410 and a plurality of devices connected in series. U.S. Provisional Patent Application No. 60/902,003, entitled "Non-Volatile Memory System", and International Patent Publication No. WO/2008/109981, filed on Feb. 16, 2007. An example of a source synchronization clock method is described in more detail in the 18th of the month. The system includes complex (N) devices 1420-1, 1420-1...1420-N that are connected in series, with N being an integer greater than one.

在第38圖中所示之特定範例中,記憶體控制器1410具有針對資料/位址/命令的資料出連結DOC[0:7]、命令選通輸出連結CSOC、資料選通輸出連結DSOC、晶片致能輸出連結/CEC、參考電壓連結VREF及重設輸出連結/RSTC。並且,記憶體控制器1410具有資一對時脈輸出連結CKOC及/CKOC。各裝置具有資料輸入D、命令選通輸入CSI、資料選通輸入DSI、重設輸入/RST、晶片致能輸入/CE及一對時脈輸入CK及/CK。並且,各裝置具有資料輸出Q、命令選通輸出CSO及資料選通輸出DSO。一裝置的資料輸出Q、命令選通輸出CSO及資料選通輸出DSO分別耦合至下一裝置的資料輸入D、命令選通輸入CSI及資料選通輸入DSI。裝置1420-1至1420-N從記憶體控制器1410以平行方式接收晶片致能信號「/CE」、重設信號「/RST」及參考電壓「Vref」。以序列資料或平行資料的方式來提供並傳送資料。In the particular example shown in FIG. 38, the memory controller 1410 has a data link DOC[0:7] for the data/address/command, a command strobe output link CSOC, a data strobe output link DSOC, The chip enables the output connection / CEC, the reference voltage link VREF, and the reset output link / RSTC. Further, the memory controller 1410 has a pair of clock output connections CKOC and /CKOC. Each device has a data input D, a command strobe input CSI, a data strobe input DSI, a reset input / RST, a wafer enable input / CE, and a pair of clock inputs CK and / CK. Moreover, each device has a data output Q, a command strobe output CSO, and a data strobe output DSO. The data output Q, the command strobe output CSO, and the data strobe output DSO of one device are respectively coupled to the data input D, the command strobe input CSI, and the data strobe input DSI of the next device. The devices 1420-1 to 1420-N receive the wafer enable signal "/CE", the reset signal "/RST", and the reference voltage "Vref" in parallel from the memory controller 1410. Provide and transmit data in the form of sequence data or parallel data.

記憶體控制器1410之資料輸出DOC[0:7]提供輸入資料DI1[0:7]至第一裝置1420-1的資料輸入D。第一裝置1420-1提供輸出資料DO1[0:7]至第二裝置1420-2。第二裝置1420-2接收從第一裝置1420-1所傳送的輸出資料DO1[0:7]做為其之輸入資料DI2[0:7]。其他裝置的每一個執行相同功能。The data output DOC[0:7] of the memory controller 1410 provides input data DI1[0:7] to the data input D of the first device 1420-1. The first device 1420-1 provides output data DO1[0:7] to the second device 1420-2. The second device 1420-2 receives the output data DO1[0:7] transmitted from the first device 1420-1 as its input data DI2[0:7]. Each of the other devices performs the same function.

一裝置之命令選通輸入CSI及資料選通輸入DSI分別接收CSI信號及DSI信號。並且,一裝置之命令選通輸出CSO及資料選通輸出DSO分別傳送CSO信號及DSO信號至下一裝置。由各裝置中的命令選通輸入及資料選通輸入來控制資料傳輸。各裝置提供CSI信號及DSI信號之延遲的型式(即CSO信號及DSO信號)至下一裝置。回應於時脈信號CK及/CK,執行資料、CSI及DSI之傳輸。The command strobe input CSI and the data strobe input DSI of one device respectively receive the CSI signal and the DSI signal. Moreover, the command strobe output CSO and the data strobe output DSO of one device respectively transmit the CSO signal and the DSO signal to the next device. Data transmission is controlled by command strobe input and data strobe input in each device. Each device provides a delayed version of the CSI signal and the DSI signal (ie, the CSO signal and the DSO signal) to the next device. In response to the clock signals CK and /CK, the transmission of data, CSI and DSI is performed.

在美國專利申請公開案2007/0076502(2007年4月5日)及國際專利公開案WO/2007/036048中提供具有串聯連接之裝置的架構之範例細節。在國際專利公開案WO/2008/067652及WO/2008/022454中提供具有串聯連接之裝置的架構之其他範例細節。Exemplary details of an architecture having devices connected in series are provided in U.S. Patent Application Publication No. 2007/0076502 (Aug. 5, 2007) and International Patent Publication No. WO/2007/036048. Further example details of an architecture with devices connected in series are provided in International Patent Publications WO/2008/067652 and WO/2008/022454.

最後裝置(記憶體裝置1420-N)分別提供輸出資料DO(0:7]、命令選通輸出CSO、資料選通輸出DSO及一對輸出時脈信號CKO及/CKO至記憶體控制器1410之個別的接收連結DIC、CSIC、DSIC、CKIC及/CKIC。The last device (memory device 1420-N) provides output data DO (0:7), command strobe output CSO, data strobe output DSO, and a pair of output clock signals CKO and /CKO to memory controller 1410, respectively. Individual receiving connections are DIC, CSIC, DSIC, CKIC, and /CKIC.

第39圖顯示包括串聯連接的複數裝置之來源同步時脈系統的範例。系統包括控制器(未圖示),產生控制器輸出信號1510及串聯複數裝置1520-1、1520-2、...、1520-N,N為整數。在第39圖的範例中,各裝置1520-1、1520-2、...、1520-N包含PLL 1522作為時脈重塑型器。在第39圖中,所有裝置的PLL 1522在裝置識別符(ID)分配前為開啟。PLL 1522重塑時脈形狀,無論輸入之時脈種類為何,使得各裝置產生其自己的時脈。PLL1522使各裝置1520-1、1520-2、...、1520-N能夠發送較清楚或較佳的時脈信號至下一裝置。使用產生的時脈信號,使輸出同步化成外出信號1530並發送至控制。由裝置的內部PLL 1522控制所有輸入及輸出。Figure 39 shows an example of a source synchronous clock system including a plurality of devices connected in series. The system includes a controller (not shown) that produces a controller output signal 1510 and series complex devices 1520-1, 1520-2, ..., 1520-N, where N is an integer. In the example of Fig. 39, each of the devices 1520-1, 1520-2, ..., 1520-N includes a PLL 1522 as a clock remodeling device. In Fig. 39, the PLL 1522 of all devices is turned on before the device identifier (ID) is assigned. The PLL 1522 reshapes the clock shape, regardless of the type of clock input, causing each device to generate its own clock. The PLL 1522 enables each of the devices 1520-1, 1520-2, ..., 1520-N to transmit a clearer or better clock signal to the next device. Using the generated clock signal, the output is synchronized to an outgoing signal 1530 and sent to control. All inputs and outputs are controlled by the device's internal PLL 1522.

被第一裝置1520-1視為進入信號之控制器輸出信號1510係傳送置串聯連接記憶體裝置之第一裝置1520-1。差動時脈(CK及/CK)用來製造待輸入到PLL 1522之內部參考時脈。接著提供90°相位位移時脈,並連同相位位移時脈之工作週期校正。接著以從控制器已中央對準之輸入時脈來捕捉資料,以在輸入級中執行資料捕捉而無由PLL之額外資料或時脈重塑型。PLL 1522用來重新產生內部時脈以提供自輸入時脈CK及/CK的90°時脈位移之外出資料。因此,在來源同步時脈系統上之所有裝置產生與輸出資料中央對準的時脈。The controller output signal 1510, which is considered to be the incoming signal by the first device 1520-1, transmits the first device 1520-1 that is connected in series with the memory device. The differential clock (CK and /CK) is used to create an internal reference clock to be input to the PLL 1522. A 90° phase shift clock is then provided, along with the duty cycle correction of the phase shift clock. The data is then captured with an input clock that has been centrally aligned from the controller to perform data capture in the input stage without additional data or clock remodeling by the PLL. The PLL 1522 is used to regenerate the internal clock to provide data from the 90° clock shift of the input clocks CK and /CK. Thus, all devices on the source synchronous clock system produce a clock aligned with the center of the output data.

在第一裝置1520-1中的PLL 1522產生時脈並發送其至第二裝置1520-2。第一裝置1520-1之讀取結果(若在資料讀取操作中)或進入資料的傳遞經過(若為傳輸操作)係傳送至第二裝置1520-2,連同90°位移的時脈輸出。第二裝置1520-2接收輸入時脈並亦根據從第一裝置1520-1接收到之輸入時脈來產生新的時脈。例如,第二裝置1520-2可接收從第一裝置1520-1傳遞經過之資料,或第一裝置之讀取結果,連同與進入資料中央對準之時脈。藉由此流程,資料從第一裝置1520-1傳遞至最後裝置1520-N,以從複數串聯連接記憶體裝置提供外出資料1530,其被控制器視為控制器輸入資料。The PLL 1522 in the first device 1520-1 generates a clock and transmits it to the second device 1520-2. The result of the reading of the first device 1520-1 (if in the data reading operation) or the passing of the incoming data (if it is a transfer operation) is transmitted to the second device 1520-2, along with a 90° shifted clock output. The second device 1520-2 receives the input clock and also generates a new clock based on the input clock received from the first device 1520-1. For example, the second device 1520-2 can receive the data passed from the first device 1520-1, or the result of the reading of the first device, along with the clock aligned with the center of the incoming data. By this flow, data is passed from the first device 1520-1 to the last device 1520-N to provide outgoing data 1530 from a plurality of serially connected memory devices that are considered by the controller as controller input data.

使用重塑型之時脈信號,使外出信號1530中之輸出同步化並發送至控制器。在此情況中,亦發送時脈,以判斷哪一點為有效輸出點。在一組串聯連接記憶體裝置之輸入及輸出的CK及CKO信號的相位不同。即使使用PLL頻率相同,頻率不改變。在此範例中,PLL僅作為相位位移器。在第39圖的範例中,發送或返還CKO及/CKO信號至控制器,連同DO信號。在另一範例中,可將DO發送至另一控制器。不像平行時控,輸出即時脈信號與輸入端無關。Using the reshaped clock signal, the output in the outgoing signal 1530 is synchronized and sent to the controller. In this case, the clock is also sent to determine which point is the valid output point. The phases of the CK and CKO signals at the input and output of a set of serially connected memory devices are different. Even if the PLL frequency is the same, the frequency does not change. In this example, the PLL acts only as a phase shifter. In the example of Figure 39, the CKO and /CKO signals are sent or returned to the controller, along with the DO signal. In another example, the DO can be sent to another controller. Unlike parallel time control, the output immediate pulse signal is independent of the input.

若無PLL 1522,時脈係提供至簡單的驅動器,且可在數個連接裝置之輸出變更或扭曲工作週期。事實上,在大量連接裝置的情況下,時脈可能會降級而變成穩定信號。隨著雙資料率(DDR)逐漸受到歡迎,工作週期變得重要,且可甚至為關鍵。使用PLL的一項缺點為較高的耗電量。即使具有低功率PLL之裝置仍比無PLL之裝置耗費更多電源。然而,需要PLL來確保高頻操作。Without the PLL 1522, the clock train is provided to a simple drive and can change or distort the duty cycle at the output of several connected devices. In fact, in the case of a large number of connected devices, the clock may degrade and become a stable signal. As double data rates (DDRs) become more popular, work cycles become important and can even be critical. One disadvantage of using a PLL is higher power consumption. Even devices with low power PLLs consume more power than devices without PLLs. However, a PLL is required to ensure high frequency operation.

例如,PLL可貢獻約記憶體裝置之總耗電量的10%。假設裝置使用25mW,PLL則佔了2.5mW。在具有10個裝置的系統中,PLL造成的總耗電量與整個裝置之耗電量相同。因此,本發明之實施例允許在相同耗電量臨限值內使用較多數量的裝置。For example, the PLL can contribute about 10% of the total power consumption of the memory device. Assuming the device uses 25mW, the PLL accounts for 2.5mW. In a system with 10 devices, the total power consumption of the PLL is the same as the power consumption of the entire device. Thus, embodiments of the present invention allow for the use of a greater number of devices within the same power consumption threshold.

本發明之實施例包括記憶體控制器,可在如第38或39圖中之系統中的來源同步時控方法背景中實施。在此種系統的一些實施例中,在初始設定及組態階段後,在操作期間僅開啟每第二個裝置的PLL。Embodiments of the present invention include a memory controller that can be implemented in the context of a source synchronous time control method as in the system of Figures 38 or 39. In some embodiments of such a system, only the PLL of every second device is turned on during operation after the initial setup and configuration phases.

根據本發明之一實施例,PLL之最大50%為操作中,可節省電源同時確保高頻操作。例如,在具有3個串聯裝置之系統中,其中一裝置關閉且2裝置開啟之一實施例節省一些電源。在另一實施例中,具有2裝置關閉且1裝置開啟比具有交替裝置關閉之PLL的類似配置節省更多電源。在許多其他情況中,當每一交替裝置為關閉時約關閉裝置之50%。According to an embodiment of the present invention, a maximum of 50% of the PLL is in operation, which saves power while ensuring high frequency operation. For example, in a system with three series devices, one of the devices is turned off and the second device is turned on to save some power. In another embodiment, having a 2 device off and 1 device on is more power efficient than a similar configuration with a PLL with alternate device shutdown. In many other cases, about 50% of the device is turned off when each alternating device is off.

在開啟及關閉交替的PLL之前,需開啟每一PLL,如第39圖中所示,其描繪在操作實施前組態相位期間的裝置PLL。這是在ID分配前的狀態,由於在此時尚不知道哪些裝置為奇數裝置,且那些為偶數裝置。所有裝置ID皆初始設定成0000。因此,在預先ID分配狀態中,所有裝置具有0000的ID並且每一裝置的PLL為開啟,如第39圖中所示。Each PLL needs to be turned on before turning the alternate PLL on and off, as shown in Figure 39, which depicts the device PLL during phase configuration prior to operation. This is the state before the ID is assigned, since it is not known here which devices are odd devices, and those are even devices. All device IDs are initially set to 0000. Therefore, in the pre-ID allocation state, all devices have an ID of 0000 and the PLL of each device is turned on, as shown in FIG.

在國際專利公開案WO/2007/109886(2007年10月4日)、WO/2007/134444(2007年11月29日)、WO/2008/074126(2008年6月26日)中揭露串聯連接裝置中之ID分配之範例。Serial connection is disclosed in International Patent Publication No. WO/2007/109886 (October 4, 2007), WO/2007/134444 (November 29, 2007), WO/2008/074126 (June 26, 2008). An example of ID assignment in a device.

在ID產生期間,即使各記憶體裝置具有獨特的ID數字,其不影響中央對準時脈之時脈形狀,直到最後裝置發送其ID至控制器。在各記憶體裝置及控制器中考量到一些固定的時間潛伏以避免時脈與資料操作的故障。因此,在ID分配期間無時脈重塑型。即使在分配ID至各記憶體裝置後所有裝置仍為致能。在從最後裝置取得最後ID數字後,若控制器應改變其時脈的話,控制器開始重新塑造時脈之形狀。在ID分配及時脈重塑型之間,有足夠的時間以防止故障。藉由此額外等待時間,不會有時脈與資料間之關係的突然改變所造成的故障。During ID generation, even if each memory device has a unique ID number, it does not affect the clock shape of the center-aligned clock until the last device transmits its ID to the controller. Some fixed time latency is considered in each memory device and controller to avoid faults in the clock and data operations. Therefore, there is no clock remodeling during ID assignment. All devices are enabled even after the ID is assigned to each memory device. After the final ID number is taken from the last device, if the controller should change its clock, the controller begins to reshape the shape of the clock. Between the ID assignment and the timely remodeling, there is enough time to prevent malfunctions. With this extra waiting time, there is no failure caused by sudden changes in the relationship between the time and the data.

雖在初始設定階段開啟具有PLL的所有裝置,如第39圖中所示,與裝置之整體操作時間相比,此設定為小。在一範例中,整體時間的少於1至5%係花在設定階段中。就算在電源頻繁地開啟與關閉的情況中,設定階段耗電量也只是小問題。Although all devices having a PLL are turned on in the initial setting phase, as shown in Fig. 39, this setting is small compared to the overall operation time of the device. In one example, less than 1 to 5% of the overall time is spent in the set phase. Even in the case where the power is turned on and off frequently, the power consumption in the setting phase is only a small problem.

第40A及40B圖顯示兩種不同操作實行例中之交替PLL開啟控制。根據交替PLL開啟控制的一些範例,可在電源開啟操作後節省約50%的PLL耗電量。電源開啟操作包括例如串聯連接記憶體裝置之ID產生或分配。Figures 40A and 40B show alternate PLL turn-on control in two different operational embodiments. According to some examples of alternate PLL turn-on control, approximately 50% of the PLL power consumption can be saved after the power-on operation. The power-on operation includes, for example, ID generation or distribution of serially connected memory devices.

針對第一種情況(第40A圖)及第二種情況(第40B圖)傳送不同的時脈。第40A圖描繪當分配至裝置之ID的最小有效位元(LSB)為「0」時,此裝置(偶數裝置)之PLL為開啟。第40B圖描繪當分配ID的LSB為「1」時,此裝置(奇數裝置)之PLL為開啟。在第40A及40B圖中所示的特定範例中,分配至各裝置之裝置ID為二元碼。在第40A圖中,複數裝置1620-1、1620-2、1620-3、1620-4、...、1620-N為串聯式連接。奇數裝置1620-1、1620-3...具有開啟之PLL 1622,同時偶數裝置1620-2、1620-4...具有關閉之PLL 1632。當具有偶數ID數字(「0000」、「0010」...)之裝置的PLL 1622為開啟時,將發送與資料中央對準的時脈至下一裝置。當具有奇數ID數字(「0001」、「0001」...)之裝置的PLL 1632為關閉時,將發送與資料邊緣對準的時脈至下一裝置。Different clocks are transmitted for the first case (Fig. 40A) and the second case (Fig. 40B). Figure 40A depicts that the PLL of this device (even device) is on when the least significant bit (LSB) assigned to the ID of the device is "0". Fig. 40B depicts that when the LSB of the allocation ID is "1", the PLL of this device (odd device) is on. In the specific example shown in Figures 40A and 40B, the device ID assigned to each device is a binary code. In Fig. 40A, the plurality of devices 1620-1, 1620-2, 1620-3, 1620-4, ..., 1620-N are connected in series. The odd devices 1620-1, 1620-3... have an open PLL 1622, while the even devices 1620-2, 1620-4... have a closed PLL 1632. When the PLL 1622 of the device having the even ID number ("0000", "0010"...) is turned on, the clock aligned with the center of the data is transmitted to the next device. When the PLL 1632 of the device having the odd ID number ("0001", "0001"...) is off, the clock aligned with the edge of the data is sent to the next device.

在第40B圖中,奇數裝置1640-1、1640-3...具有關閉之PLL 1642,同時偶數裝置1640-2、1640-4...具有開啟之PLL 1652。在此情況中,當具有偶數ID數字(「0000」、「0010」...)之裝置的PLL 1642為關閉時,將發送與資料邊緣對準的時脈至下一裝置。並且,當具有奇數ID數字(「0001」、「0001」...)之裝置的PLL 1652為開啟時,將發送與資料中央對準的時脈至下一裝置。In Fig. 40B, the odd devices 1640-1, 1640-3... have a closed PLL 1642, while the even devices 1640-2, 1640-4... have an open PLL 1652. In this case, when the PLL 1642 of the device having the even ID number ("0000", "0010", ...) is off, the clock aligned with the edge of the data is sent to the next device. Also, when the PLL 1652 of the device having the odd ID number ("0001", "0001"...) is turned on, the clock aligned with the center of the data is transmitted to the next device.

根據交替PLL控制方式,記憶體控制器將根據在任何正常操作開始前會發生的偵測來預期不同之時脈與資料時序關係。Depending on the alternate PLL control mode, the memory controller will expect different clock and data timing relationships based on the detection that would occur before any normal operation begins.

第41A圖顯示與串聯連接裝置中之最後裝置的ID數字的時脈對準判斷之範例的流程圖,如針對與第40A圖相關描述的情況1或第一情況。在步驟1711中,重設所有裝置的狀態。所有裝置之PLL如第39圖中所示般為開啟。在步驟1712中,從記憶體控制器發送一與資料中央對準的時脈,並在記憶體控制器接收一與資料中央對準的時脈,如來自最後記憶體體構件(最後裝置1620-N)。在步驟1713中,分配獨特的識別符或ID給串聯連接裝置1620-1至1620-N中的各個裝置。例如,可序列式分配裝置ID。在步驟1714中,記憶體控制器接收分配給最後裝置1620-N的ID數字。在步驟1715中,記憶體控制器判斷最後裝置之ID數字的最小有效位元(LSB)是否為「1」。Fig. 41A is a flow chart showing an example of the clock alignment judgment of the ID number of the last device in the series connection device, as in case 1 or the first case described in relation to Fig. 40A. In step 1711, the state of all devices is reset. The PLL of all devices is turned on as shown in Fig. 39. In step 1712, a clock aligned with the center of the data is transmitted from the memory controller, and a clock aligned with the center of the data is received at the memory controller, such as from the last memory body member (last device 1620- N). In step 1713, a unique identifier or ID is assigned to each of the series connected devices 1620-1 through 1620-N. For example, the device ID can be assigned serially. In step 1714, the memory controller receives the ID number assigned to the last device 1620-N. In step 1715, the memory controller determines whether the least significant bit (LSB) of the ID number of the last device is "1".

如第41A圖中之步驟1716中所示,若最後裝置的ID之LSB為「1」(如「1101」(奇數ID):步驟1715的「是」),則從記憶體控制器提供與資料邊緣對準之時脈,並且從最後裝置1620-N提供與資料邊緣對準之時脈至記憶體控制器。在步驟1717中,若最後裝置的ID之LSB為「0」(如「1100」(偶數ID):步驟1715的「否」),則從記憶體控制器提供與資料邊緣對準之時脈至第一裝置1620-1,並且從最後裝置(如分配有ID「1100」的裝置)提供與資料中央對準之時脈至記憶體控制器。As shown in step 1716 in FIG. 41A, if the LSB of the ID of the last device is "1" (eg, "1101" (odd ID): "Yes" in step 1715), the data is provided from the memory controller. The edge is aligned with the clock and the clock from the edge of the data is provided from the last device 1620-N to the memory controller. In step 1717, if the LSB of the ID of the last device is "0" (such as "1100" (even ID): "No" in step 1715), the clock from the memory controller is aligned with the edge of the data to The first device 1620-1, and from the last device (such as the device assigned the ID "1100") provides a clock aligned with the center of the data to the memory controller.

第41B圖顯示與串聯連接裝置中之最後裝置的ID數字的時脈對準判斷之另一範例的流程圖,如針對與第40A圖相關描述的情況2或第二情況。在步驟1721中,重設所有裝置的狀態。所有裝置之PLL如第39圖中所示般為開啟。在步驟1722中,從記憶體控制器發送一與資料中央對準的時脈至第一裝置1640-1,並在控制器接收一與資料中央對準的時脈,如來自記憶體體構件(最後裝置1640-N)。在步驟1723中,分配獨特的識別符或ID給串聯連接裝置中的各個裝置。在步驟1724中,記憶體控制器接收分配給最後裝置1640-N的ID數字。在步驟1725中,記憶體控制器判斷接收之ID數字的LSB是否為「1」。如步驟1726中所示,若最後裝置的ID之LSB為「1」(如「1101」(奇數ID):步驟1725的「是」),則從最後裝置1640-N提供與資料中央對準之時脈至記憶體控制器。若接收的ID之LSB為「0」(如「1100」(偶數ID):步驟1725的「否」),則從記憶體構件(如ID「1100」的裝置)提供與資料邊緣對準之時脈至記憶體控制器。Fig. 41B is a flow chart showing another example of the clock alignment judgment of the ID number of the last device in the series connection device, as in the case 2 or the second case described in relation to Fig. 40A. In step 1721, the state of all devices is reset. The PLL of all devices is turned on as shown in Fig. 39. In step 1722, a clock aligned with the center of the data is sent from the memory controller to the first device 1640-1, and the controller receives a clock aligned with the center of the data, such as from a memory body member ( Last device 1640-N). In step 1723, a unique identifier or ID is assigned to each of the series connected devices. In step 1724, the memory controller receives the ID number assigned to the last device 1640-N. In step 1725, the memory controller determines whether the LSB of the received ID number is "1". As shown in step 1726, if the LSB of the ID of the last device is "1" (eg, "1101" (odd ID): "Yes" in step 1725), the last device 1640-N is provided with the center of the data. Clock to memory controller. If the LSB of the received ID is "0" (such as "1100" (even ID): "No" in step 1725), then the memory component (such as the device of ID "1100") is provided with the edge of the data. Pulse to memory controller.

在第41B圖之方法中,尤其在步驟1726及1727中,在記憶體控制器中之中央對準時脈之使用為隱含的。當重設ID數字時,在控制器中使用中央對準時脈。一旦分配ID數字給記憶體裝置,此時脈不會改變。In the method of Figure 41B, particularly in steps 1726 and 1727, the use of a centrally aligned clock in the memory controller is implicit. When resetting the ID number, the center alignment clock is used in the controller. Once the ID number is assigned to the memory device, the pulse will not change.

第41A圖之流程圖係針對情況1,其中具有偶數LSB(LSB=0)裝置具有開啟的PLL。第41B圖之流程圖係針對情況2,其中具有LSB=1之裝置,PLL=開啟。在各情況中,考量到連接裝置的數量。取決於裝置數量,以及情況,選擇邊緣對準或中央對準時脈。方法中的步驟僅考量分配至串聯連接裝置的最後裝置之ID數字的LSB。有四種不同的情況,且控制器針對不同情況具有不同時脈控制。針對這四種情況僅有兩種不同的操作或輸出情況:邊緣對準或中央對準。The flowchart of Fig. 41A is for Case 1, in which an even LSB (LSB = 0) device has an open PLL. The flowchart of Fig. 41B is for Case 2, in which device with LSB = 1, PLL = On. In each case, the number of connected devices is considered. Depending on the number of devices, as well as the situation, choose edge alignment or center alignment clock. The steps in the method only consider the LSB of the ID number assigned to the last device of the series connected device. There are four different situations and the controller has different clock controls for different situations. There are only two different operations or outputs for these four cases: edge alignment or center alignment.

目前較佳之實施例包括針對複數串聯記憶體裝置之PLL(如一開、一關、一開、一關等等)的單一交替開/關型樣。在其他實施例中,可實行其他的型樣,但可能無法提供高頻操作。根據ID分配狀態,各裝置可認定已接收之ID分配命令,且根據裝置之ID數字的LSB,是否開啟或關閉其之PLL。Presently preferred embodiments include a single alternating on/off pattern for a PLL (e.g., one on, one off, one on, one off, etc.) of a plurality of series memory devices. In other embodiments, other patterns may be implemented, but high frequency operation may not be provided. Depending on the ID assignment status, each device can determine the received ID assignment command and whether to turn its PLL on or off based on the LSB of the device's ID number.

取決於裝置數量,時脈對準有所不同。在其中偶數LSB之PLL開啟的情況中,且裝置串列包括偶數數量的裝置,最後裝置具有邊緣對準時脈。針對奇數數量的裝置,最後裝置具有中央對準時脈。在其中奇數LSB之PLL開啟的情況中,且裝置串列包括偶數數量的裝置,最後裝置具有中央對準時脈。針對奇數數量的裝置,最後裝置具有邊緣對準時脈。因此,最後時脈對準可依照不同情況而變。The timing alignment varies depending on the number of devices. In the case where the PLL of the even LSB is turned on, and the device string includes an even number of devices, the last device has an edge-aligned clock. For an odd number of devices, the last device has a centrally aligned clock. In the case where the PLL of the odd LSB is turned on, and the device string includes an even number of devices, the last device has a center aligned clock. For an odd number of devices, the last device has an edge-aligned clock. Therefore, the final clock alignment can vary depending on the situation.

第42圖顯示範例電源開啟序列中之ID產生時序。時序圖描繪在電源開啟序列中相互比照之數個信號的相對狀態,包括VCC/VCCQ、/RST、/CE、Ck、/CK、CSI、DSI及DI。並且,顯示數組信號DSO及DO。在第42圖中所示的特定範例中,N為裝置位址(在此範例中N=30);「Dev」代表裝置數字且「CTRL」代表控制器。Figure 42 shows the ID generation timing in the example power-on sequence. The timing diagram depicts the relative states of the signals that are compared to each other in the power-on sequence, including VCC/VCCQ, /RST, /CE, Ck, /CK, CSI, DSI, and DI. Also, the array signals DSO and DO are displayed. In the particular example shown in Figure 42, N is the device address (in this example, N = 30); "Dev" represents the device number and "CTRL" represents the controller.

根據本發明之一實施例的記憶體控制器具有判斷應分配哪一種時脈對準的特徵。這係根據交替PLL之哪一種配置(奇數或偶數)為開啟,且根據串聯連接裝置的總數。本發明之實施例控制是否發送中央對準或邊緣對準時脈,並以自動方式進行。A memory controller in accordance with an embodiment of the present invention has features that determine which clock alignment should be assigned. This is based on which of the alternate PLL configurations (odd or even) is turned on, and according to the total number of connected devices in series. Embodiments of the present invention control whether a center alignment or edge alignment clock is transmitted and is performed in an automated manner.

根據本發明之一實施例的記憶體控制器可根據串聯連接記憶體裝置之邏輯組態來判斷要傳送哪種時脈至記憶體並從記憶體接收哪種時脈。本發明之實施例可連同完全來源同步時控方法一起使用,並有交替PLL控制。一些PLL為開啟或關閉,根據其之位置或ID分配。針對此方式需要根據本發明之一實施例的一種新型的記憶體控制器。The memory controller according to an embodiment of the present invention can determine which clock to transmit to the memory and which clock to receive from the memory according to the logical configuration of the serially connected memory device. Embodiments of the present invention can be used in conjunction with a fully source synchronous time control method with alternate PLL control. Some PLLs are turned on or off, depending on their location or ID assignment. There is a need for a new type of memory controller in accordance with an embodiment of the present invention.

第43A及43B圖顯示記憶體控制器的一範例之電路圖,具有第一情況(前述與第40A及41A圖相關說明之情況1)之與時脈撓性的資料對準。邏輯組合僅為一範例,使熟悉此技藝人士可輕易製造不同類型之電路組態。針對情況1,控制器應產生與資料邊緣對準之時脈。Figures 43A and 43B show a circuit diagram of an example of a memory controller having data alignment with clock flexibility for the first case (case 1 described above in connection with Figures 40A and 41A). The logical combination is only an example, so that those skilled in the art can easily manufacture different types of circuit configurations. For Case 1, the controller should generate a clock that is aligned with the edge of the data.

參照第43A及43B圖,欲從記憶體控制器提供與資料中央對準之時脈,Clock_out 1901及/Clock_out 1902與Clk360_out 1903同步。DO(命令/位址/資料)1904、CSO(命令選通輸出)1905及DSO(資料選通輸出)1906信號與Clk270_out 1907同步。具有時脈振盪器1911之時脈產生器1910、PLL 1912及複數輸出緩衝器產生時脈信號。由時脈振盪器1911提供內部產生的時脈信號「Clk_src」1913至PLL 1912的參考時脈輸入「Ref_clock」,其則產生複數90°、180°、270°及360°相位位移時脈信號。180°、270°及360°相位位移時脈信號係經由個別的輸出緩衝器提供作為Clk180_out 1909、Clk270_out 1907及Clk360_out 1903。Clk180_out 1909、Clk270_out 1907及Clk360_out 1903與內部產生時脈信號1913同步。Clk360_out 1903及Clk270_out 1907係提供至包括兩個選擇器1981及1982之模式偵測邏輯電路1980,選擇器各具有「0」及「1」輸入及選擇輸入。選擇器1981之「0」及「1」輸入分別接收Clk360_out 1903及Clk270_out 1907。選擇器1982之「1」輸入接收Clk270_out 1907,且選擇器1982之「0」輸入為下拉。選擇器1982之選擇輸入為上拉且因此,總會選擇其之「1」輸入到輸出Clk270_out作為選擇的270時脈信號1983。Referring to Figures 43A and 43B, Clock_out 1901 and /Clock_out 1902 are synchronized with Clk360_out 1903 to provide a clock alignment with the data center from the memory controller. DO (command/address/data) 1904, CSO (command strobe output) 1905, and DSO (data strobe output) 1906 signals are synchronized with Clk270_out 1907. A clock generator 1910, a PLL 1912, and a complex output buffer having a clock oscillator 1911 generate a clock signal. The internally generated clock signal "Clk_src" 1913 is supplied by the clock oscillator 1911 to the reference clock input "Ref_clock" of the PLL 1912, which generates a plurality of 90°, 180°, 270°, and 360° phase shift clock signals. The 180°, 270°, and 360° phase shift clock signals are provided as Clk180_out 1909, Clk270_out 1907, and Clk360_out 1903 via separate output buffers. Clk180_out 1909, Clk270_out 1907, and Clk360_out 1903 are synchronized with the internally generated clock signal 1913. Clk360_out 1903 and Clk270_out 1907 are provided to mode detection logic circuit 1980 including two selectors 1981 and 1982, each having a "0" and "1" input and selection input. The "0" and "1" inputs of the selector 1981 receive Clk360_out 1903 and Clk270_out 1907, respectively. The "1" input of the selector 1982 receives Clk270_out 1907, and the "0" input of the selector 1982 is a pull-down. The selection input of the selector 1982 is a pull-up and therefore, the "1" input to the output Clk270_out is always selected as the selected 270 clock signal 1983.

控制邏輯電路1924具有各種輸入及輸出連結。控制邏輯電路1924之輸入Icsi中的內部命令選通從D型正反器(D-FF)1939接收信號「icsi」1925中的內部命令選通。類似地,輸入Idsi中的內部資料選通從D-FF 1957接收信號「idsi」1915中的內部資料選通。時脈輸入Iclk接收Clk360_out 1903。控制邏輯電路1924從其「Power_up_seq_done」輸出提供「ID_assignment_status」信號1933,以及從其Oltid輸出提供閂鎖ID信號「latch_ID」1927。「ID_assign ment_status」信號1933代表ID分配是否完成或正在進行中的狀態。ID分配狀態係在電源開啟序列中。Control logic circuit 1924 has various input and output connections. The internal command strobe in the input Icsi of control logic circuit 1924 receives the internal command strobe in signal "icsi" 1925 from D-type flip-flop (D-FF) 1939. Similarly, the internal data strobe in the input Idsi receives the internal data strobe from the D-FF 1957 signal "idsi" 1915. The clock input Iclk receives Clk360_out 1903. The control logic circuit 1924 provides an "ID_assignment_status" signal 1933 from its "Power_up_seq_done" output and a latch ID signal "latch_ID" 1927 from its Oltid output. The "ID_assignment_status" signal 1933 represents a state in which the ID assignment is complete or in progress. The ID assignment status is in the power on sequence.

「ID_assign ment_status」信號1933係饋送至選擇器1981之選擇輸入。來自選擇器1981之選擇的輸出信號係提供至選擇器1921及1922的選擇輸入,選擇器1921及1922各具有「0」及「1」輸入及選擇輸入。分別提供邏輯「0」及「1」信號至選擇器1921之「0」及「1」輸入。分別提供邏輯「1」及「0」信號至選擇器1922之「0」及「1」輸入。選擇器1921及1922的選擇輸入從選擇器1981接收選擇的輸出信號。選擇器1921及1922的選擇輸出信號係經由個別的輸出緩衝器1923及1926提供作為Clock_out 1901及/Clock_out 1902。The "ID_assignment_status" signal 1933 is fed to the selection input of the selector 1981. The output signal from the selection of selector 1981 is provided to the selection inputs of selectors 1921 and 1922, each of which has a "0" and "1" input and selection input. The logic "0" and "1" signals are respectively supplied to the "0" and "1" inputs of the selector 1921. The logic "1" and "0" signals are respectively supplied to the "0" and "1" inputs of the selector 1922. The select inputs of selectors 1921 and 1922 receive the selected output signal from selector 1981. The select output signals of selectors 1921 and 1922 are provided as Clock_out 1901 and /Clock_out 1902 via respective output buffers 1923 and 1926.

Clk360_out 1903亦係提供至命令/位址/資料產生器1928,其則提供位元0至7的八位元資料。偶數位元[0,2,4,6]的四位元及奇數位元[1,3,5,7]的四位元係分別提供至D-FF 1929及1936的資料D輸入。Clk180_out 1909係提供至D-FF 1929的時脈輸入及D-FF 1936的反向時脈輸入。偶數位元[0,2,4,6]及奇數位元[1,3,5,7]係分別閂鎖在D-FF 1929及1936中。D-FF 1929及1936分別提供偶數資料位元「Even_d」及奇數資料位元「Odd_d」至選擇器1937的「1」及「0」輸入。「Odd_d」自「Even_d」180°相位位移。回應於選擇的270時脈信號1983,選擇器1937選擇偶數或奇數資料位元。選擇的資料位元係經由輸出緩衝器1938提供作為DO(命令/位址/資料)1904。Clk360_out 1903 is also provided to command/address/data generator 1928, which provides octet data for bits 0 through 7. The four-bit system of the even-numbered bits [0, 2, 4, 6] and the four-bit system of the odd-numbered bits [1, 3, 5, 7] are supplied to the data D input of the D-FFs 1929 and 1936, respectively. Clk180_out 1909 provides clock input to D-FF 1929 and reverse clock input to D-FF 1936. The even bits [0, 2, 4, 6] and the odd bits [1, 3, 5, 7] are latched in the D-FFs 1929 and 1936, respectively. D-FF 1929 and 1936 provide the input of the even data bit "Even_d" and the odd data bit "Odd_d" to the "1" and "0" of the selector 1937, respectively. "Odd_d" is 180° phase shifted from "Even_d". In response to the selected 270 clock signal 1983, the selector 1937 selects even or odd data bits. The selected data bits are provided as a DO (Command/Address/Profile) 1904 via output buffer 1938.

控制邏輯電路1924分別從其輸出CSO_SRC及DSO_SRC提供命令選通輸出及資料選通輸出信號,其連接至命令選通輸出電路1941及資料選通輸出電路1946。回應於Clk360_out 1903之內部產生的命令選通輸出信號係饋送至命令選通輸出電路1941的兩D-FF 1942及1943之D輸入。Clk180_out 1909係提供至D-FF 1942的時脈輸入及D-FF 1943的反向時脈輸入。D-FF 1942及1943的輸出信號分別作為「icso_1」及「icso_2」信號提供至選擇器1944之「1」及「0」輸入。「icso_2」信號與「icso_1」信號為180°相位位移。回應於選擇的270時脈信號1983,選擇器1944選擇「icso_1」及「icso_2」信號之一,且選擇的信號係經由輸出緩衝器1945提供作為CSO 1905。Control logic circuit 1924 provides command strobe output and data strobe output signals from its outputs CSO_SRC and DSO_SRC, respectively, which are coupled to command strobe output circuit 1941 and data strobe output circuit 1946. The internally generated command strobe output signal in response to Clk360_out 1903 is fed to the D inputs of the two D-FFs 1942 and 1943 of the command strobe output circuit 1941. Clk180_out 1909 provides clock input to D-FF 1942 and reverse clock input to D-FF 1943. The output signals of the D-FFs 1942 and 1943 are supplied to the "1" and "0" inputs of the selector 1944 as "icso_1" and "icso_2" signals, respectively. The "icso_2" signal and the "icso_1" signal are 180° phase shifted. In response to the selected 270 clock signal 1983, the selector 1944 selects one of the "icso_1" and "icso_2" signals, and the selected signal is provided as the CSO 1905 via the output buffer 1945.

資料選通輸出電路1946與包括兩D-FF及一選擇器的命令選通輸出電路1941有相同的結構。回應於C1k360_out 1903之內部產生的資料選通輸出信號係從控制邏輯電路1924提供至資料選通輸出電路1946的兩D-FF 1947及1948之D輸入。C1k180_out 1909係提供至D-FF 1947的時脈輸入及D-FF 1948的反向時脈輸入。來自D-FF 1947及1948的「idso_1」及「idso_2」輸出信號係饋送至選擇器1949之「1」及「0」輸入。「idso_2」信號與「idso_1」信號為180°相位位移。回應於選擇的270時脈信號1983,選擇器1949選擇「idso_1」及「idso_2」信號之一,且選擇的信號係經由輸出緩衝器1951提供作為DSO(資料選輸出)1905。The data strobe output circuit 1946 has the same structure as the command strobe output circuit 1941 including two D-FFs and a selector. The data strobe output signal generated in response to C1k360_out 1903 is supplied from control logic circuit 1924 to the D inputs of two D-FFs 1947 and 1948 of data strobe output circuit 1946. C1k180_out 1909 provides clock input to D-FF 1947 and reverse clock input to D-FF 1948. The "idso_1" and "idso_2" output signals from D-FF 1947 and 1948 are fed to the "1" and "0" inputs of selector 1949. The "idso_2" signal and the "idso_1" signal are 180° phase shifted. In response to the selected 270 clock signal 1983, the selector 1949 selects one of the "idso_1" and "idso_2" signals, and the selected signal is provided as a DSO (Data Selection Output) 1905 via the output buffer 1951.

最後(第N個)裝置1420-N(參見第38圖)發送CKO及/CKO信號至記憶體控制器1410。CKO及/CKO信號係提供作為Clock_in1934及Clock_in#1935至差動輸入緩衝器1952的「+」及「-」輸入,其則提供參考時脈信號Ref_clk 1953。參考時脈信號1953係饋送至PLL1970的參考時脈輸入「Ref_clk」及選擇器1960之「0」輸入。PLL 1970輸出相位位移與參考時脈信號1953為90°、180°、270°及360°的四個時脈信號。90°相位時脈信號係經由輸出緩衝器提供作為「Clk90_in」至選擇器1960之「1」輸入。360°相位時脈信號係經由輸出緩衝器提供作為「Clk360_in」至PLL 1970之「Osc_1oop Input」。「Latch_ID」信號1927係提供至構件ID暫存器1920,其從資料暫存器1940接收八位元「Idata[0:7]」的內部資料信號1968。構件ID暫存器1920回應於「Latch_ID」信號1927而儲存輸入資料。構件ID暫存器1920輸出其所暫存之ID的最小有效位元(LSB)至AND閘1950,其接收「ID_assignment_status」信號1933。AND閘1950提供邏輯輸出信號至選擇器1960的選擇輸入以選擇參考時脈信號1953或90°相位位移之時脈信號「Clk90_in」。來自選擇器1960的選擇時脈信號1959係提供至D-FF 1939及1957之時脈輸入。The last (Nth) device 1420-N (see Figure 38) sends the CKO and /CKO signals to the memory controller 1410. The CKO and /CKO signals are provided as "+" and "-" inputs to Clock_in 1934 and Clock_in #1935 to the differential input buffer 1952, which provides a reference clock signal Ref_clk 1953. The reference clock signal 1953 is fed to the reference clock input "Ref_clk" of the PLL 1970 and the "0" input of the selector 1960. The PLL 1970 outputs four clock signals with phase shift and reference clock signal 1953 of 90°, 180°, 270°, and 360°. The 90° phase clock signal is supplied as a "1" input from "Clk90_in" to selector 1960 via the output buffer. The 360° phase clock signal is supplied as "Osc_1oop Input" from "Clk360_in" to PLL 1970 via the output buffer. The "Latch_ID" signal 1927 is provided to the component ID register 1920, which receives the internal data signal 1968 of the octet "Idata[0:7]" from the data register 1940. The component ID register 1920 stores the input data in response to the "Latch_ID" signal 1927. The component ID register 1920 outputs the least significant bit (LSB) of its temporarily stored ID to the AND gate 1950, which receives the "ID_assignment_status" signal 1933. The AND gate 1950 provides a logic output signal to the select input of the selector 1960 to select the clock signal "Clk90_in" of the reference clock signal 1953 or 90° phase shift. The selected clock signal 1959 from selector 1960 provides clock inputs to D-FFs 1939 and 1957.

最後(第N個)裝置1420-N(參見第38圖)發送DI信號1931、DSI信號1932及CSI信號1916至記憶體控制器1410。DI信號「資料/位址/命令輸入」1931、DSI信號「資料選通輸入」1932及CSI信號「命令選通輸入」1916至記憶體控制器1410。參考電壓「Vref」1917係在記憶體控制器1410本身中內部產生或從電源產生器(未圖示)外部產生。參考電壓Vref係提供至差動輸入緩衝器1954之「-」輸入,其之「+」輸入接收CSI 1916。輸入緩衝器1954輸出差動緩衝器輸出信號至D-FF 1939的D輸入,其回應於選擇的時脈信號1959而輸出「ics1」信號1925至控制邏輯電路1924。The last (Nth) device 1420-N (see Figure 38) transmits a DI signal 1931, a DSI signal 1932, and a CSI signal 1916 to the memory controller 1410. The DI signal "data/address/command input" 1931, the DSI signal "data strobe input" 1932, and the CSI signal "command strobe input" 1916 to the memory controller 1410. The reference voltage "Vref" 1917 is generated internally in the memory controller 1410 itself or externally from a power generator (not shown). The reference voltage Vref is supplied to the "-" input of the differential input buffer 1954, and the "+" input thereof receives the CSI 1916. Input buffer 1954 outputs a differential buffer output signal to the D input of D-FF 1939, which outputs an "ics1" signal 1925 to control logic circuit 1924 in response to selected clock signal 1959.

DSI信號1932及參考電壓Vref信號係提供至差動輸入緩衝器1955之「+」及「-」輸入,其之差動輸入緩衝器輸出信號係饋送至D-FF 1957之D輸入。資料信號「D」1931及參考電壓Vref信號係提供至差動輸入緩衝器1956之「+」及「-」輸入,其之差動輸入緩衝器輸出信號1967係饋送至閂鎖器電路1961及1963。電路1961包括串聯連接之四個D-FF 1965-6、1965-4、...、1965-0。D-FF之Q輸出係耦合至下一D-FF的D輸入。類似地,電路1963包括串聯連接之四個D-FF 1965-7、1965-5、...、1965-1。The DSI signal 1932 and the reference voltage Vref signal are supplied to the "+" and "-" inputs of the differential input buffer 1955, and the differential input buffer output signal is fed to the D input of the D-FF 1957. The data signal "D" 1931 and the reference voltage Vref signal are supplied to the "+" and "-" inputs of the differential input buffer 1956, and the differential input buffer output signal 1967 is fed to the latch circuits 1961 and 1963. . Circuit 1961 includes four D-FFs 1965-6, 1965-4, ..., 1965-0 connected in series. The Q output of the D-FF is coupled to the D input of the next D-FF. Similarly, circuit 1963 includes four D-FFs 1965-7, 1965-5, ..., 1965-1 connected in series.

D-FF 1957之輸出信號係提供作為信號「idsi」1915中之內部資料選通。「idsi」信號1915係提供至控制邏輯電路1924並至具有八個AND閘1958-7、1958-6、...、1958-0之電路1962中之資料選通。來自選擇器1960之選擇的時脈信號1959係提供至D-FF 1965-6、1965-4、...1965-0及D-FF 1965-7、1965-5、...1965-1之反向時脈輸入。來自輸入緩衝器1956的差動輸入緩衝器輸出信號1967回應於選擇的輸入信號1959而饋送至D-FF 1965-6的D輸入並依序傳輸至電路1961中連接的D-FF。並且,來自輸入緩衝器1956差動輸入緩衝器輸出信號1967回應於選擇的輸入信號1959的反向型式而饋送至D-FF 1965-7的D輸入並依序傳輸至電路1963中連接的D-FF。因此,電路1963中之資料傳輸與電路1961的180°相位位移。D-FF 1965-7及1965-6的輸出信號i7及i6係分別饋送至AND閘1958-7及1958-6。類似地,D-FF 1965-5及1965-4、...、1965-1及1965-0的輸出信號係饋送至電路1962中之資料選通之個別的AND閘。AND閘1958-7、1958-6、...、1958-0之每一個接收「idsi」信號1915。AND閘1958-7、1958-6、...、1958-0之每一個的邏輯輸出信號係提供至資料暫存器1940,其輸出內部資料信號「Idata[0:7]」1968。The output signal of D-FF 1957 is provided as an internal data strobe in signal "idsi" 1915. The "idsi" signal 1915 is provided to the control logic circuit 1924 and to the data strobe in circuit 1962 having eight AND gates 1958-7, 1958-6, ..., 1958-0. The clock signal 1959 from the selection of selector 1960 is provided to D-FF 1965-6, 1965-4, ... 1965-0 and D-FF 1965-7, 1965-5, ... 1965-1 Reverse clock input. The differential input buffer output signal 1967 from input buffer 1956 is fed to the D input of D-FF 1965-6 in response to the selected input signal 1959 and sequentially transmitted to the D-FF connected in circuit 1961. And, the differential input buffer output signal 1967 from the input buffer 1956 is fed to the D input of the D-FF 1965-7 in response to the inverted version of the selected input signal 1959 and sequentially transmitted to the connected D- in the circuit 1963. FF. Thus, the data in circuit 1963 is transmitted with a 180° phase shift of circuit 1961. The output signals i7 and i6 of D-FF 1965-7 and 1965-6 are fed to AND gates 1958-7 and 1958-6, respectively. Similarly, the output signals of D-FF 1965-5 and 1965-4, ..., 1965-1, and 1965-0 are fed to the individual AND gates of the data strobes in circuit 1962. Each of the AND gates 1958-7, 1958-6, ..., 1958-0 receives the "idsi" signal 1915. The logic output signal of each of the AND gates 1958-7, 1958-6, ..., 1958-0 is supplied to the data register 1940, which outputs the internal data signal "Idata[0:7]" 1968.

在獲得串聯連接記憶體裝置上的最後裝置之ID數字前,記憶體控制器不會從最後裝置之輸出埠獲得任何輸入。在傳送初始ID數字(如「0000」)後,記憶體控制器之輸入埠接收輸入資料串流。由DSI(資料選通輸入)之下降邊緣來執行ID分配完成之判斷。The memory controller does not obtain any input from the output of the last device until the ID number of the last device on the serial device is obtained. After transmitting the initial ID number (such as "0000"), the input of the memory controller receives the input data stream. The judgment of the completion of the ID assignment is performed by the falling edge of the DSI (Data Strobe Input).

一旦記憶體控制器從串聯連接記憶體裝置之最後裝置獲得ID數字,回應於「Latch_ID」信號1927,ID數字係透過D埠1931儲存在構件ID暫存器1920及資料暫存器1940中,如第43B圖中所示。當正在執行此操作時,亦接收DSI 1932以告知記憶體控制器ID數字之起點與結束點。從DSI信號之下降邊緣,「ID_assignment_status」信號1933根據其中ID數字傳輸至構件ID暫存器1920之一週期的延遲來判斷過渡點。由從D-FF 1957接收「idsi」信號1915之控制邏輯電路1924提供「ID_assignment_status」信號1933。針對記憶體裝置之ID產生,DSI及DSO係用來產生ID數字並傳送ID號碼至下一記憶體裝置。當「ID_assignment_status」信號1933處於高狀態,記憶體控制器認識到ID產生操作的結束,亦即裝置ID分配之完成。Once the memory controller obtains the ID number from the last device connected in series with the memory device, in response to the "Latch_ID" signal 1927, the ID number is stored in the component ID register 1920 and the data register 1940 via D埠1931, such as Shown in Figure 43B. While this operation is being performed, DSI 1932 is also received to inform the start and end points of the memory controller ID number. From the falling edge of the DSI signal, the "ID_assignment_status" signal 1933 determines the transition point based on the delay in which one of the ID numbers is transmitted to the member ID register 1920. Control logic circuit 1924, which receives "idsi" signal 1915 from D-FF 1957, provides an "ID_assignment_status" signal 1933. For ID generation of the memory device, DSI and DSO are used to generate the ID number and transmit the ID number to the next memory device. When the "ID_assignment_status" signal 1933 is in the high state, the memory controller recognizes the end of the ID generation operation, that is, the completion of the device ID assignment.

當「ID_assignment_status」信號為低,則所有裝置之PLL為開啟以初始分配ID數字至其所有。當「ID_assignment_status」信號為高,則分配所有ID,且PLL開啟僅施加至奇數或偶數的裝置。因此,這由ID分配狀態信號控制。When the "ID_assignment_status" signal is low, the PLLs of all devices are turned on to initially assign the ID number to all of them. When the "ID_assignment_status" signal is high, all IDs are assigned, and the PLL is turned on only to odd or even devices. Therefore, this is controlled by the ID assignment status signal.

在初始狀態中,記憶體控制器不知道判斷串聯受控裝置處於之情況所需的資訊。因此,CKO、/CKO及DO信號係提供至記憶體控制器作為CK、/CK及DI,如第43B圖中所示。在電源開啟前,裝置並未分配到ID數字。在電源開啟後,第一項操作為重設裝置ID使得每一裝置具有零狀態ID(如「0000」)。In the initial state, the memory controller does not know the information needed to determine the situation in which the serially controlled device is in. Therefore, the CKO, /CKO, and DO signals are supplied to the memory controller as CK, /CK, and DI as shown in Fig. 43B. The device is not assigned an ID number until the power is turned on. After the power is turned on, the first operation is to reset the device ID so that each device has a zero state ID (such as "0000").

如第43B圖中所示,「ID_assignment_status」信號1933及分配給最後記憶體裝置之ID的LSB(儲存於構件ID暫存器1920)皆提供至AND閘1950。回應於AND閘1950之輸出,時脈選擇器1960選擇記憶體控制器將提供之時脈。在第43B圖之範例中,PLL 1970(其為相位位移器及時脈重塑型器)之輸出Clk90_in係連接至時脈選擇器1960之輸入。在一實施例中,元件1960及1970皆可視為時脈組態器之一部分。當AND閘1950偵測到ID分配完成時,如藉由偵測「ID_assignment_status」信號1933為高,輸出為構件ID暫存器1920之LSB。當ID分配未完成時,時脈選擇器1960選擇參考時脈信號Ref_clk 1953。選擇器1960提供選擇的時脈信號1959。As shown in FIG. 43B, the "ID_assignment_status" signal 1933 and the LSB (stored in the component ID register 1920) assigned to the ID of the last memory device are supplied to the AND gate 1950. In response to the output of the AND gate 1950, the clock selector 1960 selects the clock that the memory controller will provide. In the example of Figure 43B, the output Clk90_in of PLL 1970, which is a phase shifter and pulse remodeling, is coupled to the input of clock selector 1960. In an embodiment, components 1960 and 1970 can all be considered part of the clock configurator. When the AND gate 1950 detects that the ID assignment is complete, if the "ID_assignment_status" signal 1933 is detected as high, the output is the LSB of the component ID register 1920. When the ID assignment is not complete, the clock selector 1960 selects the reference clock signal Ref_clk 1953. The selector 1960 provides the selected clock signal 1959.

在ID分配情況中,在ID產生期間記憶體裝置之所有的PLL為開啟,且來自串聯連接記憶體裝置之最後裝置的來源同步時脈與資料中央對準。如第43A及43B圖中所示,記憶體控制器提供中央對準信號或邊緣對準信號,取決於ID分配是否已完成之偵測。In the case of ID assignment, all of the PLLs of the memory device are turned on during ID generation, and the source sync clock from the last device connected in series with the memory device is aligned with the center of the data. As shown in Figures 43A and 43B, the memory controller provides a central alignment signal or edge alignment signal depending on whether the ID assignment has been completed.

參照回第43A圖,記憶體控制器包括模式偵測邏輯電路1980,以偵測ID分配是否完成,並回應於偵測而產生時脈信號。在第43A圖的範例中,模式偵測邏輯電路1980回應於模式偵測邏輯偵測到ID分配並未完成而輸出與Clk360_out 1903對準之中央對準時脈。模式偵測邏輯電路1980回應於模式偵測邏輯偵測到ID分配完成而輸出與Clk270_out 1907對準之邊緣對準時脈,且因此系統在正常操作模式中。Referring back to Figure 43A, the memory controller includes a mode detection logic circuit 1980 to detect whether the ID assignment is complete and to generate a clock signal in response to the detection. In the example of FIG. 43A, mode detection logic circuit 1980 outputs a center-aligned clock aligned with Clk360_out 1903 in response to mode detection logic detecting that the ID assignment has not been completed. The mode detection logic circuit 1980 responds to the mode detection logic detecting that the ID assignment is complete and the output is aligned with the edge of the Clk 270_out 1907, and thus the system is in the normal mode of operation.

第44及45圖顯示ID分配(產生)操作期間之時序圖。在揭露中,「/」符號用來代表互補信號(如/clock)。Figures 44 and 45 show timing diagrams during ID assignment (production) operations. In the disclosure, the "/" symbol is used to represent a complementary signal (such as /clock).

第46圖顯示根據一範例實施例時脈產生之時序圖,連同與Clock_out及/Clock_out無相位差之同步的控制輸出,如CSO/DSO及DO。藉由「ID_assignment_status」之高狀態,時脈產生路徑選擇器選擇連接至「Clk270_out」之「1」輸入,使得時脈及資料控制與資料(CSO/DSO/DO)之間不會產生相位差。這發生在ID分配後的正常操作期間。Figure 46 shows a timing diagram of clock generation in accordance with an exemplary embodiment, along with control outputs that are synchronized with Clock_out and /Clock_out without phase differences, such as CSO/DSO and DO. With the high state of "ID_assignment_status", the clock generation path selector selects the "1" input connected to "Clk270_out" so that there is no phase difference between the clock and data control and data (CSO/DSO/DO). This happens during normal operation after ID assignment.

在ID分配後的正常操作期間,與資料之輸入時脈對準係以儲存於「構件ID暫存器」之最後構件ID的LSB(最小有效位元)來判斷。若ID之LSB為「0」,時脈及資料控制與資料間的時序關係不會改變。這與第45圖中所示在ID產生前的時序相同,除了「ID_assignment_status」的狀態改變,其之狀態回應於信號中之資料選通而改變。During the normal operation after the ID assignment, the input clock alignment with the data is determined by the LSB (Least Significant Bit) of the last component ID stored in the "Component ID Register". If the LSB of the ID is "0", the timing relationship between the clock and data control and the data will not change. This is the same as the timing before the ID generation shown in Fig. 45. Except for the state change of "ID_assignment_status", its state changes in response to the data strobe in the signal.

誠如所見,若串聯連接記憶體裝置之最後裝置具有「0」作為ID之LSB,則意味著最後裝置具有開啟的PLL。第47圖顯示根據一範例實施例與資料中央對準時脈之時序圖,因最後裝置具有開啟的PLL。在一替代情況中,若ID的LSB為「1」,則意味著最後裝置具有關閉的PLL。所以從其產生邊緣對準時脈(參見第40A圖之第一情況)。As can be seen, if the last device connected in series with the memory device has "0" as the LSB of the ID, it means that the last device has an open PLL. Figure 47 shows a timing diagram of the clock at the center of the data according to an exemplary embodiment, since the last device has an open PLL. In an alternative case, if the LSB of the ID is "1", it means that the last device has a closed PLL. Therefore, an edge alignment clock is generated therefrom (see the first case of Fig. 40A).

如稍早所述,根據本發明之一實施例的記憶體控制器根據交替PLL開/關所用之情況而可有所不同。第43A及43B圖顯示與在此參照為情況1之實行例匹配的記憶體控制器。As described earlier, the memory controller according to an embodiment of the present invention may vary depending on the circumstances in which the alternate PLL is turned on/off. Figures 43A and 43B show a memory controller that is matched to the embodiment of the case 1 herein.

第49A及49B圖描繪根據本發明之另一實施例的與在此參照為情況2之實行例匹配的記憶體控制器。第49A及49B圖所示之記憶體控制器的結構與第43A及43B圖的類似。第49A及49B圖中所示之記憶體控制器無模式偵測邏輯電路,並具有額外的反向器2521以將構件ID暫存器2520所提供之ID的LSB反向。在ID產生期間第二情況之時序圖可與第一情況的類似,因為所有記憶體裝置有開啟的PLL(參見第39圖)。49A and 49B depict a memory controller that is matched to the embodiment of the case 2 herein in accordance with another embodiment of the present invention. The structure of the memory controller shown in Figs. 49A and 49B is similar to that of Figs. 43A and 43B. The memory controller modeless detection logic shown in Figures 49A and 49B has an additional inverter 2521 to reverse the LSB of the ID provided by the component ID register 2520. The timing diagram for the second case during ID generation can be similar to the first case because all memory devices have an open PLL (see Figure 39).

第49A及49B圖之記憶體控制器,匹配情況2之實行例,在ID分配完成與正常操作中皆產生與資料中央對準時脈。在ID分配前,應使用LSB偶數「開啟」的方式,以重設所有ID,因為在重設階段中如情況1般所有PLL為開啟,因此無需煩惱不同操作類型。在情況2中,僅開啟奇數PLL。In the memory controllers of Figs. 49A and 49B, in the case of the matching case 2, the clock is aligned with the center of the data in both the ID assignment completion and the normal operation. Before the ID is assigned, the LSB even number "on" should be used to reset all IDs, because in the reset phase, as in case 1, all PLLs are turned on, so there is no need to worry about different operation types. In case 2, only odd PLLs are turned on.

參照第49A及49B圖,時脈產生器2510具有時脈振盪器2511及PLL 2512。由時脈振盪器2511提供內部產生的時脈信號「Clk_src」至產生複數90°、180°、270°及360°相位位移時脈信號之PLL 2512的參考時脈輸入「Ref_clk」。180°、270°及360°相位位移時脈信號係經由個別的輸出緩衝器提供作為Clk180_out 2508、Clk270_out 2507及Clk360_out 2503。Clk180_out 2508、Clk270_out 2507及Clk360_out 2503與內部產生時脈信號「Clk_src」同步。Clk360_out 2503係提供至包括兩個選擇器2513及2514之選擇輸入。「0」及「1」邏輯信號係分別饋送至選擇器2513之「0」及「1」輸入以及另一選擇器2514之「1」及「0」輸入。回應於Clk360_out 2503,選擇器2513及2514提供互補輸出信號,其分別經由個別輸出緩出衝器提供作為「Clock out」2501及「Clock out#」2502。Referring to FIGS. 49A and 49B, the clock generator 2510 has a clock oscillator 2511 and a PLL 2512. The internally generated clock signal "Clk_src" is supplied by the clock oscillator 2511 to the reference clock input "Ref_clk" of the PLL 2512 which generates a plurality of 90°, 180°, 270° and 360° phase shift clock signals. The 180°, 270°, and 360° phase shift clock signals are provided as Clk180_out 2508, Clk270_out 2507, and Clk360_out 2503 via separate output buffers. Clk180_out 2508, Clk270_out 2507, and Clk360_out 2503 are synchronized with the internally generated clock signal "Clk_src". The Clk360_out 2503 is provided to select inputs including two selectors 2513 and 2514. The "0" and "1" logic signals are fed to the "0" and "1" inputs of the selector 2513 and the "1" and "0" inputs of the other selector 2514, respectively. In response to Clk360_out 2503, selectors 2513 and 2514 provide complementary output signals that are provided as "Clock out" 2501 and "Clock out #" 2502 via separate output buffers, respectively.

Clk360_out 2503亦係提供至命令/位址/資料產生器2580,其則提供位元0至7的八位元資料。資料的偶數位元[0,2,4,6]係提供至由Clk180_out 2508時控之D-FF。資料的奇數位元[1,3,5,7]係提供至由Clk180_out 2508的反向型式時控之另一D-FF。兩D-FF提供偶數資料位元「Even_d」及奇數資料位元「Odd_d」至選擇器2523之「1」及「0」輸入。「Odd_d」與「Even_d」180°相位位移。回應於Clk270_out 2507,選擇器2523選擇偶數或奇數資料位元。選擇的資料位元係經由輸出緩衝器提供作為DO(命令/位址/資料)2504。Clk360_out 2503 is also provided to command/address/data generator 2580, which provides octet data for bits 0 through 7. The even bits [0, 2, 4, 6] of the data are supplied to the D-FF controlled by Clk180_out 2508. The odd bits [1, 3, 5, 7] of the data are supplied to another D-FF controlled by the inverse version of Clk180_out 2508. The two D-FFs provide an even data bit "Even_d" and an odd data bit "Odd_d" to the "1" and "0" inputs of the selector 2523. "Odd_d" and "Even_d" are 180° phase shifted. In response to Clk 270_out 2507, selector 2523 selects even or odd data bits. The selected data bits are provided as DO (command/address/data) 2504 via the output buffer.

控制邏輯電路2530接收Clk360_out 2503、來自D-FF 2561之「icsi」2534中的內部命令選通及來自D-FF 2563之「idsi」2565中的內部資料選通。控制邏輯電路2530分別從其輸出CSO_SRC及DSO_SRC提供命令選通輸出及資料選通輸出信號,其連接至命令選通輸出電路2541及資料選通輸出電路2551。內部產生之命令選通輸出信號係饋送至命令選通輸出電路2541的兩個D-FF。這兩D-FF由Clk180_out 2508及其反向型式時控,並分別提供作為「icso_1」及「icso_2」的輸出信號至選擇器2524。回應於Clk270_out 2507,選擇器2524選擇「icso_1」及「icso_2」信號之一,且選擇的信號係經由輸出緩衝器提供作為CSO 2505。Control logic circuit 2530 receives Clk360_out 2503, internal command strobe from "icsi" 2534 of D-FF 2561, and internal data strobe from "idsi" 2565 of D-FF 2563. Control logic circuit 2530 provides command strobe output and data strobe output signals from its outputs CSO_SRC and DSO_SRC, respectively, which are coupled to command strobe output circuit 2541 and data strobe output circuit 2551. The internally generated command strobe output signal is fed to the two D-FFs of the command strobe output circuit 2541. The two D-FFs are time-controlled by Clk180_out 2508 and its inverse type, and provide output signals as "icso_1" and "icso_2" to the selector 2524, respectively. In response to Clk270_out 2507, selector 2524 selects one of the "icso_1" and "icso_2" signals, and the selected signal is provided as CSO 2505 via the output buffer.

內部產生之資料選通輸出信號係從控制邏輯電路2530提供至資料選通輸出電路2551的兩個D-FF。這兩D-FF由Clk180_out 2508及其反向型式時控,並分別提供作為「idso_1」及「idso_2」的輸出信號至選擇器2525。回應於Clk270_out 2507,選擇器2525選擇「idso_1」及「idso_2」信號之一,且選擇的信號係經由輸出緩衝器提供作為DSO(資料選通輸出)2506。The internally generated data strobe output signal is supplied from control logic circuit 2530 to the two D-FFs of data strobe output circuit 2551. The two D-FFs are time-controlled by Clk180_out 2508 and its inverse type, and provide output signals as "idso_1" and "idso_2" to the selector 2525, respectively. In response to Clk270_out 2507, selector 2525 selects one of the "idso_1" and "idso_2" signals, and the selected signal is provided as a DSO (data strobe output) 2506 via the output buffer.

由差動輸入緩衝器比較CSI 2536及參考電壓「Vref」2537。Vref係在記憶體控制器本身中內部產生或從電源產生器(未圖示)外部產生。回應於來自選擇器2560之選擇的時脈信號輸出2559,由D-FF2561閂鎖差動緩衝器輸出信號。D-FF 2561之輸出信號提供作為「icsi」信號2534至控制邏輯電路2530。The CSI 2536 and the reference voltage "Vref" 2537 are compared by the differential input buffer. Vref is generated internally in the memory controller itself or externally from a power generator (not shown). In response to the clock signal output 2559 from the selection of selector 2560, the D-FF2561 latches the differential buffer output signal. The output signal of D-FF 2561 is provided as an "icsi" signal 2534 to control logic 2530.

類似地,由差動輸入緩衝器比較DS1信號2532及參考電壓Vref信號,並且回應於來自選擇的時脈信號輸出2559,由D-FF 2563閂鎖差動緩衝器輸出信號。D-FF 2563之輸出信號提供作為「idsi」信號2565至控制邏輯電路2530及具有八個AND閘之電路2590中之資料選通。Similarly, the DS1 signal 2532 and the reference voltage Vref signal are compared by the differential input buffer and the differential buffer output signal is latched by the D-FF 2563 in response to the clock signal output 2559 from the selection. The output signal of D-FF 2563 provides data strobe in "idsi" signal 2565 to control logic circuit 2530 and circuit 2590 having eight AND gates.

並且,由差動輸入緩衝器比較「DI」2531及參考電壓Vref,並提供差動緩衝器輸出信號至兩個資料閂鎖器電路2591及2592,各包括四個串聯連接之D-FF。在每一個資料閂鎖器電路中一D-FF之Q輸出連接至下一D-FF之D輸出。回應於選擇的時脈信號輸出2559,閂鎖並經由兩資料閂鎖器電路2591及2592之每一個中的串聯連接D-FF依序傳輸差動緩衝器輸出信號之資料。電路2592之D-FF回應於選擇的時脈信號輸出2559及其反向型式而執行資料傳輸。因此,電路2592中之資料傳輸與電路2591的有180°相位位移。例如,電路2592中之第一D-FF的輸出信號i7與電路2591中之第一D-FF的輸出信號i6有180°相位位移。輸出信號i7、i6、...及i1係饋送至電路2590中之資料選通的個別AND閘。電路2590中之資料選通的八個AND閘共同接收「idsi」信號2565,且八個AND閘之邏輯輸出信號係提供至資料暫存器2540,其輸出內部資料信號「Idata[0:7]」。Also, the differential input buffer compares "DI" 2531 with the reference voltage Vref and provides a differential buffer output signal to the two data latch circuits 2591 and 2592, each including four D-FFs connected in series. In each of the data latch circuits, the Q output of one D-FF is connected to the D output of the next D-FF. In response to the selected clock signal output 2559, the latch and the data of the differential buffer output signal are sequentially transmitted via the serial connection D-FF in each of the two data latch circuits 2591 and 2592. The D-FF of circuit 2592 performs data transfer in response to the selected clock signal output 2559 and its inverse pattern. Thus, the data transfer in circuit 2592 has a 180° phase shift from circuit 2591. For example, the output signal i7 of the first D-FF in circuit 2592 is 180° out of phase with the output signal i6 of the first D-FF in circuit 2591. Output signals i7, i6, ..., and i1 are fed to the individual AND gates of the data strobe in circuit 2590. The eight AND gates of the data strobe in circuit 2590 collectively receive the "idsi" signal 2565, and the logic outputs of the eight AND gates are provided to the data register 2540, which outputs the internal data signal "Idata[0:7] "."

控制邏輯電路2530分別從D-FF 2561及2563在其Icsi輸入接收「icsi」信號2534並在其Idsi輸入接收「idsi」信號2565。控制邏輯電路2530從時脈產生器2510在其Iclk輸入接收Clk360_out 2503。控制邏輯電路2530從其Power_up_seq_done輸出提供「ID_assignment_status」信號2533及從其OItid輸出提供閂鎖ID信號「Latch_ID」。「ID_assignment_status」信號2533代表ID分配完成。Control logic circuit 2530 receives "icsi" signal 2534 from its Icsi input from D-FF 2561 and 2563 and receives an "idsi" signal 2565 at its Idsi input. Control logic circuit 2530 receives Clk360_out 2503 from its Iclk input from clock generator 2510. The control logic circuit 2530 provides an "ID_assignment_status" signal 2533 from its Power_up_seq_done output and a latch ID signal "Latch_ID" from its OItid output. The "ID_assignment_status" signal 2533 represents the completion of the ID assignment.

在第49A圖,與第43A圖類似,欲從記憶體控制器提供與資料中央對準時脈,Clock_out 2501及/Clock_out 2502與Clk360_out 2503同步化。此同步化不受到「ID_assignment_status」信號2533狀態的影響。DO(命令/位址/資料)2504、CSO(命令選通輸出)2502及DSO(資料選通輸出)2506信號與Clk270_out 2507同步。時脈產生器2510例如藉由PLL提供信號Clk360_out 2503及Clk270_out 2507。同樣地,時脈同步化不受到「ID_assignment_status」信號2533狀態的影響,與情況1之控制器相反。第49A圖之記憶體控制器不需要如第43A圖之模式偵測邏輯電路1980,因為無論模式如何改變(ID分配模式或正常操作模式)時脈輸出不變。In Fig. 49A, similar to Fig. 43A, clock_out 2501 and /Clock_out 2502 are synchronized with Clk360_out 2503 to provide clock synchronization from the memory controller. This synchronization is not affected by the state of the "ID_assignment_status" signal 2533. DO (command/address/data) 2504, CSO (command strobe output) 2502, and DSO (data strobe output) 2506 signals are synchronized with Clk270_out 2507. The clock generator 2510 provides signals Clk360_out 2503 and Clk270_out 2507, for example, by a PLL. Similarly, the clock synchronization is not affected by the state of the "ID_assignment_status" signal 2533, as opposed to the controller of Case 1. The memory controller of Fig. 49A does not require the mode detection logic circuit 1980 as shown in Fig. 43A because the clock output does not change regardless of the mode change (ID assignment mode or normal operation mode).

在第49B圖中,操作與第43B圖類似。一旦記憶體控制器經由D埠2531至資料暫存器2540從串聯連接記憶體裝置之最後裝置獲得ID數字,回應於來自控制邏輯電路2530之「Latch_ID」信號,儲存暫存的ID數字於構件ID暫存器1920中。當正在執行此操作時,亦接收DSI 2532以告知記憶體控制器ID數字之起點與結束點。從DSI信號之下降邊緣,「ID_assignment_status」信號2533根據其中ID數字傳輸至構件ID暫存器2520之一週期的延遲來判斷過渡點。針對記憶體裝置之ID產生,DSI及DSO係用來產生ID數字並傳送ID號碼至下一記憶體裝置。當「ID_assignment_status」信號2533處於高狀態,記憶體控制器認識到ID產生操作的結束。In Fig. 49B, the operation is similar to that of Fig. 43B. Once the memory controller obtains the ID number from the last device connected to the memory device via the D埠2531 to the data register 2540, in response to the "Latch_ID" signal from the control logic circuit 2530, the temporarily stored ID number is stored in the component ID. In the register 1920. While this operation is being performed, DSI 2532 is also received to inform the start and end points of the memory controller ID number. From the falling edge of the DSI signal, the "ID_assignment_status" signal 2533 determines the transition point based on the delay in which the ID number is transmitted to one of the members ID register 2520. For ID generation of the memory device, DSI and DSO are used to generate the ID number and transmit the ID number to the next memory device. When the "ID_assignment_status" signal 2533 is in the high state, the memory controller recognizes the end of the ID generation operation.

如第49B圖中所示,「ID_assignment_status」信號2533及最後記憶體裝置之LSB係皆提供至AND閘2550,其操作為比較器。回應於AND閘2550之輸出,操作為時脈組態器之選擇器2560組態將由記憶體控制器提供之時脈。PLL 2570可與選擇器2560通訊。在一實施例中,選擇器2560及PLL 2570皆可視為時脈組態器之一部分。第49B圖之PLL 2570執行如同第43B圖之PLL 1970般之產生相位位移時脈的功能。參考時脈信號「Ref_clk」及90°相位位移的時脈信號「Clk90_in」係饋送至選擇器2560。選擇器2560回應於從AND閘2550之輸出饋送至其選擇輸入之輸入信號而輸出選擇的時脈信號2559。當儲存在構件ID暫存器2520中之ID的LSB為低時,反向器2521之輸出信號為高,且接著AND閘2550偵測到ID分配完成,例如藉由偵測「ID_assignment_status」信號2533為高。回應於AND閘255之「高」輸出信號,選擇器2560選擇Clk90_in作為選擇的時脈信號2559。當ID分配未完成(亦即「ID_assignment_status」信號2533之邏輯狀態為低)時,時脈組態器產生相反的輸出(亦即提供參考時脈信號「Ref_clk」)作為選擇的時脈信號2559。此邏輯判斷預期從最後裝置或記憶體構件接收之時脈對準。As shown in Fig. 49B, the "ID_assignment_status" signal 2533 and the LSB of the last memory device are all supplied to the AND gate 2550, which operates as a comparator. In response to the output of the AND gate 2550, the selector 2560 operating as a clock configurator configures the clock to be provided by the memory controller. The PLL 2570 can communicate with the selector 2560. In one embodiment, both selector 2560 and PLL 2570 can be considered part of the clock configurator. The PLL 2570 of Fig. 49B performs the function of generating a phase shift clock like the PLL 1970 of Fig. 43B. The reference clock signal "Ref_clk" and the 90° phase shift clock signal "Clk90_in" are fed to the selector 2560. The selector 2560 outputs the selected clock signal 2559 in response to an input signal fed from the output of the AND gate 2550 to its selection input. When the LSB of the ID stored in the component ID register 2520 is low, the output signal of the inverter 2521 is high, and then the AND gate 2550 detects that the ID allocation is completed, for example, by detecting the "ID_assignment_status" signal 2533. High. In response to the "high" output signal of AND gate 255, selector 2560 selects Clk90_in as the selected clock signal 2559. When the ID assignment is not complete (i.e., the logic state of the "ID_assignment_status" signal 2533 is low), the clock configurator produces the opposite output (i.e., provides the reference clock signal "Ref_clk") as the selected clock signal 2559. This logic determines the timing of the clock that is expected to be received from the last device or memory member.

針對情況2,由於第一裝置的PLL為關閉,情況2之自動偵測為可能。針對情況1,若第一裝置的PLL為開啟,必須進行檢查以判斷ID分配是否正在進行中;僅當ID分配完成後才能判斷情況1是否存在。For Case 2, automatic detection of Case 2 is possible because the PLL of the first device is off. For case 1, if the PLL of the first device is on, it must be checked to determine whether the ID assignment is in progress; it can only be determined whether the situation 1 exists after the ID assignment is completed.

如上述,控制器可回應於情況1或情況2的偵測而改變信號產生之類型。串聯連接裝置組典型不具有混合的設定;連接的裝置序列中之各裝置有相同的設定。在目前較佳的實施例中,根據情況1或情況2控制所有裝置,但在相同連接的裝置序列中不能有這兩種方式的混合。As described above, the controller can change the type of signal generation in response to the detection of Case 1 or Case 2. A series connected device group typically does not have a hybrid setting; each device in the connected device sequence has the same settings. In the presently preferred embodiment, all devices are controlled according to Case 1 or Case 2, but there is no mixture of the two modes in the same connected device sequence.

典型由使用者做出使用情況1或情況2之決定;控制器簡單地偵測該進行哪一種實行例。控制器可包括這兩種情況之邏輯實行例,但其根據使用者選擇一次僅實行一種情況。Typically, the user makes a decision on use case 1 or case 2; the controller simply detects which of the embodiments is to be performed. The controller may include a logical implementation of both cases, but it only implements one condition at a time depending on the user's choice.

使用者可決定控制器實行例。第43A及43B圖中的實施例及第49A及49B圖中的實施例以耗電量而言為相等。兩種不同的實行例可結合到一個控制器中,或可實行為不同的控制器。使用者根據所用的方法(如奇數PLL開啟或關閉)使用匹配的控制器。控制器必須匹配交替PLL供電之實施例。The user can decide on the controller implementation. The embodiments in Figures 43A and 43B and the embodiments in Figures 49A and 49B are equal in terms of power consumption. Two different embodiments can be combined into one controller or can be implemented as different controllers. The user uses the matching controller depending on the method used (such as odd PLL on or off). The controller must match the embodiment of the alternate PLL supply.

正常上,無需即時從一種方法切換到另一種。在電源開啟後,方法已定。選擇可儲存在記憶體中,或可在每次裝置電源開啟時重新進行。然而,在電源開啟時重新分配,所有連接裝置的裝置ID必須重設。主要目的在於減少耗電量。若實行了一實施例,無需切換至另一實施例。Normally, there is no need to switch from one method to another in real time. After the power is turned on, the method is fixed. The selection can be stored in memory or can be re-enabled each time the unit is powered on. However, when the power is turned on, the device ID of all connected devices must be reset. The main purpose is to reduce power consumption. If an embodiment is implemented, there is no need to switch to another embodiment.

控制器可從各裝置接收或獲取組態資訊,但其僅需最後裝置之組態資訊,因為所有連結裝置會有相同的組態。根據組態資訊,控制器可偵測組態方式,且回應地判斷適當的將發送之時脈信號。The controller can receive or retrieve configuration information from each device, but it only requires configuration information from the last device, as all connected devices will have the same configuration. Based on the configuration information, the controller can detect the configuration and respond to the appropriate clock signal that will be sent.

對於這些組態之一中可連接在一起的裝置數量並無限制。已知平行時控方法的一限制為即使裝置以菊鏈連接,由於時脈可驅動性及信號完整性,無法連接無限數量的裝置在一起。根據本發明之一實施例,可連接任何數量的裝置在一起。There is no limit to the number of devices that can be connected together in one of these configurations. One limitation of the known parallel time control method is that even if the device is daisy chained, an infinite number of devices cannot be connected due to clock driveability and signal integrity. In accordance with an embodiment of the invention, any number of devices can be connected together.

根據最後裝置之ID的LSB,以及連接裝置的數量,控制器可判斷組態資訊。控制器可讀取最後裝置之組態以判斷是否為情況1或情況2。The controller can determine the configuration information based on the LSB of the ID of the last device and the number of connected devices. The controller can read the configuration of the last device to determine if it is Case 1 or Case 2.

第50圖顯示根據一範例實施例在ID產生後從記憶體控制器之時脈產生的時序圖(輸出信號,第二情況)。針對第二情況,在ID分配後之輸出信號的時序實質上類似ID分配期間的時序,除了「ID_assignment_status」。由於記憶體控制器之輸出信號不受控於ID分配完成之狀態。Figure 50 shows a timing diagram (output signal, second case) generated from the clock of the memory controller after ID generation, according to an exemplary embodiment. For the second case, the timing of the output signal after the ID allocation is substantially similar to the timing of the ID allocation period except "ID_assignment_status". Since the output signal of the memory controller is not controlled by the state in which the ID allocation is completed.

在第二情況之ID產生後,具有ID之LSB=0的時序圖(第51圖)與具有ID之LSB=1的時序圖(第48圖)實質上類似。具有ID之LSB=1的第52圖(第二情況)與具有ID之LSB=0的第47圖(第一情況)相同。在第二情況中在ID之LSB反向後進行ID之LSB的多工器控制。差別顯示在第43A及43B圖與第49A及49B圖中。After the ID of the second case is generated, the timing chart (Fig. 51) having the LSB = 0 of the ID is substantially similar to the timing chart (Fig. 48) having the LSB = 1 of the ID. The 52nd picture (the second case) having the LSB=1 of the ID is the same as the 47th picture (the first case) having the LSB=0 of the ID. In the second case, the multiplexer control of the LSB of the ID is performed after the LSB of the ID is reversed. The differences are shown in Figures 43A and 43B and Figures 49A and 49B.

本發明之實施例可描述成提供記憶體控制器之撓性時脈準控制(與資料中央對準的時脈及與資料邊緣對準的時脈)。使用最後裝置之ID數字,可判斷時脈對準控制。ID分配前與後,以及ID的LSB=0及1可能產生不同的時序圖。邊緣對準方法可使用時脈與資料控制間一樣的延遲路徑。時脈結構可以SDR及DDR介面操作。Embodiments of the invention may be described as providing flexible clockwise control of the memory controller (the clock aligned with the center of the data and the clock aligned with the edge of the data). Using the ID number of the last device, the clock alignment control can be determined. Before and after the ID assignment, and the LSB=0 and 1 of the ID may produce different timing diagrams. The edge alignment method uses the same delay path as the clock and data control. The clock structure can be operated with SDR and DDR interfaces.

在此所述之實施例已參照串聯連接之複數裝置。在串聯連接裝置組中之每一裝置可唯一實體裝置,或可為包括複數平行連接實體裝置之邏輯裝置。串聯連接之堆疊型裝置各分配到一個自己的ID數字,且由不同裝置代表,如第40A及40B圖中所示。The embodiments described herein have been referred to a plurality of devices connected in series. Each of the devices in the series connected device group may be a unique physical device, or may be a logical device including a plurality of parallel connected physical devices. The stacked devices connected in series are each assigned to its own ID number and are represented by different devices, as shown in Figures 40A and 40B.

例如,若三個平行連接裝置提供在複數串聯連接裝置的中間,那三個平行連接裝置以根據本發明之一實施例供電或控制PLL方面而言係視為一個邏輯裝置。故可具有平行連接的裝置,但每一組平行連接裝置視為一個邏輯裝置。若需開啟一邏輯裝置(包括複數平行連接裝置)之PLL,則僅需使複數平行連接裝置中之一個PLL開啟。可開啟其他PLL,但會不必要地增加耗電量。For example, if three parallel connection devices are provided in the middle of a plurality of series connection devices, the three parallel connection devices are considered a logic device in terms of powering or controlling the PLL in accordance with an embodiment of the present invention. It is therefore possible to have devices connected in parallel, but each group of parallel connections is considered a logic device. To turn on the PLL of a logic device (including multiple parallel connections), it is only necessary to turn on one of the plurality of parallel connections. Other PLLs can be turned on, but power consumption is unnecessarily increased.

根據本發明之一實施例,交替串聯連接裝置之PLL為開啟,無論裝置為邏輯裝置或實體裝置,且不管裝置的總數量為何。本發明之實施例說明控制裝置連結之方法。According to one embodiment of the invention, the PLLs of the alternate series connection devices are turned on, whether the devices are logical devices or physical devices, regardless of the total number of devices. Embodiments of the invention illustrate a method of controlling a device connection.

交替PLL供電之開/關/開/關(或關/開/關/開)方法的替代例為可行,但有可能會需要額外的電路。最大頻率可能受限於此種其他方法。例如,若所有PLL除了一個外皆為關閉,系統操作不可行。An alternative to the on/off/on/off (or off/on/off/on) method of alternating PLL power supply is possible, but additional circuitry may be required. The maximum frequency may be limited by this other method. For example, if all PLLs are off except one, system operation is not feasible.

使用來源同步發信方式,連結僅從一裝置到另一裝置,其可視為點對點的連結。點對點的連結確保高頻率操作。Using the source synchronous signaling method, the connection is only from one device to another, which can be regarded as a point-to-point connection. Point-to-point links ensure high frequency operation.

此技術可應用於非依電性裝置,如快閃裝置。快閃裝置包括任何種類的快閃裝置,如NAND快閃或NOR快閃。This technique can be applied to non-electrical devices such as flash devices. Flash devices include any type of flash device, such as NAND flash or NOR flash.

在上述範例中,裝置為記憶體裝置。記憶體裝置可為依電性或非依電性記憶體的任一者。並且,裝置可為任何半導體裝置,其之操作與時脈信號同步。In the above example, the device is a memory device. The memory device can be any of electrical or non-electrical memory. Also, the device can be any semiconductor device whose operation is synchronized with the clock signal.

使用半導體裝置之電子設備可包括各種電性裝置,如數位靜止及視訊相機、個人數位助理、行動電腦、聲音及音樂設備及手機。Electronic devices that use semiconductor devices can include a variety of electrical devices, such as digital still and video cameras, personal digital assistants, mobile computers, sound and music devices, and cell phones.

在上述範例中,為了說明簡單,裝置、元件及電路如圖所示般互相連接。在本發明之實際應用中,元件及電路等等可直接互相連接。並且,元件及電路等等可經由裝置或設備操作所需之其他元件及電路等等間接互相連接。因此,在真實組態中,裝置、元件及電路直接或間接互相耦合。In the above examples, the devices, components, and circuits are connected to each other as shown for simplicity of explanation. In the practical application of the present invention, components, circuits, and the like can be directly connected to each other. Also, components, circuits, and the like may be indirectly connected to each other via other components and circuits or the like required for operation of the device or device. Thus, in a real configuration, devices, components, and circuits are coupled directly or indirectly to one another.

本發明的上述及所示之範例僅意圖作為範例。熟悉此項技藝人士可對特定實施例做出改變、修改及變異而不背離本發明之範疇,其僅由所附之申請專利範圍所界定。The above and illustrated examples of the invention are intended to be illustrative only. A person skilled in the art can make changes, modifications, and variations to the specific embodiments without departing from the scope of the invention, which is defined by the scope of the appended claims.

110...記憶體控制器110. . . Memory controller

120-1~120-N...記憶體裝置120-1~120-N. . . Memory device

131...資料線131. . . Data line

133...控制線133. . . Control line

135...共同時脈線135. . . Common clock line

140...記憶體系統140. . . Memory system

142...主系統或處理器(主機系統)142. . . Main system or processor (host system)

144...記憶體控制器144. . . Memory controller

145-1~145-N...記憶體裝置145-1~145-N. . . Memory device

147-1...第一命令格式147-1. . . First command format

147-2...第二命令格式147-2. . . Second command format

147-3...第三命令格式147-3. . . Third command format

147-4...第四命令格式147-4. . . Fourth command format

150...記憶體控制器150. . . Memory controller

152-1~152-N...記憶體裝置152-1~152-N. . . Memory device

160...記憶體控制器160. . . Memory controller

162-1~162-N...記憶體裝置162-1~162-N. . . Memory device

172...輸入電路172. . . Input circuit

173...輸入信號173. . . input signal

174...輸出電路174. . . Output circuit

175...輸出信號175. . . output signal

176...時脈電路176. . . Clock circuit

178...記憶體核心電路178. . . Memory core circuit

177...共同同步時脈信號177. . . Common synchronization clock signal

210、220...記憶體控制器210, 220. . . Memory controller

212-1~212-4...記憶體裝置212-1~212-4. . . Memory device

230...時脈來源230. . . Clock source

260...記憶體控制器260. . . Memory controller

262-1~262-N...記憶體裝置262-1~262-N. . . Memory device

282...輸入電路282. . . Input circuit

283...輸入信號283. . . input signal

284...輸出電路284. . . Output circuit

285...輸出信號285. . . output signal

286...時脈電路286. . . Clock circuit

287...輸入來源同步時脈信號287. . . Input source sync clock signal

288...記憶體核心電路288. . . Memory core circuit

289...輸出來源同步時脈信號289. . . Output source synchronous clock signal

310...記憶體控制器310. . . Memory controller

312-1~312-4...記憶體裝置312-1~312-4. . . Memory device

316...PLL316. . . PLL

371...ID分配電路371. . . ID distribution circuit

372...ID暫存器372. . . ID register

373...ID匹配判斷器373. . . ID match determinator

375...命令解譯器375. . . Command interpreter

376...反向器376. . . Inverter

377...模式信號產生器377. . . Mode signal generator

378...記憶體核心電路378. . . Memory core circuit

379...ID分配完成信號379. . . ID assignment completion signal

391...ID分配電路391. . . ID distribution circuit

392...ID暫存器392. . . ID register

394...一位元信號394. . . One-bit signal

396...反向器396. . . Inverter

399...ID分配完成信號399. . . ID assignment completion signal

395...反及閘395. . . Reverse gate

401...時脈I/O電路401. . . Clock I/O circuit

403...資料I/O電路403. . . Data I/O circuit

405...選通I/O電路405. . . Gating I/O circuit

407...控制電路407. . . Control circuit

411...輸入緩衝器411. . . Input buffer

413...PLL413. . . PLL

414-1~414-4...緩衝器414-1~414-4. . . buffer

417、419...選擇器417, 419. . . Selector

421、423...輸出緩衝器421, 423. . . Output buffer

425...輸入緩衝器425. . . Input buffer

429、472...輸入緩衝器429, 472. . . Input buffer

431、433...D型正反器431, 433. . . D-type flip-flop

441...選擇器441. . . Selector

443...輸出緩衝器443. . . Output buffer

445、447...D型正反器445, 447. . . D-type flip-flop

449...選擇器449. . . Selector

451...輸出緩衝器451. . . Output buffer

461、463、469、471...D型正反器461, 463, 469, 471. . . D-type flip-flop

465、467、473...選擇器465, 467, 473. . . Selector

475...輸出緩衝器475. . . Output buffer

481...寫入暫存器481. . . Write register

483...讀取暫存器483. . . Read register

491...ID分配電路491. . . ID distribution circuit

492...ID暫存器492. . . ID register

493...ID匹配判斷器493. . . ID match determinator

495...命令解譯器495. . . Command interpreter

497...模式信號產生器497. . . Mode signal generator

498...記憶體核心電路498. . . Memory core circuit

510、520...記憶體控制器510, 520. . . Memory controller

512-1~512-N...記憶體裝置群組512-1~512-N. . . Memory device group

531-1~531-4...記憶體裝置531-1~531-4. . . Memory device

533...基底533. . . Base

535...絕緣體535. . . Insulator

537...連結墊537. . . Connection pad

541...電線541. . . wire

551-1~551-3...記憶體裝置551-1~551-3. . . Memory device

553...基底553. . . Base

555...矽通孔555. . .矽 through hole

561-1~561-N、572-1~572-N、582-1~582-N...多晶片封裝561-1~561-N, 572-1~572-N, 582-1~582-N. . . Multi-chip package

601...時脈I/O電路601. . . Clock I/O circuit

603...資料I/O電路603. . . Data I/O circuit

605...選通I/O電路605. . . Gating I/O circuit

607...控制電路607. . . Control circuit

611...輸入緩衝器611. . . Input buffer

613...PLL613. . . PLL

614-1~614-4...緩衝器614-1~614-4. . . buffer

617、619、621、623...選擇器617, 619, 621, 623. . . Selector

625、627...輸出緩衝器625, 627. . . Output buffer

629...輸入緩衝器629. . . Input buffer

641、643...輸入緩衝器641, 643. . . Input buffer

645、647...D型正反器645,647. . . D-type flip-flop

649、651、653、655、657、659...D型正反器649, 651, 653, 655, 657, 659. . . D-type flip-flop

661、663、669、671...D型正反器661, 663, 669, 671. . . D-type flip-flop

663、665、667、673、677、679、687、689...選擇器663, 665, 667, 673, 677, 679, 687, 689. . . Selector

675...輸出緩衝器675. . . Output buffer

691、693...輸出緩衝器691, 693. . . Output buffer

701...時脈I/O電路701. . . Clock I/O circuit

703...資料I/O電路703. . . Data I/O circuit

705...選通I/O電路705. . . Gating I/O circuit

707...控制電路707. . . Control circuit

711...輸入緩衝器711. . . Input buffer

713...PLL713. . . PLL

714-1~714-4...緩衝器714-1~714-4. . . buffer

715、717、719、720、725...選擇器715, 717, 719, 720, 725. . . Selector

721、723...輸出緩衝器721, 723. . . Output buffer

727...輸入緩衝器727. . . Input buffer

737、739...輸入緩衝器737, 739. . . Input buffer

741、743、781、783...D型正反器741, 743, 781, 783. . . D-type flip-flop

751、753...輸出緩衝器751, 753. . . Output buffer

755...緩衝器755. . . buffer

761、763...D型正反器761, 763. . . D-type flip-flop

765、767、773、781、783、791、793...選擇器765, 767, 773, 781, 783, 791, 793. . . Selector

775...輸出緩衝器775. . . Output buffer

795...寫入暫存器795. . . Write register

797...讀取暫存器797. . . Read register

799-1~799-14...裝置799-1~799-14. . . Device

801...時脈I/O電路801. . . Clock I/O circuit

803...資料I/O電路803. . . Data I/O circuit

805...選通I/O電路805. . . Gating I/O circuit

807...控制電路807. . . Control circuit

811...輸入緩衝器811. . . Input buffer

815、817、819、820、824、865、867、871、873、875、877、885、887、888、891...選擇器815, 817, 819, 820, 824, 865, 867, 871, 873, 875, 877, 885, 887, 888, 891. . . Selector

821、823、843、851、890...輸出緩衝器821, 823, 843, 851, 890. . . Output buffer

825、827、829...輸入緩衝器825, 827, 829. . . Input buffer

831、833、835、837、861、862、863、864、866、868、881、883...D型正反器831, 833, 835, 837, 861, 862, 863, 864, 866, 868, 881, 883. . . D-type flip-flop

853...及閘853. . . Gate

895...寫入暫存器895. . . Write register

897...讀取暫存器897. . . Read register

1410...記憶體控制器1410. . . Memory controller

1420-1~1420-N...記憶體裝置1420-1~1420-N. . . Memory device

1510...控制器輸出信號1510. . . Controller output signal

1520-1~1520-N...裝置1520-1~1520-N. . . Device

1522...PLL1522. . . PLL

1530...外出信號1530. . . Outgoing signal

1620-1~1620-N...裝置1620-1~1620-N. . . Device

1622、1632...PLL1622, 1632. . . PLL

1640-1~1640-N...裝置1640-1~1640-N. . . Device

1642、1652...PLL1642, 1652. . . PLL

1911...時脈振盪器1911. . . Clock oscillator

1910...時脈產生器1910. . . Clock generator

1912...PLL1912. . . PLL

1915、1916、1925、1927、1931、1932、1933...信號1915, 1916, 1925, 1927, 1931, 1932, 1933. . . signal

1920...構件ID暫存器1920. . . Component ID register

1921、1922、1937、1944、1949、1960、1981...選擇器1921, 1922, 1937, 1944, 1949, 1960, 1981. . . Selector

1923、1926、1938、1945、1951...輸出緩衝器1923, 1926, 1938, 1945, 1951. . . Output buffer

1924...控制邏輯電路1924. . . Control logic

1929、1936、1939、1942、1943、1947、1948、1957、1965-7~1965-0...D型正反器1929, 1936, 1939, 1942, 1943, 1947, 1948, 1957, 1965-7~1965-0. . . D-type flip-flop

1928...命令/位址/資料產生器1928. . . Command/address/data generator

1940...資料暫存器1940. . . Data register

1941...命令選通輸出電路1941. . . Command strobe output circuit

1946...資料選通輸出電路1946. . . Data strobe output circuit

1950、1958-7~1958-0...及閘1950, 1958-7~1958-0. . . Gate

1952、1954、1955、1956...差動輸入緩衝器1952, 1954, 1955, 1956. . . Differential input buffer

1953...參考時脈信號1953. . . Reference clock signal

1959...選擇時脈信號1959. . . Select clock signal

1961、1963閂鎖電路1961, 1963 latch circuit

1962...電路1962. . . Circuit

1967...差動輸入緩衝器輸出信號1967. . . Differential input buffer output signal

1968...內部資料信號1968. . . Internal data signal

1970...PLL1970. . . PLL

1980...模式偵測邏輯電路1980. . . Pattern detection logic

1981、1982...選擇器1981, 1982. . . Selector

2510...時脈產生器2510. . . Clock generator

2511...時脈振盪器2511. . . Clock oscillator

2512、2570...PLL2512, 2570. . . PLL

2513、2514、2523、2524、2525、2560...選擇器2513, 2514, 2523, 2524, 2525, 2560. . . Selector

2520...構件ID暫存器2520. . . Component ID register

2521...反向器2521. . . Inverter

2530...控制邏輯電路2530. . . Control logic

2533...信號2533. . . signal

2541...命令選通輸出電路2541. . . Command strobe output circuit

2550...及閘2550. . . Gate

2551...資料選通輸出電路2551. . . Data strobe output circuit

2559...時脈信號輸出2559. . . Clock signal output

2561、2563...D型正反器2561, 2563. . . D-type flip-flop

2565...資料暫存器2565. . . Data register

2580...命令/位址/資料產生器2580. . . Command/address/data generator

2590...電路2590. . . Circuit

2591、2592...資料閂鎖器電路2591, 2592. . . Data latch circuit

參照附圖討論本發明之實施例,圖中:Embodiments of the present invention are discussed with reference to the accompanying drawings in which:

第1圖為具有以多點方式連接之複數記憶體裝置的先前技術系統之區塊圖;Figure 1 is a block diagram of a prior art system having a plurality of memory devices connected in a multipoint manner;

第2圖為可應用本發明之實施例的具有快閃記憶體之總體系統的區塊圖;2 is a block diagram of an overall system with flash memory to which embodiments of the present invention may be applied;

第3圖為可應用本發明之實施例的串聯連接之複數記憶體裝置之配置的區塊圖;Figure 3 is a block diagram showing the configuration of a serially connected complex memory device to which an embodiment of the present invention can be applied;

第4圖為第3圖中所示之裝置的操作之流程圖;Figure 4 is a flow chart showing the operation of the apparatus shown in Figure 3;

第5A圖為顯示裝置識別符(ID)分配的操作之第3圖之配置的區塊圖;5A is a block diagram showing a configuration of a third diagram of an operation of assigning a device identifier (ID);

第5B圖為顯示正常模式操作的第3圖之配置的區塊圖;Figure 5B is a block diagram showing the configuration of Figure 3 of the normal mode operation;

第6圖為用於第2圖中所示之配置中的範例命令格式之區塊圖;Figure 6 is a block diagram of an example command format used in the configuration shown in Figure 2;

第7A圖為單資料率(SDR)操作之時序圖;Figure 7A is a timing diagram of single data rate (SDR) operation;

第7B圖為雙資料率(DDR)操作之時序圖;Figure 7B is a timing diagram of dual data rate (DDR) operation;

第8A圖為含有共同同步時脈結構的具有串聯連接之複數記憶體裝置之系統的一範例之區塊圖;Figure 8A is a block diagram of an example of a system having a serially connected complex memory device having a common synchronous clock structure;

第8B圖為含有共同同步時脈結構的具有串聯連接之複數記憶體裝置之系統的另一範例之區塊圖;Figure 8B is a block diagram of another example of a system having a serially connected complex memory device having a common synchronous clock structure;

第9圖為第8A圖中所示之記憶體裝置之一的區塊圖;Figure 9 is a block diagram of one of the memory devices shown in Figure 8A;

第10A圖為具有記憶體控制器及串聯連接之複數記憶體裝置的系統之一範例的區塊圖;10A is a block diagram showing an example of a system having a memory controller and a plurality of memory devices connected in series;

第10B圖為具有記憶體控制器及串聯連接之複數記憶體裝置的系統之另一範例的區塊圖;10B is a block diagram of another example of a system having a memory controller and a plurality of memory devices connected in series;

第11圖為第10A及10B圖中所示之兩個裝置的區塊圖;Figure 11 is a block diagram of the two devices shown in Figures 10A and 10B;

第12圖為含有具有共同時脈來源之共同同步時脈結構的兩個裝置之區塊圖;Figure 12 is a block diagram of two devices containing a common synchronized clock structure having a common clock source;

第13圖為含有來源同步時脈結構的具有串聯連接之複數記憶體裝置之系統的區塊圖;Figure 13 is a block diagram of a system having a serially coupled complex memory device containing a source synchronous clock structure;

第14圖為第13圖中所示之記憶體裝置之一的區塊圖;Figure 14 is a block diagram of one of the memory devices shown in Figure 13;

第15圖為含有來源同步時脈結構的具有串聯連接之複數記憶體裝置之系統的區塊圖;Figure 15 is a block diagram of a system having a serially connected complex memory device containing a source synchronous clock structure;

第16圖為第15圖中所示之兩個裝置的區塊圖;Figure 16 is a block diagram of the two devices shown in Figure 15;

第17圖為具有來源同步時脈結構的兩個裝置之區塊圖;Figure 17 is a block diagram of two devices having a source synchronous clock structure;

第18A圖為第15圖中所示之串聯連接裝置之一裝置的區塊圖;Figure 18A is a block diagram of one of the series connection devices shown in Figure 15;

第18B圖為第18A圖中所示之裝置的具有記憶體核心電路之控制電路的區塊圖;Figure 18B is a block diagram of a control circuit having a memory core circuit of the apparatus shown in Figure 18A;

第18C圖為第18A圖中所示之裝置的時脈I/O電路之區塊圖;Figure 18C is a block diagram of the clock I/O circuit of the device shown in Figure 18A;

第18D圖為第18A圖中所示之裝置的資料I/O電路之區塊圖;Figure 18D is a block diagram of the data I/O circuit of the device shown in Figure 18A;

第18E圖為第18A圖中所示之裝置的選通I/O電路之區塊圖;Figure 18E is a block diagram of the strobe I/O circuit of the device shown in Figure 18A;

第19圖為第18A至18E圖中所示之來源同步時脈結構的時序圖;Figure 19 is a timing diagram of the source synchronous clock structure shown in Figures 18A to 18E;

第20A圖含有來源同步時脈結構及共同同步時脈之具有記憶體控制器及串聯連接之複數記憶體裝置的一系統之區塊圖;Figure 20A is a block diagram of a system having a source synchronous clock structure and a common synchronous clock having a memory controller and a plurality of memory devices connected in series;

第20B圖為含有來源同步時脈結構及共同同步時脈之具有記憶體控制器及串聯連接之複數記憶體裝置的另一系統之區塊圖;Figure 20B is a block diagram of another system having a memory controller and a serially connected complex memory device including a source synchronous clock structure and a common synchronous clock;

第21A圖為具有打線接合之多晶片封裝(MCP)的一範例之剖面圖;21A is a cross-sectional view showing an example of a multi-chip package (MCP) having wire bonding;

第21B圖為具有矽通孔之MCP結構的另一範例之剖面圖;21B is a cross-sectional view showing another example of an MCP structure having a through hole;

第22圖為MCP裝置用之具有混合式同步時脈結構的系統之區塊圖;Figure 22 is a block diagram of a system having a hybrid synchronous clock structure for an MCP device;

第23A圖為MCP裝置用之具有交替混合式同步時脈結構的另一系統之區塊圖;Figure 23A is a block diagram of another system for an MCP device having an alternate hybrid synchronous clock structure;

第23B圖為MCP裝置用之具有另一交替混合式同步時脈結構的另一系統之區塊圖;Figure 23B is a block diagram of another system for another MCP device having another alternate hybrid synchronous clock structure;

第24A圖為接收中央對準資料以捕捉輸入資料且隨意地提供中央對準來源同步時脈輸出之一記憶體裝置的區塊圖;Figure 24A is a block diagram of a memory device that receives central alignment data to capture input data and optionally provides a centrally aligned source synchronized clock output;

第24B圖為第24A圖中所示的時脈I/O電路之區塊圖;Figure 24B is a block diagram of the clock I/O circuit shown in Figure 24A;

第24C圖為第24A圖中所示的資料I/O電路之區塊圖;Figure 24C is a block diagram of the data I/O circuit shown in Figure 24A;

第24D圖為第24A圖中所示的選通I/O電路之區塊圖;Figure 24D is a block diagram of the gated I/O circuit shown in Figure 24A;

第25圖為與禁能之鎖相迴路(PLL)操作之第24A至24D圖中所示之裝置的時序圖;Figure 25 is a timing diagram of the apparatus shown in Figures 24A through 24D of the phase-locked loop (PLL) operation of the disable phase;

第26圖為與致能之PLL操作之第24A至24D圖中所示之裝置的時序圖;Figure 26 is a timing diagram of the apparatus shown in Figures 24A through 24D of the PLL operation enabled;

第27圖為根據來源同步時脈結構及共同同步時脈之MCP裝置用的具有交替時脈結構之系統的區塊圖;Figure 27 is a block diagram of a system having an alternate clock structure for an MCP device that synchronizes a clock structure with a source and a synchronous clock.

第28圖為顯示在控制器及第一記憶體裝置之來源同步信號間的關係之時序圖;Figure 28 is a timing chart showing the relationship between the controller and the source sync signal of the first memory device;

第29A圖為能夠使用邊緣對準時脈或中央對準時脈來接收輸入資料的一記憶體裝置之區塊圖;Figure 29A is a block diagram of a memory device capable of receiving input data using an edge-aligned clock or a centrally aligned clock;

第29B圖為第29A圖中所示之裝置的時脈I/O電路之區塊圖;Figure 29B is a block diagram of the clock I/O circuit of the device shown in Figure 29A;

第29C圖為第29A圖中所示之裝置的資料I/O電路之區塊圖;Figure 29C is a block diagram of the data I/O circuit of the device shown in Figure 29A;

第29D圖為第29A圖中所示之裝置的選通I/O電路之區塊圖;Figure 29D is a block diagram of the strobe I/O circuit of the device shown in Figure 29A;

第30圖為與致能之PLL操作之第29A至29D圖中所示之裝置的時序圖;Figure 30 is a timing diagram of the apparatus shown in Figures 29A through 29D of the PLL operation enabled;

第31圖為與禁能之PLL操作之第29A至29D圖中所示之裝置的時序圖;Figure 31 is a timing diagram of the apparatus shown in Figures 29A through 29D of the disabled PLL operation;

第32圖為在ID分配前含有來源同步時脈結構之具有複數裝置的一範例系統之區塊圖;Figure 32 is a block diagram of an exemplary system having a plurality of devices having a source synchronous clock structure prior to ID assignment;

第33A圖為在ID分配後具有複數裝置的一範例系統之區塊圖;Figure 33A is a block diagram of an example system having a plurality of devices after ID allocation;

第33B圖為在ID分配後具有複數裝置的另一範例系統之區塊圖;Figure 33B is a block diagram of another example system having a plurality of devices after ID allocation;

第34A圖為與來源同步時脈一起使用之一記憶體裝置的區塊圖;Figure 34A is a block diagram of one of the memory devices used with the source sync clock;

第34B圖為第34A圖中所示的具有記憶體核心電路之控制電路的區塊圖;Figure 34B is a block diagram of the control circuit with the memory core circuit shown in Figure 34A;

第34C圖為第34A圖中所示的時脈I/O電路之區塊圖;Figure 34C is a block diagram of the clock I/O circuit shown in Figure 34A;

第34D圖為第34A圖中所示的資料I/O電路之區塊圖;Figure 34D is a block diagram of the data I/O circuit shown in Figure 34A;

第34E圖為第34A圖中所示的選通I/O電路之區塊圖;Figure 34E is a block diagram of the strobe I/O circuit shown in Figure 34A;

第35A圖為具有致能PLL的第34A至34E圖中所示之裝置的時序圖;Figure 35A is a timing diagram of the apparatus shown in Figures 34A through 34E with the enabled PLL;

第35B圖為具有禁能PLL的第34A至34E圖中所示之裝置的時序圖;Figure 35B is a timing diagram of the apparatus shown in Figures 34A through 34E with the disable PLL;

第36A圖為第34A圖中所示的具有記憶體核心電路之控制電路的另一範例之區塊圖;Figure 36A is a block diagram of another example of a control circuit having a memory core circuit shown in Figure 34A;

第36B圖為第34A圖中所示的時脈I/O電路之另一範例的區塊圖;Figure 36B is a block diagram of another example of the clock I/O circuit shown in Figure 34A;

第37A圖為具有致能PLL的第34A、34D至34E、36A及36B圖中所示之裝置的時序圖;Figure 37A is a timing diagram of the apparatus shown in Figures 34A, 34D through 34E, 36A and 36B of the enabling PLL;

第37B圖為具有禁能PLL的第34A、34D至34E、36A及36B圖中所示之裝置的時序圖;Figure 37B is a timing diagram of the apparatus shown in Figures 34A, 34D through 34E, 36A and 36B with the disable PLL;

第38圖顯示具有控制器及以來源同步時控方法串聯連接的複數裝置之系統的另一範例;Figure 38 shows another example of a system having a controller and a plurality of devices connected in series by a source synchronous time control method;

第39圖顯示包括串聯連接之複數裝置之來源同步時控系統之一範例;Figure 39 shows an example of a source synchronous time control system comprising a plurality of devices connected in series;

第40A圖顯示在具有交替PLL開啟控制之串聯連接的裝置中之完全來源同步時控方法的一範例;Figure 40A shows an example of a full source synchronous time control method in a series connected device with alternating PLL turn-on control;

第40B圖顯示在具有交替PLL開啟控制之串聯連接的裝置中之完全來源同步時控方法的另一範例;Figure 40B shows another example of a full source synchronous time control method in a series connected device with alternating PLL turn-on control;

第41A圖顯示以串聯連接裝置中的最後裝置之ID數字的時脈對準判斷之一範例的流程圖;Figure 41A is a flow chart showing an example of clock alignment determination of the ID number of the last device in the series connection device;

第41B圖顯示以串聯連接裝置中的最後裝置之ID數字的時脈對準判斷之另一範例的流程圖Figure 41B is a flow chart showing another example of the clock alignment determination of the ID number of the last device in the series connection device.

第42圖顯示在範例電源開啟序列中之ID產生的時序;Figure 42 shows the timing of the ID generation in the example power-on sequence;

第43A及43B圖顯示根據本發明之一實施例之一範例記憶體控制器邏輯組態,以支援撓性資料對準;43A and 43B are diagrams showing an exemplary memory controller logic configuration in accordance with an embodiment of the present invention to support flexible data alignment;

第44及45圖顯示第43A及43B圖中所示之記憶體控制器的信號之時序圖;Figures 44 and 45 show timing diagrams of the signals of the memory controller shown in Figures 43A and 43B;

第46圖顯示根據一範例實施例在ID產生後來自記憶體控制器之時脈產生的時序圖;Figure 46 is a timing diagram showing clock generation from a memory controller after ID generation, according to an exemplary embodiment;

第47圖顯示根據一範例實施例在ID產生且ID的最小有效位元(LSB)=0之後來自記憶體控制器之時脈產生的時序圖;Figure 47 is a timing diagram showing the clock generation from the memory controller after the ID is generated and the least significant bit (LSB) of the ID = 0, according to an exemplary embodiment;

第48圖顯示根據一範例實施例在ID產生且ID的LSB=1之後來自記憶體控制器之時脈產生的時序圖;Figure 48 is a timing diagram showing clock generation from a memory controller after ID generation and LSB = 1 of the ID, according to an exemplary embodiment;

第49A及49B圖顯示顯示根據本發明之一實施例之記憶體控制器邏輯組態的另一範例,以支援撓性資料對準;49A and 49B are diagrams showing another example of a memory controller logic configuration in accordance with an embodiment of the present invention to support flexible data alignment;

第50圖顯示根據一範例實施例在ID產生後來自記憶體控制器之時脈產生的時序圖;Figure 50 is a timing diagram showing clock generation from a memory controller after ID generation, according to an exemplary embodiment;

第51圖顯示根據一範例實施例在ID產生且ID的LSB=0之後來自記憶體控制器之時脈產生的時序圖;以及Figure 51 is a timing diagram showing clock generation from a memory controller after ID generation and LSB = 0 of an ID, according to an exemplary embodiment;

第52圖顯示根據一範例實施例在ID產生且ID的LSB=1之後來自記憶體控制器之時脈產生的時序圖。Figure 52 shows a timing diagram of clock generation from a memory controller after ID generation and LSB = 1 of the ID, in accordance with an exemplary embodiment.

401‧‧‧時脈I/O電路 401‧‧‧clock I/O circuit

403‧‧‧資料I/O電路 403‧‧‧Data I/O Circuit

405‧‧‧選通I/O電路 405‧‧‧Gating I/O Circuitry

407‧‧‧控制電路 407‧‧‧Control circuit

Claims (37)

一種用於傳輸具有由輸入時脈信號的過渡所界定之週期的資料之裝置,該裝置包含:時脈電路,包括:鎖相迴路(PLL),用於回應於該輸入時脈信號而提供該複數再生時脈信號,該複數再生時脈信號的相位與該資料互相不同地位移,其中該PLL組態成回應於具有第一及第二邏輯狀態的控制信號而被選擇性致能或禁能,以及時脈輸出電路,用於回應於該複數再生時脈信號的至少一者而產生該輸出時脈信號,其中在該PLL被致能的情況中,該PLL組態成回應於該輸入時脈信號而產生該複數再生時脈信號,以及該時脈輸出電路組態成回應於該複數再生時脈信號的至少一者而產生該輸出時脈信號;以及同步化電路,用於當該PLL被致能時同步化該資料與該些再生時脈信號的至少一者之傳輸以及當該PLL被禁能時該同步化電路組態成同步化該資料與該輸入時脈信號之傳輸,該輸出時脈信號之過渡發生在該資料的該週期間。 An apparatus for transmitting data having a period defined by a transition of an input clock signal, the apparatus comprising: a clock circuit comprising: a phase locked loop (PLL) for providing the response to the input clock signal a plurality of reproduced clock signals, the phase of the complex reproduced clock signal being shifted from the data differently, wherein the PLL is configured to be selectively enabled or disabled in response to a control signal having the first and second logic states And a clock output circuit for generating the output clock signal in response to at least one of the plurality of reproduced clock signals, wherein in the case where the PLL is enabled, the PLL is configured to respond to the input Generating the complex regenerative clock signal, and the clock output circuit is configured to generate the output clock signal in response to at least one of the plurality of regenerated clock signals; and synchronizing circuitry for the PLL Synchronizing the data with at least one of the regenerative clock signals when enabled and the synchronization circuit is configured to synchronize the transmission of the data with the input clock signal when the PLL is disabled When the output transition pulse signals occur during the week of that information. 如申請專利範圍第1項所述之裝置,其中該時脈電路進一步組態成回應於包含一時脈信號及其互補時脈信號之該輸入時脈信號而提供內部時脈信號。 The device of claim 1, wherein the clock circuit is further configured to provide an internal clock signal in response to the input clock signal comprising a clock signal and its complementary clock signal. 如申請專利範圍第2項所述之裝置,其中該PLL 進一步組態成當該PLL為致能時回應於該內部時脈信號而產生該複數再生時脈信號。 The device of claim 2, wherein the PLL Further configured to generate the complex regenerative clock signal in response to the internal clock signal when the PLL is enabled. 如申請專利範圍第2項所述之裝置,其中該同步化電路進一步組態成當該PLL為禁能時同步化該資料與該內部時脈信號之傳輸。 The apparatus of claim 2, wherein the synchronization circuit is further configured to synchronize transmission of the data with the internal clock signal when the PLL is disabled. 如申請專利範圍第4項所述之裝置,其中該PLL進一步組態成輸出具有相位位移為該資料之90°倍數之該些再生時脈信號。 The apparatus of claim 4, wherein the PLL is further configured to output the regenerated clock signals having a phase shift of a multiple of 90° of the data. 如申請專利範圍第2項所述之裝置,其中該時脈輸出電路組態成產生包含一時脈信號及其互補時脈信號之該輸出時脈信號。 The apparatus of claim 2, wherein the clock output circuit is configured to generate the output clock signal comprising a clock signal and its complementary clock signal. 如申請專利範圍第1項所述之裝置,其中該控制信號包含:具有用於致能該PLL之高邏輯狀態的邏輯信號。 The apparatus of claim 1, wherein the control signal comprises: a logic signal having a high logic state for enabling the PLL. 如申請專利範圍第1項所述之裝置,其中該控制信號包含:具有用於分別致能及禁能該PLL之第一及第二邏輯狀態的邏輯信號。 The device of claim 1, wherein the control signal comprises: a logic signal having first and second logic states for enabling and disabling the PLL, respectively. 如申請專利範圍第1項所述之裝置,進一步包含:用於儲存資料之記憶體;以及用於存取該記憶體之存取電路。 The device of claim 1, further comprising: a memory for storing data; and an access circuit for accessing the memory. 如申請專利範圍第9項所述之裝置,其中該存取電路組態成回應於寫入信號而寫入資料於該記憶體中。 The device of claim 9, wherein the access circuit is configured to write data in the memory in response to the write signal. 如申請專利範圍第10項所述之裝置,其中該同步化電路組態成同步化輸入至該裝置之資料與該再生時脈信號的傳輸。 The apparatus of claim 10, wherein the synchronization circuit is configured to synchronize transmission of data input to the apparatus with transmission of the regenerated clock signal. 如申請專利範圍第10項所述之裝置,其中該存取電路進一步組態成回應於讀取信號而讀取儲存在該記憶體中之資料。 The device of claim 10, wherein the access circuit is further configured to read the data stored in the memory in response to the read signal. 如申請專利範圍12項所述之裝置,其中該同步化電路組態成同步化來自該存取電路之該讀取資料與該再生時脈之傳輸。 The apparatus of claim 12, wherein the synchronization circuit is configured to synchronize transmission of the read data from the access circuit with the regenerative clock. 如申請專利範圍第13項所述之裝置,進一步包含:保持器,用於保持與該裝置關聯之識別資訊,該識別資訊用來識別該裝置,該存取電路組態成回應於根據該識別資訊之該裝置的識別而存取該記憶體。 The device of claim 13, further comprising: a holder for maintaining identification information associated with the device, the identification information being used to identify the device, the access circuit configured to respond to the identification The memory is accessed by the identification of the device. 如申請專利範圍第14項所述之裝置,進一步包含:識別資訊提供器,用於提供識別資訊至該保持器,回應於保持在該保持器中之該識別資訊而提供該控制信號,該控制信號為分別導致該PLL被致能及禁能之邏輯高及低之一。 The device of claim 14, further comprising: an identification information provider for providing identification information to the holder, the control signal being provided in response to the identification information held in the holder, the control The signal is one of the logic high and low that respectively causes the PLL to be enabled and disabled. 如申請專利範圍第14項所述之裝置,進一步包含:識別資訊提供器組態成: 提供識別資訊至該保持器,以及在該識別資訊之提供完成時提供完成信號;以及邏輯電路組態成回應於該完成信號及保持在該保持器中之該識別資訊而提供邏輯信號作為控制信號,該識別資訊包括二元數字,該控制信號回應於該二元數字之最小有效位元而為邏輯高及邏輯低之一,該PLL回應於該控制信號之該邏輯高及低分別被致能及禁能;回應於資料讀取信號從該記憶體讀取資料以提供至第二資料閂鎖器電路。 The device of claim 14, further comprising: the identification information provider configured to: Providing identification information to the holder, and providing a completion signal when the supply of the identification information is completed; and the logic circuit configured to provide a logic signal as a control signal in response to the completion signal and the identification information held in the holder The identification information includes a binary number, the control signal is one of a logic high and a logic low in response to the least significant bit of the binary number, and the PLL is enabled in response to the logic high and low of the control signal respectively And disabling; reading data from the memory in response to the data read signal to provide to the second data latch circuit. 如申請專利範圍第16項所述之裝置,其中該同步化電路組態成:回應於該第一內部時脈信號而捕捉進入資料;以及同步化該進入資料及該讀取資料之任一者與第二內部時脈信號之傳輸。 The device of claim 16, wherein the synchronization circuit is configured to: capture incoming data in response to the first internal clock signal; and synchronize any of the incoming data and the read data And transmission of the second internal clock signal. 一種用於從第一裝置傳輸資料至第二裝置之設備,該資料具有由時脈信號的過渡所界定之週期:該第一裝置包含:第一時脈電路,包括:鎖相迴路(PLL),用於回應於第一輸入時脈信號而提供複數第一再生時脈信號,該複數第一再生時脈信號的相位與該資料互相不同地位移,其中該PLL組態成回應於具有第一及第二邏輯狀態的控制信號而被選擇性致能或禁能,以及 時脈輸出電路,用於回應於該複數第一再生時脈信號的至少一者而產生該輸出時脈信號,其中在該PLL被致能的情況中,該PLL組態成回應於該第一輸入時脈信號而產生該複數第一再生時脈信號,以及該時脈輸出電路組態成回應於該複數第一再生時脈信號的至少一者而產生該輸出時脈信號;以及第一同步化電路,用於當該PLL被致能時同步化該資料與該複數第一再生時脈信號的至少一者之傳輸以及當該PLL被禁能時該同步化電路組態成同步化該資料與該第一輸入時脈信號之傳輸,該第一輸出時脈信號之過渡發生在該資料的該週期間,該第二裝置包含:第二時脈電路,組態成回應於衍生自該第一輸出時脈信號之第二輸入時脈信號而提供複數第二再生時脈信號,該複數第二再生時脈信號的相位與該資料互相不同地位移,以及第一資料輸入電路,用於回應於該第二輸入時脈信號而接收從該第一裝置所傳輸之該資料。 An apparatus for transmitting data from a first device to a second device, the data having a period defined by a transition of a clock signal: the first device comprising: a first clock circuit comprising: a phase locked loop (PLL) Providing a plurality of first regenerated clock signals in response to the first input clock signal, the phase of the plurality of first regenerated clock signals being shifted from the data differently from each other, wherein the PLL is configured to respond to having the first And the second logic state control signal is selectively enabled or disabled, and a clock output circuit responsive to at least one of the plurality of first reproduced clock signals to generate the output clock signal, wherein in the case where the PLL is enabled, the PLL is configured to respond to the first Generating a clock signal to generate the plurality of first reproduced clock signals, and wherein the clock output circuit is configured to generate the output clock signal in response to at least one of the plurality of first reproduced clock signals; and the first synchronization a circuit for synchronizing the transmission of the data with at least one of the plurality of first reproduced clock signals when the PLL is enabled and configuring the synchronization circuit to synchronize the data when the PLL is disabled And the transmission of the first input clock signal, the transition of the first output clock signal occurs during the period of the data, the second device comprising: a second clock circuit configured to be derived from the first a second input clock signal of the output clock signal provides a plurality of second reproduced clock signals, the phase of the plurality of second reproduced clock signals is different from the data, and the first data input circuit is configured to respond In the first The receiving of the information transmitted from the first clock signal input means. 如申請專利範圍第18項所述之設備,其中:該第一時脈電路的該PLL是第一PLL,且該第二時脈電路包含:第二PLL,用於回應於該第二輸入時脈信號而提供該複數第二再生時脈信號。 The device of claim 18, wherein: the PLL of the first clock circuit is a first PLL, and the second clock circuit comprises: a second PLL for responding to the second input The plurality of second regenerated clock signals are provided by the pulse signals. 如申請專利範圍第19項所述之設備,其中該第二PLL組態成回應於第二控制信號而選擇性被致能或禁能。 The apparatus of claim 19, wherein the second PLL is configured to be selectively enabled or disabled in response to the second control signal. 如申請專利範圍第20項所述之設備,其中:當該第二PLL被致能時,該第二PLL回應於該第二輸入時脈信號而產生該複數第二再生時脈信號。 The device of claim 20, wherein: when the second PLL is enabled, the second PLL generates the plurality of second regenerated clock signals in response to the second input clock signal. 如申請專利範圍第21項所述之設備,其中該第二裝置之該第一資料輸入電路組態成回應於該第二時脈信號而接收從該第一裝置所傳輸之該資料。 The device of claim 21, wherein the first data input circuit of the second device is configured to receive the data transmitted from the first device in response to the second clock signal. 如申請專利範圍第22項所述之設備,其中該第一裝置進一步包含第二資料輸入電路,用於接收與該第一輸入時脈信號同步化之輸入資料,該第一同步化電路組態成同步化該資料與該複數第一再生時脈信號的至少一者之傳輸。 The device of claim 22, wherein the first device further comprises a second data input circuit for receiving input data synchronized with the first input clock signal, the first synchronization circuit configuration Synchronizing the transmission of the data with at least one of the plurality of first regenerated clock signals. 如申請專利範圍第23項所述之設備,其中:該第一輸入時脈信號包含一時脈信號及其互補時脈信號;以及該第一輸出時脈信號包含一時脈信號及其互補時脈信號。 The device of claim 23, wherein: the first input clock signal comprises a clock signal and a complementary clock signal thereof; and the first output clock signal comprises a clock signal and a complementary clock signal thereof . 如申請專利範圍第24項所述之設備,其中:該第一時脈電路組態成回應於包含該一時脈信號及其互補時脈信號之該第一輸入時脈信號而提供第一內部時脈信號;以及該第一輸出時脈電路組態成提供包含一時脈信號及其 互補時脈信號之第二內部時脈信號。 The device of claim 24, wherein: the first clock circuit is configured to provide a first internal time in response to the first input clock signal including the one clock signal and its complementary clock signal a pulse signal; and the first output clock circuit is configured to provide a clock signal and A second internal clock signal of the complementary clock signal. 如申請專利範圍第25項所述之設備,其中該第一PLL進一步組態成當該第一PLL被致能時回應於該第一內部時脈信號而產生該複數第一再生時脈信號。 The apparatus of claim 25, wherein the first PLL is further configured to generate the plurality of first regenerated clock signals in response to the first internal clock signal when the first PLL is enabled. 如申請專利範圍第26項所述之設備,其中該第一同步化電路進一步組態成當該第一PLL被禁能時同步化該資料與該第一內部時脈信號之傳輸。 The apparatus of claim 26, wherein the first synchronization circuit is further configured to synchronize transmission of the data with the first internal clock signal when the first PLL is disabled. 如申請專利範圍第27項所述之設備,其中該第二裝置之該第一資料輸入電路組態成回應於該第二內部時脈信號而接收從該第一裝置所傳輸之該資料。 The apparatus of claim 27, wherein the first data input circuit of the second device is configured to receive the data transmitted from the first device in response to the second internal clock signal. 如申請專利範圍第28項所述之設備,其中該第一裝置進一步包含:第一識別資訊提供器,用於提供識別資訊至該第一保持器,回應於保持在該第一保持器中之該識別資訊而提供該第一控制信號,該第一控制信號為分別導致該第一PLL被致能及禁能之邏輯高及低之一。 The device of claim 28, wherein the first device further comprises: a first identification information provider for providing identification information to the first holder, in response to being held in the first holder The first control signal is provided by the identification information, and the first control signal is one of logic high and low respectively causing the first PLL to be enabled and disabled. 一種用於傳輸與裝置所再生的時脈信號同步的資料之系統,包含:控制器;以及複數串聯連接之裝置,其之操作與時脈信號同步化,該些裝置之每一個包含:鎖相迴路(PLL)組態成被選擇性致能,當致能時,該PLL回應於輸入時脈信號提供複數再生時脈信號, 該些再生時脈信號為該輸入時脈信號之不同相位位移的型式;以及同步化電路,用於同步化資料與該些再生時脈信號的至少一者之傳輸,以及在每一群中,該些裝置之至少一者從前一裝置接收該再生輸出時脈,其他裝置接收共同時脈信號,輸出該些再生時脈信號的該裝置之該PLL係被致能,該其他裝置之該PLL係被禁能。 A system for transmitting data synchronized with a clock signal reproduced by a device, comprising: a controller; and a plurality of serially connected devices, the operations of which are synchronized with a clock signal, each of the devices comprising: phase lock The loop (PLL) is configured to be selectively enabled, and when enabled, the PLL provides a plurality of regenerative clock signals in response to the input clock signal, The regenerative clock signals are of a different phase shift of the input clock signal; and a synchronization circuit for synchronizing the transmission of at least one of the data and the regenerated clock signals, and in each group, At least one of the devices receives the regenerative output clock from the previous device, the other device receives the common clock signal, and the PLL of the device that outputs the regenerated clock signals is enabled, and the PLL of the other device is Disabled. 如申請專利範圍第30項所述之系統,其中該些裝置構造於多晶片封裝(MCP),一群之該些裝置係在封裝中。 The system of claim 30, wherein the devices are constructed in a multi-chip package (MCP), and a group of the devices are in a package. 如申請專利範圍第31項所述之系統,其中該來源同步時脈結構係施加於該些裝置之該些MCP之間。 The system of claim 31, wherein the source synchronized clock structure is applied between the MCPs of the devices. 如申請專利範圍第32項所述之系統,其中各群包括至少第一及第二裝置,該第一裝置進一步包含用於接收與該輸入時脈信號同步之輸入資料的資料輸入電路,該同步化電路組態成同步化該資料與該再生時脈信號之傳輸。 The system of claim 32, wherein each group includes at least first and second devices, the first device further comprising a data input circuit for receiving input data synchronized with the input clock signal, the synchronization The circuit is configured to synchronize the transmission of the data with the regenerated clock signal. 一種用於複數裝置之方法,該複數裝置的每一個包含鎖相迴路(PLL),回應於輸入時脈信號一裝置傳輸資料至另一裝置,該方法包含:分配裝置識別符給該複數裝置;提供具有根據該裝置之該裝置識別符之位準的控制信號, 回應於具有第一位準的該控制信號選擇性致能該PLL以及回應於具有第二位準的該控制信號選擇性禁能該PLL,該致能的PLL回應於該輸入時脈信號而輸出複數再生時脈信號,該些再生時脈信號為該輸入時脈信號的不同相位位移型式。 A method for a plurality of devices, each of the plurality of devices comprising a phase locked loop (PLL) responsive to an input clock signal - a device transmitting data to another device, the method comprising: assigning a device identifier to the plurality of devices; Providing a control signal having a level of the device identifier according to the device, Selectively enabling the PLL in response to the control signal having a first level and selectively disabling the PLL in response to the control signal having a second level, the enabled PLL outputting in response to the input clock signal The plurality of clock signals are reproduced, and the reproduced clock signals are different phase shift patterns of the input clock signals. 如申請專利範圍第34項所述之方法,其中該提供步驟進一步包含:提供具有根據該裝置之該裝置識別符之第一及第二位準的該控制信號,回應於該第一及第二位準而分別選擇性致能或禁能該些裝置之每一個的該PLL。 The method of claim 34, wherein the providing step further comprises: providing the control signal having the first and second levels of the device identifier according to the device, in response to the first and second The PLL is selectively enabled or disabled for each of the devices. 一種用於傳輸根據時脈信號時控之資料的方法,該資料具有由該時脈信號之過渡所界定之週期,該方法包含:回應於具有第一和第二邏輯狀態的控制信號選擇性致能或禁能鎖相迴路(PLL);在該PLL被致能的情況下,回應於該輸入時脈信號藉由該PLL產生複數再生時脈信號,該些再生時脈信號為該輸入時脈信號之不同相位位移之型式;回應於該複數再生時脈信號產生輸出時脈信號;以及同步化該資料與該些再生時脈信號之至少一者的傳輸;以及在該PLL被禁能的情況下,同步化該資料與該輸入時 脈信號的傳輸。 A method for transmitting time-controlled data according to a clock signal having a period defined by a transition of the clock signal, the method comprising: selectively responding to a control signal having first and second logic states A phase-locked loop (PLL) can be disabled or disabled; in the case where the PLL is enabled, a plurality of regenerated clock signals are generated by the PLL in response to the input clock signal, and the regenerated clock signals are the input clock a pattern of different phase shifts of the signal; generating an output clock signal in response to the complex reproduced clock signal; and synchronizing transmission of the data with at least one of the reproduced clock signals; and wherein the PLL is disabled Next, when synchronizing the data with the input The transmission of pulse signals. 一種用於從第一裝置傳輸資料至第二裝置之方法,根據時脈信號時控該資料,該資料具有由該時脈信號的過渡所界定之週期,該方法包含:在該第一裝置,回應於第一輸入時脈信號而由鎖相迴路(PLL)提供複數第一再生時脈信號,該些再生時脈信號為該第一輸入時脈信號之不同相位位移之型式,其中該PLL組態成回應於具有第一及第二邏輯狀態的控制信號而被選擇性致能或禁能,以及回應於該複數第一再生時脈信號的至少一者而產生該第一輸出時脈信號,其中在該PLL被致能的情況中,該PLL組態成回應於該第一輸入時脈信號而產生該複數第一再生時脈信號,以及回應於該複數第一再生時脈信號的至少一者而產生該輸出時脈信號當該PLL被致能時同步化該資料與該些再生時脈信號的至少一者之傳輸以及當該PLL被禁能時同步化該資料與該第一輸入時脈信號之傳輸,該再生時脈信號的時脈過渡係在該資料的該週期間,該再生時脈信號係提供作為該輸出時脈信號,在該第二裝置,回應於來自該第一裝置的該輸出時脈信號提供複數第二再生時脈信號,該些再生時脈信號為來自該第一裝 置之該輸出時脈信號之不同相位位移之型式,以及接收從該第一裝置傳輸之該資料。 A method for transmitting data from a first device to a second device, wherein the data is time-controlled according to a clock signal having a period defined by a transition of the clock signal, the method comprising: at the first device, And providing a plurality of first regenerated clock signals by a phase locked loop (PLL) in response to the first input clock signal, wherein the regenerated clock signals are of a different phase shift pattern of the first input clock signal, wherein the PLL group Generating, in response to the control signal having the first and second logic states, selectively enabling or disabling, and generating the first output clock signal in response to at least one of the plurality of first reproduced clock signals, Wherein in the case where the PLL is enabled, the PLL is configured to generate the plurality of first reproduced clock signals in response to the first input clock signal, and to respond to at least one of the plurality of first reproduced clock signals Generating the output clock signal to synchronize the transmission of the data with at least one of the regenerated clock signals when the PLL is enabled and to synchronize the data with the first input when the PLL is disabled Pulse signal The clock transition of the regenerated clock signal is during the period of the data, the regenerative clock signal being provided as the output clock signal, and in response to the output from the first device, the second device The pulse signal provides a plurality of second regenerative clock signals, the regenerative clock signals being from the first device A pattern of different phase shifts of the output clock signal is received, and the data transmitted from the first device is received.
TW097147841A 2007-12-14 2008-12-09 Clock reproducing and timing method, device and apparatus in a system having a plurality of devices and memory controller with flexible data alignment TWI525998B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US1378407P 2007-12-14 2007-12-14
US1990708P 2008-01-09 2008-01-09
US3960508P 2008-03-26 2008-03-26
US12/168,091 US8781053B2 (en) 2007-12-14 2008-07-04 Clock reproducing and timing method in a system having a plurality of devices
JP2008188992 2008-07-22
JP2008193870 2008-07-28
JP2008193871A JP5255359B2 (en) 2008-07-28 2008-07-28 Precursor solution for film formation
US12/325,074 US8467486B2 (en) 2007-12-14 2008-11-28 Memory controller with flexible data alignment to clock

Publications (2)

Publication Number Publication Date
TW200941945A TW200941945A (en) 2009-10-01
TWI525998B true TWI525998B (en) 2016-03-11

Family

ID=44868456

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097147841A TWI525998B (en) 2007-12-14 2008-12-09 Clock reproducing and timing method, device and apparatus in a system having a plurality of devices and memory controller with flexible data alignment

Country Status (1)

Country Link
TW (1) TWI525998B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8374480B2 (en) * 2009-11-24 2013-02-12 Aten International Co., Ltd. Method and apparatus for video image data recording and playback
TWI404339B (en) * 2009-11-25 2013-08-01 Mstar Semiconductor Inc Method for adjusting memory signal phase

Also Published As

Publication number Publication date
TW200941945A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
TWI519077B (en) Clock reproducing and timing method in a system having a plurality of devices and memory controller with flexible data alignment
US9148277B2 (en) Clock reproducing and timing method in a system having a plurality of devices
US11880569B2 (en) Clock mode determination in a memory system
JP5709855B2 (en) BRIDGE DEVICE WITH FREQUENCY CONFIGURABLE CLOCK DOMAIN (BRIDGINGDEVICE)
TWI525998B (en) Clock reproducing and timing method, device and apparatus in a system having a plurality of devices and memory controller with flexible data alignment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees